
Soft Comput (2015) 19:2265–2273
DOI 10.1007/s00500-014-1406-6

METHODOLOGIES AND APPLICATION

Dynamic deployment of virtual machines in cloud computing
using multi-objective optimization

Bo Xu · Zhiping Peng · Fangxiong Xiao ·
Antonio Marcel Gates · Jian-Ping Yu

Published online: 13 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Cloud computing is regarded as the fifth util-
ity service and is the next generation of computation. The
computing resources can be dynamically allocated according
to consumer requirements and preferences Virtual machine
deployment has an important role in cloud computing, and
aims to reduce turnaround times and improve resource use.
In essence, the deployment of virtual machines is a multi-
objective decision problem that must consider key factors.
That is, we need to optimize the resource use and migration
times. In this paper, we propose the multi-objective com-
prehensive evaluation model for the dynamic deployment of
virtual machines. We then use an improved multi-objective
particle swarm optimization (IMOPSO) to solve the prob-
lem. We have designed two simulation experiments using the
CloudSim toolkit: the first experimental results show that on
comparison of our improved algorithm with the traditional
single-objective algorithms PSO and QPSO, our method is
feasible and efficient; the second experimental results show
that IMOPSO can search effectively, maintain population

Communicated by V. Loia.

B. Xu · Z. Peng (B)
Guangdong Provincial Key Lab of Petrochemical Equipment Fault
Diagnosis, Department of Computer Science and Technology,
Guangdong University of Petrochemical Technology,
Guangdong 525000, China
e-mail: pengzp@foxmail.com

B. Xu
e-mail: xubo807127940@163.com

B. Xu · F. Xiao
School of Software Engineering, South China University
of Technology, Guangdong 510006, China

F. Xiao
School of Information and Statistics, Guangxi University
of Finance and Economics, Guangxi 530003, China

diversity, and quickly converge to the Pareto optimal solution
without losing stability. The obtained Pareto optimal solution
set has a better convergence and distribution than a compar-
ative method.

Keywords Virtual machine deployment · Particle swarm
optimization · Multi-objective optimization · Cloud
computing

1 Introduction

Cloud computing is regarded as the fifth utility service after
water, gas, electricity, and telecommunication services, and
is the next generation in computation (Buyya et al. 2009).
One of the key aspects that makes cloud computing different
from grid computing is that the computing resources (either
hardware or software) are virtualized and allocated as ser-
vices (Foster et al. 2008). The computing resources can be
dynamically allocated according to consumer requirements
and preferences (Armbrust et al. 2010).

A. M. Gates
Hawaii Pacific University, Honolulu, HI 96813, USA

J.-P. Yu
Key Laboratory of High Performance Computing and Stochastic
Information Processing (Ministry of Education of China), College
of Mathematics and Computer Science, Hunan Normal University,
Hunan 410081, China

J.-P. Yu
High Technology Research Key Laboratory of Wireless Sensor
Networks of Jiangsu Province, Nanjing University of Posts
and Telecommunications, Jangshu 210003, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-014-1406-6&domain=pdf

2266 B. Xu et al.

A core issue of cloud computing is the deployment of
virtual machine (VM) (Stillwell et al. 2010). The service
providers simultaneously receive large numbers of comput-
ing requests, with different requirements and preferences
from different users. Some users require less computing
resources and lower cost, and others have higher require-
ments and take more computing resources (Kong et al. 2011).
It is important to research techniques to deploy VM that
meets the users’ requirements while maximizing efficiency
(Sindhu and Mukherjee 2011). The VM deployment prob-
lem is dynamic because users have different requirements
that can change over time (Warneke and Kao 2011). Tradi-
tional algorithms make underlying assumptions that ignore
important issues, and cannot meet the requirements of this
dynamic environment. In such cases, the optimization algo-
rithm must track a moving optimum as closely as possible,
rather than simply finding a single good solution (Blackwell
et al. 2006). So, the VM deployment problem can be classi-
fied as a multi-objective optimization problem. It is extremely
challenging to quantify the performance of a VM deployment
policy for different applications and service models under
varying service level agreements, resource uses, and power
consumptions (Chaisiri et al. 2012).

It has been argued that multi-objective evolutionary algo-
rithms (MOEA) may be particularly suitable for this type
of problem, and a large number of MOEA variants for
dynamic optimization problems have been proposed over
the past decade (Cruz et al. 2011). However, many of these
approaches either cannot scale to the required size or are too
fragile for a dynamic environment (Cruz et al. 2011). The
development of new algorithms is challenging. The multi-
objective particle swarm optimization (MOPSO) algorithm
is a new algorithm that combines the principles of particle
swarm optimization (PSO) and multi-objective optimization.
It has been shown to perform better than conventional multi-
objective algorithms for multi-objective optimization prob-
lems (Coello and Lechuga 2002).

The remaining parts of this paper are organized as fol-
lows. In Sect. 2, we discuss recent related work in the VM
deployment problem. In Sect. 3, we describe the background
of the VM deployment problem and MOPSO. In Sect. 3.2,
we propose the multi-objective comprehensive evaluation
model for VM dynamic deployment, which we then solve
using improved multi-objective particle swarm optimization
(IMOPSO). We present the experimental results and analysis
in Sect. 4, and our conclusions in Sect. 5.

2 Related work

When considering future and recent conferences, journal spe-
cial issues, and research reports, it becomes evident that there
is growing interest in the VM deployment problem. We have
identified some of the limitations reported in literature. Mah-

davi et al. (2011) broke the VM deployment problem down
into the packing and multi-objective optimization problems.
First, they used a genetic algorithm to deal with the combi-
natorial optimization problem, and then they combined the
technique with fuzzy logic to optimize the overall resource
consumption, energy consumption, and overhead of heat dis-
sipation. However, this approach does not consider the cost
of VM migration. It considers static VM placement, but not
dynamic deployment based on the migration of VM. Kourai
focused on issues related to the shutdown of physical servers
within the data center and the recovery of virtual machines
and applications, using hierarchical models to optimize VM
and application deployment (Kourai et al. 2011). Wilcox
described VM deployment as a multi-objective optimization
problem in cloud computing, mainly taking into account two
goals: the number of physical servers used in the deployment
of a VM, and VM migration times. They proposed a multi-
objective genetic algorithm for VM deployment based on
the classic NSGA-II algorithm (Wilcox et al. 2011). Aksaç
created a two grade control management system to map a
VM to a physical machine, using multi-objective optimiza-
tion methods to solve potential conflicts in VM deployment
(Aksaç et al. 2011). Sindelar formalized the problem as a
multi-dimensional knapsack problem, handling deployment
constraints as a separate one-dimensional problem (Sinde-
lar et al. 2011). Maguluri considered the needs of users to
be a random process and proposed a non-pre-emptive VM
configuration policy for long framework times (Maguluri
et al. 2012). This strategy can achieve near optimal system
throughput. Maurer et al. (2012) proposed a VM deploy-
ment algorithm that used forecasting techniques and heuris-
tic packing algorithms. They achieved the minimum num-
ber of physical machines and ensured a certain amount of
service-level agreement. Takahashi et al. (2012) formalized
the problem as a combination of multi-unit auction mod-
els. Nguyen et al. (2013) proposed a VM scheduling policy
based on a genetic algorithm, which used historical data from
the cloud computing system and the system’s current state
to achieve the load balancing and minimal overhead of VM
migration. However, this strategy ignores the data center con-
cerns of resource use and the related energy consumption.
Sato et al. (2013) proposed a dynamic optimization of VM
placement by predicting the resource usage. The proposed
method predicts the future resource usage using an autore-
gressive model, but it must be evaluated on the servers that
the VMs are deployed on.

The general issues related to VM deployment can be
described as packing problems. The boxes of the packing
problem are physical servers in the data center, the capaci-
ties of the boxes are server-related properties (such as CPU,
memory, storage), and the items in the box cannot exceed
a threshold according to the server properties (Hyser et al.
2007). The boxed items are VMs. The size of a VM is deter-

123

Dynamic deployment of virtual machines in cloud computing 2267

Physical node
Physical node

Physical node

server

VM VM VM VM VM VM

Fig. 1 VM deployment model

mined by the user’s request because the data center offers
a variety of VMs. VMs also have some properties similar
to physical servers; using these properties we can determine
whether the VM is suitable for deployment on a physical
machine. However, there are some differences between the
packing problem and VM deployment. For example, the VM
requests arrive at different times. The developments of heat
transfer methods suggest that VM deployment can be more
flexible (Mohammadi et al. 2011). The typical VM deploy-
ment model is shown in Fig. 1:

Suppose there are M virtual machines that need to be
deployed on N physical servers. There are NM possible
deployments, so this is an NP intricate packing problem. We
need to find a set of approximate optimal solutions and apply
a heuristic algorithm that has been used to find the approxi-
mate solution of optimization problems for a wide range of
applications.

In this paper, we propose an improved multi-objective
particle swarm optimization (IMOPSO) to solve the VM
dynamic deployment problem in a cloud computing envi-
ronment. The aim of the optimization method is to converge
to the Pareto optimal solution as fast as possible, without
losing stability.

3 IMOPSO for virtual machine deployment

3.1 Multi-objective particle swarm optimization (MOPSO)

PSO was derived from complex adaptive systems (CAS)
(Eberhart and Kennedy 1995). CAS theory was proposed in

1994. A CAS member is called a body. For example, in bird
research systems, each bird is called the body. A body has
adaptability; it can communicate with the environment and
other bodies, change its structure and behavior in accordance
with the process of “learning”, or “accumulate experience”.
PSO was first formally proposed in 1995 by Eberhart and
Kennedy, and was originally derived from studies on the for-
aging behavior of birds (Eberhart and Kennedy 1995). The
PSO algorithm aims to find the global optimum value. PSO
converges fast, uses simple operations, and requires few para-
meters. The basic PSO algorithm speed formula is as follows
(Eberhart and Kennedy 1995):

Vid(t + 1) = Vid(t) + r1 ∗ c1 ∗ (Pid(t) − Xid(t))

+ r2 ∗ c2 ∗ (Pgd(t) − Xid(t)) (1)

Xid(t + 1) = Vid(t) + Xid(t) (2)

where Vid(t + 1) denotes the speed value of i particle d
dimension in the t + 1 generation r1 r2 is random number
in [0, 1], c1, c2 is the velocity coefficient and is a constant,
Pid is the individual current best location, Pgd is the current
global best position, and Xid(t) is the position of i parti-
cle d dimension in t generation. PSO is a natural candidate
for multi-objective optimization because it is relatively sim-
ple and is a population-based technique (Reyes-Sierra and
Coello Coello 2006). Since Parsopoulos and Vrahatis (2002)
presented the first study of the performance of PSO in multi-
objective optimization problems, many different MOPSOs
have been reported, for example (Heo et al. 2006; Janson
et al. 2008).

123

2268 B. Xu et al.

3.2 Multi-objective comprehensive evaluation model

VM deployment is in essence a multi-objective decision
problem. The decision must be based on some key factors.
That is, we need to optimize the resource use and migration
times.

3.2.1 Resource use

In cloud computing, resources mainly refer to the physical
server resources. The aim of resource use is to waste the least
amount of resources. There are different ways to deploy VMs,
which can result in very different resource uses. When user
requests for VMs are predictable, data centers can reserve
appropriate resources for the next stage. However, if the pre-
dictions deviate from the truth, there is a tremendous waste of
resources. We do not consider predictable resource requests
in this article and instead consider that user requests and the
system’s current state control the deployment of the VMs.

3.2.2 Migration times

Too much migration results in a large overhead, which wastes
a lot of the available resources. In addition, the generated loss
caused by migration times may result in a violation. Each data
center has a column of physical servers, and each physical
server can host multiple VMs. We have assumed that the
physical attributes of the physical servers are fixed and that
a VM can be migrated between any two physical machines.
Under normal circumstances, the VM dynamic deployment
framework is shown in Fig. 2.

Figure 2 shows that the VM’s dynamic deployment is com-
bined with both the current user’s requests and the deploy-

VM VM VM

VMs dynamic
deployment

VM Management

Data Center

Monitor
Program

Resource
Request

Fig. 2 Deployment framework for VMs

ment status of VMs that already exist in the data center. The
algorithm is used to determine a target physical machine,
decide if a VM should be migrated, and deploy new VMs.

In the given framework, this paper uses MOPSO for the
VM deployment. First, we define the relevant parameters,
assuming that there are N physical servers that can pro-
vide virtualization services. The total number of VMs is
m = mr + ms , where mr represents the newly requested
quantity of VMs, and ms is the number of VMs already
in the data center. In this article, each physical server’s
resources are represented by the triplet Ri = {RC

i , RM
i , RB

i },
i ∈ {0, 1, ...N }, where RC

i represents the number of process-
ing units of CPU, RM

i represents the size of memory, and RB
i

represents the size of bandwidth. Similarly, each VM can be
expressed using Vj = {VC

j , V M
j , V B

j }, j ∈ {0, 1, ...m}. We
use ηi j to represent whether a VM is deployed to the server.
If ηi j = 1, representing the i-th VM is deployed to the j-th
server; if ηi j = 0, it is not deployed there. Thus, a parameter
matrix of deployment for all VMs is

η =

⎡
⎢⎢⎢⎢⎣

η11 η12 · · · η1N

η12
. . . · · · η2N

...
...

. . .
...

ηm1 ηm2 · · · ηmN

⎤
⎥⎥⎥⎥⎦

. (3)

The objective and constraint functions for the optimization
are

max ϕ1(Ri , Vj) =

∑m
j=1 V

C
j∑N

i=1 RC
i

+
∑m

j=1 V
M
j∑N

i=1 RM
i

+
∑m

j=1 V
B
j∑N

i=1 RB
i

3
(4)

and

min ϕ2(mi) =
m∑
j=1

m j , (5)

such that

N∑
i=1

m∑
j=1

ηi j = 1

N∑
i=1

m∑
j=1

ηi j V
C
j < RC

j

N∑
i=1

m∑
j=1

ηi j V
M
j < RM

j

N∑
i=1

m∑
j=1

ηi j V
B
j < RB

j

(6)

Equation (4) represents the maximum resource use, and
Eq. (5) represents the minimum number of VM’s migra-
tions. The constraints in Eq. (6) show that a VM can only
be deployed on one server, and that when multiple VMs

123

Dynamic deployment of virtual machines in cloud computing 2269

are deployed the VM’s resources cannot exceed the resource
capacity of the physical server.

3.3 Improved algorithms

PSO is used to simulate the behavior of flying foraging birds,
through collective cooperation among birds so that the whole
flock of birds is optimal. The basic idea of particle swarm
optimization is to abstract individual birds into a particle
without volume and mass, where each particle represents
a potential solution; through the particle collaboration and
information sharing to find the optimal solution, each parti-
cle can via certain rules adapt to the estimated value of its
own position, each particle can remember the best location
found currently known as locally optimal “l-Opt”, and also
remember the best location of all particles in the population
found, called global optimum “g-Opt”.

We increased the inertia weight w, using the velocity and
position formulas. The value of w monotonically decreases;
when it is large it broadens the scope of the search and when it
is small it encourages convergence. We calculated the veloc-
ity and position based on the improved formulas for particle
velocity and position and then calculated the fitness of the
particle. However, it is not enough to increase w, because
although this approach converges faster, it can easily fall
into a local optimum. When the historical individual opti-
mal value is equal to the current optimum, or it is equal to
the current best, we consider that this particle may be trapped
in a local optimum and randomly select the position of the
particle. This can effectively reduce premature convergence
and greatly increase the probability of obtaining the global
optimum. As the PSO algorithm avoids getting trapped in a
local optimum, we have modified the speed formula to

vid(t + 1) = wt+1 ∗ Vid(t) + r1 ∗ c1 ∗ (Pid(t) − Xid

(t)) + r2 ∗ c2 ∗ (Pgd(t) − Xid(t)), (7)

Xid(t + 1) = Vid(t) + Xid(t), (8)

wt+1 = wt − wt ∗
(
t + 1

Tmax

)
, (9)

where wt+1 is the inertia weight at t + 1. Equation (9) guar-
antees that the inertia weight w monotonically decreases.
In the formula, i = 1, 2, . . . ,m, n = 1, 2, . . . , N , k is the
iteration number, and r1 and r2 are the random numbers in
[0,1]. Both the random numbers can maintain the diversity.

R1

R2

R3

R4

V1 V2 V3 V4 V5 V6 V7 V8 V9

R5

121 =η

112 =η

133 =η

154 =η

145 =η

136 =η

127 =η

118 =η

149 =η

Fig. 3 Deployment scenarios for a VM resource

c1, c2 is the learning factor. In an N-dimensional search space,
Xi = (Xi1, Xi2, . . . Xid ...) represents the i-th particle posi-
tion vector of N-dimensional Vi = (Vi1, Vi2, . . . Vid ...) rep-
resents the i-th particle speed, Pi = (Pi1, Pi2, . . . Pid ...) rep-
resents a local optimum position searched by the i-th particle,
and Pg = (Pg1, Pg2, . . . Pgd ...) represents the global optimal
position searched by the i-th particles.

3.4 The IMOPSO for VM deployment

The VM deployment problem is a multi-objective optimiza-
tion problem. Combinatorial optimization problems can be
solved by simple enumeration, but for huge scales this is
unrealistic, because when the problem size is exponentially
large, the accuracy of the global search method for the opti-
mal solution is almost impossible. Therefore, it cannot be
solved in polynomial time. Heuristic algorithms can effec-
tively deal with multi-objective combinatorial optimization
problems.

PSO is appropriate given the theoretical basis of the prob-
lem, but general PSO optimizes a single objective. In this
paper, we have adapted PSO for multi-objective optimiza-
tion. A PSO algorithm for deploying VM resources is pre-
sented below.

Figure 3 shows a VM deployed on a server. In this exam-
ple, the deployment parameter matrix in Eq. (3) has the
entries η21 = η12 = η33 = η54 = η45 = η36 = η27 = η18 =
η49 = 1. This node of the cloud computing resource path has
the order R2, R1, R3, R5, R4, R3, R2, R1, R4 .

We propose the following algorithm for achieving the best
resource allocation of VMs in the cloud.

123

2270 B. Xu et al.

4 Experimental results and analysis

The CloudSim toolkit can model cloud computing systems
and the behaviors of components such as VMs, data centers,
and resource provisioning policies (CloudSim 2009; Rodrigo
et al. 2011). We have conducted experiments to verify the
effectiveness of the proposed IMOPSO for VM deployment.
The system used Windows XP SP3, MyEclipse version 8.5
and the JDK version jdk1.6.0. We used CloudSim version
CloudSim-3.0 and the Ant build tool Ant 1.8.1. We imple-
mented the IMOPSO algorithm using an inherited class in
the basic CloudSim class.

We have designed two simulation experiments; the first
experiment is to compare our improved algorithm with the
traditional single-objective algorithm PSO and QPSO and
the second experiment is to compare our improved algorithm
with the classical multi-objective algorithm NSGA-II.

The simulation parameters were as follows. The total num-
ber of physical servers was 100; the number of VMs was 200.
All servers had the same allocation of resources: CPU with
ten processing units, 20 GB of memory, and 100 M band-
width. 200 VMs were equally divided into four types. The
200 requests for VMs arrived after optimization, and requests
arrived in the same order for different configurations of the
algorithm. For the optimization methods, the maximum size
was 50, the maximum number of iterations was 500, and w1

and w2 were −0.5, if the current resource use of a physical
server decreased by 10 %, or if there was a heat migration.
The parameters of the QPSO are set as: delta = 0.001* pi ,
the aberrance probability Pm = 0.5.

4.1 Experiment I

We verified the performance of our improved method by
comparing it with two other single-objective PSO algo-
rithms PSO and QPSO. The first was optimized for resource
use, and the second was optimized for migration times. In
our improved method, we set the investigated proportion of
resource use to 0.6 and the investigated proportion of VM
migration times to 0.4. The results of these three methods
are shown in Fig. 4.

The results in Fig. 4 demonstrate that our proposed
improved method for cloud computing resource allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20

R
es

ou
rc

e
us

in
g

ra
te

Service request

Proposed method

QPSO

PSO

Fig. 4 Comparative experiments of recourse using the rate of three
methods

123

Dynamic deployment of virtual machines in cloud computing 2271

10 20 30 40 50 60 70 80 90 100

Transfer time

Three method

Proposed method

QPSO

PSO

Fig. 5 Comparative experiments of migration times of the three meth-
ods

of VMs is very efficient. During the virtual machine deploy-
ment process and after stabilization, the resource use is sig-
nificantly higher than the PSO and QPSO. We also compared
the migration times of the three methods, as shown in Fig. 5.

The results in Fig. 5 demonstrate that the proposed
approach has obvious advantages in terms of migration times.
For the same population size, its migration frequency is 43
and the two other PSO techniques, PSO and QPSO, are 82
and 63. Finally, we investigated the execution time of three
optimization methods from 100 iterations to 500 iterations.
These experimental results are shown in Table 1.

The results in Table 1 demonstrate that when the number
of iterations increases, the execution times of the three meth-
ods increase. We found that the execution time gap between
QPSO and our method is very small; however, the execution
time gap between PSO and our method or QPSO is very big.
This is because the traditional PSO algorithm model is easy
to fall into local optimum. QPSO greatly enhanced the effi-
ciency of the search and can compensate for the lack of PSO.
It has a wide research foreground and our method can effec-
tively reduce premature convergence and greatly increase the
probability of obtaining the global optimum. It is interesting
that the results of our proposed algorithm suggest that the
trend is linear, and not exponential.

The first experiment shows that on comparison of our
improved method with the traditional single-objective algo-
rithms, PSO and QPSO, our method was feasible and effi-
cient.

4.2 Experiment II

To demonstrate the effectiveness of the proposed method,
we designed experiments to compare NSGA-II (Deb et al.
2000) and our method IMOPSO. We define that f1 repre-
sents resource utilization, f2 represents migration time, and
f3 represents execution time. Statistical comparison data for
the two algorithms are shown in Table 2. The convergence
curves of the algorithms are shown in Figs. 6, 7, 8 and 9. Fig-
ure 6 shows the Pareto optimal solution set distribution of
NSGA-II after running 100 generations after an experiment.
Figure 7 shows the Pareto optimal solution set distribution of
IMOPSO after running 100 generations after an experiment.
Figure 8 shows the Pareto optimal solution set distribution of
NSGA-II after running 500 generations after an experiment.
Figure 9 shows the Pareto optimal solution set distribution of
IMOPSO after running 500 generations after an experiment.

As can be seen in Figs. 6 and 7, the obtained Pareto opti-
mal solution set has better convergence and distribution than
that from NSGA-II. As seen from Figs. 8 and 9, the obtained
Pareto optimal solution set can quickly converge to the Pareto
front and the possible solutions are closer to the optimal
solution than that from NSGA-II. This result was due to
the improved approach introduced into the IMOPSO, which
offered an effective combination of global and local searches.
The global search is deductive for the evolution moving
toward the Pareto front, while the local search can be used to
explore more feasible solutions in unknown regions. From
Table 2, the results of the IMOPSO algorithm are better than
NSGA-II and the advantages of our method are more obvi-
ous; the experimental results show that the IMOPSO search
performs well because it maintains good population diversity.

Table 1 Execution times of
three optimization methods
(statistical comparison 100
times)

Optimization methods Comparison results

Iterations 100 200 300 400 500

Proposed method Time (s) 5.313 6.933 10.112 14.521 20.598

QPSO Time (s) 5.407 7.009 11.353 15.277 21.832

PSO Time (s) 12.201 14.127 17.029 19.445 25.026

Table 2 Pareto optimal solution
set comparisons of the two
algorithms (statistical
comparison 100 times)

Iterations Algorithm f1 (resource utilization) f2 (migration time) (s) f3 (execution time) (s)

100 IMOPSO 0.36 0.367 12.01

NSGA-II 0.33 0.660 13.55

500 IMOPSO 0.35 0.402 13.10

NSGA-II 0.34 0.941 13.49

123

2272 B. Xu et al.

Fig. 6 Pareto optimal solution set distribution of NSGA-II (100 gen-
erations)

Fig. 7 Pareto optimal solution set distribution of IMOPSO (100 gen-
erations)

Fig. 8 Pareto optimal solution set distribution of NSGA-II (500 gen-
erations)

Fig. 9 Pareto optimal solution set distribution of IMOPSO (500 gen-
erations)

This experiment shows that IMOPSO can search effec-
tively, maintain the population diversity, and quickly con-

verge to the Pareto optimal solution without losing stability.
The obtained Pareto optimal solution set has a better conver-
gence and distribution than the comparative method.

5 Conclusion

In view of the deployment of virtual machine (VM) in cloud
computing, considering the VM resources deployment in
cloud computing environment and with the advantage of
PSO, we propose the multi-objective comprehensive evalua-
tion model for the dynamic deployment of virtual machines
in this paper, the model based on some key factors including
resource use and migration times, and then use an improved
multi-objective particle swarm optimization (IMOPSO) to
solve the problem. We have designed two simulation exper-
iments: the first experiment was to compare our improved
method with the traditional single-objective algorithms PSO
and QPSO and our method was feasible and efficient; the
second experiment was to comparen our improved algo-
rithm with the classical multi-objective algorithm NSGA-II.
The first experimental results show that on comparison of
our improved algorithm with the traditional single-objective
algorithms PSO and QPSO, our method is feasible and effi-
cient. The second experimental results show that it main-
tains good population diversity and can quickly converge to
the Pareto front. The obtained Pareto optimal solution set
has a better convergence and distribution than a comparative
method.

Dynamic deployment of virtual machines is a key issue
of cloud computing; there are still many areas to be studied,
especially for dynamic environments. We face not only the
complexity of the resources, but also the actual application
process including not only the combination of resources and
task allocation, but also other follow-up steps. Of course, this
is the next step in this research: a future work.

Acknowledgments This research is supported by the National Nat-
ural Science Foundation of China (Grant No. 61272382), Science and
Technology Foundation for the Universities of Guangxi Province (Grant
No. 2013ZD060), the Hunan Provincial Natural Science Foundation of
China (Grant No. 12JJ6063), and Guangdong Province Science and
Technology Project (Grant No. 2012B010100037).

References

Aksaç A, Ozturk O, Ozyer T (2011) Real-time multi-objective hand pos-
ture/gesture recognition by using distance classifiers and finite state
machine for virtual mouse operations. In: IEEE 7th International
Conference on electrical and electronics engineering (ELECO), pp
457–461

Armbrust M, Fox A, Griffith R et al (2010) A view of cloud computing.
Commun ACM 53(2):50–58

Blackwell T, Branke J (2006) Multiswarms, exclusion, and anti-
convergence in dynamic environments. IEEE Trans Evol Comput
10(2):459–472

123

Dynamic deployment of virtual machines in cloud computing 2273

Buyya R, Yeo CS, Venugopal S et al (2009) Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering com-
puting as the 5th utility. Future Gen Computer Syst 25(4):599–616

Calheiros RN, Ranjan R, Beloglazov A et al (2011) CloudSim: a toolkit
for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Softw Pract Exp
41(1):23–50

Chaisiri S, Lee BS, Niyato D (2012) Optimization of resource provision-
ing cost in cloud computing. IEEE Trans Serv Comput 5(2):164–177

CloudSim (2009) a novel framework for modeling and simulation of
cloud computing infrastructures and services. University of Mel-
bourne, Melbourne

Coello Coello CA, Lechuga MS (2002) MOPSO: a proposal for multiple
objective particle swarm optimization. In: Proceedings of the IEEE
Congress on evolutionary computation (CEC’02), vol 2, pp 1051–
1056

Cruz C, González JR, Pelta DA (2011) Optimization in dynamic envi-
ronments: a survey on problems, methods and measures. Soft Com-
put 15(7):1427–1448

Deb K, Agrawal S, Pratap A et al (2000) A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-
II. Lect Notes Computer Sci 1917:849–858

Eberhart R, Kennedy J (1995) A new optimizer using particle swarm
theory. In: Proceedings of the Sixth International Symposium on
micro machine and human science (MHS’95). IEEE, pp 39–43

Foster I, Zhao Y, Raicu I et al (2008) Cloud computing and grid com-
puting 360-degree compared. In: IEEE grid computing environments
Workshop (GCE’08), pp 1–10

Heo JS, Lee KY, Garduno-Ramirez R (2006) Multiobjective control of
power plants using particle swarm optimization techniques. IEEE
Trans Energy Convers 21(2):552–561

Hyser C, Mckee B, Gardner R, Watson BJ (2007) Autonomic virtual
machine placement in the data center. HP Labs Technical Report

Janson S, Merkle D, Middendorf M (2008) Molecular docking with
multi-objective particle swarm optimization. Appl Soft Comput
8(1):666–675

Kong X, Lin C, Jiang Y et al (2011) Efficient dynamic task scheduling
in virtualized data centers with fuzzy prediction. J Netw Computer
Appl 34(2):1068–1077

Kourai K, Chiba S (2011) Fast software rejuvenation of virtual machine
monitors. IEEE Trans Depend Secure Comput 8(4):839–851

Maguluri ST, Srikant R, Ying L (2012) Stochastic models of load bal-
ancing and scheduling in cloud computing clusters. In: IEEE (2012)
Proceedings of INFOCOM. IEEE, pp 702–710

Mahdavi I, Aalaei A, Paydar M-M, Solimanpur M (2011) Multi-
objective cell formation and production planning in dynamic virtual
cellular manufacturing systems. Int J Prod Res 49(21):6517–6537

Maurer M, Emeakaroha VC, Brandic I, Altmann J (2012) Cost-benefit
analysis of an SLA mapping approach for defining standardized
Cloud computing goods. Future Gen Computer Syst 28(1):39–47

Mohammadi E, Karimi M, Saeed RH (2011) A novel virtual machine
placement in cloud computing. Aust J Basic Appl Sci 5(10):1549–
1555

Nguyen Q-H, Nien PD, Nam N-H, Nguyen H-T, Nam T (2013) A
genetic algorithm for power-aware virtual machine allocation in pri-
vate cloud. In: Lecture notes in computer science, v7804-LNCS, pp
183–191

Parsopoulos KE, Vrahatis, MN (2002) Particle swarm optimization
method in multi-objective problems. In: Proceedings of the ACM
2002 Symposium on applied computing (SAC’2002), pp 603–607

Reyes-Sierra M, Coello Coello AC (2006) Multi-objective particle
swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell
Res 2(1):287–308

Sato K, Samejima M, Komoda N (2013) Dynamic optimization of vir-
tual machine placement by resource usage prediction. In: 2013 11th
IEEE International Conference on industrial informatics (INDIN).
IEEE, pp 86–91

Sindelar M, Sitaraman RK, Shenoy P (2011) Sharing-aware algorithms
for virtual machine colocation. In: Proceedings of the 23rd ACM
symposium on parallelism in algorithms and architectures. ACM,
pp 367–378

Sindhu S, Mukherjee S (2011) Efficient task scheduling algorithms
for cloud computing environment. Commun Computer Inf Sc
169(1):79–83

Stillwell M, Schanzenbach D, Vivien F et al (2010) Resource allocation
algorithms for virtualized service hosting platforms. J Parallel Distrib
Comput 70(9):962–974

Takahashi S, Nakada H, Takefusa A et al (2012) Virtual Machine pack-
ing algorithms for lower power consumption. In: 2012 IEEE 4th
International Conference on cloud computing technology and sci-
ence (CloudCom). IEEE, pp 161–168

Warneke D, Kao O (2011) Exploiting dynamic resource allocation for
efficient parallel data processing in the cloud. IEEE Trans Parallel
Distrib Syst 22(4):1045–9219

Wilcox D, McNabb A, Seppi K (2011) Solving virtual machine pack-
ing with a reordering grouping genetic algorithm. IEEE Congr Evol
Comput (CEC) 2011:362–369

123

	Dynamic deployment of virtual machines in cloud computing using multi-objective optimization
	Abstract
	1 Introduction
	2 Related work
	3 IMOPSO for virtual machine deployment
	3.1 Multi-objective particle swarm optimization (MOPSO)
	3.2 Multi-objective comprehensive evaluation model
	3.2.1 Resource use
	3.2.2 Migration times

	3.3 Improved algorithms
	3.4 The IMOPSO for VM deployment

	4 Experimental results and analysis
	4.1 Experiment I
	4.2 Experiment II

	5 Conclusion
	Acknowledgments
	References

