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Abstract This paper proposes a multi-kernel linear pro-
gram support vector regression with prior knowledge in order
to obtain an accurate data-driven model in the case of an
insufficient amount of measured data. In the algorithm, mul-
tiple feature spaces have been utilized to incorporate multi-
kernel functions into the framework of linear programming
support vector regression (LPSVR), and then the prior knowl-
edge which may be exact or biased from a calibrated physical
simulator has also been incorporated into LPSVR by modify-
ing optimization formulations. Moreover, a strategy of para-
meter selections for the proposed algorithm has been pre-
sented to facilitate practical applications. Some experiments
from a synthetic example, a microstrip antenna and six-pole
microwave filter have been carried out, and the experimen-
tal results show that the proposed algorithm can obtain a
satisfactory data-based model in the case of the scarcity of
measured data. The proposed algorithm shows great poten-
tialities in some applications where the experimental data are
insufficient for an accurate data-driven model and the prior
knowledge from a calibrated physical simulator of practical
applications is available.
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1 Introduction

Support vector regression (SVR), which is based on the
theory of structure risk minimization in statistical learning,
has been applied to many problems (Smola 2002, 2004;
Cristianini and Shawe-Taylor 2000). Traditionally, support
vector regression can find an estimating function by solv-
ing a quadratic program problem, which is also known as
QPSVR (Smola 2004; Cristianini and Shawe-Taylor 2000;
Muller et al. 2001). Subsequently, Smola has proposed lin-
ear programming support vector regression (LPSVR) (Smola
2002; Smola et al. 1999). Both LPSVR and QPSVR adopt
ε-insensitive loss function and the kernel function in feature
space. However, LPSVR is advantageous over QPSVR in
the sparse model, ability to use more general kernel func-
tions and fast learning ability (Lu et al. 2009; Lu and Sun
2009; Smola 2004; Zhao and Sun 2011).

Support vector regression aims at learning an unknown
function based on some training data samples. However, in
some practical applications, it is complex and costly to obtain
sufficient experimental data. Utilizing the fewer data, one can
find that it is a little difficult to obtain an accurate data-driven
model. Moreover, there are many complex functions which
comprise both the steep variation and the smooth variation
in some engineering problems, and this will be more difficult
to obtain an satisfactory model from a small amount of data
samples (Clarke et al. 2005). In this paper, we will focus on
the problem that how to obtain an accurate model from a
limited amount of experimental data.

In order to improve the modeling accuracy, Lanckriet has
proposed a multi-kernel support vector regression by using
the conic combinations of kernel matrices, and formulated
the algorithm as a convex quadratically constrained quadratic
program (QCQP) (Lanckriet et al. 2004; Bach et al. 2004).
Although the formulation yields global optimal solutions,
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it is computationally inefficient and requires a commercial
solver. Subsequently, the multi-kernel learning algorithm has
been reformulated as a semi-infinite linear programming to
obtain a general and efficient algorithm (Sonnenburg et al.
2006; Lanckriet et al. 2004). Based on the principle of kernel–
target alignment and predictive accuracy, Qiu has proposed
three heuristics methods to speed up the computation of
QCQP formulation (Qiu and Lane 2009). In Nguyen and
Tay (2008), a multi-kernel semi-parametric support vector
regression has been proposed by using quadratic program
solver and a semi-parametric algorithm. Instead of a single
kernel, multi-scale support vector regression has been pre-
sented by using the same kernel with multiple scales (Zheng
et al. 2006; Yu and Qian 2008). All of the multi-kernel sup-
port vector regression can establish an accurate model, if
there is sufficient amount of training data samples (Subrah-
manya and Shin 2010; Mingqing et al. 2009). However, the
training data are usually so little in some practical applica-
tions that the model developed by the algorithms cannot meet
some desired requirements.

In some engineering applications, a certain amount of
knowledge on the problem is usually known beforehand
(Sanchez 2003). This prior knowledge can take many forms
such as a simulation model from a practical application,
the shape of the function on a particular region and some
equality and inequality constrains (Lauer and Bloch 2008a;
Trnka and Havlena 2009). By utilizing the prior knowledge,
one can improve the predictive accuracy of support vector
regression. In Bloch et al. 2008; Lauer and Bloch (2008a),
the author has reviewed three methods of incorporating the
prior knowledge in support vector machine for classifica-
tion, which comprise sample methods, kernel methods and
the optimization methods. In Lauer and Bloch (2008b), the
author explores the incorporation of different prior knowl-
edge in support vector regression by modifying the problem
formulation. In addition, the prior knowledge over arbitrary
region is incorporating into a kernel approximation prob-
lem, and the region has to be discretized before includ-
ing the prior knowledge to be in the learning framework
as a finite set of inequalities (Olvi et al. 2004; Mangasar-
ian and Wild 2007). Though the prior knowledge can make
up a small amount of measured data, all of the algorithms
incorporating prior knowledge have exploited a single ker-
nel, and have not employed the advantages of multi-kernel
functions.

The motivation of this investigation is to provide a regres-
sion algorithm which can incorporate multi-kernel functions
and prior knowledge into the LPSVR. The proposed algo-
rithm can improve the data-based modeling accuracy from
an insufficient amount of measured data. The prior knowl-
edge is from a physical simulator which is used to gener-
ate simulation data for arbitrarily chosen inputs in order to
compensate for the lack of measured data in some regions

of the input space. This problem, although particular, is
representative of numerous situations met in engineering,
where physical models, more or less accurate, exist, pro-
viding prior knowledge in the form of simulation data, and
where the measured data are difficult or expensive to obtain.
This paper will focus on the problem of how to utilize the
prior knowledge and multi-kernel function to approximate
complex functions in the case of an insufficient amount of
measured data.

In this paper, multi-kernel and prior knowledge from a
physical simulator were incorporated into the framework of
the LPSVR to improve the modeling accuracy. The contribu-
tion of this paper is to propose a novel algorithm, termed the
multi-kernel prior knowledge linear programming support
vector regression (MKPLPSVR). In the algorithm, multiple
feature spaces have been utilized to incorporate multi-kernel
functions into the framework of the LPSVR, and then the
prior knowledge which may be exact or biased from a phys-
ical simulator has also been incorporated into the LPSVR
by modifying optimization objectives and inequality con-
straints. At the end, prior knowledge and multi-kernel func-
tions have been simultaneously incorporated into the frame-
work of the LPSVR, and a new formulation has been pre-
sented to solve the regression problem from a limited amount
of measured data. The MKPLPSVR can be easily solved
by using linear programming and is different from other
multi-kernel support vector regression at the aspect of the
basic principle and solution method. In addition, a strat-
egy of parameter selections has been presented to facili-
tate the practical application of the proposed MKPLPSVR
algorithm.

The rest of the paper is organized as follows. The LPSVR
is introduced in the next section. Section 3 describes the pro-
posed algorithm which can incorporate prior knowledge and
multiple kernels into the framework of the LPSVR. In Sect.
4, we have given some experimental results from a synthetic
example and two practical applications. Finally, Sect. 5 con-
cludes the paper.

The following generic notations will be used throughout
this paper. Lower case symbols such as y, xi j , yi j . . . refer to
scalar valued objects and lower case boldface symbols such
as x, y,α, . . . refer to column vectors. The matrices are bold-
face and uppercase in the paper. The 1-norm ‖x‖1 denotes∑n

i=1 |xi |. The matrix X ∈ RN×d contains all training sam-
ples xi (i = 1, . . . , N ) as rows. The notation A ∈ RN×n will
signify a real N ×n matrix and the j th column of a matrix A
is denoted as A. j . The matrix AT will denote the transpose
of A. For A ∈ Rn×N and B ∈ Rn×L , a kernel K (A, B)

maps Rn×N × Rn×L into RN×L . In particular, if x and y
are column vectors in RN , then the mapping k(x, y) is a
real number. The variables o and e are vectors of appropriate
dimensions with all their components, respectively, equal to
0 and 1. The superscript p refers to the prior knowledge, and
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the subscript k refers to the number of data samples from the
prior knowledge.

2 Review of LPSVR

Let M = {
(xi , yi ), i = 1, ..., N

}
be an experimental dataset,

where the input is xi ∈ Rd and the output is yi ∈ R. The
regression is considered as a linear function in the feature
space which induced by a nonlinear mapping φ(x). The
regression function is written as:
f (x) = ω · ϕ(x) + b (1)

where ω is a normal vector in the feature space, and b is a
bias term.

The normal vector ω can be considered as a linear com-
bination of the training patterns, i.e., ω = ∑N

i=1 αiφ(xi ).
Therefore, the regression function in the original space is
expressed as:

f (x) =
N∑

i=1

αi k(x, xi ) + b (2)

where k(x, xi ) = ϕ(xi ) · ϕ(x) is the kernel function which
usually includes Gaussian radial basis function, polynomial
kernel, and even non-Mercer kernel (Smola et al. 1999; Lu
and Sun 2009; Lu et al. 2009).

Instead of choosing the flattest function, LPSVR seek the
smallest combination of training patterns. According to the
statistical learning theory (Vapnik 1995; Smola 2004), the
coefficient αi and the bias termb can be solved by minimizing
the regularized risk function:

Min: Q(a) + 2C
N∑

i=1

L(yi − f (xi )) (3)

where Q(a) is a regularization term, and it is defined as
Q(a) = ‖α‖1 = ∑n

i=1 |αi |. The vectorα = [α1, αi , . . . αN ]T

in Q(a) determines the function complexity. A hyper-
parameter C > 0 is introduced to tune the trade-off
between the error minimization and the function sparsely.
L(yi − f (xi )) denotes ε-insensitive loss function:

L(yi − f (xi )) =
{

0, |yi − f (xi )|≤ε

|yi − f (xi )| − ε, otherwise
(4)

By introducing a slack variable ξi and using ε-insensitive
loss function, the LPSVR is formulated as:

Find : αi , ξi , b

Min : ‖α‖1 + 2C
N∑

i=1
ξi

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yi −
N∑

i=1
αi k(xi , x j ) − b ≤ ε + ξi

N∑

i=1
αi k(xi , x j ) + b − yi ≤ ε + ξi

ξi ≥ 0
∀i = 1, 2, . . . , N

(5)

In order to solve the optimization above, we can decom-
pose αi and |αi | as follows:

αi = α+
i − α−

i|αi | = α+
i + α−

i
(6)

where α+
i , α−

i ≥ 0. Due to the nature of the constraints,
typically only a subset of αi is non-zero, and the associated
training data are called support vectors (Lu and Sun 2009;
Lu et al. 2009).

Substituting (6) into (5), the LPSVR can be expressed as:

Find: α+
j , α−

j , ξi , b

Min:
N∑

j=1
(α+

j + α−
j ) + 2C

N∑

i=1
ξi

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yi −
N∑

j=1
(α+

j − α−
j )k(xi , x j ) − b ≤ ε + ξi

N∑

j=1
(α+

j − α−
j )k(xi , x j ) + b − yi ≤ ε + ξi

α+
j ≥ 0, α−

j ≥ 0
ξi ≥ 0. (∀i = 1, 2, . . . , N ).

(7)

The coefficients α+
j , α−

j , ξi and b in (7) can be solved by
using linprog in Matlab. Substituting (6) into (2), Eq. (2) can
be expressed as:

f (x) =
N∑

j=1

(α+
j − α−

j )k(x, x j ) + b (8)

3 Proposed algorithms

In some problems of science and engineering, it is complex
and costly to obtain sufficient measured data samples by some
experiments. On the other hand, a simulation model built
from some physical knowledge is available. In this section,
we have presented an algorithm which can incorporate multi-
kernel and prior knowledge into the learning framework of
the LPSVR. Figure1 shows the basic idea of developing the
algorithm.

From the Fig. 1, multiple feature spaces have been uti-
lized to develop multi-kernel linear programming support
vector regression (MKLPSVR). Subsequently, the optimiza-
tion objectives and inequality constraints in the MKLPSVR
have been modified to incorporate the prior knowledge from
a simulation model or a simulator, which leads to multi-
kernel prior knowledge linear programming support vector
regression (MKPLPSVR). By incorporating the prior knowl-
edge from a calibrated simulator into the MKLPSVR, we can
reduce the effect of the biased data from a simulation model
on the accuracy of the data-based model. The development
of the MKPLPSVR is explained in the following.
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Fig. 1 Block diagram of
MKPLPSVR development
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3.1 Multi-kernel linear programming support vector
regression

As far as the LPSVR is concerned, the function in a feature
space is expressed as (1). However, the non-flat function or
complicated data trend cannot be described properly in a
single feature space. It is promising to seek a space which
can utilize the advantage of different feature spaces (Zheng
et al. 2006). Therefore, it may be better choice to consider
the regression in multiple feature spaces ω1, . . . ωL , and the
function in multiple feature spaces can be written as:

f (x) =
L∑

r=1

ωr · ϕ(x) + b (9)

Substituting ω = ∑N
i=1 αiϕ(xi ) into (9), one can express the

regression function as:

f (x) =
L∑

r=1

N∑

i=1

αri kr (x, xi ) + b (10)

where L denotes the number of the kernels which are induced
by a set of different feature spaces ω1, . . . ωL . The function
kr (x, xi ) = ϕ(xri ) · ϕ(x) denotes the r th kernel, and αri is
the coefficient of the corresponding kernel function.

Utilizing the method in (6), we can reformulate Eq. (10)
as:

f (x) =
L∑

r=1

N∑

i=1

(α+
ri − α−

ri )kr (x, xi ) + b (11)

Equation (11) can be estimated by minimizing the risk (3)
like the previous method. Since the target to be estimated is a
complicated data-trend function, the minimization of the reg-
ularization term means the maximum of the function fatness,

which may result in under-fitting result (Zheng et al. 2006).
To avoid the problem, we have introduced a non-negative
constant Cr to control the regularization term. Therefore,
analogous to (3), the risk function in a multi-kernel frame-
work is expressed as:

Min:
L∑

r=1

Cr ‖αr‖1 + 2C
N∑

i=1

L(yi − f (xi )) (12)

where Q(a) = ∑L
r=1 Cr ‖αr‖1 is a regularization term, and

the constant Cr penalizes non-zero coefficients αr . The vec-
tor αr = [αr1, αri , . . . αr N ]T denotes the coefficient of the
r th kernel, and non-zero elements in the vector αr are also
called support vectors.

Utilizing the method in (6) and (7), the MKLPSVR is
expressed as:

Find: α+
ri , α

−
ri , ξi , b

Min:
L∑

r=1
Cr

N∑

i=1
(α+

ri + α−
ri ) + 2C

N∑

i=1
ξi

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yi −
L∑

r=1

N∑

j=1
(α+

r j − α−
r j )kr (xi , x j ) − b ≤ ε + ξi

L∑

r=1

N∑

j=1
(α+

r j − α−
r j )kr (xi , x j ) + b − yi ≤ ε + ξi

α+
r j ≥ 0, α−

r j ≥ 0
ξi ≥ 0 (∀i = 1, 2, . . . , N )

(13)

where Cr depends on the kernel parameter of the used kernel
function. The coefficient α+

ri , α
−
ri satisfy αri = α+

ri −α−
ri and

|αri | = α+
ri + α−

ri .
Utilizing linear programming to solve Eq. (13), one can

obtain the function in Eq. (11). In the paper, the MKLPSVR
is a generalized version of the LPSVR. Compared with other
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multi-kernel support vector regression (Bach et al. 2004; Son-
nenburg et al. 2006; Nguyen and Tay 2008; Pozdnoukhov
and Kanevski 2008; Mingqing et al. 2009; Qiu and Lane
2009; Varma and Babu 2009), the MKLPSVR has the fol-
lowing differences. Firstly, the basic principle and solution
of the MKLPSVR are different from the existing multi-
kernel support vector regression, which have exploited con-
vex quadratically constrained quadratic program. Secondly,
the MKLPSVR can exploit non-Mercer kernels, which pro-
vides more flexibility in designing the kernel function.

3.2 Incorporating prior knowledge into MKLPSVR

In practice, it is complex and costly to obtain sufficient mea-
sured data. On the other hand, a simulation model built from
some physical knowledge is available. Using a calibrated
simulator, one can obtain enough prior data, but which may
be biased from the measured results. In order to reduce the
effect of the biased prior data, this subsection has presented
an approach to incorporate the prior data from a calibrated
simulator into the MKLPSVR.

Let the prior dataset P = {
(z pk , y pk ), z pk ∈ Rd , y pk ∈

R, k = 1, 2, . . . Nk
}

from a calibrated simulator. Obviously,
the prior data will satisfy the equation in the simulator:

f (z pk ) = y pk (k = 1, 2, . . . , Nk). (14)

The equality constraints can be added to the formulation (13)
without changing the linear programming nature. However,
this will lead to an exact fit to the data points, which may
not be advised if the prior data are biased from the measured
results. Moreover, all the equality constraints may lead to an
unfeasible problem if they cannot be satisfied simultaneously
(Lauer and Bloch 2008b; Bloch et al. 2008; Zhou et al. 2011).
Therefore, soft constraints have been utilized in Eq. (14) by
introducing a positive slack variable u = [u1, u1, . . . , uk]T.
The slack variable can bound the errors between the prior data
(z pk , y pk ) and the regression function f (z pk ) in the following
inequality:

∣
∣y pk − f (z pk )

∣
∣ ≤ uk (∀k = 1,2, . . . , Nk). (15)

In order to include almost exact or biased knowledge from
a prior simulator, it is possible to authorize violations of the
constraints (15) that are less than a threshold ε p. Therefore,
by applying ε-insensitive loss function to the error uk , one
can obtain the following inequality:

∣
∣y pk − f (z pk )

∣
∣ ≤ uk + ε p (∀k = 1, 2, . . . , Nk). (16)

In order to minimize the error u = [u1, u1, . . . , uk]T, the
l1 norm of u is added to (12) by introducing a trade-off
parameter λ which can tune the influence of the prior data

on the regression function. Therefore, by adding inequal-
ity constraints (16) and the l1 norm of the slack vector, the
MKLPSVR in (13) has been modified to reduce the influ-
ence of biased prior data from a simulator on the modeling
accuracy. The modified algorithm called as MKPLPSVR in
this paper is expressed as:

Find: α+
ri , α

−
ri , ξi , uk, b

Min:
L∑

r=1
Cr

N∑

i=1
(α+

ri + α−
ri ) + 2C

N∑

i=1
ξi + λ

Nk∑

k=1
uk

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi −
L∑

r=1

N∑

j=1
(α+

r j − α−
r j )kr (xi , x j ) − b ≤ ε + ξi

L∑

r=1

N∑

j=1
(α+

r j − α−
r j )kr (xi , x j ) + b − yi ≤ ε + ξi

y pk −
L∑

r=1

N∑

j=1
(α+

r j − α−
r j )kr (z

p
k , x j ) − b ≤ ε p + uk

L∑

r=1

N∑

j=1
(α+

r j − α−
r j )kr (z

p
k , x j ) + b − y pk ≤ ε p + uk

α+
r j ≥ 0, α−

r j ≥ 0 (∀i = 1, 2, . . . , N )

ξi ≥ 0, uk ≥ 0 (∀k = 1, 2, . . . Nk).

(17)

In order to facilitate the solution, we have reformulated the
Eq. (17) in the following vector form:

Find: s
Min: hTs

s.t.

{
As ≤ B
s ≥ l

(18)

where

s = [
α+

1 , . . . ,α+
L ,α−

1 , . . . ,α−
L , ξ , u, b

]T

h = [
C1e, . . .CL e,C1e, . . .CL e, 2Ce, λep, 0

]T

B = [
εe + y, εe − y, ε pe + yp, ε pe − yp

]T

l = [
o1, . . . , oL , o1, . . . , oL , o, op,−∞]T

A=

⎡

⎢
⎢
⎣

K 1, . . . , K L ,−K 1, . . . ,−K L ,−E, Zk, e
−K 1, . . . ,−K L , K 1, . . . , K L ,−E, Zk,−e
K p

1 , . . . , K p
L ,−K p

1 , . . . ,−K p
L , Z p,−E p, ep

−K p
1 , . . . ,−K p

L , K p
1 , . . . , K p

L , Z p,−E p,−ep

⎤

⎥
⎥
⎦.

In the optimization, the slack vector ξ and u represent ξ =
[ξ1, ξ2, . . . , ξN ]T and u = [u1, u1, . . . , uk]T, respectively.

The vector α+
r and α−

r denote α+
r = [

α+
r1, α

+
r2, . . . , α

+
r N

]T
and

α−
r = [

α−
r1, α

−
r2, . . . , α

−
r N

]T
, respectively. The vector e =

[1, 1, . . . , 1]Tand o = [0, 0, . . . , 0]Tdenote N × 1 col-
umn vector. The vectorep = [1, 1, . . . , 1]Tand op =
[0, 0, . . . , 0]T denote Nk × 1 column vector. The matrix
K r (r = 1, 2, . . . , L) denotes a N × N kernel matrix cal-
culated by the r th kernel function, and every element in the
matrix is calculated by the r th kernel function kr (xi , x j ).
E is a N × N identity matrix. E p denotes a Nk × Nk
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2052 J. Zhou et al.

identity matrix, Zk denotes a N × Nk zero matrix, and
Z p denotes a Nk × N zero matrix. K p

r (r = 1, 2, . . . , L)

denotes a Nk × N kernel matrix calculated by the r th ker-
nel function, and every element in the matrix is calculated
by the predefined kernel function kr (zkp, x j ). The vector

y ∈ RN×1contains all training samples yi (i = 1, . . . , N )

as rows, and the vector yp ∈ RNk×1contains all prior data
samples y pi (i = 1, . . . , Nk) as rows.

Using linear programming to solve the formulation, one
will obtain a regression function as shown in (11). The solu-
tion procedure is summarized below.

Algorithm: MKPLPSVR
1. Prepare a training dataset which includes a measured dataset { }( , ), 1,...,i i mi N=x y from a fine model 

and a prior dataset ( ){ }, , 1,2,p p
k k ky k N=z from a simulator.

2. Determine the total number m kN N N= + of the training dataset.

3. Define the number L and kernel parameters of the used kernel functions.

4. Select some hyper-parameters such as the parameters C , λ , ε and pε .

5. Calculate the N N× kernel matrix ( )1,2, ,r r L=K from the training dataset.

6. Calculate the kN N× kernel matrix ( )1,2, ,p
r r L=K from the prior dataset

7. Construct the matrix A and the vector h , B and l in (18).

8. Solve the optimization in (18) by using linprog algorithm.

9. Computer ri ri riα α α+ −= − by using s in (18) and obtain the function (11).

3.3 Strategy for parameter selections in MKPLPSVR

In this section, a strategy has been presented to select some
hyper-parameters in the MKPLPSVR. Figure 2 shows the
flowchart of parameter selections for the MKPLPSVR.

In the Fig. 2, we suppose that the kernel function is firstly
given beforehand according to some experiences. Generally,
the number L = 2, 3 of the kernel function may be sufficient
for dealing with most of practical problems (Pozdnoukhov
and Kanevski 2008). The error threshold ε and ε p are propor-
tional to the noise level of training dataset, and the empirical
tuning from Cherkassky and Yunqian (2004) has been applied
to determine the ε and ε p which are expressed as:

ε = 3σ
√

ln N/N
ε p = 3σ p√ln Nk/Nk

(19)

where the standard deviation σ and σ p are estimated from
N training dataset and Nk prior dataset, respectively.

The constant Cr penalizes the non-zero variables α+
ri , α

−
ri

in the MKPLPSVR. To avoid over-fitting, this paper has cho-
sen Cr = 1/δr where δr denotes the kernel parameter of the
rth kernel function. The remaining parameters including the
rth kernel parameter δr and the hyper-parametersC and λ will

be searched by using fivefold cross-validation (Phienthrakul
and Kijsirikul 2010; Pasolli et al. 2012; Huang 2012). The
searching procedure is described as below:

1. Specify the search range of C , λ and δr .
2. Initialize C = Ĉ , λ = λ̂ and δr = δ̂r .
3. Divide the training dataset into five subsets.
4. Choose four subsets to train the MKPLPSVR, and apply

the remaining subset to evaluate the model accuracy
(cross-validation error, test error, etc.).

5. Search C , λ and δr by using optimization algorithm such
as PSO or GA.

6. Evaluate the model accuracy whether it satisfies a prede-
fined terminal condition or not.

7. Update the search direction and go to step 3.
8. Obtain the optimal hyper-parameters C , λ and δr .

 Specify the type and the number of kernel function 

Determine the error threshold    andε pε

          Define the  trade-off parameters
rC

Cλ
rδ

Search the parameters         and the kernel parameter
      of the r-th kernel by using 5-fold cross-validation 

Training 
dataset MKPLPSVR

Satisfy terminal 
condition?

Initial
values

Model
Accuracy

Search
space

Optimal values

Yes

No

 The results of parameter selection

Fig. 2 Flowchart of parameter selections procedure
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4 Experimental results

In this section, we will validate the proposed algorithm by
using a synthetic example, a microstrip antenna and six-pole
microwave filter. Moreover, the following two criteria are
used to evaluate the generalization performance.

RMSE =
√
√
√
√N−1

N∑

i=1

(yi − f (xi ))2 (20)

MAE = max(|yi − f (xi )|) (21)

where f (xi ) is the predicted value, yi is the corresponding
measured value, N is the number of testing samples. RMSE
denotes the root mean squared error, and MAE denotes the
maximum absolute error.

4.1 Complex function approximation

In the subsection, we will validate the proposed algorithm by
a synthetic example, and five different algorithms have been
employed to approximate the following function.

y =
⎧
⎨

⎩

−4x − 8, −3 ≤ x < −1
−3x3 − 5x2 + 5x + 3, −1 ≤ x < 1
2 sin(exp(1.2x)) + 0.3552, 1 ≤ x ≤ 3.

(22)

From the range [−3, 3] of the function above, we have gener-
ated 13 training data by adding a Gaussian noise N (0, 0.12).
Then, in order to simulate the prior knowledge, we have
applied the same function to generate 35 data samples with a
Gaussian noise N (0, 0.22) and taken them as the prior data.
Finally, 201 data points are also taken uniformly from the
same function as a testing data. Figure 3 shows the testing
data, the training data and the prior data.

-3 -2 -1 0 1 2 3
-5

0

5

Testing Data 

Training Data

Prior Data

Fig. 3 Data samples

Utilizing the data, we will approximate the function
separately by using the LPSVR, the MKLPSVR and the
MKPLPSVR. In addition, the SimpleMKL in (Rakotoma-
monjy et al. 2008) and the PLPSVR in Zhou and Huang
(2010) have been used to compare their performance with
the MKPLPSVR. The strategy in Sect. 3.3 has been applied
to determine the hyper-parameters in the MKPLPSVR.

In order to validate the proposed algorithm, we have
designed two groups of experiments. In the first group of
experiment, 13 training data will used to develop a regression
function, and 35 data samples from the prior knowledge are
only used during the course of calculating the constraints of
the optimization formulation. In the second group of experi-
ment, we will utilize the 35 prior data samples to extend the
13 training data samples, and then apply the extended data
samples to develop a regression function. After obtaining a
regression model, we will verify the model by using the 201
testing data.

In the first group of experiment, we have chosenC = 100,
ε = 0.01, ε p = 0.04 for all the algorithms. Both the LPSVR
and the PLPSVR exploited only a Gaussian kernel with the
kernel parameter σ = 0.0803. However, the MKLPSVR, the
SimpleMKL and the MKPLPSVR employed a Gaussian ker-
nel, a polynomial kernel and a wavelet kernel (Lu et al. 2009)
with the kernel parameters 2, 0.058 and 0.0125, respectively.
In the second group, we have chosen C = 150, ε = 0.01,
ε p = 0.04 for all the algorithms. Similarly, both the LPSVR
and the PLPSVR only exploited a Gaussian kernel with the
kernel parameter σ = 0.013. The MKLPSVR, the Sim-
pleMKL and the MKPLPSVR utilized a Gaussian kernel,
a polynomial kernel and a wavelet kernel with the kernel
parameters 2, 0.055 and 0.0122, respectively.

Utilizing the data samples and parameters above, we will
establish the models separately by using five algorithms. Fig-
ure 4 shows the approximating results in the first group of
experiment. Figure 4 shows that all of the algorithms can-
not accurately approximate the steep variation of the actual
function, due to only the 13 training samples. However, com-
pared with Fig. 4a and b, we can find that the multi-kernel
algorithms such as the MKLPSVR, the MKPLPSVR and the
SimpleMKL are able to more accurately approximate the flat
variation than other algorithms.

In order to clearly show the performance, we have pre-
sented some statistical results verified by 201 testing data in
Table 1. From Table 1, we can also find that the number of
support vector (NSV) is almost the same among the func-
tions. However, the model calculated by the MKPLPSVR
has the smallest RMSE and MAE among the five models.

Figure 5 shows the approximating results in the second
group of experiment. From Fig. 5a, we can find that all of the
algorithms can approximate the steep variation of the func-
tion. However, the results from Fig. 5b show that other algo-
rithms besides the MKPLPSVR and the MKLPSVR cannot
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Fig. 4 Comparison of predicted results in the first group of experi-
ment. a Results of LPSVR, PLPSVR, MKPLPSVR and measurement.
b Results of MKLPSVR, MKPLPSVR, SimpleMKL and measurement

Table 1 Errors and number of support vector

Algorithm NSV RMSE MAE

LPSVR 11 1.848857 5.735477

PLPSVR 12 1.328779 3.880107

MKLPSVR 12 1.845337 5.735477

SimpleMKL 12 1.4378 3.8105

MKPLPSVR 12 0.972362 2.486516

Bold values indicate the best ones

accurately approximate the flat variation. A possible expla-
nation is that incorporating multi-kernel into the LPSVR has
improved the accuracy of approximating a function with both
the steep variation and smooth variation.

Table 2 shows some statistical results of the five regres-
sion functions separately calculated by 201 testing data. From
Table 2, we can find that the function developed by the
MKPLPSVR is the most accurate among all of the func-

-3 -2 -1 0 1 2 3
-5

0

5
Measurement
LPSVR
PLPSVR
MKPLPSVR

(a) 

-3 -2 -1 0 1 2 3
-5

0

5
Measurement

MKLPSVR

SimpleMKL

MKPLPSVR

(b) 

Fig. 5 Comparison of predicted results in the second group of experi-
ment. a Results of LPSVR, PLPSVR, MKPLPSVR and measurement.
b Results of MKLPSVR, MKPLPSVR, SimpleMKL and measurement

Table 2 Errors and number of support vector

Algorithm NSV RMSE MAE

LPSVR 37 0.737101 2.988316

PLPSVR 37 0.736426 2.053115

MKLPSVR 37 0.325079 1.573869

SimpleMKL 42 0.7522 2.7198

MKPLPSVR 37 0.212162 0.955358

Bold values indicate the best ones

tions. Compared with the SimpleMKL, the MKPLPSVR is
also advantageous over the SimpleMKL in the aspects of
model sparsity and generation performance. Compared with
Tables 1 and 2, we find that the function developed in the
second group of experiment is more accurate than the one
developed in the first group of experiment. The reason is that
the prior data have been utilized to extend the few training
data samples.
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Fig. 6 Experimental devices and structural sketch for microstrip antennas. a Experimental devices. b Structural sketch of microstrip antennas

From these comparing results, we can find that the func-
tion approximated by the MKPLPSVR is the most accu-
rate among all of the functions when few measurements are
available. The MKPLPSVR is more effective to approximate
a complex function with both steep and smooth variations
than the LPSVR or PLPSVR with a simple kernel. The rea-
son is that incorporating a multi-kernel into the LPSVR has
improved the accuracy of approximating a complex function.
In terms of the generation performance, the MKPLPSVR is
also superior to the multi-kernel algorithms such as the Sim-
pleMKL and the MKLPSVR. A possible explanation is that
the MKPLPSVR has utilized the prior data to extend the
few training data samples and improve the modeling accu-
racy. It follows that the introduction of prior knowledge and
multi-kernel functions into the framework of the LPSVR can
improve the modeling accuracy for a small dataset.

4.2 Bandwidth calculation in microstrip antennas

During the course of designing a microstrip antenna, the
antenna bandwidth can be calculated by empirical formulas
or numerical techniques. Although empirical formulas can
facilitate the design, its accuracy is limited. The numerical
techniques based on the electromagnetic theory can obtain
an accurate result. However, its solution is relatively time-
consuming. In order to accurately predict the bandwidth and
reduce the computational effort, the subsection will apply the
proposed algorithm to build a hybrid model of bandwidth cal-
culation which can be integrated into a microwave CAD tool.

Consider a rectangular patch of width d and length L over
a ground plane with a substrate thickness h and a substrate
dielectric permittivity εr , as shown in Fig. 6. The rectangu-
lar antenna bandwidth BWexp can be evaluated by using the
empirical formula from Sagiroglu et al. (1999):

BWexp =
⎡

⎣89

(
hd

εrλ
2
0

)0.45

+ 91(
h

λ0
)

⎤

⎦ % (23)

where λ0 is the free space wavelength at the resonant fre-

quency fr . The dielectric permittivity εr =
(

c
frλd

)2
is

related to the dielectric loss tangent tan δ, and c is the velocity
of electromagnetic waves in free space, and λd is the wave-
length in the dielectric substrate.

The empirical formula can be used to calculate the band-
width quickly, but the results are not in agreement with
the experimental results. This paper has presented a hybrid
model for antenna bandwidth, and the hybrid model is
expressed as:


BW = hs(x) (24)

BW = BWexp + 
BW (25)

Equation (24) is a support-vector model which corrects
the difference between the empirical formula and the exper-
imental results. The structural parameters h, d, εr , λ0, fr
and tan δ will influence the bandwidth BW . However, the
research in the literature (Sagiroglu et al. 1999) shows
that the bandwidth depends on three independent variables
x = [h/λd , d, tan δ]T. From the literature in Sagiroglu et al.
(1999), 27 measured data have been obtained and taken as
the measured dataset S = {

(x,
BW ), x ∈ R27×3,
BW ∈
R27×1

}
. In order to improve the modeling accuracy, a cali-

brated electromagnetic simulator has been utilized to gener-
ate 8 prior data shown in Table 3.

Based on the dataset, this section will establish the model
separately by using the LPSVR, the MKLPSVR and the
MKPLPSVR. Moreover, the SimpleMKL in Rakotoma-
monjy et al. (2008) and the PLPSVR in Zhou et al. (2010)
have also been utilized to establish the model. Two groups
of experiments were designed to validate the model. In the
first group, 27 training samples will be used to establish the
model; meanwhile, 8 data samples from the prior knowledge
will be only used for the calculation of the constraints in
MKPLPSVR. In the second group, we have extended the 27
training data with 8 prior data, and then applied the extended
data to establish the model.
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Table 3 Data samples from prior knowledge

No. h/λd d (mm) tan δ BW (%)

1 0.0085 8.5 0.001 1.16

2 0.2148 10.8 0.002 21.13

3 0.1519 7.9 0.002 18.2

4 0.066 13.37 0.002 7.81

5 0.0384 18.1 0.001 4.87

6 0.1976 10.2 0.002 20.45

7 0.1263 9.05 0.002 15.64

8 0.0843 15.32 0.002 10.16

In the first group, we have chosen the hyper-parameters
C = 100, ε = 0.01, ε p = 0.001 for all the algorithms. Both
the LPSVR and the PLPSVR exploited a Gaussian kernel
with the kernel parameter σ = 0.0803, and the MKLPSVR,
the SimpleMKL and the MKPLPSVR exploited a Gaussian
kernel and a polynomial kernel with the kernel parameters
0.0803 and 2, respectively. In the second group, we have cho-
sen the hyper-parameters C = 150, ε = 0.01, ε p = 0.001.
Both the LPSVR and the PLPSVR used a Gaussian kernel
with the kernel parameter σ = 0.09, and the MKLPSVR,
the SimpleMKL and the MKPLPSVR exploited a Gaussian
kernel and a polynomial kernel with the kernel parameters
0.09 and 0.155, respectively.

Using the data samples and the parameters above, differ-
ent hybrid models were developed by using five algorithms.
Finally, six testing data samples have been applied to verify
the models. Tables 4 and 5 give some comparisons between
the measured results and the predicted ones. Table 6 presents
the number of support vectors and the statistic errors calcu-
lated by using the same testing data in two groups of exper-

iments. From Tables 4 and 5, we can find that the results
predicted by the MKPLPSVR are in very good agreement
with the measurements among the five algorithms.

As seen in Table 6, the model developed by the MKPL-
PSVR is more accurate than the ones developed by other
algorithms in the first group. Similarly, the model devel-
oped by the MKPLPSVR in the second group is also more
accurate than the ones developed by other algorithms. More-
over, the MKPLPSVR uses the fewest number of support
vector among the algorithms. The results indicate that the
MKPLPSVR can improve the modeling accuracy in the case
of the scarcity of measurement data available.

Compared with two groups of experiments, we find that
the results calculated in the second group are more accu-
rate than the ones in the first group, due to the incorpo-
ration of the prior knowledge in the second group. More-
over, the model developed by the MKPLPSVR in the sec-
ond group is more accurate than the result BWEDBD from
the literature (Sagiroglu et al. 1999). From the compar-
isons, we can conclude that it is effective to improve
the modeling accuracy from an insufficient amount of
measurement data by simultaneously incorporating prior
knowledge and multiple kernels into the framework of the
LPSVR.

4.3 Application in a microwave filter tuning device

In the subsection, the proposed algorithm has been applied to
develop a model which is particularly suited to an automatic
tuning device for microwave filters (Zhou et al. 2010; Zhou
and Huang 2013). A six-pole microwave filter with center
frequency of 1,810 MHz, bandwidth of 10 MHz is tuned

Table 4 Comparisons of
predicted results in the first
group of experiment

No. Measured BW (%) LPSVR PLPSVR MKLPSVR SimpleMKL MKPLPSVR

1 4.9 6.616262 6.535426 4.309119 4.186733 4.786704

2 7.7 7.311341 7.374298 7.626643 7.652719 7.763086

3 16 14.81919 15.43764 15.4274 15.6498 15.50704

4 18.2 18.20299 18.02852 18.22053 18.4185 18.04538

5 20.3 19.29236 19.81466 20.21762 20.09769 20.10524

6 21.2 20.81712 20.90465 21.46231 21.17879 21.25276

Table 5 Comparisons of
predicted results in the second
group of experiment

No. Measured BW (%) LPSVR PLPSVR MKLPSVR SimpleMKL MKPLPSVR

1 4.9 4.796841 4.988748 4.53827 4.500532 4.873588

2 7.7 7.548884 7.493423 7.535338 7.540162 7.640877

3 16 15.49525 15.68391 15.94323 15.73599 15.93453

4 18.2 18.2219 18.21511 18.32455 18.49765 18.28414

5 20.3 20.23177 20.0456 20.45567 20.41423 20.54020

6 21.2 20.99816 21.13577 21.32475 21.32602 21.26145
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Table 6 Statistic errors and
number of support vector

Bold values indicate the best
ones

Algorithm NSV RMSE MAE

Group 1 LPSVR 25 0.970641 1.716262

PLPSVR 26 0.758193 1.635426

MKLPSVR 22 0.355529 0.590881

SimpleMKL 22 0.347100 0.713300

MKPLPSVR 23 0.232541 0.492964

Group 2 LPSVR 28 0.235982 0.50475

PLPSVR 27 0.191284 0.316086

MKLPSVR 21 0.189954 0.36173

SimpleMKL 23 0.24910 0.39950

MKPLPSVR 21 0.113308 0.210204

Sagiroglu et al. (1999) BWEDBD – 0.18940 0.30600

by an automatic tuning device, as shown in Fig. 7. In this
example, we will develop a filter-tuning model which reveals
the influence of the inserting depth of the six tunable screws
on the filter response.

In order to formulate the problem, we assume that the
inserting depth of the six tunable screws at the benchmark,
is L0 = [t1, t2, ..., t6]T, where the ideal coupling matrix M0

can be obtained from the initial design stage of the microwave
filter. When the filter is adjusted, the tunable screws will be
rotated 
D = [
d1,
d2, ...,
d6]T degree which makes
the inserting depth of tunable screws alter 
L = 
DTR
with the given thread pitch R of tunable screws. As a result,
the actual coupling matrix M of the filter has a changing
amount 
M, and the filter response is also affected. In order
to formulate the influence, we assume that there is a mapping
between the inserting depth (or the rotating degrees) of the six
tunable screws and the changing amount 
M of the coupling
matrix (Zhou et al. 2010; Zhou and Huang 2013), and it can
be formulated as:


M = f (
D). (26)

If the formulation in (26) has been obtained, the actual cou-
pling matrix M can be expressed as:

M = M0 + 
M. (27)

According to the topology of the filter in Fig. 7a, the coupling
matrix M is expressed as:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m11 m12 0 0 0 0
m12 m22 m23 0 m25 0
0 m23 m33 m34 0 0
0 0 m34 m44 m45 0
0 m25 0 m45 m55 m56

0 0 0 0 m56 m66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (28)

In this example, the ideal coupling matrix M0 in the bench-
mark is determined at the initial design stage by using the
synthesis of microwave filters according to some predefined
specification (Zhou et al. 2010; Zhou and Huang 2013), and
it is given in the followings.

M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0001 0.8720 0 0 0 0
0.8720 0.0001 0.6048 0 0.109 0
0 0.6048 0.0008 −0.6781 0 0
0 0 −0.6781 −0.0032 0.6048 0
0 0.109 0 0.6408 0.001 0.872
0 0 0 0 0.872 0.001

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(29)

Following the analysis in Zhou and Huang (2013);
Zhou et al. (2010), the filter response is a function of the
coupling matrix M , and it is expressed as:

S21( f )=−2j
√
R1R2

[(
f0

BW

(
f
f0

− f0
f

)
I − jR + M

)−1
]

21

S11( f )=1+2j
√
R1

[(
f0

BW

(
f
f0

− f0
f

)
I − jR + M

)−1
]

11

(30)

where the scattering parameters S21( f ) and S11( f ) denote
the transfer and reflection characteristics of the filter response,
respectively. I is a unity matrix. R is a diagonal matrix with
all elements equal to zero except R11 = R1, Rnn = R2

and Rii = f0
BW ·Q (1 < i < n). The operational frequency

is denoted by the variable f . As for the filter, the unload
Q = 3804, the desired central frequency f0 = 1810, and the
desired bandwidth BW = 10 MHz are given at the design
stage of the filter. Both input coupling R1 and output coupling
R2 are equal to 1.043 in this example.

From the formulation above, the key of developing a
filter-tuning model is to establish the relationship in (26).
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Fig. 7 Experimental system for filter-tuning devices. a Six-pole microwave filter. b Automated tuning device

In this example, we will build the relationship by using dif-
ferent algorithms. Firstly, some training data were required.
According to the data acquisition method from the litera-
ture (Zhou et al. 2010), 45 measured data have been col-
lected by a skilled operator. The number of the measured
data are too small to obtain a satisfactory model. Moreover,
the measurement is costly. Therefore, 30 prior data from
a calibrated simulator have been used to make up a small
amount of measured data. Finally, we have obtained a training
data set S = {

(
D,
M),
D ∈ R75×6,
M ∈ R75×12
}

which consists of a measured data set M = {
(
D,
M),


D ∈ R45×6,
M ∈ R45×12
}

and a prior data set P ={
(
Dp,
Mp),
Dp ∈ R30×6,
Mp ∈ R30×12

}
.

Based on the dataset, this section established the Eq. (26)
separately by using the LPSVR, the MKLPSVR and the
MKPLPSVR, and the SimpleMKL in Rakotomamonjy et al.
(2008) and the PLPSVR in Zhou and Huang (2010). Because
the algorithms can only obtain a multi-input and one-output
function, this example has applied the meta-model method in
Zhou et al. (2010); Zhou and Huang (2013) to build the multi-
input and multi-output model shown in Eq. (26). Every meta-
model was established independently by the algorithms, and
then all of the meta-models were combined into the coupling
matrix in (28).

Two groups of experiments, which are the same as the
previous two examples, were designed to validate the pro-
posed algorithm. In the first group of experiments, both the
LPSVR and the PLPSVR exploited a Gaussian kernel with
the kernel parameter σ = 0.0803. The MKLPSVR, the
SimpleMKL, and the MKPLPSVR used a Gaussian kernel
and a polynomial kernel with the kernel parameters 0.1 and
1.2, respectively. Other hyper-parameters such as C = 150,
λ = 100, ε = 0.08, and ε p = 0.05 were used. In the second
group, both the LPSVR and the PLPSVR used a Gaussian
kernel with the kernel parameter σ = 0.22. The MKLPSVR,
the SimpleMKL and the MKPLPSVR exploited a Gaussian

kernel and a polynomial kernel with the kernel parameters
0.22 and 1.2, respectively. Other hyper-parameters such as
C = 135, λ = 100, ε = 0.05, and ε p = 0.03 were
used. Once the relationship in (26) was developed separately
by using the five algorithms, 10 testing data samples were
applied to validate them. Tables 7 and 8 present the maxi-
mum absolute errors predicted by the five algorithms in the
two groups of experiments. Figure 8 shows their statistical
average root mean square error predicted by the five algo-
rithms.

As seen in Tables 7 and 8, the maximum absolute error
predicted by the MKPLPSVR is smaller than the ones pre-
dicted by other algorithms. Moreover, the results in the sec-
ond group of experiment are more accurate than the ones
in the first group of experiment, and the reason is that
the prior data are utilized to extend the few training data.
Figure 8 also clearly shows the results predicted by the
MKPLPSVR are the most accurate among all of the algo-
rithms. Compared with the MKLPSVR and the PLPSVR,
the MKPLPSVR shows a better performance. The reason
is that the prior knowledge and multi-kernel have been
simultaneously incorporated into the LPSVR. On the con-
trary, the MKLPSVR and the PLPSVR have separately
used multiple kernel or prior knowledge in the LPSVR.
Compared with the SimpleMKL and the MKLPSVR, the
MKPLPSVR is superior to the SimpleMKL in terms of the
generation performance. A possible explanation is that the
MKPLPSVR has utilized the prior data from a calibrated sim-
ulator to extend the few training data samples and improve
the data-based modeling accuracy. It follows that the intro-
duction of prior knowledge from a calibrated simulator and
multi-kernel into the LPSVR can improve the data-based
modeling accuracy when the amount of measured data are
scarce.

The electrical performance was also evaluated by com-
bining the Eqs. (27) and (30). Figure 9 presents a group of

123



Incorporating prior knowledge and multi-kernel into LPSVR 2059

Table 7 Maximum absolute
error in the first group of
experiment

Bold values indicate the best
ones

LPSVR PLPSVR MKLPSVR SimpleMKL MKPLPSVR


m12 0.077143 0.063357 0.102968 0.073364 0.040525


m23 0.099318 0.090955 0.092435 0.087449 0.054519


m34 0.127449 0.116274 0.097622 0.108876 0. 088329


m45 0.099116 0.071106 0.110378 0.083556 0.078589


m56 0.037533 0.029308 0.032982 0.033988 0.028326


m25 0.031512 0.028793 0.041770 0.026224 0.014317


m11 0.020497 0.030887 0.033800 0.018054 0.012462


m22 0.008779 0.009981 0.016872 0.004182 0.004123


m33 0.007089 0.005091 0.003963 0.008225 0.004944


m44 0.025286 0.036175 0.031635 0.021927 0.017730


m55 0.002369 0.003478 0.003575 0.004758 0.001594


m66 0.008937 0.013951 0.011308 0.012313 0.008125

Table 8 Maximum absolute
error in the second group of
experiment

Bold values indicate the best
ones

LPSVR PLPSVR MKLPSVR SimpleMKL MKPLPSVR


m12 0.047693 0.035111 0.041286 0.042148 0.033853


m23 0.049001 0.039814 0.022129 0.041325 0.017476


m34 0.017806 0.011423 0.01433 0.015428 0.006774


m45 0.050443 0.04122 0.033502 0.041335 0.022978


m56 0.017830 0.013941 0.018179 0.014061 0.012134


m25 0.020355 0.018554 0.017881 0.018356 0.010986


m11 0.010713 0.015503 0.012193 0.010539 0.009933


m22 0.001937 0.007174 0.001857 0.002437 0.001647


m33 0.002445 0.001999 0.004728 0.002423 0.001779


m44 0.009433 0.008468 0.006295 0.009263 0.004362


m55 0.002329 0.010767 0.00393 0.002689 0.001586


m66 0.003854 0.002508 0.007496 0.002267 0.001741
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Fig. 8 Average root mean square error. a The first group of experiment, b the second group of experiment

comparing result between the five predicted responses and
the measurement result.

The results in the Fig. 9 show that the model devel-
oped by the MKPLPSVR is much closer to the measure-
ments than other ones. Comparing the transfer characteris-

tics with the reflection characteristics, we find that the trans-
fer characteristics calculated by MKPLPSVR is much closer
to the measurement than the reflection characteristics cal-
culated by MKPLPSVR. From the comparing results, we
can find that the proposed MKPLPSVR is effective in solv-
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Fig. 9 Comparison of the electrical performance. a Transfer charac-
teristics, b reflection characteristics

ing the modeling problem from a small amount of measured
data.

5 Conclusions

In order to obtain an accurate model from an insufficient
amount of measurement data, this paper has presented multi-
kernel linear program support vector regression with prior
knowledge. In the algorithm, multiple feature spaces have
been utilized to incorporate multi-kernel functions into the
framework of the LPSVR, and then the prior knowledge
from a physical simulator has also been incorporated into the
framework of the LPSVR by modifying optimization objec-
tives and inequality constraints. At the end, prior knowledge
and multi-kernel functions have been simultaneously incor-
porated into the framework of LPSVR. In addition, a strategy
of parameter selections has been presented to facilitate the
practical application of the proposed MKPLPSVR algorithm.
Some experiments from a synthetic example, a microstrip
antenna and a six-pole microwave filter have been carried out,
and the experimental results show that the model developed

by MKPLPSVR is more accurate than the ones developed by
the other algorithms.

The proposed MKPLPSVR provides an approach to
solve the scarcity of measured data in practice, and the
MKPLPSVR shows great potential in some problems where a
sufficient measurement data is difficult and costly to obtain,
but the prior knowledge data from a physical simulator is
available. The proposed MKPLPSVR algorithm can apply to
the field of computer-aided modeling and system identifica-
tion. By incorporating prior knowledge into the MKLPSVR,
one can reduce the effect of the biased data from a calibrated
physical simulator on the modeling accuracy. Although this
paper focuses on the regression from a limited amount of
measured data, the same technique can be applied to the
classification problem in the case of the scarcity of mea-
surement data, if the prior data from a physical simulator
are available. Possible future extension is to solve the prob-
lem of model selection for the proposed algorithm, which is
very significant to find an efficient method to automatically
determine the type, the number of kernel functions and the
hyper-parameters of support vector regression.
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