
Soft Comput (2015) 19:1863–1880
DOI 10.1007/s00500-014-1369-7

METHODOLOGIES AND APPLICATION

Improving genetic search in XCS-based classifier systems through
understanding the evolvability of classifier rules

Muhammad Iqbal · Will N. Browne · Mengjie Zhang

Published online: 11 July 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Learning classifier systems (LCSs), an estab-
lished evolutionary computation technique, are over 30 years
old with much empirical testing and foundations of theo-
retical understanding. XCS is a well-tested LCS model that
generates optimal (i.e.,maximally general and accurate) clas-
sifier rules in the final solution. Previous work has hypoth-
esized the evolution mechanisms in XCS by identifying the
bounds of learning and population requirements. However,
no work has shown exactly how an optimum rule is evolved
or especially identifies whether the methods within an LCS
are being utilized effectively. In this paper, we introduce a
method to trace the evolution of classifier rules generated
in an XCS-based classifier system. Specifically, we intro-
duce the concept of a family tree, termed parent-tree, for
each individual classifier rule generated in the system dur-
ing training, which describes the whole generational process
for that classifier. Experiments are conducted on two sample
Boolean problem domains, i.e., multiplexer and count ones
problems using two XCS-based systems, i.e., standard XCS
andXCSwith code-fragment actions. The analysis of parent-
trees reveals, for the first time in XCS, that no matter how
specific or general the initial classifiers are, all the optimal
classifiers are converged through the mechanism ‘be spe-

Communicated by V. Loia.

M. Iqbal (B) · W. N. Browne · M. Zhang
Evolutionary Computation Research Group,
School of Engineering and Computer Science,
Victoria University of Wellington,
Wellington 6140, New Zealand
e-mail: muhammad.iqbal@ecs.vuw.ac.nz

W. N. Browne
e-mail: will.browne@ecs.vuw.ac.nz

M. Zhang
e-mail: mengjie.zhang@ecs.vuw.ac.nz

cific then generalize’ near the final stages of evolution. Pop-
ulations where the initial classifiers were slightly more spe-
cific than the known ‘ideal’ specificity in the target solutions
evolve faster than either very specific, ideal or more general
starting classifier populations. Consequently introducing the
‘flip mutation’ method and reverting the conventional wis-
dom back to apply rule discovery in thematch set has demon-
strated benefits in binary classification problems, which has
implications in using XCS for knowledge discovery tasks.
It is further concluded that XCS does not directly utilize all
relevant information or all breeding strategies to evolve the
optimum solution, indicating areas for performance and effi-
ciency improvement in XCS-based systems.

Keywords Learning classifier systems · XCS · XCSCFA ·
Genetic algorithms · Evolvability

1 Introduction

A learning classifier system (LCS) is a rule-based online
learning system that adaptively learns a task by interact-
ing with an unknown environment and uses evolutionary
computing to evolve the rules according to the reinforce-
ment received from the environment. The LCS technique
is over 30 years old with much empirical understanding
and foundations of theoretical understanding having been
developed (Butz 2006; Butz et al. 2004; Drugowitsch 2008).
Specifically, Butz et al. (2004) analyzed different evolution-
ary pressures inXCS and provided guidelines to set twomain
parameters in XCS (i.e., the population size and the covering
probability) by considering the covering challenge and the
schema challenge. All the existing LCS literature, includ-
ing Butz et al. (2004), used performance curves as a mea-
sure to validate a proposed theoretical model. To the best

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-014-1369-7&domain=pdf


1864 M. Iqbal et al.

of our knowledge, there is no published work in the liter-
ature showing the evolution of an individual classifier rule
generated in an LCS. In this paper, we introduce the con-
cept of a family tree, termed parent-tree, to trace the evolu-
tion of classifier rules generated in an XCS-based classifier
system.

XCS (Wilson 1955) is a well-tested formulation of LCS
that uses accuracy-based fitness to learn the problem. Each
rule in XCS is of the form ‘if condition then action’, having
two parts: a condition and the corresponding action. Com-
monly, the condition is represented by a fixed-length bit-
string defined over the ternary alphabet {0, 1, #} where ‘#’ is
the ‘don’t care’ symbol which can be either 0 or 1; and the
action is represented by a numeric constant. For example, in
the rule ‘001### : 1’ the condition is represented as ‘001###’
and the action as ‘1’. XCS generates maximally general and
accurate classifier rules in the final solution due to different
evolutionary pressures (Butz et al. 2004).

XCS keeps both correct and incorrect classifiers, provided
they are accurate, i.e., accurately predict the reward received
from the environment. It is noted that the building blocks
of information in the condition of an incorrect classifier are
exactly the same as in the counterpart correct classifier. For
example, ‘000### : 1 → 0’ (where the ending ‘0’ is the pre-
dicted payoff of the rule) is an accurate incorrect classifier
which has the same condition as that in the counterpart accu-
rate correct classifier ‘000### : 0→ 1000’ (where the ending
‘1000’ is the predicted payoff of the rule). The rule discovery
operation is applied to the action set, which is formed by the
classifiers advocating a certain action, commonly selected at
random, and covering the currently observed environmental
input. As all the classifiers in an action set advocate the same
action, the correct and incorrect classifiers cannot occur in
the same action set, and thus cannot be simultaneously used
in breeding of the new classifiers. This means, in an XCS
system, that although both correct and incorrect classifiers
are kept throughout the learning of the system, the building
blocks of information in them are not efficiently exploited
as they are not allowed to take part in the same breeding
operation.

Previously, we implemented code-fragment based XCS
systems, where a code fragment is a tree-expression similar
to a tree generated in genetic programming (GP) (Poli et al.
2008). The main aim of using code fragments was to iden-
tify and extract building blocks of knowledge from smaller
problems in a domain and to reuse the extracted knowledge
to solve complex, large-scale problems in the domain. First,
we introduced code fragments in the condition of a classifier
rule in XCSCFC and solved problems of a scale that existing
LCS andGP approaches cannot, e.g., the 135-bit MUX prob-
lem (Iqbal et al. 2013d). Later on, we used code fragments
in the action of a classifier rule in XCSCFA, which solved

Fig. 1 The search space of a 6-bit binary problem represented in two-
dimensional grid form. An exemplar target search space area is denoted
by the grey-filled cells which is equivalent to ‘000###’ in the ternary
encoding scheme

various complex Boolean problems (Iqbal et al. 2013c).1

These have included the 7-bit even-parity problem, the 7-
bit majority-on problem, the 4+4 bit carry problem and the
DV1 problem, which are difficult to be learned using stan-
dard XCS. Investigation showed that both the rich encoding
scheme and ability to breed correct/incorrect classifiers were
important to the success of XCSCFA compared with XCS,
but not how or to what extent each was important.

This work aims to especially understand the evolution of
optimal classifiers in bothXCS andXCSCFA such thatmeth-
ods found to be missing in the base XCS can be added for
performance improvements.

1.1 Evolving classifier rules

To aid in the visual interpretation of the evolved classifier
rules and the parent-trees, a Boolean problem search space
can be represented in a two-dimensional grid form. For exam-
ple, the search space of a 6-bit binary problem is shown in
Fig. 1. Here, D0, D1,…, D5 denote the problem input val-
ues and an exemplar target search space area is denoted by
the grey-filled cells which is equivalent to ‘000###’ in the
ternary encoding scheme.

It is hypothesized that the classifier rules in an XCS are
generated using different evolutionary mechanisms, which

1 We also adopted the code-fragment action-based approach in XCSR-
CFA (Iqbal et al. 2012) to compute continuous actions. Further, in
XCSSMA (Iqbal et al. 2013b), cyclic graphs have been incorporated
in the action of a classifier rule to evolve compact solutions that could
solve any size problems in a number of important domains, such as
parity problems.

123



Improving genetic search in XCS-based classifier systems 1865

Fig. 2 The different possible mechanisms to evolve the hypothetical target classifier rule, denoted by grey-filled cells, in an XCS-based system.
The two hypothetical parent classifiers are denoted by the cells filled with horizontal lines and vertical lines, respectively

are described as ‘close-by thenmutate’, ‘be specific then gen-
eralize’, ‘be general then specify’, and ‘overlap then recom-
bine’, see Fig. 2. In ‘close-by then mutate’, during the evolu-
tion of the system, a classifier rule may be evolved close to an
optimum classifier, i.e., a single mutation in one dimension
may produce the optimum classifier, see Fig. 2a. It is noted
that such classifiers although ‘close’ to optimum receive zero
environmental reward. In ‘be specific then generalize’, dur-
ing the evolution of the system, some evolved classifier rules
cover a sub-part of the search space covered by an optimum
classifier. These rules are always accurate and correct. Then,
a mutation or crossover operation on two such classifiers
can make them general enough to optimally cover the whole
space of the niche, see Fig. 2b. In ‘be general then specify’,
during the evolution of the system, some evolved classifier
rules cover the target search space plus extra undesired parts
of the search space. These rules are notmaximally accurate as
they are only partially correct. These are termed over-general

rules which were considered a problem in early LCSs. The
mutation operation canmake such classifiers specific enough
to cover only the target search space, see Fig. 2c. In ‘overlap
then recombine’, during the evolution of the system classifier
rules may evolve to a form such that each of them covers a
part of the search space covered by an optimum classifier.
Similar to the over-general classifiers in Fig. 2c, these rules
are not maximally accurate. These classifiers can be recom-
bined by the crossover operation resulting in the optimum
rule, see Fig. 2d.

1.2 Specific objectives

As stated above, the aim of the work presented here is
to explore evolvability of classifier rules, specifically the
optimal rules in the final solution obtained using XCS and
XCSCFA such that any identified improvements in XCS can
be included. The specific objectives are:

123



1866 M. Iqbal et al.

1. Verify that ‘be specific then generalize’ is the most com-
mon mechanism and determine what proportion alterna-
tive mechanisms take.

2. Explicitly show how an optimal rule evolves.
3. Investigate the methods used to produce these rules with

various learning parameters in XCS and XCSCFA.
4. Transfer, create or discover new methods for XCS from

XCSCFA.

To achieve the above contributions, it was required to ana-
lyze the evolvability of optimal classifiers. The evolution and
analysis of the individual members in a population have been
studied in various evolutionary computation techniques, such
as canonical genetic programming (Altenberg 1994; Hem-
berg et al. 2013; Xie and Zhang 2013; Xie et al. 2006), linear
genetic programming (Hu et al. 2012, 2013), genetic algo-
rithms (Galván-López and Poli 2006; Hart and Ross 2001),
neural networks (Stanley and Miikkulainen 2002; Wagner
2008), and gene networks (Izquierdo and Fernando 2008).
Specifically, Xie et al. (2006) have used parentage informa-
tion to locate ancestors of the best program generated in a
GP run to reduce the fitness evaluation cost in tree-based GP
systems. Stanley and Miikkulainen (2002) have used histor-
ical information for each gene in a genome to evolve neural
network topologies along with weights. The resulting sys-
tem, known as NeuroEvolution of Augmenting Topologies
(NEAT), outperformed the best fixed-topology method by
utilizing the history of genes evolution. However, to the best
of our knowledge, there has been no published work in the
literature to analyze and investigate the evolvability of clas-
sifier rules in an LCS, which have high elitism (steady-state)
and cooperative populations.

The classifier rules in anXCS-based system routinely keep
statistics regarding their performance history, which allows
insight into behaviors of the classifiers.We introduce the con-
cept of a family tree, termed parent-tree, for each individual
classifier rule generated in the training process. The parent-
tree of a classifier rule describes the whole generational his-
tory for that classifier. We also compute various statistics at
each level in parent-trees to analyze the evolution of classifier
rules from different aspects.

1.3 Organization

The rest of the paper is organized as follows. Section 2
describes the necessary background inXCS andXCSCFA. In
Sect. 3, the concept of parent-trees is explained, which pro-
vides the platform for the novel contributions of this paper.
Section 4 introduces the problem domains and experimental
setup. In Sect. 5, the evolution of classifier rules produced in
XCS and XCSCFA is analyzed from different aspects using
the novel concept of parent-trees. In the last section, thiswork
is concluded and the future work is outlined.

2 Learning classifier systems

Traditionally, an LCS represents a rule-based agent that
incorporates evolutionary computing and machine learning
to solve a given task by interacting with an unknown envi-
ronment via a set of sensors for input and a set of effectors for
actions (Bull and Kovacs 2005; Holland et al. 2000). After
observing the current state of the environment, the agent
performs an action, and the environment provides a reward.
The goal of an LCS is to evolve a set of classifier rules that
collectively solve the problem. The generalization property
in LCS allows a single rule to cover more than one envi-
ronmental state provided that the action-reward mapping is
similar. Traditionally, generalization in an LCS is achieved
using a special ‘don’t care’ symbol (#) in classifier condi-
tions, which matches any value of a specified attribute in
the vector describing the environmental state. LCS can be
applied to a wide range of problems including data mining,
control, modeling and optimization problems (Behdad et al.
2012; Bull 2004; Shafi et al. 2009).

2.1 XCS

XCS (Wilson 1955, 1998) is a formulation of LCS that uses
accuracy-based fitness to learn the problem by forming a
complete mapping of states and actions to rewards. In XCS,
the learning agent evolves a population [P] of classifiers,
where each classifier consists of a rule and a set of associated
parameters estimating the quality of the rule.

Each rule in XCS is of the form ‘if condition then action’,
having two parts: a condition and the corresponding action.
Commonly, the condition is represented by a fixed-length
bitstring defined over the ternary alphabet {0, 1, #} where
‘#’ is the ‘don’t care’ symbol which can be either 0 or 1; and
the action is represented by a numeric constant.

Each classifier has three main parameters: (1) prediction
p, an estimate of the payoff that the classifier will receive if
its action is selected, (2) prediction error ε, which estimates
the error between the classifier’s prediction and the received
payoff, and (3) fitness F , computed as an inverse function
of the prediction error. In addition, each classifier keeps an
experience parameter exp, which is a count of the number of
times it has been updated, a numerosity parameter n, which
is a count of the number of copies of each unique classifier,
and a time stamp ts, which keeps the time-step of the last
invocation of a GA on a set of classifier rules to which this
classifier belonged.

XCS operates in twomodes, explore (training) and exploit
(application). In the following, XCS operations are concisely
described. For a complete description, the interested reader is
referred to the original XCS papers by Wilson (1955, 1998),
and to the algorithmic details by Butz and Wilson (2002).

123



Improving genetic search in XCS-based classifier systems 1867

In the explore mode, the agent attempts to obtain informa-
tion about the environment and describes it by creating the
decision rules, using the following steps:

– observes the current state of the environment, s ∈ S,
where S is the set of all possible environmental states.
The current state s is usually represented by afixed-length
bitstring defined over the binary alphabet {0, 1}.

– selects classifiers from the classifier population [P] that
have conditions matching the state s, to form the match
set [M].

– performs covering: for every action ai ∈ A in the set
of all possible actions, if ai is not represented in [M], a
random classifier is generatedwith a given generalization
probability P# such that it matches s and advocates ai ,
and added to the population (termed covering).2

– forms a system prediction array, P(ai ) for every ai ∈ A
that represents the system’s best estimate of the payoff
should the action ai be performed in the current state s.
Commonly, P(ai ) is a fitness weighted average of the
payoff predictions of all classifiers advocating ai .

– selects an action a to explore (probabilistically or ran-
domly) and selects all the classifiers in [M] that advo-
cated a to form the action set [A].

– performs the action a, records the reward r from the envi-
ronment, and uses r to update the associated parameters
of all classifiers in [A].

– if the average time period since the last rule discovery
operation applied is greater than a preset threshold θGA,
then applies an evolutionary mechanism (commonly a
GA) in the action set [A], to introduce new classifiers
to the population. First of all, two parent classifiers are
selected from [A] based on fitness and the offspring are
created from them. Next, the conditions of the offspring
are crossed with probability χ and then each bit in the
conditions is mutated with probability μ such that both
offspring match the currently observed state s. After that,
the actions of the offspring are mutated with probabil-
ity μ.

It is to be noted that in XCS, only two children are
produced by an evolutionary operation, as opposed to
typical (generational) GA and GP evolution where the
whole population is replaced by the newly generated indi-
viduals. In XCS, the genetic operations are applied in
sequence on two selected parent classifiers to produce
two offspring, whereas in the GA and GP the genetic
operations are applied in parallel on the whole popu-
lation of individuals to produce the new generation of
individuals that replace all the current generation.

2 If the classifier population size grows larger than the specified limit,
then one of the classifier rules has to be deleted so that the new rule can
be inserted.

In addition, the exploremodemayperformsubsumption to
merge specific classifiers into any more general and accurate
classifiers. There are two subsumption procedures in XCS:
(a) GA subsumption, and (b) action set subsumption. If GA
subsumption is being used and an offspring generated by the
GA has the same action as that of the parents, then its parents
are examined to see if either of them: (1) has an experience
value greater than a threshold, (2) is accurate, and (3) is more
general than the offspring, i.e., has a set of the matching
environmental inputs that is a proper superset of the inputs
matched by the offspring. If this test is satisfied, the offspring
is discarded and the numerosity of the subsuming parent is
incremented by one. If the offspring is not subsumed by its
parents, then it can be checked whether it is subsumed by
other classifiers in the action set. In action set subsumption,
any less general classifiers in an action set [A] are subsumed
by the most general subsumer (i.e., accurate and sufficiently
experienced) classifier in the set [A]. Subsumption deletion
is a way of biasing the genetic search towards more general,
but still accurate, classifiers (Butz et al. 2004; Wilson 1998).
It also effectively reduces the number of classifier rules in
the final population (Kovacs 1996).

In contrast to the explore mode, in the exploit mode the
agent does not attempt to discover new information and sim-
ply performs the action with the best predicted payoff. The
exploit mode is also used to test learning performance of the
agent in the application.

2.2 XCS with code-fragment actions (XCSCFA)

In XCSCFA (Iqbal et al. 2013a), the typically used numeric
action in XCS is replaced by a GP-tree like code fragment.
For simplicity, each code fragment is a binary tree and to
limit the tree size a code fragment can have maximum seven
nodes. The function set for the tree is problem dependent
such as {AND, OR, NOT ...} for binary classification prob-
lems and {+,−, ∗, / . . .} for symbolic regression problems.
The terminal set is {D0, D1, D2, …, Dn − 1} where n is
the length of an environmental input message. A population
of classifiers having code-fragment actions is illustrated in
Fig. 3. The symbols &, |,∼, d, and r denote AND, OR, NOT,
NAND, andNORoperators, respectively. The code-fragment
trees are shown in postfix form.

There are two ways to compute the action value of a clas-
sifier in XCSCFA (Iqbal et al. 2013c): (1) by loading the
terminal symbols in the action tree with the corresponding
binary values from the condition in the classifier rule, and
(2) by loading the terminal symbols with the corresponding
binary values from the environmental input;where the former
is used here because it produces easily interpretable optimal
rules as in standard XCS. To compute the action value of
a classifier using classifier condition, a ‘don’t care’ symbol
(‘#’) in the condition is randomly treated as 0 or 1. Therefore,

123



1868 M. Iqbal et al.

Sr. Condition ActionNo. D0 D1 D2 D3 D4 D5
1 0 0 1 # # 0 D4D0&D2|
2 0 1 # 0 0 # D2D5&D0D3|d
3 0 0 # 1 0 1 D0D1|D2D5&|
4 0 # 1 0 1 0 D2D0d
5 1 0 0 # 1 1 D5∼D1r
6 0 0 1 0 # # D3D1rD0D3&d
... ... ...

Fig. 3 Classifier population using code-fragment actions. Here &,
|, d,∼, and r denote AND, OR, NAND, NOT, and NOR operators,
respectively. The code-fragment actions are shown in postfix form

Condition ActionD0 D1 D2 D3 D4 D5

1 0 # 0 1 #

D0 D2

&

D5 D1

&

|

Fig. 4 A classifier rule with code-fragment action

a classifier rule in XCSCFA may output different values as
its action at different times, even for the same environmental
input. This is termed inconsistency of the action value in a
classifier rule, and that classifier is termed inconsistent clas-
sifier. Enabling the system to consider the inconsistency in
a GP-like representation has been shown to be beneficial in
certain domains (Iqbal et al. 2013c).

For example, consider the classifier rule shown in Fig. 4
and the environmental input message ‘101011’. In the con-
dition of this classifier rule, D2 is a ‘#’ symbol that will be
randomly considered as 0 or 1 to compute the action value.
Now, if D2 is considered as 1 then the action value will be 1
and if D2 is taken as 0 then the action value will be 0. Hence,
the action value in XCSCFA is not necessarily consistent
unlike standard XCS.

TheXCS system keeps a completemap, i.e., the classifiers
advocating consistently correct classification as well as the
classifiers advocating consistently incorrect classification. A
consistently incorrect classifier contains the same building
blocks of information as in the counterpart correct classifier,
e.g., ‘000### : 1’ and ‘000### : 0’, but in standard XCS these
classifiers cannot occur in the same action set, and thus can-
not be simultaneously used in breeding of the new classifiers.
The XCS ability to keep a complete map combined with the
inconsistent actions may preserve important building blocks
of information in XCSCFA. Due to inconsistent action val-
ues, the incorrect classifiers can occur in the same action set

as correct classifiers in XCSCFA and thus can be used for
the production of good classifiers.

In XCSCFA, when the rule discovery mechanism is
applied to the action set [A] to produce two offspring, condi-
tions and action trees of the offspring are created by applying
GA- and GP-based genetic operations, respectively. First of
all, two parent classifiers are selected from [A] based on
fitness and the offspring are created from them. Next, the
conditions and action trees of the offspring are crossed with
probability χ by applying GA- and GP-crossover operations,
respectively. After that, the conditions of the resulted chil-
dren by crossover are mutated with probability μ, such that
both children match the currently observed state s. Then, the
action trees of the children are mutated with probability μ,
to replace a subtree of the action with a randomly generated
subtree of depth up to 1. The interested reader is referred to
Iqbal et al. (2013a) for further details of the rule discovery
operation in XCSCFA.

It is to be noted that due to the multiple genotypes to
a single phenotype mapping of code-fragment actions in
XCSCFA, subsumption deletion is less likely to occur. Sub-
sumption deletion is still made possible by matching the
code-fragment actions on a character by character basis.

3 Parent-trees

Themain purpose of the work presented here is to investigate
how the optimal classifiers in the final solutions are evolved
in two XCS-based classifier systems, i.e., standard XCS and
XCSCFA. We introduce the concept of a parent-tree, for the
first time in the field of LCS, for each classifier in the final
solution, which describes the whole generational process for
that classifier. In addition to the construction of parent-trees,
we also compute various statistics at each level in parent-
trees to analyze the evolution of classifier rules from different
aspects, as will be described in Sect. 5. This section describes
the concept of parent-trees using two optimal classifier rules
generated in learning the 6-bit multiplexer problem.

To trace the family hierarchy of an evolved classifier rule
using its parent-tree, the following additional attributes have
been maintained for each classifier:

– id, which is a unique identification number for each clas-
sifier.

– gen, which is the generation number of the classifier.
– pid1 and pid2, which are the identification numbers of
its parents (if any).

– d, which is the depth of its parent-tree.

In all the results presented here, a parent-tree of depth 0
consists of only a single node. The root (i.e., an optimal clas-
sifier) is considered at the top level in the parent-tree and

123



Improving genetic search in XCS-based classifier systems 1869

Fig. 5 A sample parent-tree for the classifier rule ‘01#0## : 0’ generated in learning the 6-bit multiplexer problem using XCS

numbered level 0, i.e., a smaller level number represents a
higher level in the parent-tree. The classifiers at the lowest
level (i.e., greatest numbered parent-tree level) are the origi-
nating classifiers.

If the condition of a classifier is represented using the
ternary alphabet {0, 1, #}, then an optimal classifier rule for
the 6-bit multiplexer problem will contain three ‘#’ symbols
in the condition part, see Sect. 4.1 for details. A parent-tree
for the optimal classifier rule ‘01#0## : 0’ generated in learn-
ing the 6-bit multiplexer problem using XCS is depicted in
Fig. 5. Each classifier rule in this parent-tree is encoded as
‘condition : action; id, gen, pid1, pid2, d, F , ε, p, exp’,
where id, gen, pid1, pid2, d, F , ε, p, exp denote identifi-
cation number, generation number, identification numbers of
the parents (if any), depth, fitness, prediction error, predic-
tion, and experience of the classifier, respectively. It is pos-
sible that the same classifier is selected as the both parents
or only one parent classifier is mutated to create an offspring
classifier. The identification number “−1” denotes no parent.
If identification numbers for both parents of a classifier are
−1, then that classifier is a newly created one during the cov-
ering operation. If the identification number for one of the
parents is −1 and for the other is a positive number, then the
classifier is generated from a single parent classifier using
the mutation operation during the rule discovering process.

The tree in Fig. 5 highlighted three very interesting prop-
erties of the evolution within XCS-based classifier systems:
(1) it is not necessary for a classifier rule to be accurate to
be used in evolution of the target classifiers in the final solu-
tion set, e.g., the classifier rule ‘01##1# : 1’ at level 3 is not
accurate, but is used in production of the accurate classifier
‘01#01# : 1’; (2) a classifier rule generated in an earlier gen-
eration during the evolutionary process can be retained in
the population until a good partner classifier is mated with
it to produce a better classifier rule, e.g., the classifier rule
‘01#010 : 1’ at level 3 was generated in the 5th generation
and mated with the classifier ‘01##1# : 1’ in generation 863
and produced the classifier ‘01#01# : 1’; and (3) the action
part of an accurate, but incorrect classifier can be mutated in

the rule discovery operation to produce the accurate and cor-
rect classifier, e.g., the action of the classifier ‘01#0## : 1’ at
level 1 was mutated to produce the correct optimal classifier
‘01#0## : 0’.

The evolution of the classifier rule ‘01#0## : a’ (a = 0
denotes the classifier action) is shown in a 2-dimensional
form in Fig. 6, where the problem search space covered by
each classifier rule is represented in grids. For example, the
classifier rule ‘01#010 : a’ at level 3 covers the search space
areas ‘010010’ and ‘011010’. The target area is denoted by
grey-filled cells and the areas covered by parent classifiers are
denoted by the cells filled with horizontal lines and vertical
lines. If the same classifier is selected as both parents in a
crossover operation, then it is denoted by a cell filled with
both horizontal and vertical lines. It is observed that all the
classifiers involved in the evolution of the target classifier
‘11###0 : a’, shown at level 0, cover a part of the target
search space. Two classifiers, one at level 4, i.e., ‘01##11 :
a’, and one at level 3, i.e., ‘10##1# : a’ additionally cover
parts of the search space outside the target area, but there
is no over-general classifier, i.e., a classifier that covers the
whole target search space plus extra undesired parts of the
search space, in the whole evolutionary process for the target
classifier ‘01#0## : a’.

The evolution of another rule ‘001### : a’ (a = 1
is the desired classifier action), generated in learning the
6-bit multiplexer problem using XCSCFA, is shown in a
2-dimensional form in Fig. 7 as it highlights important prop-
erties of XCSCFA. The target area is denoted by grey- filled
cells, the areas covered by consistent parent classifiers are
denoted by the cells filled with horizontal lines and vertical
lines, and the areas covered by inconsistent parent classifiers
are denoted by the cells filledwith dashedhorizontal lines and
dashed vertical lines. It is interesting to note that three classi-
fiers involved in the evolution of the target classifier ‘001###
: a’, shown at level 0, do not cover any part of the target search
space, see left classifier at level 4, right classifier at level 3,
and left classifier at level 2. If we consider the target search
space as the ‘figure’ and the remaining search space area as

123



1870 M. Iqbal et al.

Fig. 6 A sample parent-tree, in
2-dimensional form, for the
classifier rule ‘01#0## : a’
generated in learning the 6-bit
multiplexer problem using XCS.
Here, only the conditions of
classifiers are represented in a
2-dimensional form, showing
the problem search space
covered by each classifier; and
the classifier action is denoted
by a

123



Improving genetic search in XCS-based classifier systems 1871

Fig. 7 A sample parent-tree, in
2-dimensional form, for the
classifier rule ‘001### : a′
generated in learning the 6-bit
multiplexer problem using
XCSCFA. Here, only the
conditions of classifiers are
represented in a 2-dimensional
form, showing the problem
search space covered by each
classifier; and the classifier
action is denoted by a

123



1872 M. Iqbal et al.

the ‘ground’, analogous to the ‘figure and ground’ terminol-
ogy used in the field of object recognition (Carreira et al.
2012), then we can say that XCSCFA utilizes the ‘ground’ to
evolve the ‘figure’. For example, the two classifiers at level 4
cover only two cells out of the eight target search space cells,
but the produced classifier at level 3 covers four target cells.
The other property of XCSCFAhighlighted in the parent-tree
shown in Fig. 7 is that XCSCFA utilizes inconsistent clas-
sifiers (again the ‘ground’ or partial ‘ground’) to evolve the
consistent target classifier, see left classifier at level 3, right
classifier at level 2, and left classifier at level 1. It can be noted
that the target classifier at level 0 is directly generated from
the breeding of an inconsistent classifier with a consistent
one at level 1.

4 Experimental design

This section describes the experimental design (i.e., data sets
and parameter settings) to be used for the investigation of
evolution and analysis of the optimal classifier rules.

4.1 The problem domains

The problems used in the experimentation are the 11-bit mul-
tiplexer problem and the 5-bit count ones problem as it is
straightforward to trace the evolution of the optimal rules
produced in the final solution sets in these problems. Simi-
lar trends are observed in the analysis of the much complex
domains solved by these techniques, e.g., the 70-bit MUX,
but the simpler domains with shorter parent-trees are clearer
to present.

A multiplexer is an electronic circuit that accepts input
strings of length n = k+2k , and gives one output. The value
encoded by the k address bits is used to select one of the 2k

remaining data bits to be given as output. For example in the
11-bit multiplexer, if the input is 10100111010 then the out-
put will be zero as the first three bits 101 represent the index
five, which is the sixth bit following the address. Multiplexer
problems are highly non-linear and have multi-modality and
epistasis properties (Ioannides and Browne 2007). The opti-
mum ternary encoded solution set for the 11-bit multiplexer
problem consists of 16 maximally general, accurate and cor-
rect classifiers, shown in Table 1.

In count ones problems only k bits are relevant in an input
instance of length l (Butz 2006). If the number of ones in
the k relevant positions is greater than half k, the problem
instance is of class one, otherwise class zero. The count ones
problem used in this work is of length l = 15 with the first
k = 5 relevant bits. For example, in this problem, input
string ‘101011001011100’ would be in class one, whereas
input string ‘100101100111010’ would be class zero. In the
count ones problem domain, the complete solution consists

Table 1 The optimum ternary encoded rule set for the 11-bit multi-
plexer problem

No. Input Output

1 0000####### 0

2 0001####### 1

3 001#0###### 0

4 001#1###### 1

5 010##0##### 0

6 010##1##### 1

7 011###0#### 0

8 011###1#### 1

9 100####0### 0

10 100####1### 1

11 101#####0## 0

12 101#####1## 1

13 110######0# 0

14 110######1# 1

15 111#######0 0

16 111#######1 1

Table 2 The optimum ternary encoded rule set for the 5-bit count ones
problem

No. Input Output

1 ##000########## 0

2 #0#00########## 0

3 #00#0########## 0

4 #000########### 0

5 0##00########## 0

6 0#0#0########## 0

7 0#00########### 0

8 00##0########## 0

9 00#0########### 0

10 000############ 0

11 ##111########## 1

12 #1#11########## 1

13 #11#1########## 1

14 #111########### 1

15 1##11########## 1

16 1#1#1########## 1

17 1#11########### 1

18 11##1########## 1

19 11#1########### 1

20 111############ 1

of strongly overlapping classifiers, so is therefore difficult
to learn (Iqbal et al. 2013c). The optimum ternary encoded
solution set for the 5-bit count ones problem consists of 20

123



Improving genetic search in XCS-based classifier systems 1873

Fig. 8 The convergence of the optimal classifier rules in learning the 11-bit multiplexer problem and the 5-bit count ones problem using XCS.
Only the top 15 levels in the parent-trees are shown

maximally general, accurate and correct classifiers, shown in
Table 2.

4.2 Experimental setup

Unless stated otherwise, the following parameter values,
commonly used in the literature, are used for the experi-
mentation here, as suggested by Butz and Wilson (2002):
learning rate β = 0.2; fitness fall-off rate α = 0.1; fit-
ness exponent ν = 5; prediction error threshold ε0 = 10;
two-point crossover with probability χ = 0.8; mutation
probability μ = 0.04; fraction of mean fitness for dele-
tion δ = 0.1; experience threshold for classifier deletion
θdel = 20; threshold for GA application in the action set
θGA = 25; classifier experience threshold for subsump-
tion θsub = 20; initial prediction pI = 10.0; initial fitness
FI = 0.01; initial prediction error εI = 0.0; reduction of the
fitness f i tnessReduction = 0.1; and the selection method
is tournament selection with tournament size ratio 0.4. Both
GA subsumption and action set subsumption are activated for
the 11-bit multiplexer problem, but for the 5-bit count ones
problem action set subsumption is deactivated as suggested
by Iqbal et al. (2013c). The function set for the code frag-
ments used in XCSCFA is {AND, OR, NOT, NAND, NOR},

denoted by {&, |,∼, d, r}, for all the problem domains exper-
imented in this work. The maximum number of classifiers
used is 500 for the 11-bit multiplexer problem and 1,000
for the 5-bit count ones problem. The number of training
examples used is 50,000 for all the experiments. Explore and
exploit problem instances are alternated. The reward scheme
used is 1,000 for a correct classification and 0 otherwise.

Toget an insight of the evolvability of an evolved classifier,
we have conducted seven sets of experiments with different
probability values of the ‘don’t care’ symbol ‘#’ used in the
covering operation, denoted by P#, i.e., P# = 0.10, 0.25, 0.33,
0.50, 0.66, 0.75 and 0.90. All the results presented here are
average of the 30 independent runs.

5 Evolution and analysis of classifier rules

The parent-trees are analyzed to provide important insights
about evolution of the optimal classifier rules. In addition
to the construction of parent-trees, we also computed var-
ious statistics at each level in the parent-trees of the opti-
mal classifier rules to analyze the evolution of rules from
different aspects. The rest of this section provides detailed
experiments in learning sample problems using XCS and

123



1874 M. Iqbal et al.

Fig. 9 The convergence of the optimal classifier rules in learning the 11-bit multiplexer problem and the 5-bit count ones problem using XCSCFA.
Only the top 30 levels in the parent-trees are shown

XCSCFA that illustrate the novel analysis and rule evolution.
Note that it is the analysis of the results that is important, not
the results themselves, e.g., multiplexer problems have been
solved up to 135-bits using code-fragment based classifier
systems (Iqbal et al. 2013d).

5.1 The convergence of optimal classifiers

To analyze evolution of the optimal classifier rules in terms
of generalization, we calculated the number of ‘#’ sym-
bols at each level in the parent-trees of such classifiers
obtained in the final solution using XCS and XCSCFA. The
convergence of the optimal classifier rules in learning the
11-bit multiplexer problem and the 5-bit count ones prob-
lem using XCS and XCSCFA is shown in Figs. 8 and 9,
respectively.

It is to be noted that using P# = 0.10, both XCS and
XCSCFA could not consistently learn the 5-bit count ones
problem, therefore, the corresponding convergence curves
are not presented here. It is observed that using P# = 0.10,
XCS failed three times out of the 30 runs andXCSCFA failed
13 times, in learning the 5-bit count ones problem indicat-
ing that they were trapped in the covering/deletion loop as
described by Butz et al. (2004). With P# = 0.10, both XCS

and XCSCFA need larger populations to handle the covering
challenge (Butz et al. 2004), to successfully learn the 5-bit
count ones problem.

It is interesting to note that all the classifiers are converg-
ing to the final form from specific to general at the top of
parent-trees, even starting with the very high generalization
probability value of 0.90. This is a new discovery in XCS-
based classifier systems. It is worth noting that the optimal
rules are evolved from specific to general, but if the origi-
nating classifiers are too specific, i.e., P# is set very small,
then it may slow down the convergence of the optimal rules
due to the increased parent-tree depth as shown in Figs. 10
and 11 for XCS and XCSCFA, respectively. This finding
complements the theoretical models developed by Butz et al.
(2004) that to converge to the optimal solution faster, it is
better to use slightly specific initial classifiers than the target
classifiers.

The optimal rules generated in XCSCFA have larger
parent-trees than XCS, see Figs. 10 and 11, respectively,
because in XCSCFA it takes longer to evolve accurate rules
due to the code-fragment actions and the inconsistent clas-
sifiers. In XCSCFA, an optimal rule can directly be evolved
from other optimal rules covering the same niche (i.e., hav-
ing the same condition), which results in further increased
parent-tree depth of the evolved optimal rule.

123



Improving genetic search in XCS-based classifier systems 1875

Fig. 10 The average depth of the parent-trees obtained in learning the
11-bit multiplexer problem and the 5-bit count ones problem usingXCS
with different values of P#

Fig. 11 The average depth of the parent-trees obtained in learning
the 11-bit multiplexer problem and the 5-bit count ones problem using
XCSCFA with different values of P#

5.2 The occurrence of optimal classifiers

The first occurrence of the optimal classifier rules in learn-
ing the 11-bit multiplexer problem and the 5-bit count ones
problem using XCS and XCSCFA is shown in Figs. 12 and
13, respectively. All the graphs in this section are in color for
better readability.

It is observed that for values of P# near to 0, XCS was
relatively slower to evolve the optimal classifier rules in
learning the 11-bit multiplexer problem as well as the 5-
bit count ones problem, see Fig. 12a, b, respectively. As the
value of P# increased, the optimal rules in XCS evolvedmore
rapidly. The fastest evolution of the optimal rules in learn-
ing the 11-bit multiplexer problem and the 5-bit count ones
problem using XCS achieved when P# was 0.50 and 0.50–
0.66, respectively; even though the maximally general solu-
tions for the 11-bit multiplexer problem and the 5-bit count
ones problem involve only classifiers with 7/11 ≈ 0.64 and
12/15 = 0.8 ‘don’t care’ symbols, respectively. When P#

was close to 1, XCS slowly evolved the optimal rules and
as P# decreased, the evolution of the optimal rules improved
again. This finding is consistentwithButz et al. (2004),where
it was theorized that slightlymore specific classifiers than the
target classifiers speed convergence.

Similar to XCS, for values of P# near to 0, XCSCFA
was relatively slower to evolve the optimal classifier rules
in learning the 11-bit multiplexer problem, see Fig. 13a,
and as the value of P# increased, the optimal rules in
XCSCFA evolved more rapidly. The fastest evolution of
the optimal rules in learning the 11-bit multiplexer prob-
lem using XCSCFA achieved when P# was 0.33, indicating
that XCSCFA prefers slightly smaller P# values than XCS as
smaller P# values help in generating more consistent code-
fragment actions as compared to larger P# values. Similarly,
when P# was close to 1, XCSCFA slowly evolved the optimal
rules and as P# decreased, the evolution of the optimal rules
improved again. Surprisingly, in learning the 5-bit count ones
problem using XCSCFA, the evolution of the optimal rules
is almost similar for any P# value, with 0.25 being slightly
fast, as shown in Fig. 13b. This may be due to the overlap-
ping property of the count ones problem domain. This will
be further investigated in future work.

The comparison of Figs. 12 and 13 revealed that the evo-
lution of the optimal rules in XCS is earlier and faster than
XCSCFA. For example, with P# equal to 0.25, the first opti-
mal rule in learning the 5-bit count ones problem using XCS
and XCSCFA occurred at generation number ≈2,000 and
17,000, respectively. Similarly, the first ten optimal rules in
learning the 5-bit count ones problem, with P# equal to 0.25,
usingXCSwere evolvedwithin≈2,000generations,whereas
XCSCFA took ≈27,000 generations to evolve the first ten
rules in this case. The reason for the slow evolution of the
optimal rules inXCSCFA is again the code-fragment actions,
the inconsistent classifiers, and the multiple genotypes to
a single phenotype mapping of code-fragment actions as
described in Sect. 5.1.

It is to be noted that the evolution of the optimal rules in
learning the 11-bit multiplexer problem and the 5-bit count
ones problem using XCS was completed in less than 40,000
generations and 14,000 generations, see Fig. 12a, b, respec-
tively. However, in XCSCFA, the optimal rules were found
to be evolved continually until 50,000 generations, i.e., at the
end of the training in learning the 11-bit multiplexer prob-
lem as well as the 5-bit count ones problem, see Fig. 13a,
b, respectively. This is because in XCSCFA the number of
the optimal rules is greater than XCS due to the multiple
genotypes to a single phenotype mapping of code-fragment
actions in XCSCFA, e.g., XCSCFA evolved more than 60
genotypic optimal rules in learning the 11-bit multiplexer
problem, see Fig. 13a, instead of the only 16 required phe-
notypic optimal rules shown in Table 1.

123



1876 M. Iqbal et al.

Fig. 12 The first occurrence of the optimal classifier rules in learning the 11-bit multiplexer problem and the 5-bit count ones problem using XCS

5.3 Transferring identified mechanisms to XCS

XCSCFA has classification performance improvements over
XCS as the problems increase to more complex scales (Iqbal
et al. 2013c), but requires more iterations andmore resources
than XCS due to the richness of the code fragments. The next
step of the work was to consider transferring the identified
mechanisms that assist XCSCFA to XCS.

In an XCS-based system, the rule discovery operation is
conventionally applied to the action set that is formed by
the classifiers advocating a certain action. In the explore
mode, this action is commonly selected at random. All the

classifiers in an action set advocate the same action and
the mutation operation to change the action of a newly
produced child classifier is applied with a probability μ,
which has the commonly used value of 0.04. Therefore,
96 % of the newly produced children in standard numeric
action-based XCS have the same action value as that of
the parent classifiers. It means that, in an XCS-based sys-
tem, although both correct and incorrect classifiers are
kept throughout the learning of the system, the building
blocks of information in them are not efficiently exploited
as they are not allowed to take part in the same breeding
operation.

123



Improving genetic search in XCS-based classifier systems 1877

Fig. 13 The first occurrence of the optimal classifier rules in learning the 11-bit multiplexer problem and the 5-bit count ones problem using
XCSCFA

In XCSCFA, due to the inconsistent action values, it is
possible that an action set consists of classifiers with the
potential for different actions. It can be seen from the parent-
tree shown in Fig. 7 that XCSCFA enables both incorrect and
correct classifiers to breed together. Therefore, the rule dis-
covery operation in XCSCFA can exploit the building blocks
of informationmore efficiently as compared to standardXCS.
Fortunately, in an XCS-based system, both correct and incor-
rect classifiers exist in the same match set formed against
the currently observed environmental input message. In the

original XCS paper byWilson (1955), the rule discovery was
applied to the match set, but later it was moved to the action
set to reduce the number of inaccurate classifiers produced
by the system in certain domains (Wilson 1998).

It is hypothesized that if the rule discovery operation is
applied to the match set, building blocks of information can
be efficiently used for the evolution of potentially good clas-
sifiers in learning the classification problems that have the
right symmetries, e.g., multiplexer problems. In addition, for
binary classification problems, the action of an incorrect rule

123



1878 M. Iqbal et al.

Fig. 14 Performance comparison in learning multiplexer problems using XCS. Please observe the scale differences for the figures

can be explicitly flipped in the mutation operation resulting
in further improved performance.

To test this hypothesis, we conducted experiments on the
37-bit multiplexer and the 70-bit multiplexer problems using
three different configurations in XCS: (1) applying GA in
the action set, (2) applying GA in the match set, and (3)
applyingGA in thematch set but usingbiased actionmutation
where the action of an incorrect but accurate rule is explicitly
flipped in the mutation operation. The maximum number
of classifiers used is 5,000 and 20,000 and the number of
training examples used is one million and five million for
the 37-bit multiplexer problem and the 70-bit multiplexer
problem, respectively. The value of P# used is 0.5 and 1.0 for
the 37-bit multiplexer problem and for the 70-bit multiplexer
problem, respectively. The mutation probability μ for the
70-bit multiplexer problem is reduced from 0.04 to 0.01 as

suggested by Butz (2006). For a fair comparison, the action
set subsumption is deactivated.

The performance comparison in learning the 37-bit mul-
tiplexer problem and the 70-bit multiplexer problem using
three different configurations in XCS is shown in Fig. 14. As
anticipated, applying GA in the match set improved the per-
formance of XCS in terms of reducing the number of input
instances required to reach the 100% performance level. The
biased action mutation further reduced the number of input
instances required to reach the 100 % performance level.

Figure 15 shows that applying GA in the match set pro-
duced more condensed solutions than applying GA in the
action set in learning the 37-bit multiplexer and the 70-bit
multiplexer problems. The biased action mutation further
reduced the population size in the final solution in learning
the 37-bit multiplexer problem, see Fig. 15a.

123



Improving genetic search in XCS-based classifier systems 1879

Fig. 15 Population size comparison in learning multiplexer problems using XCS. Please observe the scale differences for the figures

However, for multi-class problems and sequential prob-
lems, it is beneficial to keep the rule discovery operation in
the action set because they do not have the right symmetries
to exploit the building blocks of information in the complete
map as described by Wilson (1998).

6 Conclusions

The aim of this work was to understand the evolution of the
optimal rules in XCS-based classifier systems, in terms of
evolutionary methods especially with regard to generaliza-
tion (specificity) of rule coverage and how this develops. We
created parent-trees for each of the optimal classifier rules
in the final solution obtained using different initial general-
ization probability values, denoted by P#, and observed the
following:

• The optimal classifiers are generated using different
mechanisms such as ‘overlap then recombine’, ‘close-by
then mutate’, but mostly ‘be specific then generalize’.

• The optimal classifiers in all the experiments converged
to the final form by becoming specialized at the top lev-
els of the parent-trees, even using the very large P# value
of 0.9. This is a new discovery in XCS-based systems.
This finding complements the theoretical models devel-
oped by Butz et al. (2004) that to converge to the optimal
solution faster, it is better to use relatively specific initial
classifiers as compared to anticipated generality in the
final solution.

• A very small or very large P# value resulted in larger
parent-trees, which provides a reason for a slower rate of
convergence to the optimum population as modeled by
Butz et al. (2004).

123



1880 M. Iqbal et al.

• By applying the rule discovery operation to thematch set,
building blocks of information can be efficiently used for
the evolution of potentially good classifiers in learning
the classification problems that have the right symme-
tries. In addition, for binary classification problems, the
action of an incorrect rule can be explicitly flipped in the
mutation operation resulting in further improved perfor-
mance.

These findings support and complement the theoretical
models developed by Butz et al. (2004).

This work has identified that XCSCFA exploits the build-
ing blocks of information more efficiently than XCS by
enabling both incorrect and correct classifiers to breed
together. On the other hand, XCS does not directly use all rel-
evant information or breeding strategies, which offers areas
for performance and efficiency improvement in XCS-based
systems.An initial step has been to introduce biasedmutation
to transfer incorrect to correct classifiers in binary domains
that is an obvious step, but not previously adopted in the com-
munity. Similarly, the action set has been widely adapted, but
for binary classification problems thematch set is considered
more beneficial, especially when coupled with biased muta-
tion.

Further improvements are suggested, such as creating
‘generalized to specific’ operators because currently an over-
general rule produced in an XCS-based system gets removed
rather than specified by the system. This mechanism needs to
be revisited. In multi-class problems, the use of ‘figure and
ground’ needs to be considered.

The application of parent-trees to analyze the evolution of
optimal solutions in alternative population-based evolution-
ary algorithms is considered worthy of further investigation.

References

Altenberg L (1994) The evolution of evolvability in genetic program-
ming. In: Advances in genetic programming. MIT Press, Massa-
chusetts, pp 47–74

Behdad M, Barone L, French T, Bennamoun M (2012) On XCSR for
electronic fraud detection. Evol Intell 5(2):139–150

Bull L (2004) Applications of learning classifier systems. Springer,
Heidelberg

Bull L, Kovacs T (2005) Foundations of learning classifier systems: an
introduction. Springer, Berlin

Butz MV (2006) Rule-based evolutionary online learning systems: a
principal approach to lcs analysis and design. Springer, Berlin

Butz MV, Kovacs T, Lanzi PL, Wilson SW (2004) Toward a theory
of generalization and learning in XCS. IEEE Trans Evol Comput
8(1):28–46

Butz MV, Wilson SW (2002) An algorithmic description of XCS. Soft
Comput 6(3–4):144–153

Carreira J, Li F, SminchisescuC (2012)Object recognition by sequential
figure-ground ranking. Int J Comput Vision 98(3):243–262

Drugowitsch J (2008)Design and analysis of learning classifier systems:
a probabilistic approach. Springer, Berlin

Galván-López E, Poli R (2006) An empirical investigation of how and
why neutrality affects evolutionary search. In: Proceedings of the
genetic and evolutionary computation conference, pp 1149–1156

Hart E, Ross P (2001) GAVEL—a new tool for genetic algorithm visu-
alization. IEEE Trans Evol Comput 5(4):335–348

Hemberg E, Berzan C, Veeramachaneni K, O’Reilly UM (2013) Intro-
ducing graphical models to analyze genetic programming dynamics.
In: Proceedings of the twelfth workshop on foundations of genetic
algorithms, pp 75–86

Holland JH, Booker LB, Colombetti M, Dorigo M, Goldberg DE, For-
rest S, Riolo RL, Smith RE, Lanzi PL, Stolzmann W, Wilson SW
(2000) What is a learning classifier system? In: Learning classifier
systems, from foundations to applications. Springer, New York, pp
3–32

Hu T, Banzhaf W, Moore JH (2013) Robustness and evolvability of
recombination in linear genetic programming. In: Genetic program-
ming. Springer, New York, pp 97–108

Hu T, Payne JL, Banzhaf W, Moore JH (2012) Evolutionary dynamics
on multiple scales: a quantitative analysis of the interplay between
genotype, phenotype, and fitness in linear genetic programming.
Genetic Program Evolv Mach 13(3):305–337

Ioannides C, Browne WN (2007) Investigating scaling of an abstracted
LCS utilising ternary and S-expression alphabets. In: Proceedings of
the genetic and evolutionary computation conference, pp 2759–2764

Iqbal M, Browne WN, Zhang M (2012) XCSR with computed contin-
uous action. In: Proceedings of the Australasian joint conference on
artificial intelligence, pp 350–361

IqbalM,BrowneWN,ZhangM(2013a) Evolving optimumpopulations
with XCS classifier systems. Soft Comput 17(3):503–518

Iqbal M, Browne WN, Zhang M (2013b) Extending learning classifier
system with cyclic graphs for scalability on complex, large-scale
boolean problems. In: Proceedings of the genetic and evolutionary
computation conference, pp 1045–1052

IqbalM,BrowneWN,ZhangM(2013c)Learning complex, overlapping
and niche imbalance Boolean problems using XCS-based classifier
systems. Evol Intell 6(2):73–91

Iqbal M, Browne WN, Zhang M (2013d) Reusing building blocks of
extracted knowledge to solve complex, large-scale Boolean prob-
lems. IEEE Trans Evol Comput. doi:10.1109/TEVC.2013.2281537

Izquierdo EJ, Fernando CT (2008) The evolution of evolvability in gene
transcription networks. Artif Life 11:265–273

Kovacs T (1996) Evolving optimal populations with XCS classifier
systems. Technical Report CSR-96-17 and CSRP-9617, University
of Birmingham, UK

Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic
programming. http://lulu.com and freely available at http://www.
gp-field-guide.org.uk (with contributions by J. R. Koza)

Shafi K, Kovacs T, Abbass HA, Zhu W (2009) Intrusion detection with
evolutionary learning classifier systems. Nat Comput 8(1):3–27

Stanley KO, Miikkulainen R (2002) Evolving neural networks through
augmenting topologies. Evol Comput 10(2):99–127

Wagner A (2008) Robustness and evolvability: a paradox resolved. Proc
R Soc B 275(1630):91–100

Wilson SW (1995) Classifier fitness based on accuracy. Evol Comput
3(2):149–175

Wilson SW (1998) Generalization in the XCS classifier system. In:
Proceedings of the genetic programming conference, pp 665–674

Xie H, Zhang M (2013) Parent selection pressure auto-tuning for tour-
nament selection in genetic programming. IEEE Trans Evol Comput
17(1):1–19

Xie H, Zhang M, Andreae P (2006) A study of good predecessor pro-
grams for reducing fitness evaluation cost in genetic programming.
In: Proceedings of the IEEE congress on evolutionary computation,
pp 2661–2668

123

http://dx.doi.org/10.1109/TEVC.2013.2281537
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

	Improving genetic search in XCS-based classifier systems through understanding the evolvability of classifier rules
	Abstract 
	1 Introduction
	1.1 Evolving classifier rules
	1.2 Specific objectives
	1.3 Organization

	2 Learning classifier systems
	2.1 XCS
	2.2 XCS with code-fragment actions (XCSCFA)

	3 Parent-trees
	4 Experimental design
	4.1 The problem domains
	4.2 Experimental setup

	5 Evolution and analysis of classifier rules
	5.1 The convergence of optimal classifiers
	5.2 The occurrence of optimal classifiers
	5.3 Transferring identified mechanisms to XCS

	6 Conclusions
	References




