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Abstract Ensemble methods for building improved clas-
sifier models have been an important topic in machine learn-
ing, pattern recognition and data mining areas, where they
have shown great promise. They boast a robustness that has
spearheaded their application in many practical classifica-
tion problems, especially when there is a significant diver-
sity among the ensemble members. Actually, they replace
traditional machine learning techniques inmany applications
and special attention has been devoted to them as a mean to
improve the prediction accuracy for problems of high com-
plexity. Several combination rules have been investigated in
this context. However, it is claimed that no rule is always bet-
ter than others for designing an optimal decision. The present
study evaluates the performance of two different ensemble
methods for protein secondary structure prediction.We focus
onweightedopinions pooling and themost commonaggrega-
tion rules for decisions inference. The ensemblemembers are
accurate protein secondary structure single model predictors
namely, Multi-Class Support Vector Machines and Artificial
Neural Networks. Experiments are carried out using cross-
validation tests on RS126 and CB513 benchmark datasets.
Our results clearly confirm that ensembles are more accurate
than a single model and the experimental comparison of the
investigated ensemble schemes demonstrates that the newly
introduced rule called Exponential Opinion Pool competes

Communicated by V. Loia.

H. Bouziane (B) · B. Messabih · A. Chouarfia
Department of Computer Science, USTO-MB University,
BP 1505, El M’naouer, Oran, Algeria
e-mail: hafida_chouarfia@yahoo.fr; h_bouziane@univ-usto.dz

B. Messabih
e-mail: belhadri.messabih@univ-usto.dz

A. Chouarfia
e-mail: chouarfia@univ-usto.dz

well against state-of-the-art fixed rules, especially the sum
rule which in some cases is able to achieve better perfor-
mance.

Keywords Ensemble methods · Simple aggregation rules ·
Weighted opinions pooling · Protein secondary structure
prediction

Abbreviations

ANN Artificial Neural Networks
BLAST Basic Local Alignment Search Tool
BLOSUM BLOck SUbstitution Matrix
ExpOP Exponential Opinion Pool
FNN Feed-Forward Neural Network
IFS Ideal fold selection
LinOP Linear Opinion Pool
LogOP Logarithm Opinion Pool
MLP Multi-Layer Perceptron
M-SVM Multi-Class Support Vector Machines
MV Majority vote
PSI-BLAST Position-Specific Iterative BLAST
PSSP Protein secondary structure prediction
RBFNN Radial Basis Function Neural Network
SVM Support Vector Machines
WMax Weighted Max
WMin Weighted Min

1 Introduction

In recent years, there has been a growing interest in combin-
ing multiple decisions in machine learning, pattern recogni-
tion, and data mining areas. Known under a variety of names
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in the literature such as ensemble of classifiers, expert com-
bination, ensemble committee, classifier fusion, mixture of
experts, and more (Kuncheva andWhitaker 2003). The com-
bined classifiers are commonly referred to as base classifiers.
This relatively recent learning paradigm where many classi-
fiers are jointly used to solve a problem is still an impor-
tant topic (Dietterich 2000). The main idea behind is that
the generalization ability of an ensemble is often signifi-
cantly better than each of its members separately (Dietterich
2000). Of course, the chosen members must be cooperative
or in other words, complementary in final decision making.
If they always agree, the gain in performance of the ensem-
ble is negligible, if it is not null. Whereas if they disagree,
errors made by one or some members can be corrected by
the others. Although, this assumption appears unrealistic, the
ultimate goal remains to improve the confidence of making
right decision even if the improvement is minor. Therefore,
for designing a typical ensemble, two issues are pertaining.
First, selection of efficient ensemble members. Whereas the
second issue consists in finding an appropriate rule that com-
bines their outputs. For this purpose, many research studies
concentrate on classifier ensembles. Up until now, there is no
standard procedure to design an effective ensemble. How-
ever, it has been clearly established that the gain obtained
by building an ensemble is mainly affected by the chosen
ensemble members. The number that should be used for a
specific application and the requirements that they should
fulfill remain the two key issues to consider. It is well-known
fact that the success of an ensemble relies primarily on the
diversity of the individual models combined, which rein-
forces the assumption of uncorrelated errors (Kuncheva and
Whitaker 2003; Kuncheva 2005). Many diversity/ambiguity
measures have been developed for building effective ensem-
bles, avoiding the problem of combining identical or very
similar models (Didaci et al. 2013), and various ensemble
schemes have been devised and studied.Yet, there is no defin-
itive taxonomy of classifier ensembles and the most up to
date emerged combination techniques provide a rich collec-
tion for tackling any kind of problems. One can in general
distinguish two classifier combination models according to
the type of base classifiers. Homogeneous classifiers based
model (perturb & combine approach) which uses the same
learning algorithm as the basis for individual classifiers on
different distributions of the training set, obtained by resam-
pling techniques (Breiman 1996; Schapire and Freund 2012),
and heterogeneous classifiers based model which generates
classifiers using different learning algorithms on the training
set (Wolpert 1992; Xu et al. 2012). However, another cate-
gory also exists which consists of hybrid systems that mixes
different models (Baumgartner and Serpen 2012; Whalen
and Pandey 2013). For more details on ensemble methods,
an excellent review can be found in Dietterich (2002) and
more recently in Sewell (2011). The most popular way of

combining multiple classifiers consists in using jointly the
opinions of all the available classifiers for the same input.
The final decision is usually made using simple aggregation
rules (non-trainable combiners) instead of using the outputs
for learning at a meta-level (trainable combiners). This study
concentrates on the first strategy. We focus only on the most
commonly used decision rules for classifier combination. To
the best of our knowledge, there is no best decision rule for all
situations and a significant gain in performance is not always
guaranteed. Yet, ensemblemethods have beenwidely used to
address bioinformatics problems such as gene regulatory net-
works inference (Zong et al. 2010; Jiao et al. 2013) and pro-
tein secondary structure prediction (PSSP) which have been
among the growing trends in this field. In PSSP, the sequential
nature of data requires specific ensembles. Common ensem-
bles based on resampling or injecting randomness could not
be applied since the order of amino acids in protein sequences
is essential for coherent predictions and the prediction suc-
cess relies on amino acids dependencies. Thus, special atten-
tion must be paid to simple aggregation rule-based ensem-
bles to explore much more fully their generalization ability
in PSSP. The present study was somewhat inspired by Kit-
tler et al. (1998) experiments for identity recognition, where
some simple aggregation rules were investigated and com-
pared. The authors have shown that sum rule outperformed
all the other rules. Here, it is of interest to see whether this
rule gives quite good performance in PSSP. Another question
of interest is to estimate the upper prediction limit for this
type of ensemble methods. Accordingly, the paper has three
contributions. The first is an investigation of the most well-
known fixed aggregation rules on PSSP problem, to provide
a comparison of their performance since they have rarely
been compared to each other in this context, integrating as
ensemble member classifiers that yield good performance as
protein secondary structure predictors, namely Multi-Class
Support Vector Machines (M-SVMs) and Artificial Neural
Networks (ANNs). The second contribution is an analysis
of a new rule to aggregate the individual ensemble member
decisions named Exponential Opinion Pool. The proposed
consensus scheme is assessed so as to estimate how much
improvement in PSSP performance it can give rather than
each studied ensemble method and each individual ensem-
ble member. The third contribution is to establish an upper
limit of the prediction accuracy (i.e., the best possible pre-
diction accuracy) of the studied ensemble schemes for PSSP
problem according to the integrated ensemble members. The
experimental comparison of the designed ensemble schemes
is performed using the most common PSSP evaluation met-
rics. To do so, the different ensemble methods have been
implemented in ANSI C code and executed on linux envi-
ronment.

The remainder of this paper is organized as follows. In the
next section, we shortly review the combination rules that

123



Protein secondary structure prediction 1665

are investigated and compared in this study and explain how
the outputs of the chosen ensemble members are combined.
Next, Sect. 3 gives a brief introduction to the PSSP problem.
Section 4 covers the secondary structure prediction tools and
benchmark datasets used. Section 5 is devoted to the detailed
description of the experimental results. Section 6 concludes
and closes the paper with some directions for future research.

2 Methods

A classifier generally assigns a class for each example, but it
may also provide confidence values estimating the probabil-
ity of belonging to each one of the possible classes. So, the
performance of the classifier is not only related to the score
achieved, but also to the estimated class posterior probabili-
ties which give insights on the prediction quality and enable
eventual post-processing. Many actual studies focus on the
dependency between the classification score and the esti-
mated class posterior probabilities. In this study, the class
posterior probabilities provided by each classifier are con-
sidered. Given a feature set X , a classifier is a function f
that maps an example x = (x1, . . . , xd) ∈ X (X ⊂ R

d) to a
class ck ∈ Y = {c1, c2, ...cQ}, a set of Q class values.

f : X ⊂ R
d �−→ Y, Y = {c1, c2, . . . , cQ} (1)

Each class cl is modeled by the probability density function
P(x1, . . . , xd |cl) and its a priori probability of occurrence
P(cl). According to Bayesian theory, the example x should
be assigned to class ck with the highest value of posterior
probability such that:

f (x) = ck, k = argmax
l=1,...,Q

P(cl |x1, . . . , xd) (2)

Then, by applying Bayes Theorem, we have:

P(ck |x1, . . . , xd) = P(x1, . . . , xd |ck)P(ck)

P(x1, . . . , xd)
(3)

The unconditional joint probability density is expressed in
terms of the conditional feature distributions, so that:

P(x1, . . . , xd) =
Q∑

l=1

P(x1, . . . , xd |cl)P(cl) (4)

Let us represent by C a set of M individual classifiers gen-
erated by applying the learning algorithmsA1,A2, . . . ,AM

to a single training data set X . We assume that each classi-
fier from C predicts the posterior probability for each class
cl , l ∈ {1, . . . , Q}. For an example x ∈ X , the Q compo-
nent vector of the predicted class posterior probabilities by a
classifier A| is then:

PA| = (PA|(c1|x), PA|(c2|x), . . . , PA|(cQ |x)) (5)

where {c1, c2, . . . cQ} is a set of possible class values and
PA|(cl |x))(l ∈ {1, . . . , Q}) represents the class posterior
probability estimating the probability that the example x
belongs to the class cl . Once the M predictions of the indi-
vidual classifiersA| of C for an example x are obtained, they
are combined in some way to produce the final decision of
the total ensemble C.

2.1 Simple rule-based ensemble method

This section introduces the usual aggregation rules that are
investigated in this study. All the rules described below deal
with class posterior probabilities. The others simple rules for
combining classifiers outputs, based on the generated class
labels only, like the naive Bayes combiner and the (weighted)
majority vote are not considered in this stage. However, the
latest combiner is chosen for a second stage of classification.
To describe each rule, let us define the so-called Decision
Profile matrix introduced by Kuncheva et al. (2001). The
decision profile matrix DP(x) for an example x consists of
elements d jk ∈ [[0, 1]] which represent the support given by
the j th classifier to a class ck . The rows of DP(x) repre-
sent the support given by individual classifiers to each of the
classes, whereas the columns represent the support received
by a particular class from all classifiers.

DP(x) =
⎡

⎣
d11(x) d12(x) . . . d1Q(x)

. . . .

dM1(x) dM2(x) . . . dMQ(x)

⎤

⎦ (6)

where M represents the number of classifiers and Q the
number of classes. Each element d jk of the matrix can be
expressed in term of probabilities using Eqs. (3) and (4) as:

d jk = P(x1, . . . , xd |ck)P(ck)
∑Q

l=1 P(x1, . . . , xd |cl)P(cl)
(7)

The total support received by a class ck which depends on the
kth column of the decision profileDP(x) can be expressed as:

μk(x) = R[d1k(x), . . . , dMk(x)]
= R[PA1(ck |x), , . . . , PAM (ck |x)] (8)

whereR is the combination rule, such as one of those listed
below (i.e., Sum/Mean, Product, Max, and Min). Usually,
each developed rule takes into account the class posterior
probabilities estimated by each classifier in the ensemble.

2.1.1 Sum/Mean rule

The total support for a class ck is obtained as the sum/average
of the kth outputs of all the considered classifiers, as follows:
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μk(x) =
M∑

j=1

d jk(x)

μk(x) = 1

M

M∑

j=1

d jk(x) (9)

The errors in the confidences are averaged out by the sum-
mation. In either case, the ensemble decision is taken as the
class ck for which the total supportμk(x) is highest. By aver-
aging the classifier predictions, the risk of selecting a very
bad model is reduced.

2.1.2 Product rule

The product rule multiplies the kth outputs provided by the
M classifiers. Thus, the final support received by a class ck
is expressed as follows:

μk(x) = 1

M

M∏

j=1

d jk(x) (10)

This rule is very sensitive to the low support (very small
or close to 0) due to the nature of the multiplication by
zero, which reduces the chance to the other classifiers to be
selected. However, it will be good for independent classifiers
but unfortunately, this situation is unrealistic in practice since
classifiers are never really independent.

2.1.3 Max rule

Applied to the outputs produced by the set of M classifiers,
this rule takes the maximum among the classifier outputs for
each class. The final support received by a class ck is:

μk(x) = argmax
j=1,...,M

d jk(x) (11)

Unfortunately, this combination rule does not guarantee good
performance for the simple reason that the final decision is
sensitive to over-fitting. If some classifiers are more over-
trained than others, by applying this rule their confidences
may be considered.

2.1.4 Min rule

Similarly to the Max rule, the final support provided by the
Min rule is given by:

μk(x) = argmin
j=1,...,M

d jk(x) (12)

This rule is known to have a difficulty to improve the perfor-
mance, especially when the base classifiers have no compa-
rable success.

2.2 Weighted pooling

In the aforementioned rules, the combination strategy does
not take into account the fact that some ensemble members
may be more accurate than others, since their opinions are
considered with the same importance (are given uniform
weights) for deducing the final decision. It may be advan-
tageous to consider their relative influence by assigning to
each ensemble member a weight proportional to its perfor-
mance. Thus, the total support received by a particular class
ck (1 � k � Q) can be expressed as follows:

μk(x) = F(w j , d jk(x)), j = 1, . . . , M (13)

where the function F represents the pooling operator andw j

denotes the weight associated with the opinion of the j th
ensemble member. The assigned weights obey

∑M
j=1 w j =

1 andw j ≥ 0. There has been different suggestions to assign
weights to the individualmodels. Generally, they can be fixed
or dynamically determined. The most common way is that
the weights are set proportional to the performance on the
training set (Opitz and Shavlik 1996) according to the for-
mula:

w j = 1 − E j∑M
l=1(1 − El)

(14)

where E j is the individual classifier’s error on the train-
ing set. In this study, a newly proposed consensus scheme
that we named Exponential Opinion Pool (ExpOP) is inves-
tigated against the two common weighted ensembles, Lin-
ear Opinion Pool (LinOP) and Logarithmic Opinion Pool
(LogOP). Furthermore, two additional pooling rules are ana-
lyzed namely, weighted Min (WMin) and weighted Max
(WMax) besides Decision Templates and Dempster–Shafer
aggregation rules.

2.2.1 Linear Opinion Pool

TheLinearOpinionPool (LinOP)orweighted algebraic aver-
age is the most commonway for combining classifiers taking
the linear mean of their weighted opinions. The total support
received by a particular class ck (1 � k � Q) is thus as
follows:

μk(x) =
M∑

j=1

w j d jk(x) (15)

2.2.2 Logarithmic Opinion Pool

The logarithmic Opinion Pool (LogOP) or weighted geomet-
ric average (Hansen 2000) is a weighted geometric mean of
the individual opinions. The support received by a particular
class ck (1 � k � Q) from all classifiers is given by:
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μk(x) = 1

Z
exp

⎛

⎝
M∑

j=1

w j log(d jk(x))

⎞

⎠ (16)

where Z is a normalization factor satisfying:

Z =
Q∑

l=1

exp

⎛

⎝
M∑

j=1

w j log(d jl(x))

⎞

⎠ (17)

2.2.3 Exponential Opinion Pool

The proposed pooling rule named Exponential Opinion Pool
(ExpOP) combines theweighted opinions so as the aggregate
opinion for a particular class ck (1 � k � Q) becomes:

μk(x) =
exp

( ∑M
j=1 w j d jk(x)

)

∑M
j=1 exp(w j d jk(x))

=
∏M

j=1 exp(w j d jk(x))
∑M

j=1 exp(w j d jk(x))

(18)

It is fairly easy to see that 1
Me � μk(x) � e

M and thus is
inevitably in [[0, 1]] interval.

2.2.4 Weighted Max rule

Applied to the outputs produced by the set of M classifiers,
this rule takes the maximum among the classifiers weighted
outputs for each class. The final support received by a class
ck is thus:

μk(x) = argmax
j=1,...,M

w j d jk(x) (19)

This rule gives too much importance to the powerful individ-
ual classifiers which probably increases the ensemble perfor-
mance.

2.2.5 Weighted Min rule

Similarly to the Weighted Max rule, the final support pro-
vided by the weighted Min rule is given by:

μk(x) = argmin
j=1,...,M

w j d jk(x) (20)

2.3 Decision Templates

Decision Templates combiner operates using Decision Pro-
file (DP) concept (Kuncheva 2001). It consists in building the
most typical DP for each class from training data based on
the ensemble member outputs. ADecision Template for each
class is thus the mean of such decision profile. So, for each
class ck (1 � k � Q), the corresponding Decision Template
is expressed as:

DTk = 1

Nk

∑

{x | f (x)=ck }
DP(x) (21)

where Nk is the number of training examples belonging to the
class ck . To label a test example x , the combinermakes a final
decision by comparing each DP(x) to the Q template matri-
ces (DT1, . . . ,DTQ) based on a similarity measure (Euclid-
ean, Mahalanobis, Minkowski,...). The closest match given
by the chosen similarity measure S is then used to label x .
The support received by each class ck from all classifiers is
then given by:

μk(x) = S(DP(x),DTk) (22)

Using S as the squared Euclidian distance Eq. (22) will be
equivalent to:

μk(x) = 1 − 1

M × Q

M∑

j=1

Q∑

l=1

[dtk( j, l) − d jl(x)]2 (23)

where dtk( j, l) is the ( j, l)th entry in the Decision Template
DTk . Consequently, the example x is assigned to the class of
highest support.

2.4 Dempster–Shafer theory of evidence

Dempster–Shafer (DS) theory was introduced as a mathe-
matical way to combine measures of evidence from different
sources Shafer (1976). Let us consider the multi-class case
to briefly describe the method. Multiple classifier outputs are
combined using the similarity between the Decision Profile
DP(x) for an input x and the Q Decision Template (DT)
matrices expressed as the class means of the classifier out-
puts for training data, given by Eq. (21). These Decision
Templates are then matched to the Decision Profile to obtain
the closeness between the DT and the output of each classi-
fier for a test example x . For example using the Euclidean
distance, the closeness value of the output of the j th classifier
to a class ck is expressed as follows:

φ
j
k (x) = (1 + ‖DT j

k − DP j (x)‖2)−1

∑Q
l=1(1 + ‖DT j

l − DP j (x)‖2)−1
(24)

Once these closeness values are calculated, a belief degree
for each classifier for each one of the classes, for each test
example may be obtained as follows:

bel jk (x) = φ
j
k (x)

∏
l �=k(1 − φ

j
l (x))

1 − φ
j
k (x)

[
1 − ∏

l �=k(1 − φ
j
l (x))

] (25)

The support received by a particular class ck (1 � k � Q)

from all classifiers is then given by:

μk(x) = K
M∏

j=1

bel jk (x) (26)

where K is a normalization factor that maintains the total
support in [[0, 1]] interval.
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2.5 Ensemble members description

Many studies have shown that Support Vector Machines
(SVMs) and multi-class SVMs give higher prediction accu-
racy than Artificial Neural Networks (ANNs) in PSSP. How-
ever, Feed-Forward Neural Network (FNN) likeMulti-Layer
Perceptron (MLP) or Radial Basis Function Neural Network
(RBFNN)might have nearly similar performance in this con-
text in the case of well-chosen architecture and parameters.
In this study, the ensemble members consist of six individual
classifiers. A Multi-Layer Perceptron (MLP) trained using
the backpropagation algorithm with a sigmoidal activation
function for both the hidden and output layers, a RBFNN
provided by QuickRBF1 package (Ou et al. 2005) which
uses an efficient least mean square error method to deter-
mine the weights associated with the links between the hid-
den layer and the output layer, and four M-SVMs. The latest
solves directly themulti-class problem by extending the stan-
dard formulation of the SVM to multi-class case. The single
optimisation problem is solved using standard quadratic pro-
gramming (QP) optimisation techniques. The four M-SVMs
are the one ofWeston andWatkins (M-SVMWW)Weston and
Watkins (1998), the one of Crammer and Singer (M-SVMCS)
Crammer and Singer (2001), the one of Lee, Lin and Wahba
(M-SVMLLW) Lee et al. (2004) and the one of Guermeur and
Monfrini (M-SVM2) Guermeur and Monfrini (2011). The
four machines provided in a single package MSVMpack2

Lauer and Guermeur (2011) share the same architecture but
exhibit distinct properties. The soft margin constant C and
the kernel parameters are generally empirically optimized by
trials or using model selection strategies.

2.6 Ensemble member outputs post-processing

As it has been stated above, the study concentrates on the
class posterior probabilities fusion. The standard SVMs as
well as the M-SVMs do not provide such probabilities, but
an uncalibrated distance measurement of an example to the
separating hyperplane in the feature space. Thus, the out-
puts must be post-processed prior to being combined. Dif-
ferent post-processing can be applied to map SVMs and M-
SVMs outputs into class posterior probabilities (Platt 2000).
The quality of posterior probability estimates is subject to
many recent studies (Zhang and Jordan 2006; Guermeur and
Thomarat 2011; Wallace 2012). Here, we used the softmax
function which is the most common mapping. The obtained
outputs are normalized so as to ensure that the Q outputs are
not nulls and always sum to one as follows:

1 http://muse.csie.ntu.edu.tw/~yien/quickrbf/index.php.
2 http://www.loria.fr/~lauer/MSVMpack.

d jk = exp(o jk)
∑Q

l=1 exp(o jl)
(27)

where o jk is the kth output (corresponding to the class ck) of
the j th classifier.

3 Protein secondary structure prediction problem

It is well-known fact that the process by which a protein
is folding in its three-dimensional (3D) shape gives rele-
vant clues to its function. However, one of the most chal-
lenging problems in molecular biology remains precisely the
prediction of this 3D structure referred to as tertiary struc-
ture. The amino acids sequence (primary or 1D structure)
has a great importance for this aim since at its own dictates
the required structure (Anfinsen’s dogma) (Anfinsen 1973).
Despite many decades of intensive research, all the attempts
remain insufficient to solve this problem. To date, the experi-
mental determination of this structure remains a difficult task.
Although the experiments are accurate, they are still labo-
rious, expensive, time-consuming, and sometimes unfeasi-
ble. For all these reasons, computational methods appear as
good alternatives to address this problem. Presently, machine
learning approaches become increasingly important in this
context. Because of their usefulness in functional annotation
of the ever growing number of newly discovered proteins,
they are still topic of extensive research. A large number
of approaches try to predict the protein’s structural features
such as solvent accessibility, contact maps, disulfide bonding
state and secondary (2D) structure rather than the full ter-
tiary structure, because of its computational complexity. The
secondary structure represents the structural conformations
conventionally grouped into three types of patterns: the two
common regular patterns α-helices and β-sheets (Extended
strands), originally predicted by Pauling et al. (1951) and the
random coils which represent all the other patterns without
apparent regularities. The mapping from 3D to 2D structures
by projection onto strings of structural states represented by
single letters (DSSP code, see Sect. 4.1) is a fundamen-
tal intermediate step toward the full 3D structure elucida-
tion, taking into account only the amino acid sequence. The
secondary structure prediction can be analyzed as a typical
problem of pattern recognition, where the category (struc-
tural state) of a given amino acid named also residue in the
sequence is predicted in one of the three common states: helix
(H), sheet (E) or coil (C). Numerous methods using differ-
ent algorithmic approaches have been proposed for this aim.
The best results have been achieved using evolutionary infor-
mation in the form of protein sequence profiles (position-
dependent frequency vectors derived from multiple align-
ments) rather then using only amino acid sequences. The
average tree-state per-residue score Q3 [a prediction accu-
racy measure that gives the percentage of correctly predicted
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secondary structures (Qian and Sejnowski 1988; Rost and
Sander 1993)] has improved from 33% (random guessing)
reaching a limited value of 55% for the first generationmeth-
ods (single residue statistics-based prediction) and increased
to over 60% to attain a limit of 67% for the second gener-
ation methods (segment statistics-based prediction). There-
after, an improvement to over 70%was achieved by the third
generation methods based on the evolutionary information.
However, the latest generation requires the existence of simi-
lar proteins (homologous sequences) with known structures.
So, the difficulty of getting better results remains for the
orphan proteins which do not exhibit significant similarity
to any already categorized protein in the PDB3 (Brookhaven
Protein Data Bank of solved structures). Hence, better pre-
diction methods for single sequences are highly required.
Recently, there have been evolutionary information based-
consensus approaches combining results from different pre-
dictors, achieving even higher accuracy. The claimed Q3

score varies between 75 and 80%, depending on the bench-
mark datasets used (Bouziane et al. 2011). Presumably, all
existingmachine learning algorithmshavebeen applied to the
PSSP problem and further improvements of few percentage
points are still required. Undoubtedly, the scientific commu-
nity is expecting a progress similar to that caused by the use of
evolutionary information, which would be a good standpoint
for a new generation of PSSP methods.

The aim of this paper in this context is not to announce
a new Q3 score but to quantify the usefulness of combin-
ing multiple opinions by investigating how the performance
can be enhanced by the different ensemble methods on both
single amino acid sequences and sequence profiles in the
form of Position-Specific Scoring Matrix (PSSM) generated
by Position-Specific Iterated Basic Local Alignment Search
Tool (PSI-BLAST).4

4 Secondary structure prediction tools and benchmarks

4.1 Protein secondary structure definition

As mentioned above, the most common secondary struc-
tures are α helices and β sheets (extended strands). How-
ever, one precisely distinguishes a total of 8 secondary struc-
ture conformations: H(α-helix), I(π -helix), G(310-helix),
E(β-strand), B(isolated β-bridge), T(hydrogen bonded turn),
S(bend), and rest (apparently random conformations). The
majority of PSSPmethods deals with 3 conformational states
(H, E, C), generated from the 8 states using assignmentmeth-
ods. Generally, defining the boundaries between helix, sheet
and coil structures is arbitrary and standard assignments do

3 http://www.rcsb.org/pdb/.
4 http://www.ncbi.nlm.nih.gov/BLAST/.

not exist. As the assignment method influences the predic-
tion accuracy (Cuff and Barton 1999), one generally tends
to use an assignment scheme which leads to higher perfor-
mance. Dictionary of secondary structure of proteins pro-
gram (DSSP)5 (Kabsch and Sander 1983) is themost adopted
one. The principle consists in assigning secondary structures
according to hydrogen bonding patterns in known structures.
In this study,we concentrate exclusively on thismethod using
the scheme that treats B(isolatedβ-bridge) as part of a β-
sheet (E), which is explicitly: H, G to H; E, B to E; all other
states to C. This assignment scheme increases the propor-
tions of the three states which might be helpful for avoiding
minority classes.

4.2 Preprocessing and data coding

Given a set of proteins, structural class prediction is usually
performed in two steps: conversion of the set of sequences
from strings of alphabetic characters in capital letters, corre-
sponding to the twenty naturally occurring amino acids into a
feature-based representation and then fit it into the predictor.
The most common approach for protein sequences encoding
uses the window concept, so as each queried residue is typi-
cally represented as a set of input features and its correspond-
ing observed class label. So, one considers a sliding window
of typically 11, 13 until 21 amino acids and predicts the class
label of the central amino acid of the window, knowing only
its neighbors. The observed class labels are secondary struc-
ture states according to the chosen assignment scheme. Some
works have paid more attention to analyse the influence of
the window size on the prediction result. Therefore, for this
study, we opted for a window of length 13 which is com-
mon to cover relevant sequences. All the experiments are
performed using sevenfold cross-validation on the used pro-
tein datasets. At each fold, one subset is used for test and the
6 other subsets constitute the learning set. Afterwards, the
results are averaged. For each example (queried residue), the
predicted secondary structure state is then compared with the
observed secondary structure for performance assessment.

4.3 Training and testing datasets

Some protein non-redundant datasets have been developed
to make objective evaluation and comparison of PSSP meth-
ods. Non-redundancy measures have been established to
remove the internal homology. Here, we experiment with
two datasets RS126 and CB513. The first has been proposed
by Rost and Sander (1993). It contains 126 non-homologous
protein chains with a total of 23,349 residues and an aver-
age protein sequence length of 185. In this dataset, the
non-redundancy has been defined by Sander and Schneider

5 http://swift.cmbi.ru.nl/gv/dssp/.
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(1991) as no two proteins in the dataset share more than 25%
sequence identity over a length of more than 80 residues, a
measure which has been considered poor by Cuff and Barton
(1999). So, a more sophisticated similarity measure using
the so-called SD score has been proposed and gave birth to
the most used independent dataset CB513 with a total of
84,119 residues. It contains 396 sequences, usually named
CB396 and the 117 effectively non-redundant sequences
from RS126 (9 sequences were removed according to the
given definition of SD score)with an average sequence length
of 179. The distribution of secondary structure types in both
the two datasets is uneven and that is a common property in
protein datasets. There is approximately 32% α-helix, 23%
β-sheet, and 45% coil in RS126 dataset and about 36.4%
α-helix, 22.9% β-sheet and 41.5% coil in CB513 dataset.
The two datasets are available at the Barton Group website.

4.4 Architecture and parameter settings

When using each classifier for secondary structure predic-
tion, settings for the different hyperparameters have a great
importance for prediction performance. Here, the identified
hyperparameters have been tuned by trials. The MLP has
been experimented using a single hidden layer with 10 units
and QuickRBF is used with 12,000 selected centers. When
experimenting with single sequences, the M-SVMs were
used with a dedicated kernel proposed in Guermeur et al.
(2004).Whereas theGaussian (rbf) kernel is usedwith PSSM
profiles. The penalty parameterC = 1.0 and the kernel para-
meter γ = 1

10×d , where d refers to the dimensionality of
the input examples. The classifiers have been modified so
as to produce class posterior probability estimates besides
the class label. Euclidean distance is chosen as similarity
measure for both Decision Templates and Dempster–Shafer
combiners.

4.5 Evaluation metrics

For evaluating the performance of both individual classifiers
and ensemble methods, we used the standard accuracy mea-

sures suggested in the literature for PSSPmethods. The most
popular measure is the Q3 score. Complementary measures
such as the Matthews correlation coefficients (CH,CE,CC)
Matthews (1975) and the segment overlap SOV (Rost and
Sander 1994; Zemla et al. 1999) are also calculated to eval-
uate the performance.

5 Results and discussion

In this section, four more popular simple aggregation rules
are investigated namely, Sum, Product, Min andMax besides
Dempster–Shafer and Decision Templates combiners. The
resulting ensemble methods are compared to five weighted
opinion pooling-based ensembles in terms of Q3 score,
Matthews correlation coefficients (CH,CE,CC) and SOV
measure. The experiments are also aimed to compare the per-
formance of individual classifiers and each ensemblemethod.
The section is split into three parts: experiments using only
the amino acid sequences, experiments using sequence pro-
files generated frommultiple sequence alignments and exper-
iments estimating the upper prediction limit of the designed
ensemble methods, according to the integrated ensemble
members. The results of each part are reported and discussed
below.

5.1 Single sequences based experiments

For these experiments, each example (residue in the sequence)
is represented by a set of 13 features (amino acids in the win-
dow) and a class label. Each amino acid has its own code
varying from0 to 21, corresponding to the 20 naturally occur-
ring amino acids and the value 21 represents unknown amino
acids, which are usually designed by ‘X’ or ‘?’ in the pub-
lished databases. The value 0 represents an empty position
in the window. The chosen individual classifiers and ensem-
ble methods are applied to both RS126 and CB513 bench-
mark datasets. The individual classifiers prediction results
are reported in Tables 1 and 2. The ensemble methods pre-
diction results are tabulated in Tables 3 and 4. The Q3 score

Table 1 Performance comparison of the six individual classifiers for RS126 dataset using single sequences

Classifiers Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

M-SVMCS 65 61.89 43.84 76.73 0.478 0.389 0.431 54.2 53.1 59.3 54.3

M-SVMLLW 64.89 63.49 35.27 79.30 0.471 0.367 0.435 56.8 47.5 59.6 54.4

M-SVM2 65.07 62.99 43.12 76.47 0.475 0.388 0.437 55.3 53 59.1 54.7

M-SVMWW 65.09 60.59 42.31 78.50 0.473 0.386 0.436 55.3 53.6 61.1 56.4

MLP 62.25 57 39.47 76.16 0.405 0.343 0.408 51.4 49.9 58.8 52.8

RBFNN 64.60 59.43 42.07 78.34 0.461 0.380 0.431 54 53.4 60.9 55.4
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Table 2 Performance comparison of the six individual classifiers for CB513 dataset using single sequences

Classifiers Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

M-SVMCS 65.35 66.25 44.97 75.41 0.504 0.406 0.446 58.5 51.2 60.9 57.7

M-SVMLLW 65.26 69.99 38.35 75.68 0.501 0.394 0.448 60.9 46.6 61.6 57.9

M-SVM2 65.61 67.30 43.08 76.17 0.508 0.408 0.450 60.4 50.1 62 58.9

M-SVMWW 65.67 66.63 44.30 76.22 0.510 0.411 0.450 60.3 51.1 61.9 59

MLP 64.60 66.21 44.72 73.81 0.490 0.391 0.440 55.3 49.7 60.2 55.4

RBFNN 65.13 66.10 44.93 75.05 0.497 0.402 0.447 57.9 50.7 61.4 57.4

Table 3 Performance comparison of the six ensemble methods for RS126 dataset using single sequences

Aggregation rules Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

Sum 65.20 61.55 40.78 78.77 0.473 0.387 0.438 56 52.4 60.9 55.9

Product 65.19 61.55 40.76 78.76 0.474 0.386 0.438 55.7 52.4 60.8 55.8

Min 64.86 60.56 39.97 79.08 0.463 0.381 0.436 55.1 52.2 60.7 55.4

Max 65.06 62.38 39.71 78.41 0.471 0.381 0.439 56.6 51.4 60.7 55.7

DS 65.14 64.45 51.06 72.01 0.482 0.401 0.447 56.5 59.1 57.9 55.9

DT 65.14 64.35 51.04 72.09 0.482 0.401 0.447 56.5 58.7 57.8 55.8

WMin 64.68 60.13 39.63 79.16 0.458 0.377 0.435 54 51.9 60.7 54.9

WMax 65.21 62.38 40.23 78.48 0.474 0.386 0.439 56.6 51.9 60.8 55.8

LinOP 65.19 61.59 40.78 78.73 0.473 0.387 0.438 56 52.4 60.8 55.9

LogOP 65.19 61.59 40.78 78.73 0.474 0.387 0.438 56 52.4 60.8 55.9

ExpOP 65.20 61.54 40.76 78.80 0.474 0.386 0.438 55.7 52.4 60.8 55.8

Table 4 Performance comparison of the six ensemble methods for CB513 dataset using single sequences

Aggregation rules Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

Sum 65.89 67.94 43.28 76.22 0.514 0.412 0.454 61.6 50.3 62.2 59.4

Product 65.88 67.89 43.24 76.25 0.513 0.411 0.454 61.6 50.4 62.2 59.5

Min 65.72 67.64 42.61 76.40 0.510 0.406 0.453 60.5 49.8 61.8 58.7

Max 65.79 68.85 42.38 75.71 0.510 0.408 0.454 61.8 49.7 62.1 59.2

DS 65.72 67.36 51.53 71.92 0.516 0.416 0.455 61 56 61.1 60

DT 65.73 67.20 51.49 72.08 0.516 0.416 0.455 60.8 56 61.1 59.9

WMin 65.70 67.66 42.59 76.35 0.511 0.406 0.452 60.5 49.7 61.6 58.6

WMax 65.76 68.74 42.43 75.72 0.510 0.409 0.454 61.7 49.6 62 59.1

LinOP 65.89 67.93 43.27 76.21 0.513 0.412 0.454 61.6 50.3 62.2 59.4

LogOP 65.87 67.87 43.23 76.25 0.513 0.411 0.454 61.6 50.4 62.2 59.5

ExpOP 65.90 67.93 43.27 76.22 0.513 0.412 0.454 61.5 50.3 62.2 59.4

values in both Tables 1 and 2 reveal that the highest score is
achieved for coil state, followed by helix and then sheet.

From Table 3, we can see for RS126 dataset that the Q3

score ranges from 62.25 to 65.09%,where the lowest value is
given by theMLP. From these results, we can see that the four
M-SVMs and the RBFNN achieve better performance. How-
ever, the RBFNN appears somewhat less competent than the

fourM-SVMs. In Table 2, the result for CB513 dataset agrees
with the previous observation, the highest Q3 score achieved
is 65.61%. Still M-SVMWW seems to be the best one among
the three other machines. The results showwell the high suc-
cess of the M-SVMs in predicting secondary structure.

From Tables 3 and 4, we can see that the Q3 score has
increased over the best individualmodel by 0.21% forRS126
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Table 5 Performance comparison of the six individual classifiers for RS126 dataset using PSSM profiles

Classifiers Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

M-SVMCS 77.79 77.17 64.85 84.35 0.710 0.621 0.611 72.9 66.0 71.4 70.9

M-SVMLLW 77.62 76.68 64.47 84.49 0.713 0.612 0.608 71.8 64.9 70.1 69.2

M-SVM2 77.94 76.82 65.86 84.43 0.717 0.624 0.610 73.3 65.8 70 70.3

M-SVMWW 78.11 77.36 65.80 84.46 0.724 0.624 0.610 73.0 65.7 70.2 70.1

MLP 74.42 73.25 61.24 81.47 0.662 0.554 0.562 64.0 60.9 63.9 62.7

RBFNN 77.05 75.92 62.49 84.72 0.709 0.601 0.595 71.0 62.0 68.1 67.1

dataset and 0.22% for CB513 dataset, a small but statistically
significant difference.

The results reported in Tables 3 and 4 clearly show the
well-performing ensemble schemes and the very similar
ones. More visible differences were noticed when show-
ing the results of the individual models and the ensemble
results. Compared to the best individualmodel, the prediction
accuracies for the three classes have improved with ensem-
blemethods,Matthews correlation coefficients (CH,CE,CC)
and the SOV score became better than those of the best indi-
vidual model. However, in Table 3, we can see that for RS126
dataset, the Min rule-based ensemble performed worse than
the best individual model and from Table 4, we can see that
the performance improvement for CB513 is also far less than
in the other ensemblemethods. So,we face a casewhere there
is no improvement of the ensemble over their members per-
formance. Notice that the sheet state is always significantly
underpredicted than the other states, even when ensemble
methods are employed. This is because the length of the
window has a difficulty to capture long-range interactions
between amino acids. The guarantee for a high precision ofβ-
sheets prediction still remains rather low even if a quite good
window size is used. This is one of the major drawbacks of
the windowing methods (Chen and Chaudhari 2006). Thus,
better prediction of β-sheets remain the main challenge to
face when using typical prediction methods. Another further
interesting observation that can be drawn from Tables 3 and
4 is that besides the Min rule, the cases where no signifi-
cant improvement over individual models was achieved are
by DS and DT rule-based ensemble methods, this confirms
that the power of the resulting ensemble may be significant
only when combining models of comparable success. The
major limitation of DS rule comes from the requirement that
the decisions of the ensemble members must be indepen-
dent. However, considering the so close results of the four
M-SVMs, it is unlikely that they are independent as required
by this fusion rule. Consequently, DS rule may not be the
best suited to combine the outputs of such classifiers. It is
worth noting that the two ANNs have been integrated, so as
to prevent the ensemble members to perform equally in both

cases. The assumption that the MLP and the RBFNN pro-
duce predictions different from those of the four M-SVMs
come from the fact that they are based on different classi-
fication architectures and principles. Different architectures
lead more likely to complementary classifiers (Tuliakov et
al. 2008). All the experiments showed that DT and DS have
similar performance. The Sum rule and the three weighted
opinion pooling schemes LinOP, LogOP and ExpOP have
also approximately the same performance. So, there is no
clear preference of one weighted pooling scheme over the
rest. However, it is obvious that ExpOP is good in all cases.
In other hand, the Wmax combiner achieved better results
than Max and Wmin which performed worse.

5.2 PSI-BLAST derived profiles based experiments

It has long been established that prediction using multiple
sequence alignment of protein sequences with homologous
proteins rather than single sequences is more effective. In
this part of experiments, we used Position-Specific Scoring
Matrix (PSSM) profiles generated by PSI-BLAST for RS126
andCB513 datasets, setting the parameter j (number of itera-
tions) to 3, using an e value threshold of 0.001 with the non-
redundant NCBI’s nr6 database as sequences database and
BLOSUM62 matrix scores for each alignment position. The
profilematrix elements obtained in the range±7 are scaled to
the required 0–1 range to fit into the predictor. So, prediction
at a given position in the window depends on amino acid fre-
quencies in the profile at the position and neighboring posi-
tions within a range defined by the window. Here, a window
of length 13 is used, which implies that each input example
has 260 (20 × 13) features, besides its observed class label.
The individual classifiers prediction results are reported in
Tables 5 and 6. Tables 7 and 8 show the ensemble meth-
ods prediction results. From Table 5, we can see for RS126
dataset that the Q3 score ranges from74.42 to 78.11%,where
the lowest value is given by the MLP. From these results, we
can see that the four M-SVMs and the RBFNN achieve good

6 ftp://ftp.ncbi.nih.gov/blast/db.
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Table 6 Performance comparison of the six individual classifiers for CB513 dataset using PSSM profiles

Classifiers Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

M-SVMCS 76.11 76.97 64.96 81.33 0.706 0.614 0.568 71.0 65.3 67.8 69.5

M-SVMLLW 75.51 78.37 60.66 81.07 0.688 0.599 0.567 72 63.3 68.4 69.8

M-SVM2 75.80 77.64 62.83 81.17 0.695 0.607 0.568 71.8 64.7 68.4 70

M-SVMWW 76.08 76.95 64.48 81.51 0.704 0.614 0.568 71.4 65.1 67.9 69.7

MLP 72.97 74.15 62.09 77.77 0.645 0.560 0.532 62.8 62.5 64.7 63.3

RBFNN 76.04 77.39 62.46 82.15 0.700 0.611 0.572 70.7 64.8 69.1 70.1

Table 7 Performance comparison of the six ensemble methods for RS126 dataset using PSSM profiles

Aggregation rules Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

Sum 78.13 77.23 65.28 84.83 0.720 0.624 0.615 73.8 65.9 71.2 71.2

Product 78.11 77.21 65.24 84.83 0.72 0.62 0.61 73.8 66 71.2 71.2

Min 77.29 75.77 64.58 84.35 0.705 0.610 0.604 71.5 65.6 0.1 69.7

Max 77.76 76.89 65.57 84.13 0.712 0.618 0.611 71.6 66 70.4 69.9

DS 78.17 77.20 69.26 83.09 0.723 0.627 0.615 73.4 68.6 70.2 71

DT 78.20 77 68.91 83.42 0.725 0.626 0.615 73.3 68.4 70.6 71.3

WMin 76.66 75.10 63.56 83.93 0.695 0.598 0.594 70.1 64.2 68.4 68

WMax 78.05 77.17 65.80 84.46 0.716 0.623 0.616 72.5 66.7 71.2 70.9

LinOP 78.14 77.18 65.34 84.86 0.720 0.624 0.615 73.7 65.9 71.1 71.1

LogOP 78.12 77.20 65.28 84.83 0.720 0.624 0.615 73.7 66 71.2 71.2

ExpOP 78.14 77.18 65.34 84.86 0.720 0.624 0.615 73.7 65.9 71.1 71.1

Table 8 Performance comparison of the six ensemble methods for CB513 dataset using PSSM profiles

Aggregation rules Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

Sum 76.42 77.78 63.92 81.94 0.708 0.617 0.576 72.4 65.4 69 70.9

Product 76.41 77.76 63.85 81.96 0.708 0.617 0.576 72.2 65.3 69.1 70.8

Min 75.54 76.78 62.83 81.26 0.694 0.601 0.563 69.7 64.5 68.1 68.8

Max 76.11 77.72 64.21 81.11 0.701 0.613 0.572 71.4 65.2 68.6 69.9

DS 76.26 76.59 66.66 81.07 0.707 0.616 0.573 70.9 67.1 68.5 70.5

DT 76.27 76.66 66.48 81.14 0.708 0.616 0.573 71.3 67 68.7 70.7

WMin 75.26 76.62 62.74 80.80 0.690 0.596 0.559 69.1 64.2 67.5 68.1

WMax 76.22 77.78 64.33 81.26 0.703 0.615 0.573 71.8 65.3 68.8 70.2

LinOP 76.42 77.77 63.93 81.95 0.708 0.617 0.576 72.4 65.3 69 70.9

LogOP 76.42 77.75 63.89 81.99 0.708 0.617 0.576 72.2 65.4 69.1 70.9

ExpOP 76.44 77.77 63.94 81.96 0.708 0.618 0.576 72.4 65.4 69 70.9

performance. In Table 6, the results for CB513 show that the
Q3 score varies from 72.97 to 76.11%, the lowest score is
given by theMLP and the highest is given by the M-SVMCS.
As previously mentioned, for almost all the ensemble meth-
ods, the accuracy is generally higher for the helical and coil
states. The Q3 score values in both Tables 5 and 6 show

that M-SVMWW performed well. However, the three other
M-SVMs and the RBFNN achieve results nearly similar. The
MLP is still the poorer predictor. The results reveal once again
the superiority ofM-SVMs in predicting secondary structure.
This further highlights the power of kernel machines when
dealing with difficult problems.
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Table 9 Improved performance on both RS126 and CB513 datasets

Data set Classifiers Accuracy measures

Q3 (%) QH (%) QE (%) QC (%) CH CE CC SOVH (%) SOVE (%) SOVC (%) SOV (%)

RS126

Single sequences IFS 65.37 62.62 44.33 76.81 0.476 0.400 0.441 56.4 54.1 59.7 55.8

IFS + Filter 65.74 61.70 43.42 78.63 0.493 0.399 0.438 60.6 54.3 62.8 60.5

MV 65.23 61.69 40.94 78.68 0.474 0.387 0.439 56.1 52.4 60.8 55.9

MV + Filter 65.47 60.42 40.15 80.41 0.487 0.388 0.434 60.6 52.8 63.4 60

PSSM profiles IFS 78.39 77.13 67.91 84.22 0.725 0.631 0.618 73.7 68 70.9 71.5

IFS + Filter 78.50 76.42 67.23 85.25 0.734 0.631 0.616 76 68.5 71.7 73.7

MV 78.13 77.18 65.68 84.67 0.720 0.624 0.615 73.8 66.2 71.1 71.2

MV + Filter 78.30 76.53 64.95 85.82 0.731 0.624 0.613 75.8 67.4 71.8 73.4

CB513

Single sequences IFS 65.98 67.62 47.16 74.61 0.517 0.416 0.456 61.2 53 61.7 59.6

IFS + Filter 66.15 66.78 46.66 75.97 0.528 0.418 0.451 65.6 54 62.4 63.1

MV 65.88 67.95 43.46 76.08 0.513 0.412 0.454 61.7 50.5 62.2 59.5

MV + Filter 65.96 66.99 42.76 77.41 0.522 0.413 0.448 65.8 51.2 62.3 62.4

PSSM profiles IFS 76.44 77.77 63.94 81.99 0.708 0.618 0.577 72.4 65.4 69.1 70.9

IFS + Filter 76.65 77.03 63.72 83.18 0.716 0.622 0.576 73.5 66.4 69.9 73.1

MV 76.40 77.60 64.22 81.89 0.707 0.617 0.576 72.2 65.6 69.1 70.9

MV + Filter 76.58 76.84 63.95 83.06 0.716 0.621 0.575 73.4 66.6 69.9 73

From the results in Tables 7 and 8, some comments can
be drawn. Firstly, ensembles performance is better than the
single model, except when using Min rule. The Matthews
correlation coefficients (CH,CE,CC) increased significantly
and SOV measure improved from 60 to 70%, achieving a
gain of 10%. On the other hand, the best results are obtained
when using Sum rule and weighted opinion pooling. WMax
is still better than the Max rule. The Sum rule results are
better than those of the individual models. LinOP as well as
the ExpOP achieved better performance. Even more, ExpOP
achieved performance slightly better than Sum rule. The
weighted opinion pooling ensembles are more accurate here.
Their higher performance can be attributed to the predom-
inance of the M-SVMWW since it has the highest perfor-
mance. A comparison of the different metrics between the
investigated ensemble methods confirms that ExpOP has an
ensured potential to improve the performance and it generally
outperforms LogOP and provides in some cases an accuracy
which is at least comparable to that which would be obtained
by LinOP and Sum rule. So, an ExpOP-based ensemble can
obtain good results even when the ensemblemembers are not
really independent.

5.3 Improving the consensus results

Experiments have been conducted to see whether the predic-
tion performance could be improved using consensus opinion
of the ensembles built previously. Majority Voting (MV) rule

is used in the hope to compensate the errors of the designed
ensembles. For each residue in the sequence, the predicted
secondary structure state corresponds to the class that the
majority of ensemble schemes agree on. In the other hand,
to estimate the top limit of the prediction accuracy of the
designed ensembles on each dataset according to the cho-
sen ensemble members, we design a predictor based on the
predictions of certain ensemble schemes. At each fold of the
sevenfold cross-validation, the best predicted fold is selected
among all the others for the same subset. The so-called “Ideal
Fold Selection” (IFS) predictor thus assembles the 7 best pre-
dicted folds to form the predicted conformational states of
the entire dataset. Furthermore, a main condition for obtain-
ing coherent secondary structures is that the shortest length of
consecutive states Hmust be 3 and 2 for consecutive states E.
To eliminate unrealistic structures, the resulting predictions
for each conformational state are then refined by applying
the heuristic-based filter used in Bouziane et al. (2011). The
results are thus reported in Table 9.

As it is shown, for RS126, the Q3 score increased from
65.23% (best ensemble) to 65.47% (consensus byMV rule),
from 78.13 to 78.60% for RS126 PSSM, from 65.88 to
65.96% for CB513 and from 76.40 to 76.58% for CB513
PSSM.Aslight difference between the scores achieved by the
best ensemble and those of the consensus. So, the expected
improvement by assigning to queried residues the predic-
tions that the majority of ensembles agree on has not been
achieved since it remains far away from the estimated upper
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Fig. 1 The Q3 (a) and SOV (b) scores for the best individual classifier, the best ensemble method, IFS, IFS + Filter, MV and MV + Filter on
RS126 dataset. QH/E/C and SOVH/E/C are, respectively, the predicted Q and SOV scores for each conformational state (helix, strand and coil)

Fig. 2 Q3 (a) and SOV (b) scores for the best individual classifier, the best ensemble method, IFS, IFS + Filter, MV and MV + Filter on CB513
dataset. QH/E/C and SOVH/E/C are, respectively, the predicted Q and SOV scores for each conformational state (helix, strand and coil)

Fig. 3 The Q3 (a) and SOV (b) scores for the best individual classi-
fier, the best ensemble method, IFS, IFS + Filter, MV and MV + Filter
on RS126 PSSM dataset. QH/E/C and SOVH/E/C are, respectively, the

predicted Q and SOV scores for each conformational state (helix, strand
and coil)
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Fig. 4 The Q3 (a) and SOV (b) scores for the best individual classi-
fier, the best ensemble method, IFS, IFS + Filter, MV and MV + Filter
on CB513 PSSM dataset. QH/E/C and SOVH/E/C are, respectively, the

predicted Q and SOV scores for each conformational state (helix, strand
and coil)

Fig. 5 Comparison of prediction accuracies (y axis) between the best
individual classifier, the best ensemble method, IFS, IFS + Filter, MV
and MV + Filter (x axis) on both RS126 and CB513 datasets

limit. However, satisfactory results have been obtained by
filtering the predictions, the Q3 score gained at least 0.18%
and the SOV gained 3%. The variation of Q3 and SOV
scores is depicted in Figs. 1 and 3 for RS126 and Figs. 2
and 4 for CB513. From the figures illustrated, it is obvi-
ous that the improvement over the best individual model is
more significant, especially after the filtering stage which
increased the Q3 and SOV values, see Figs. 5 and 6. The Q3

score has increased by at least 0.50 percentage point which
is really a significant difference. Because the improvement
in Q3 is greater than the previously achieved values, the
Matthews correlation coefficients (CH,CE,CC) increased
substantially. The achieved Q3 scores 78.50% for RS126
dataset and 76.65% for CB513 represent quiet respectable
levels of performance on the two datasets. It is worth noting
that without any real effort for tuning each individual model
parameters, the results are close to those achieved by the cur-

Fig. 6 Comparison of prediction accuracies (y axis) between the best
individual classifier, the best ensemble method, IFS, IFS + Filter, MV
and MV + Filter (x axis) on both RS126 and CB513 PSSM datasets

rent prominent PSSP methods. It should also be noted that
by improving the post-processing filter, the results might be
better. Developing an efficient filter is still matter of ongoing
research. The gain in performance is not very impressive but
it is possible that by increasing the number of members in
the ensemble and using large training datasets, the improve-
ment would be substantial. An important point to note in this
discussion is that the idea of exploring trainable aggregation
rule-based ensemblemethods to analyse their effect on PSSP,
would provide useful information on their performance in
this context.

6 Conclusion

Many studies have pointed out that simple aggregation
rules in some cases can provide better performance than
state-of-the-art combination techniques. In this paper, some
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fixed rules involving class posterior probabilities are exper-
imentally explored and compared to each other for pro-
tein secondary structure prediction, using sevenfold cross-
validation on RS126 and CB513 benchmark datasets. All the
designed ensemblemethods are evaluated usingPSSPperfor-
mancemeasures. Furthermore, a consensus of the subsequent
ensembles has been realized using majority vote rule to com-
pare with the estimated upper limit of the prediction accu-
racy obtained by selecting the best predicted fold in terms of
Q3 score at each fold of the sevenfold cross-validation. The
resulting predictions have been analyzed and improved for
better performance using an heuristic-based filter. The exper-
iments demonstrate that the M-SVMs performance is signif-
icantly better than those of the feed-forward ANNs for PSSP,
and ensemble methods perform better than the best individ-
ual model. All the results obtained confirm that ensembles
are good alternatives for improving prediction performance,
especially for difficult problems. An effective combination
scheme is to simply sum/average the predictions. The new
proposed weighted opinion pooling rule named exponential
opinion pool is competitive with Linear Opinion Pool and
slightly superior to Logarithmic Opinion Pool. However, it
is sometimes as accurate as Sum rule at least in this particu-
lar case. The experimental results showed that the benefit is
not as much in combining the different ensemble schemes,
possibly this may be attributed to the fact that the predictions
are highly correlated. In this study, we have not confer spe-
cial attention to long-range interactions between amino acids.
An important direction for future work is to integrate single
models that deal with long-range interactions such as bidi-
rectional recurrent neural networks. In other hand, the study
brought up the idea of investigating trainable combiner-based
ensemble methods for PSSP, to see how much improvement
they give rather than fixed rules. Finally, as the focus of the
present study is to evaluate the performance of ensemble
methods in PSSP, the use of other larger benchmark datasets
to further improve the prediction accuracy is underway.
Another interesting direction is to explore cluster ensem-
bles in PSSP which seems to be a “hot-topic” in the area
of machine learning. We hope our work will provide helpful
information and lead to some novel ideas that may be consid-
ered in ensemble methods design and will encourage further
investigations.

References

Anfinsen C (1973) Principles that govern the folding of protein chains.
Science 181:223

Baumgartner D, Serpen G (2012) Global-local hybrid ensemble clas-
sifier for KDD 2004 cup particle physics dataset. Int J Mach Learn
Comput 2(3):231–234

Bouziane H, Messabih B, Chouarfia A (2011) Profiles and majority
voting-based ensemble method for protein secondary structure pre-
diction. Evolut Bioinform 7:171–189

Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Chen J, Chaudhari N (2006) Bidirectional segmented-memory recur-

rent neural network for protein secondary structure prediction. Soft
Comput 10:315–324

Crammer K, Singer Y (2001) On the algorithmic implementation of
multiclass kernel-based vector machines. J Mach Learn Res 2:265–
292

Cuff J, Barton G (1999) Evaluation and improvement of multiple
sequence methods for protein secondary structure prediction. Pro-
teins Struct Funct Genet 34(4):508–519

Didaci L, Fumera G, Roli F (2013) Diversity in classifier ensembles:
fertile concept or dead end? Lecture Notes in Computer Science, vol
7872, pp 37–48

Dietterich T (2000) Ensemble methods in machine learning. Lecture
Notes in Computer Science, vol 1857, pp 1–15

Dietterich T (1997) Machine-learning research: four current directions.
AI Mag 18(4):97–136

Dietterich T (2002) Ensemble learning. In: Arbib MA (ed) The hand-
book of brain theory and neural networks, 2nd edn. Bradford Books,
The MIT Press, Cambridge

GuermeurY,LifchitzA,VertR (2004)Kernelmethods in computational
biology. MIT Press, Cambridge

Guermeur Y, Monfrini E (2011) A quadratic loss multi-class SVM for
which a radius-margin bound applies. Informatica 22(1):73–96

GuermeurY, Thomarat F (2011) Estimating the class posterior probabil-
ities in protein secondary structure prediction. In: 6th IAPR interna-
tional conference on pattern recognition in bioinformatics, pp 260–
271

Hansen J (2000) Combining predictors: meta machine learning meth-
ods and bias/variance & ambiguity decompositions. PhD thesis,
BRICS, Department of Computer Science, University of Aarhus,
pp 1–191

Jiao T, Zong G, Zheng W (2013) New stability conditions for GRNs
with neutral delay. Soft Comput 17:703–712

Kabsch W, Sander C (1983) Dictionary of protein secondary structure:
pattern recognition of hydrogen bonded and geometrical features.
Biopolymers 22:2577–2637

Kittler J, Hatef M, Duin R, Matas J (1998) On combining classifiers.
IEEE Trans Pattern Anal Mach Intell 20:226–239

Kuncheva L, Bezdek J, Guin R (2001) Decision templates for multi-
ple classifier fusion: an experimental comparison. Pattern Recognit
34(2):299–314

Kuncheva L (2001) Decision templates for multiple classifier fusion:
an experimental comparison. Pattern Recognit 34:299–314

Kuncheva L (2005) Combining pattern classifiers. Wiley Press, New
York

Kuncheva L, Whitaker C (2003) Measures of diversity in classifier
ensembles and their relationship with ensemble accuracy. Mach
Learn 51:181–207

Lauer F, Guermeur Y (2011) MSVMpack: a multi-class support vector
machine package. J Mach Learn Res 12:2269–2272. http://www.
loria.fr/lauer/MSVMpack

Lee Y, Lin Y, Wahba G (2004) Multicategory support vector machines:
theory and application to the classification of microarray data and
satellite radiance data. J Am Stat Assoc 99(465):67–81

Matthews B (1975) Comparison of the predicted and observed sec-
ondary structure of T4 phage lysozyme. Biochim Biophys Acta
405:442–451

Opitz D, Shavlik J (1996) Generating accurate and diverse members of
a neural network ensemble. In: Touretzky DS,MozerMC, Hasselmo
ME (eds) Advances in neural information processing systems, vol 8.
The MIT Press, Cambridge, pp 535–541

Ou Y, Oyang Y, Chen C (2005) A novel radial basis function net-
work classifier with centers set by hierarchical clustering. In: Inter-
national joint conference on neural networks (IJCNN), vol 1, pp
1383–1388

123

http://www.loria.fr/lauer/MSVMpack
http://www.loria.fr/lauer/MSVMpack


1678 H. Bouziane et al.

Pauling L, Corey R, Branson H (1951) The structure of proteins: two
hydrogen-bonded helical configurations of the polypeptide chain.
Natl Acad Sci USA 37(4):205–211

Platt J (2000) Probabilities for SV machines. In: Smola A, Bartlett P,
Schölkopf B, Schuurmans D (eds) Advances in large margin classi-
fiers, chapter 5. The MIT Press, Cambridge, pp 61–73

Qian N, Sejnowski T (1988) Predicting the secondary structure of glob-
ular proteins using neural network models. J Mol Biol 202:865–884

Rost B, Sander C (1993) Prediction of protein secondary structure at
better than 70 % accuracy. J Mol Biol 232(2):584–599

Rost B, Sander C (1993) Prediction of secondary structure at better than
70 % accuracy. J Mol Biol 232:584–599

Rost B, Sander C (1994) Combining evolutionnary information and
neural networks to predict protein secondary structure prediction.
Proteins 19:55–72

Sander C, Schneider R (1991) Database of homology-derived protein
structures and the structuralmeaningof sequence alignment. Proteins
9:56–68

Schapire R, Freund Y (2012) Boosting: foundations and algorithms.
MIT Press, Cambridge

Sewell M (2011) Ensemble learning. Research Note, pp 1–12
Shafer G (1976) A mathematical theory of evidence. Princeton Univer-

sity Press, New Jersey
Tuliakov S, Jaejer S, Govindaraju V, Doermann D (2008) Review of

classifier combination methods, vol 90. Machine learning in docu-
ment analysis and recognition. Springer, Berlin

Wallace B (2012) Class probability estimates are unreliable for imbal-
anced data (and How to Fix Them). In: 13th IEEE international con-
ference on data mining, pp 695–704

Weston J, Watkins C (1998) Multi-class support vector machines.
Tech. Rep. CSD-TR-98-04, Royal Holloway, University of London,
Department of Computer Science

Whalen S, Pandey G (2013) A comparative analysis of ensemble clas-
sifiers: case studies in genomics. In: 13th IEEE international confer-
ence on data mining

Wolpert D (1992) Stacked generalisation. Neural Netw 5:241–259
Xu L, Krzyÿzak A, Suen C (1992) Methods of combining multiple

classifiers and their applications to handwriting recognition. IEEE
Trans Syst 22(3):418–435
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