
Soft Comput (2015) 19:3445–3454
DOI 10.1007/s00500-014-1344-3

FOCUS

A hybrid cascade neural network with an optimized pool
in each cascade

Ye. Bodyanskiy · O. Tyshchenko · D. Kopaliani

Published online: 27 June 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract This paper proposes a newarchitecture and learn-
ing algorithms for a hybrid cascade neural network with pool
optimization in each cascade. The proposed system is differ-
ent from existing cascade systems in its capability to oper-
ate in an online mode, which allows it to work with non-
stationary and stochastic nonlinear chaotic signals with the
required accuracy. Compared to conventional analogs, the
proposed system provides computational simplicity and pos-
sesses both tracking and filtering capabilities.

Keywords Hybrid system · Learning method · Neo-fuzzy
neuron · Cascade network

1 Introduction

Today artificial neural networks (ANNs) are successfully
used in a wide range of data processing problems (when
data can be presented either in the form of “object-property”
tables or in the form of time series, often produced by
non-stationary nonlinear stochastic or chaotic systems). The
advantagesANNs have over other existing approaches derive
from their universal approximating capabilities and learning
capacities.

Communicated by V. Loia.

Y. Bodyanskiy · O. Tyshchenko (B) · D. Kopaliani
Control Systems Research Laboratory, Kharkiv National University
of Radioelectronics, Lenina av., 14, Kharkiv 61166, Ukraine
e-mail: lehatish@gmail.com

Y. Bodyanskiy
e-mail: bodya@kture.kharkov.ua

D. Kopaliani
e-mail: daria.kopaliani@gmail.com

Conventionally, “learning” is defined as a process of
adjusting synaptic weights using an optimization procedure
that involves searching for the extremum of the given learn-
ing criterion. The learning process quality can be improved
by adjusting a network topology along with its synaptic
weights (Haykin 1999; Cichocki and Unbehauen 1993). This
idea is the foundation of evolving computational intelligence
systems (Kasabov 2001, 2003, 2007; Kasabov and Song
2002; Kasabov et al. 2005; Lughofer 2011; Angelov and
Filev 2004, 2005; Angelov and Kasabov 2005; Angelov and
Lughofer 2008; Angelov and Zhou 2006, 2008; Angelov et
al. 2004, 2005, 2006, 2007, 2008, 2010; Lughofer and Kle-
ment 2003, 2004; Lughofer and Bodenhofer 2006; Lughofer
and Guardiola 2008a,b; Lughofer and Kindermann 2008,
2010; Lughofer and Angelov 2009, 2011; Lughofer 2006,
2008a,b,c, 2010a,b; Lughofer et al. 2003, 2004, 2005, 2007,
2009). Under this approach, the best known architectures are
DENFIS by Kasabov and Song (2002), Angelov and Filev
(2004) and FLEXFIS by Lughofer (2008c). These systems
are actually five-layer Takagi-Sugeno networks and evolu-
tion is fulfilled in the fuzzification layer. These networks can
process data in an online mode where a clusterization task is
solved in the antecedent (unsupervised learning) and conse-
quent parameter tuning is performed with supervised learn-
ing with the help of the exponentially weighted recurrent
least-squares method. Though these systems are character-
ized by high approximating properties, they can also process
non-stationary signals and they require big-volume samples
to tune parameters.Aclusterization procedure cannot be opti-
mized in terms of speed like all the algorithms which are
based on self-learning. A rather interesting class of computa-
tional intelligence systems where an architecture is evolving
during a learning process is cascade-correlation neural net-
works (Fahlman and Lebiere 1990; Prechelt 1997; Schalkoff
1997; Avedjan et al. 1999) due to their high efficiency degree

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-014-1344-3&domain=pdf

3446 Y. Bodyanskiy et al.

and learning simplicity of both synaptic weights and a net-
work topology. Such a network starts off with a simple archi-
tecture consisting of a pool (ensemble) of neurons which are
trained independently (the first cascade). Each neuron in the
pool can have a different activation function and/or a dif-
ferent learning algorithm. The neurons in the pool do not
interact with each other while trained. After all the neurons
in the pool of the first cascade have their weights adjusted, the
best neuron with respect to a learning criterion forms the first
cascade and its synaptic weights can no longer be adjusted.
Then the second cascade is formed usually out of similar
neurons in the training pool. The only difference is that the
neurons which are trained in the pool of the second cascade
have an additional input (and, therefore, an additional synap-
tic weight) which is an output of the first cascade. Similar to
the first cascade, the second cascade will eliminate all but
one neuron showing the best performance whose synaptic
weights will thereafter be fixed. Neurons of the third cascade
have two additional inputs, namely the outputs of the first
and second cascades. The evolving network continues to add
new cascades to its architecture until it reaches the desired
quality of problem solving over the given training set.

Authors of the most popular cascade neural network,
CasCorLA, S. E. Fahlman and C. Lebiere, used elemen-
tary Rosenblatt perceptrons with traditional sigmoidal acti-
vation functions and adjusted synaptic weights using the
Quickprop-algorithm (a modification of the δ-learning rule).
Since the output signal of such neurons is non-linearly depen-
dent on its synaptic weights, the learning rate cannot be
increased for such neurons. In order to avoid multi-epoch

learning (Bodyanskiy et al. 2008, 2009, 2011a,b,c; Bodyan-
skiy and Viktorov 2009a,b; Bodyanskiy and Kolodyazhniy
2010), different types of neurons (with outputs that depend
linearly on synaptic weights) should be used as network
nodes. This would allow to use optimal learning algorithms
in terms of speed and process data as it is an input to the
network. However, if the network learns in an online mode,
it is impossible to determine the best neuron in the pool.
While working with non-stationary objects, one neuron of
the training pool can be identified as the best for one part of
the training set, but not for the others. Thus we suggest that
all the neurons in the training pool should be retained and
a certain optimization procedure (generated according to a
general network quality criterion) should be used to deter-
mine an output of the cascade. In this paper, we try to create
such a hybrid neural network with an optimized neuron pool
in each cascade.

2 An optimized cascade neural network architecture

The architecture of the desired hybrid neural network with
an optimized pool of neurons in each cascade is shown in
Fig. 1.

An input of the network (the so-called “receptive layer”)
is a vector signal

x(k) = (x1(k), x2(k), . . . , xn(k))
T ,

where k = 1, 2, . . . , is either the quantity of samples in the
“object-property” table or the current discrete time. These

Fig. 1 The optimized cascade neural network architecture

123

A hybrid cascade neural network 3447

signals are fed to the inputs of each neuron in the network
N [m]

j (j = 1, 2, . . . , q is the quantity of neurons in the train-
ing pool,m = 1, 2, . . . is the number of the cascade), that pro-
duces outputs ŷ[m]

j (k). These outputs are then combined with

a generalizing neuron GN [m], which generates an optimal
output ŷ∗[m](k) of the m-th cascade. While the input of the
neurons in the first cascade is x(k) (which may also contain
a threshold value x0(k) ≡ 1), neurons in the second cascade
have an additional input for the generated signal ŷ∗[1](k),
neurons in the third cascade have two additional inputs
ŷ∗[1](k), ŷ∗[2](k), and neurons in the m-th cascade have
(m − 1) additional inputs ŷ∗[1](k), ŷ∗[2](k), . . . , ŷ∗[m−1](k).
The new cascades become a part of the network during a
training process when it becomes clear that the current cas-
cades do not provide the desired quality.

3 Training elementary Rosenblatt perceptrons
in a cascade neural network

For now, let us assume that the j-th node in them-th cascade
is an elementary Rosenblatt perceptron with the activation
function

0 < σ
[m]
j (γ j

[m]u[m]
j) = 1

1 + e−γ
[m]
j u[m]

j

< 1,

where u[m]
j is an internal activation signal of the j-th neuron

in the m-th cascade, and γ
[m]
j is a gain parameter. In such a

case, the neurons in the pool of the first cascade will have the
following outputs:

ŷ[1]
j = σ

[1]
j

(
γ

[1]
j

n∑
i=0

w
[1]
j i xi

)
= σ

[1]
j

(
γ

[1]
j w

[1]T
j x

)
,

where w
[1]
j i is the i-th synaptic weight for the j-th neuron in

the first cascade. Outputs of the second cascade

ŷ[2]
j = σ

[2]
j

(
γ

[2]
j

(
n∑

i=0

w
[2]
j i xi + w

[2]
j,n+1 ŷ

∗[1]
))

,

outputs of the m-th cascade

ŷ[m]
j = σ

[m]
j

(
γ

[m]
j

(n∑
i=0

w
[m]
j i xi + w

[m]
j,n+1 ŷ

∗[1]

+ w
[m]
j,n+2 ŷ

∗[2] + · · · + w
[m]
j,n+m−1 ŷ

∗[m−1]
))

= σ
[m]
j

(
γ

[m]
j

n+m−1∑
i=0

w
[m]
j i x [m]

j

)
= σ

[m]
j

(
w

[m]T
j x [m])

,

where x [m] = (
xT , ŷ∗[1], . . . , ŷ∗[m−1])T .

Thus the cascade network, using Rosenblatt perceptrons
as nodes and containingm cascades, is dependent on (m(n+

2) + ∑m−1
p=1 p) parameters including the gain parameters

γ
[p]
j , p = 1, 2, . . . ,m. We use a conventional quadratic

function as a learning criterion

E [m]
j = 1

2

(
e[m]
j (k)

)2 = 1

2

(
y(k) − ŷ[m]

j (k)
)2

= 1

2

(
y(k) − σ

[m]
j

(
γ

[m]
j w

[m]T
j x [m](k)

))2
, (1)

where y(k) is a reference signal. The gradient optimization
of the criterion (1) with respect to w

[m]
j is

w
[m]
j (k + 1) = w

[m]
j (k) + η

[m]
j (k + 1)e[m]

j (k + 1)γ [m]
j

×ŷ[m]
j (k+1)

(
1− ŷ[m]

j (k+1)
)
x [m](k+1)

= w
[m]
j (k) + η

[m]
j (k + 1)e[m]

j (k + 1)

×γ
[m]
j J [m]

j (k + 1), (2)

(here η
[m](k+1)
j is a learning rate parameter), and minimiza-

tion of (1) with respect to γ
[m]
j can be performed using

the Kruschke–Movellan algorithm (Kruschke and Movellan
1991):

γ
[m]
j (k+1)=γ

[m]
j (k)+η

[m]
j (k+1)e[m]

j (k+1)ŷ[m]
j (k+1)

×
(
1 − ŷ[m]

j (k + 1)
)
u[m]
j (k + 1). (3)

Combining (2) and (3), we obtain a general learning algo-
rithm for the j-th neuron in the m-th cascade:

(
w

[m]
j (k + 1)

γ
[m]
j (k + 1)

)
=

(
w

[m]
j (k)

γ
[m]
j (k)

)

+ η
[m]
j (k + 1)e[m]

j (k + 1)ŷ[m]
j (k + 1)

× (1− ŷ[m]
j (k+1))

(
γ

[m]
j x [m](k+1)

u[m]
j (k+1)

)
,

or, introducing new variables, in a more compact form:

w̃
[m]
j (k + 1)

= w̃
[m]
j (k) + η

[m]
j (k + 1)

×e[m]
j (k+1)ŷ[m]

j (k+1)(1− ŷ[m]
j (k+1))x̃ [m](k+1)

= w̃
[m]
j (k) + η

[m]
j (k + 1)e[m]

j (k + 1) J̃ [m]
j (k + 1).

Weight adjustment can be improved by introducing a
momentum term to the learning process (Chan and Fallside
1987; Almeida and Silva 1990; Holmes and Veitch 1991), so
that instead of the learning criterion (1) we use the function

E [m]
j (k) = η

2 (e[m]
j (k))2

+ 1−η
2 ‖w̃[m]

j (k) − w̃
[m]
j (k − 1)‖2, 0 < η � 1 (4)

123

3448 Y. Bodyanskiy et al.

and the algorithm is

w̃
[m]
j (k + 1) = w̃

[m]
j (k)

+ η
[m]
j (k + 1)(ηe[m]

j (k + 1) J̃ [m]
j (k + 1)

+ (1 − η)(w̃
[m]
j (k) − w̃

[m]
j (k − 1))), (5)

which is a modification of the Silva–Almeida procedure
(Almeida and Silva 1990).

Using the approach suggested in (Bodyanskiy et al. 2001b,
2003b), we can introduce tracking and filtering properties. So
a final version of the algorithm is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃
[m]
j (k + 1) = w̃

[m]
j (k)

+ ηe[m]
j (k+1) J̃ [m]

j (k+1)

r [m]
j (k+1)

+ (1−η)(w̃
[m]
j (k)−w̃

[m]
j (k−1))

r [m]
j (k+1)

,

r [m]
j (k + 1) = r [m]

j (k) + || J̃ [m]
j (k + 1)||2

−|| J̃ [m]
j (k − s)||2

(6)

where s is a sliding window size.
It is interesting that when s = 1, η = 1, we get a non-

linear version of the well-known Kaczmarz–Widrow–Hoff
algorithm (Kaczmarz 1937, 1993; Hoff and Widrow 1960):

w̃
[m]
j (k + 1) = w̃

[m]
j (k) + e[m]

j (k + 1) J̃ [m]
j (k + 1)

‖ J̃ [m]
j (k + 1)‖2 ,

which is widely used in artificial neural networks’ learning
and characterized by high convergence rate.

4 Training neo-fuzzy neurons in a cascade neural
network

A low learning rate of Rosenblatt perceptrons along with dif-
ficulty in interpreting results (inherent to allANNs in general)
encourages us to search for alternative approaches to the syn-
thesis of evolving systems in general and cascade neural net-
works in particular. High interpretability and transparency
along with good approximation capabilities and ability to
learn are the main features of the neuro-fuzzy systems (Jang
et al. 1997), which are the foundation of hybrid artificial
intelligence systems.

In Bodyanskiy and Viktorov (2009a,b), Bodyanskiy and
Kolodyazhniy (2010) hybrid cascade systems were intro-
duced which used neo-fuzzy neurons (Kusanagi et al. 1992;
Uchino and Yamakawa 1997; Miki and Yamakawa 1999) as
network nodes, allowing them to significantly increase a rate
of synaptic weight adjustment. A neo-fuzzy neuron (NFN)
is a non-linear system providing the following mapping:

ŷ =
n∑

i=1

fi (xi),

Fig. 2 A neo-fuzzy neuron of the first cascade

where xi is the i th input (i = 1, 2, . . . , n), ŷ is an output
of the neo-fuzzy neuron. Structural units of the neo-fuzzy
neuron are non-linear synapses NSi which transform input
signals in the following way:

fi (xi) =
h∑

l=1

wliμli (xi),

where wli is the lth synaptic weight of the i th non-linear
synapse, l = 1, 2, . . . , h is the total quantity of synaptic
weights and, therefore, membership functions μli (xi) in the
synapse. So NSi implements fuzzy inference in the form

IF xi IS Xli THEN THE OUTPUT ISwli ,

where Xli is a fuzzy set with a membership function μli ,
wli is a singleton (a synaptic weight in a consequent). It can
be seen that, in fact, the non-linear synapse implements the
zero-order Takagi-Sugeno fuzzy inference.

Figure 2 shows the j th neo-fuzzy neuron of the first cas-
cade (according to the network topology shown in Fig. 1).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŷ[1]
j (k) = ∑n

i=1 f [1]
j i (xi (k))

= ∑n
i=1

∑h
l=1 w

[1]
jliμ

[1]
jli (xi (k)),

IF xi (k) IS X jli THEN
THEOUTPUT ISw

[1]
jli .

(7)

Authors of the neo-fuzzy neuron (Kusanagi et al. 1992;
Uchino and Yamakawa 1997; Miki and Yamakawa 1999)
used a traditional triangular structure meeting the conditions
of Ruspini partitioning (unity partitioning) as membership
functions:

123

A hybrid cascade neural network 3449

μ
[1]
jli (xi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi−c[1]
j,l−1,i

c[1]
jli−c[1]

j,l−1,i

, if xi ∈ [c[1]
j,l−1,i , c

[1]
jli],

c[1]
j,l+1,i−xi

c[1]
j,l+1,i−c[1]

jli

, if xi ∈ [c[1]
jli , c

[1]
j,l+1,i]

0, otherwise,

(8)

where c[1]
jli are center parameters of membership functions

over the interval [0,1] which are relatively arbitrarily chosen
(usually evenly distributed) where, naturally, 0 ≤ xi ≤ 1.
This choice ensures that the input signal xi activates only two
neighboring membership functions, and their sum is always
equal to 1, which means that

μ
[1]
jli (xi) + μ

[1]
j,l+1,i (xi) = 1

and

f [1]
j i (xi) = w

[1]
jliμ

[1]
jli (xi) + w

[1]
j,l+1,iμ

[1]
j,l+1,i (xi).

Approximating capabilities can be improved using cubic
splines (Bodyanskiy and Viktorov 2009b) instead of triangu-
lar membership functions:

μ
[1]
jli (xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

(
2 + 3

2xi−c[1]
jli−c[1]

j,l−1,i

c[1]
jli−c[1]

j,l−1,i

−
(

2xi−c[1]
jli−c[1]

j,l−1,i

c[1]
jli−c[1]

j,l−1,i

)3
)

,

if xi ∈ [c[1]
j,l−1,i , c

[1]
jli],

1
4

(
2 − 3

2xi−c[1]
j,l+1,i−c[1]

jli

c[1]
j,l+1,i−c[1]

jli

+
(

2xi−c[1]
j,l+1,i−c[1]

jli

c[1]
j,l+1,i−c[1]

jli

)3)
,

if xi ∈ [c[1]
jli , c

[1]
j,l+1,i],

0, otherwise

(9)

or B-splines (Bodyanskiy and Kolodyazhniy 2010):

μ
g[1]
jli (xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if xi ∈ [c[1]
jli , c

[1]
j,l+1,i]

0, otherwise,

}
for g = 1,

xi − c[1]
jli

c[1]
j,l+g−1,i − c[1]

jli

μ
g−1,[1]
jli (xi)

+ c[1]
j,l+g,i − xi

c[1]
j,l+g,i − c[1]

j,l+1,i

× μ
g−1,[1]
j,l+1,i (xi)

}
for g > 1,

(10)

where μ
g[1]
jli (xi) is the l-th spline of the g-th order. It can be

seen that when g = 2 we obtain triangular membership func-
tions in (8). B-splines also ensure unity partitioning, but in a
general case they can activate an arbitrary number of mem-
bership functions, beyond the interval [0,1], which might be
useful for subsequent cascades (i.e., those following the first).

It is clear that other structures such as polynomial har-
monic functions, wavelets, orthogonal functions, etc. can be
used as membership functions for non-linear synapses.

It is still unclearwhichof the functions canprovide the best
results, which iswhy the idea of using not a single neuron, but
a pool of neurons with different membership and activation
functions seems promising.

Similar to (7) we can determine outputs for the remaining
cascades: outputs of the neurons in the second cascade

ŷ[2]
j =

n∑
i=1

h∑
l=1

w
[2]
jliμ

[2]
jli (xi)+

h∑
l=1

w
[2]
jl,n+1μ

[2]
jl,n+1(ŷ

∗[1]),

outputs of the mth cascade

ŷ[m]
j =

n∑
i=1

h∑
l=1

w
[m]
jli μ

[m]
jli (xi)

+
n+m−1∑
p=n+1

h∑
l=1

w
[m]
jlpμ

[m]
jlp(ŷ

∗[p−n]).

Thus, the cascade network formedwith the neo-fuzzy neu-
rons, consisting of m cascades, contains h

(
n + ∑m−1

p=1 p
)

parameters. Introducing a vector of membership functions
for the j-th neo-fuzzy neuron in the m-th cascade,

μ
[m]
j (k) = (μ

[m]
j11(x1(k)), . . . , μ

[m]
jh1(x1(k)), μ

[m]
j12(x2(k)),

. . . , μ
[m]
jh2(x2(k)), . . . , μ

[m]
jli (xi (k)), . . . , μ

[m]
jhn(xn(k)),

μ
[m]
j1,n+1(ŷ

∗[1](k)), . . . , μ[m]
jh,n+m−1(ŷ

∗[m−1](k)))T

and a corresponding vector of synaptic weights,

w
[m]
j = (w

[m]
j11, . . . , w

[m]
jh1, w

[m]
j12, . . . , w

[m]
jh2, . . . ,

w
[m]
jli , . . . , w

[m]
jhn, w

[m]
j1,n+1, . . . , w

[m]
jh,n+m−1)

T ,

we obtain an output

ŷ[m]
j (k) = w

[m]T
j μ

[m]
j (k).

The learning criterion (1) for this case will be

E [m]
j (k) = 1

2
(e[m]

j (k))2 = 1

2
(y(k) − w

[m]T
j μ

[m]
j (k))2 (11)

and its minimization can be reached by using a “sliding win-
dow”modification of the procedure (Bodyanskiy et al. 1986):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
[m]
j (k + 1) = w

[m]
j (k)

+ e[m]
j (k+1)μ[m]

j (k+1)

r [m]
j (k+1)

r [m]
j (k + 1) = r [m]

j (k) + ||μ[m]
j (k + 1)||2

−‖μ[m]
j (k − s)‖2

(12)

or when s = 1 (Bodyanskiy et al. 2003a):

w
[m]
j (k + 1) = w

[m]
j (k) + e[m]

j (k + 1)μ[m]
j (k + 1)

‖μ[m]
j (k + 1)‖2 ,

123

3450 Y. Bodyanskiy et al.

which reduces to the one-step-optimal Kaczmarz–Widrow–
Hoff algorithm. Its clear that one could use other algorithms
instead of (12), for example, the exponentially weighted
recurrent least squares method (EWRLSM) that is used in
DENFIS (Kasabov and Song 2002), eTS (Angelov and Filev
2004) and FLEXFIS (Angelov et al. 2005; Lughofer 2008c).
But one should remember that EWRLSM may be unstable
when a forgetting factor is rather low. When using the crite-
rion with the momentum term (3) instead of (11) we obtain
a final learning algorithm for the neo-fuzzy neuron:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w
[m]
j (k + 1) = w

[m]
j (k)

+
(

ηe[m]
j (k+1)μ[m]

j (k+1)

r [m]
j (k+1)

+ (1−η)(w
[m]
j (k)−w

[m]
j (k−1))

r [m]
j (k+1)

)
,

r [m]
j (k + 1) = r [m]

j (k) + ||μ[m]
j (k + 1)||2

−‖μ[m]
j (k − s)‖2.

(13)

It should be kept in mind that, since a NFN output is lin-
early dependent on its synapticweights, we can use any adap-
tive linear identification algorithm (Ljung 1999) (second-
order recursive least square methods, robust, ignoring out-
dated information, etc.), which allows us to process non-
stationary signals in an online mode.

5 Optimization of the pool output

Outputs generated by neurons in each pool are combined
with the corresponding neuronGN [m], the output accuracy of
which ŷ∗[m](k) must be higher than the accuracy of any out-
put ŷ[m]

j (k). This task can be solvedwith the help of the neural
networks ensembles approach. Although the well-known
algorithms are not designated for working in an online mode,
the adaptive generalizing forecasting could be used in this
case (Bodyanskiy et al. 1983, 1989, 1999, 2001a; Bodyan-
skiy and Pliss 1990; Bodyanskiy and Vorobyov 2000).

Let us introduce a vector of pool inputs for the m-th cas-
cade:

ŷ[m](k) = (ŷ[m]
1 (k), ŷ[m]

2 (k), . . . , ŷ[m]
q (k))T ;

then an optimal output of the neuron GN [m], which is in
essence an adaptive linear associator (Cichocki and Unbe-
hauen 1993; Haykin 1999), can be defined as

ŷ∗[m](k) =
q∑
j=1

c[m]
j ŷ[m]

j (k) = c[m]T ŷ[m](k)

with additional restrictions on unbiasedness
q∑
j=1

c[m]
j = ET c[m] = 1, (14)

where c[m] = (c[m]
1 , c[m]

2 , . . . , c[m]
q)T , E = (1, 1, . . . , 1)T

are (q × 1)-vectors.
Introducing a learning criterion on a sliding window

E [m](k) = 1

2

k∑
τ=k−s+1

(y(τ) − ŷ∗[m](τ))2

= 1

2

k∑
τ=k−s+1

(y(τ) − c[m]T ŷ[m](τ))2,

taking into account the constraints (14), the Lagrangian func-
tion will be

L [m](k) = E [m](k) + λ(1 − ET c[m]) (15)

where λ is an undetermined Lagrange multiplier.
Direct minimization of (15) with respect to c[m] gives⎧⎪⎨

⎪⎩
ŷ∗[m](k + 1) = ŷ[m]T (k+1)P [m](k+1)E

ET P [m](k+1)E
,

P [m](k + 1) =
(∑k+1

τ=k−s+2 ŷ
[m](τ)ŷ[m]T (τ)

)−1 (16)

or in a recurrent form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P̃ [m](k + 1) = P [m](k)
− P [m](k)ŷ[m](k+1)ŷ[m]T (k+1)P [m](k)

1+ŷ[m]T (k+1)P [m](k)ŷ[m](k+1)
,

P [m](k + 1) = P̃ [m](k + 1)

+ P̃ [m](k+1)ŷ[m](k−s+1)ŷ[m]T (k−s+1)P̃ [m](k+1)
1−ŷ[m]T (k−s+1)P̃ [m](k+1)ŷ[m](k−s+1)

,

ŷ∗[m](k + 1) = ŷ[m]T (k+1)P [m](k+1)E
ET P [m](k+1)E

.

(17)

when s = 1, ratios (16) and (17) take on an extremely simple
form:

ŷ∗[m](k + 1) = ŷ[m]T (k + 1)ŷ[m](k + 1)

ET ŷ[m](k + 1)

= ||ŷ[m](k+1)||2
ET ŷ[m](k+1)

=
∑q

j=1(ŷ
[m]
j (k+1))2∑q

j=1 ŷ
[m]
j (k+1)

.

(18)

It is important to note that training both neo-fuzzy neurons
and neuron-generalizers can be organized in an online adap-
tive mode. In this way, the neurons’ weights of all previous
cascades are not frozen, but they are constantly adjusted, and
the number of cascades can both increase and decrease in
real time, which distinguishes the proposed neural network
from other well-known cascade systems.

6 Experimental results

Considering a comparison with the evolving approaches eTS
(Angelov and Filev 2004), Simp_eTS (Angelov and Filev
2005), SAFIS (Rong et al. 2006), MRAN (Yingwei et al.
1997), RANEKF (Kadirkamanathan andNiranjan 1993), and

123

A hybrid cascade neural network 3451

Table 1 FLEXFIS, eTS, Simp_eTS, SAFIS, MRAN, RANEKF and
Cascade NN

Method RMSEtest # of rules/neurons

eTS 0.212 49

Simp_eTS 0.0225 22

SAFIS 0.0221 17

MRAN 0.0271 22

RANEKF 0.0297 35

FLEXFIS (A) 0.0176 5

FLEXFIS (B) 0.0171 8

Cascade NN 0.0104 8

A nonlinear dynamic system identification problem

FLEXFIS (Angelov et al. 2005; Lughofer 2008c), the fol-
lowing nonlinear dynamic system identification examplewas
applied (the results of thesemethods are reported in (Angelov
and Zhou 2006)):

y(n + 1) = y(n)y(n − 1)(y(n) − 0.5)

1 + y2(n) + y2(n − 1)
+ u(n), (19)

where u(n) = sin(2π/25), y(0) = 0, and y(1) = 0. For the
incremental and evolving training procedures, 5,000 sam-
ples were created starting with y(0) = 0, and further, 200
test samples were created for eliciting the root mean-squared
error (RMSE) on these samples as a reliable estimator for the
generalized prediction error.

Regarding a comparison with the evolving fuzzy mod-
elling approaches DENFIS (Kasabov and Song 2002) and
eTS (Angelov and Filev 2004) and its extension exTS
(Angelov and Zhou 2006) for theminimum-input-minimum-
output Takagi–Sugeno model case, FLEXFIS was used for
predicting the Mackey–Glass chaotic time series, given by
(the results on the first method are reported in Kasabov and
Song (2002), while for the other two are reported in Angelov
and Zhou (2006)):

dx(t)

dt
= 0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t), (20)

where x(0) = 1.2, τ = 17, and x(t) = 0 for t < 0. The task
is to predict x(t +85) from the input vectors [x(t −18)x(t −
12)x(t − 6)x(t)] for any value of t . 3,000 training samples
were collected for t in the interval [201, 3,200]. 500 test
samples in the interval [5,001, 5,500] were collected to elicit
the NDEI on unseen samples, which is the RMSE divided by
the standard deviation of the target series (Table 1).

It should be mentioned that the proposed cascade NN
works in an onlinemode (unlike the other systems inTable 2).

The electric load data were provided by a local supplier
fromKharkiv,Ukraine. The data describe hourly electric load
in that region in 2007 (8,760 samples). Sampling timeof these
data is one hour. 6,132 data points were used for training, and

Table 2 FLEXFIS, eTS, Simp_eTS, SAFIS, MRAN, RANEKF and
Cascade NN

Method NDEItest # of rules/neurons

eTS 0.372 9

exTS 0.361 9

DENFIS 0.276 58

FLEXFIS (A) 0.206 69

FLEXFIS (B) 0.157 89

Cascade NN 0.018 8

Chaotic time series prediction

2,628 data points were used for testing. The forecast made
by the cascade neural network was one hour ahead.

Input variables to the cascade neural network were the
load a week ago and yesterday at the same hour as predicted,
the load an hour ago, the current load, the change in load
from the previous to the current hour, and the number of the
current hour within the current year (6 inputs altogether).

The cascade neural network used for prediction contained
4 cascades (3 neo-fuzzy neurons in each cascadewith 5mem-
bership functions per input in each neo-fuzzy neuron). After
training the network gave 0.02165mean squared error (MSE)
of prediction. In Fig. 3, the forecast for 3 weeks at the end of
March and the beginning of April 2007 is shown (Table 3).

This period includes Easter holidays and the change-over
from the winter to summer time, so it is characterized by less
regularity of electricity consumption than most other weeks
throughout a year. For this period alone, the cascade network
provided a prediction with MSE = 0.02886. For comparison,
for July 2007MSE = 0.0223, because there were no holidays
during this month. These results are about 40 % more accu-
rate than those previously obtained for the same time series
by RBFN and MLP (Table 4).

The proposed cascade NN was also used for the Narendra
time series prediction (Narendra and Parthasarathy 1990).

y(k + 1) = y(k)

1 + y2(k)
+ f (u(k)),

f (u(k)) = u3(k),

u(k) = sin(πk/250), if k < 500

u(k) = 0.8 sin(πk/250) + 0.2 sin(πk/25),

if k ≥ 500.

(21)

The number of inputs is 6, the number of cascades is 5,
and the number of neurons in each cascade is 3 (Table 5).

7 Summary

This paper proposes a new architecture and learning algo-
rithms for a hybrid cascade neural network with pool opti-
mization in each cascade. The proposed system is different
fromexisting cascade systems in its capability to operate in an

123

3452 Y. Bodyanskiy et al.

Fig. 3 The electric energy
forecast

Table 3 Cascades’ forecasting accuracy

Neuron Casc. 1 Casc. 2 Casc. 3 Casc. 4

Neuron 1 0.02707 0.02421 0.02238 0.02248

Neuron 2 0.02892 0.02538 0.02315 0.02249

Neuron 3 0.02989 0.02946 0.02886 0.02851

Table 4 Forecasting results

MSE Cascade network RBFN MLP

MSEtrn 0.02165 0.03172 0.04311

MSEchk 0.02474 0.03422 0.04564

Table 5 The Narendra time series prediction

Neur. Casc. 1 Casc. 2 Casc. 3 Casc. 4 Casc. 5

1st-n 0.00027 0.00029 0.00031 0.00032 0.00033

2nd-n 0.00047 0.00049 0.00051 0.00053 0.00054

3rd-n 0.00053 0.00058 0.00062 0.00065 0.00069

Gener. 0.00039 0.00042 0.00045 0.00047 0.00048

MSE Mean squared error

onlinemode, which allows it toworkwith non-stationary and
stochastic nonlinear chaotic signals with the required accu-
racy. Compared to thewell-known evolving neuro-fuzzy sys-
tems based on Takagi–Sugeno fuzzy reasoning, the proposed
systemprovides computational simplicity and possesses both
tracking and filtering capabilities.

References

Almeida L, Silva F (1990) Speeding up backpropagation. Adv Neural
Comput, pp 151–158

Angelov P, Filev D (2004) An approach to online identification of
Takagi–Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part
B Cybern 34(1):484–498

Angelov P, Filev D (2005) Simpl e TS: a simplified method for learning
evolving Takagi–Sugeno fuzzy models. In: Proceedings of FUZZ-
IEEE, pp 1068–1073

Angelov P, Kasabov N (2005) Evolving computational intelligence sys-
tems. In: Proceedings of the 1st international workshop on genetic
fuzzy systems, pp 76–82

Angelov P, Lughofer E (2008) Data-driven evolving fuzzy systems
using e TS and FLEXFIS: comparative analysis. Int J Gen Syst
37(1):45–67

Angelov P, Zhou X (2006) Evolving fuzzy systems from data streams
in real-time. In: Proceedings of 2006 international symposium on
evolving fuzzy systems, pp 29–35

Angelov P, Zhou X (2008) Evolving fuzzy-rule-based classifiers from
data streams. IEEE Trans Fuzzy Syst 16(6):1462–1475

Angelov P, Xydeas C, Filev D (2004) Online identification of MIMO
evolving Takagi–Sugeno fuzzy models. In: Proceedings of IJCNN-
FUZZ-IEEE, pp 55–60

Angelov P, Lughofer E, Klement E (2005) Two approaches to data-
driven design of evolving fuzzy systems: e TS and FLEXFIS. In:
Proceedings of NAFIPS, pp 31–35

Angelov P, Giglio V, Guardiola C, Lughofer E, Lujan J (2006) An
approach to modelbased fault detection in industrial measurement
systems with application to engine test benches. Meas Sci Technol
17(7):1809–1818

Angelov P, ZhouX, FilevD, Lughofer E (2007) Architectures for evolv-
ing fuzzy rulebased classifiers. In: Proceedings of SMC, pp 2050–
2055

Angelov P, Lughofer E, Zhou X (2008) Evolving fuzzy classifiers using
different model architectures. Fuzzy Sets Syst 159(23):3160–3182

Angelov P, Filev D, Kasabov N (2010) Evolving intelligent systems:
methodology and applications. Wiley, New York

Avedjan E, Barkan G, Levin I (1999) Cascade neural networks.
Avtomatika i telemekhanika 3:38–55

Bodyanskiy Y, Kolodyazhniy V (2010) Cascaded multi-resolution
spline-based fuzzy neural network. In: Proceedings of international
symposium on evolving intelligent systems, pp 26–29

Bodyanskiy Y, Pliss I (1990) Adaptive generalized forecasting of multi-
variate stochastic signals. In: ProceedingsLatvian signal proceedings
of international conference, vol 2, pp 80–83

123

A hybrid cascade neural network 3453

BodyanskiyY,ViktorovY (2009a) The cascaded neo-fuzzy architecture
and its on-line learning algorithm. Intell Process 9:110–116

BodyanskiyY,ViktorovY (2009b)The cascaded neo-fuzzy architecture
using cubic-spline activation functions. Inf Theor Appl 16(3):245–
259

Bodyanskiy Y, Vorobyov S (2000) Recurrent neural network detecting
changes in the properties of nonlinear stochastic sequences. Autom
Remote Control 61(7):1113–1124

Bodyanskiy Y, Madjarov N, Pliss I (1983) Adaptive forecasting of non-
stationary processes. Avtomatika I Izchislitelna Tekhnika 6:5–12

Bodyanskiy Y, Pliss I, Solovyova T (1986)Multistep optimal predictors
of multidimensional non-stationary stochastic processes. Doklady
AN USSR A(12):47–49

Bodyanskiy Y, Pliss I, Solovyova T (1989) Adaptive generalized fore-
casting of multidimensional stochastic sequences. Doklady AN
USSR A(9):73–75

Bodyanskiy Y, Stephan A, Vorobyov S (1999) Algorithm for adaptive
identification of dynamical parametrically nonstationary objects. J
Comp Syst Sci Int 38(1):14–38

Bodyanskiy Y, Cichocki A, Vorobyov S (2001a) An adaptive noise
cancellation for multisensory signals. Fluct Noise Lett 1(1):13–24

Bodyanskiy Y, Kolodyazhniy V, Stephan A (2001b) An adaptive learn-
ing algorithm for a neuro-fuzzy network, pp 68–75

Bodyanskiy Y, Kokshenev I, Kolodyazhniy V (2003a) An adaptive
learning algorithm for a neo-fuzzy neuron. In: Proceedings of inter-
national conference of European Union Society for fuzzy logic and
technology, pp 375–379

Bodyanskiy Y, Kolodyazhniy V, Otto P (2003b) A new learning algo-
rithm for a forecasting neuro-fuzzy network. Integr Comput Aided
Eng 10(4):399–409

Bodyanskiy Y, Dolotov A, Pliss I, Viktorov Y (2008) The cascaded
orthogonal neural network. Inf Sci Comput 2:13–20

Bodyanskiy Y, Viktorov Y, Pliss I (2009) The cascade growing neural
network using quadratic neurons and its learning algorithms for on-
line information processing. Intell Inf Eng Syst 13:27–34

Bodyanskiy Y, Grimm P, Teslenko N (2011a) Evolving cascaded neural
network based on multidimensional Epanechnikov’s kernels and its
learning algorithm. Inf Technol Knowl 5(1):25–30

BodyanskiyY,KharchenkoO,VynokurovaO (2011b) Hybrid cascaded
neural network based on wavelet-neuron. Inf Theor Appl 18(4):335–
343

Bodyanskiy Y, Teslenko N, Vynokurova O (2011c) Cascaded GMDH-
wavelet-neuro-fuzzy network. In: international workshop on induc-
tive modelling, pp 22–30

Chan L, Fallside F (1987) An adaptive learning algorithm for backprop-
agation networks. Comput Speech Lang 2:205–218

Cichocki A, Unbehauen R (1993) Neural Netw Optim Signal Process.
Teubner, Stuttgart

Fahlman S, Lebiere C (1990) The cascade-correlation learning archi-
tecture. Adv Neural Inf Process Syst 2:524–532

Haykin S (1999) Neural networks: a comprehensive foundation. Pren-
tice Hall, NJ

Hoff M, Widrow B (1960) Adaptive switching circuits, pp 96–104
Holmes G, Veitch A (1991) A modified quickprop algorithm. Neural

Comput 3:310–311
Jang JSR, Sun CT, Muzutani E (1997) Neuro-fuzzy and soft comput-

ing: a computational approach to learning and machine intelligence.
Prentice Hall, Upper Saddle River

Kaczmarz S (1937) Angenäeherte Auflösung von Systemen linearer
Gleichungen. Bull Acad Polon Sci Lett A 35:355–357

Kaczmarz S (1993) Approximate solution of systems of linear equa-
tions. Int J Control 53:1269–1271

KadirkamanathanV,NiranjanM (1993)A function estimation approach
to sequential learning with neural networks. Neural Comput 5:954–
975

Kasabov N (2001) Evolving fuzzy neural networks for super-
vised/unsupervised online knowledge-based learning. IEEE Trans
Syst Man Cybern Part B Cybern 31(6):902–918

Kasabov N (2003) Evolving connectionist systems. Springer, London
KasabovN (2007)Evolving connectionist systems: the knowledge engi-

neering approach. Springer, London
Kasabov N, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy

inference system and its application for time-series prediction. IEEE
Trans Fuzzy Syst 10(2):144–154

Kasabov N, Zhang D, Pang P (2005) Incremental learning in
autonomous systems: evolving connectionist systems for on-line
image and speech recognition. In: Proceedings of IEEE workshop
on advanced robotics and its social impacts, pp 120–125

Kruschke J, Movellan J (1991) Benefits of gain: speed learning and
minimum layers backpropagation networks. IEEE Trans Syst Man
Cybern 21:273–280

Kusanagi H, Miki T, Uchino E, Yamakawa T (1992) A neo-fuzzy neu-
ron and its applications to system identification and prediction of
the system behavior. In: Proceedings of international conference on
fuzzy logic and neural networks, pp 477–483

Ljung L (1999) System identification: theory for the user. Prentice Hall,
NJ

Lughofer E (2006) Process safety enhancements for data-driven evolv-
ing fuzzymodels. In: Proceedings of the 2nd symposium on evolving
fuzzy systems, pp 42–48

Lughofer E (2008a) Evolving vector quantization for classification of
on-line data streams. In: Proceedings of conference on computational
intelligence for modelling, control and automation, pp 780–786

Lughofer E (2008b) Extensions of vector quantization for incremental
clustering. Pattern Recognit 41(3):995–1011

Lughofer E (2008c) FLEXFIS: a robust incremental learning approach
for evolving ts fuzzy models. IEEE Trans Fuzzy Syst 16(6):1393–
1410

Lughofer E (2010a) On dynamic selection of the most informative sam-
ples in classification problems. In: Proceedings of the 9th interna-
tional conference in machine learning and applications, pp 120–125

Lughofer E (2010b) On-line evolving image classifiers and their appli-
cation to surface inspection. Image Vis Comput 28(7):1063–1172

Lughofer E (2011) Evolving fuzzy systems and methodologies:
advanced concepts and applications. Springer, Heidelberg

LughoferE,AngelovP (2009)Detecting and reacting ondrifts and shifts
in on-line data streams with evolving fuzzy systems. In: Proceedings
of the IFSA/EUSFLAT 2009 conference, pp 931–937

Lughofer E, Angelov P (2011) Handling drifts and shifts in on-line data
streamswith evolving fuzzy systems.Appl SoftComput 11(2):2057–
2068

Lughofer E, Bodenhofer U (2006) Incremental learning of fuzzy basis
function networks with a modified version of vector quantization.
IPMU 2006:56–63

Lughofer E, Guardiola C (2008a) Applying evolving fuzzymodels with
adaptive local error bars to on-line fault detection. In: Proceedings
of genetic and evolving fuzzy systems 2008, pp 35–40

Lughofer E, Guardiola C (2008b) On-line fault detection with data-
driven evolving fuzzy models. J Control Intell Syst 36(4):307–317

Lughofer E, Kindermann S (2008) Improving the robustness of data-
driven fuzzy systems with regularization. In: Proceedings of the
IEEE world congress on computational intelligence 2008, pp 703–
709

Lughofer E, Kindermann S (2010) Sparse FIS: data-driven learning
of fuzzy systems with sparsity constraints. IEEE Trans Fuzzy Syst
18(2):396–411

Lughofer E, Klement E (2003) Online adaptation of Takagi–Sugeno
fuzzy inference systems. In: Proceedings of CES-IMACS multicon-
ference

123

3454 Y. Bodyanskiy et al.

Lughofer E, Klement E (2004) Premise parameter estimation and adap-
tation in fuzzy systems with open-loop clustering methods. In: Pro-
ceedings of FUZZ-IEEE 2004

Lughofer E, Efendic H, Re L, Klement E (2003) Filtering of dynamic
measurements in intelligent sensors for fault detection based on data-
driven models. In: Proceedings of the IEEE CDC conference, pp
463–468

Lughofer E, Klement E, Lujan J, Guardiola C (2004)Model-based fault
detection in multi-sensor measurement systems. In: Proceedings of
IEEE IS 2004, pp 184–189

Lughofer E, Huellermeier E, Klement E (2005) Improving the inter-
pretability of data-driven evolving fuzzy systems. In: Proceedings of
EUSFLAT 2005, pp 28–33

Lughofer E, Angelov P, Zhou X (2007) Evolving single- and multi-
model fuzzy classifiers with FLEXFIS- class. In: Proceedings of
FUZZ-IEEE 2007, pp 363–368

Lughofer E, Smith J, Caleb-Solly P, Tahir M, Eitzinger C, Sannen
D, Nuttin M (2009) On human-machine interaction during on-line
image classifier training. IEEE Trans Syst Man Cybern Part A Syst
Hum 39(5):960–971

Miki T, Yamakawa T (1999) Analog implementation of neo-fuzzy neu-
ron and its on-board learning. In: Computational intelligence and
applications. WSES Press, Piraeus, pp 144–149

Narendra K, Parthasarathy K (1990) Identification and control of
dynamical systems using neural networks. IEEE Trans Neural Netw
1(1):4–27

Prechelt L (1997) Investigation of the Cas Cor family of learning algo-
rithms. Neural Netw 10:885–896

RongNJ, HuangGB, Saratchandran P (2006) Sequential adaptive fuzzy
inference system (SAFIS) for nonlinear system identification and
prediction. Fuzzy Sets Syst 157(9):1260–1275

Schalkoff R (1997) Artificial neural networks. The McGraw-Hill
Comp., New York

Uchino E, Yamakawa T (1997) Soft computing based signal prediction,
restoration and filtering. Fuzzy logic, neural networks and genetic
algorithms. In: Intelligent Hybrid Systems. Kluwer Academic Pub-
lishers, Boston, pp 331–349

Yingwei L, SundararajanN, Saratchandran P (1997) A sequential learn-
ing scheme for function approximation using minimal radial basis
function (RBF) neural networks. Neural Comput 9:461–478

123

	A hybrid cascade neural network with an optimized pool in each cascade
	Abstract
	1 Introduction
	2 An optimized cascade neural network architecture
	3 Training elementary Rosenblatt perceptrons in a cascade neural network
	4 Training neo-fuzzy neurons in a cascade neural network
	5 Optimization of the pool output
	6 Experimental results
	7 Summary
	References

