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Abstract Satellite communications technology leads to
an important improvement in our life and world. The fre-
quency assignment problem (FAP) is a fundamental prob-
lem in satellite communication system for providing high-
quality transmissions. The whole goal of the FAP in satellite
communication system is to minimize co-channel interfer-
ence between two satellite systems by rearranging frequency
assignment. Recently, many metaheuristics, including neural
networks and evolutionary algorithms, are proposed for this
NP-complete problem. All such algorithms formulate the
FAP as a single-objective problem, although it obviously has
two objectives and thus essentially is a multiobjective opti-
mization problem. This study explicitly formulates FAP as
a multiobjective optimization problem and presents a mul-
tiobjective evolutionary algorithm based on decomposition
(MOEA/D) with a problem-specific subproblem-dependent
heuristic assignment (SHA), called MOEA/D-SHA, for
the multiobjective FAP. Simulation results show that the
MOEA/D-SHA outperforms significantly general-purpose
MOEA/D, and an off-the-shelf multiobjective algorithm,
i.e., NSGA-II. The advantages of the MOEA/D-SHA over
the state-of-the-art single-objective approaches are also
shown.
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1 Introduction

Wireless communication has received lots of attention these
years due to its various applications including mobile tele-
phone, satellite communications, TV broadcasting, wireless
LANs, and military operations. Frequency assignment prob-
lems (FAPs) (Aardal et al. 2007) have arisen in many different
situations in the field of wireless communications. In each
of these situations, a FAP arises with application-specific
characteristics. All these applications lead to many differ-
ent FAP models and to many different types of instances
within the models (Aardal et al. 2007). Different FAP mod-
els and solution techniques for each of the features of the
problem, such as the handing of interference among radio
signals, the availability of frequencies, and the optimiza-
tion criterion or objective, are comprehensively reviewed
in Aardal et al. (2007). Typical cases include the FAP in
digital cellular phone standard GSM (general system for
mobile communication) (Maximiano et al. 2009a,b, 2013;
Luna et al. 2011), and the FAP in satellite communication
(Pelton et al. 2004; Whalen 2008; Mizuike and Ito 1986,
1989; Kurokawa and Kozuka 1993; Funabiki and Nishikawa
1997; Liu et al. 2007; Wang et al. 2008, 2011; Salcedo-Sanz
et al. 2004; Salcedo-Sanz and B-Calz’on 2005; Salman et al.
2010).

In this study, we focus on the FAP in satellite communi-
cation systems (Pelton et al. 2004; Whalen 2008; Mizuike
and Ito 1986, 1989; Kurokawa and Kozuka 1993; Fun-
abiki and Nishikawa 1997; Liu et al. 2007; Wang et al.
2008, 2011; Salcedo-Sanz et al. 2004; Salcedo-Sanz and

123



1230 J. Wang, Y. Cai

B-Calz’on 2005; Salman et al. 2010). Satellite communi-
cation technology has refined our life and world by play-
ing a key role in creating a global culture by spreading
worldwide entertainment, simulating technological and cul-
tural interchange, and promoting trade around the world
(Pelton et al. 2004; Whalen 2008). In satellite communica-
tion systems, the reduction of the co-channel interference
has become a major factor for determining system design
(Mizuike and Ito 1986, 1989; Kurokawa and Kozuka 1993;
Funabiki and Nishikawa 1997; Liu et al. 2007; Wang et al.
2008, 2011; Salcedo-Sanz et al. 2004; Salcedo-Sanz and
B-Calz’on 2005; Salman et al. 2010). Furthermore, due to
the necessity of accommodating as many satellites as pos-
sible in geostationary orbit, this interference reduction has
become an even more important issue with the increase
of geostationary satellites (Mizuike and Ito 1986, 1989;
Kurokawa and Kozuka 1993; Funabiki and Nishikawa 1997;
Liu et al. 2007; Wang et al. 2008, 2011; Salcedo-Sanz et
al. 2004; Salcedo-Sanz and B-Calz’on 2005; Salman et al.
2010). To deal with interference reduction in practical situ-
ations, the rearrangement of frequency assignments is con-
sidered as an effective measure (Mizuike and Ito 1986, 1989;
Kurokawa and Kozuka 1993; Funabiki and Nishikawa 1997;
Liu et al. 2007; Wang et al. 2008, 2011; Salcedo-Sanz et
al. 2004; Salcedo-Sanz and B-Calz’on 2005; Salman et al.
2010).

There are two objectives for the FAP in satellite com-
munications. The first objective (named fL) is to min-
imize the largest interference of elements selected for
the assignment, and the second objective (named fT)

is to minimize the total interference of all the selected
elements (Mizuike and Ito 1986, 1989; Kurokawa and
Kozuka 1993; Funabiki and Nishikawa 1997; Liu et al.
2007; Wang et al. 2008, 2011; Salcedo-Sanz et al. 2004;
Salcedo-Sanz and B-Calz’on 2005; Salman et al. 2010).
The FAP is proven to be NP-complete (Mizuike and Ito
1989), thus a good exact algorithm for its optimal solu-
tion in polynomial time is unlikely to exist. Mizuike and
Ito (1986, 1989) proposed a segmentation of frequency
band and an exact algorithm based on branch-and-bound
for the FAP. But the branch-and-bound algorithm may fail
when applied to large instances since the FAP is NP-
complete.

Recently, a lot of metaheuristics are proposed for the FAP.
Most of these algorithms are based on Hopfield neural net-
work (Hopfield and Tank 1985). In 1993, Kurokawa and
Kozuka (1993) firstly proposed a Hopfield neural network
that consists of M × M neurons for the FAP with N -carrier
M-segment. But this Hopfield neural network algorithm can-
not be applied to practical large size systems because of
its very small convergence rate and requirements of large
number of neurons and computation time (Kurokawa and

Kozuka 1993; Funabiki and Nishikawa 1997). Funabiki and
Nishikawa (1997) proposed a gradual neural network (GNN)
that consists of N × M neurons. The GNN has the advan-
tage over the Hopfield neural network algorithm in Kurokawa
and Kozuka (1993) because the GNN reduces the required
number of neurons. However, the multiphase searching leads
to heavy computation burden, and the GNN also cannot
be applied to the FAP with large size (Wang et al. 2008).
In 2007, Liu et al. (2007) proposed a transiently chaotic
neural network (TCNN) for the FAP. In the TCNN, tran-
sient chaotic dynamics are introduced to help Hopfield neural
network escape from local minima. In 2008, Wang et al.
(2008) proposed a noisy chaotic neural network with vari-
able thresholds (NCNN-VT) for the FAP. In the NCNN-
VT, noisy dynamics are introduced to the TCNN to further
improve the performance. But in the NCNN-VT, it is diffi-
cult to control and balance the chaotic dynamics, stochas-
tic dynamics and gradient ascent dynamics for converging
to a stable equilibrium point corresponding to an accept-
ably near-optimal solution. Furthermore, the rate of con-
vergence to feasible solution is not very high in particular
when the problem size becomes large. Recently, Wang et al.
(2011) proposed a multi-start stochastic competitive Hop-
field neural network (MS-SCHNN) for the FAP. The MS-
SCHNN can always converge to feasible solution due to
competitive mechanism, and also can escape from local min-
ima due to the stochastic dynamics and multi-start scheme.
Therefore, the MS-SCHNN obtains better results than all
previous Hopfield neural network-based approaches (Wang
et al. 2011).

In 2004 and 2005, Salcedo-Sanz et al. (2004), Salcedo-
Sanz and B-Calz’on (2005) proposed a hybrid simulated
annealing and a hybrid genetic algorithm, respectively, for
the FAP. These two hybrid algorithms fail to obtain solu-
tions in large size problems due to the excessive computa-
tion time (Wang et al. 2008). Recently, Salman et al. (2010)
proposed six versions of differential evolution (DE) (Storn
and Price 1997; Das and Suganthan 2011) algorithms for the
FAP. Among the previous algorithms for the FAP (Kurokawa
and Kozuka 1993; Funabiki and Nishikawa 1997; Liu et al.
2007; Wang et al. 2008, 2011; Salcedo-Sanz et al. 2004;
Salcedo-Sanz and B-Calz’on 2005; Salman et al. 2010), the
MS-SCHNN (Wang et al. 2011) and the DE (Salman et al.
2010) are two best single-objective optimization algorithms
proposed recently.

The FAP is handled as a single-objective optimization
problem in previous works (Kurokawa and Kozuka 1993;
Funabiki and Nishikawa 1997; Liu et al. 2007; Wang et al.
2008, 2011; Salcedo-Sanz et al. 2004; Salcedo-Sanz and B-
Calz’on 2005; Salman et al. 2010). In the neural network-
based algorithms (Kurokawa and Kozuka 1993; Funabiki and
Nishikawa 1997; Liu et al. 2007; Wang et al. 2008, 2011),
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only the largest interference fL is encoded into the energy
function to be minimized. The hybrid simulated anneal-
ing (Salcedo-Sanz et al. 2004) and hybrid genetic algo-
rithm (Salcedo-Sanz and B-Calz’on 2005) also only con-
centrate on achieving minimum largest interference. Thus,
the final results are strongly biased to the considered objec-
tive. In the DE (Salman et al. 2010), the weighted-sum
approach is used and thus the aforementioned two objectives
of the FAP are aggregated into a single-objective function as
follows:

min F = w1 fL + w2 fT (1)

where w1 and w2 are two weight coefficients. The DE
is performed for two different settings or bias: one with
the aim of producing solution with minimum largest inter-
ference by setting w1 = 5.0, and w2 = 0.01, while
the other with the objective of producing solution with
minimum total interference by setting w1 = 0.5, and w2

= 5.0. This might be inappropriate because total inter-
ference and largest interference are generally of different
scales. Summing them up, as a unified score, does not
really provide meaningful information about the quality of
solutions, and might cause difficulties in practice as it is
hard to determine the appropriate values of weights. Fur-
thermore, it is impossible that a single solution provided
by the single-objective optimization algorithm is optimal
in terms of both total interference and largest interfer-
ence.

Although the FAP obviously has two objectives, it has
never been explicitly investigated in a multiobjective fash-
ion. This study explicitly formulates FAP as a multiobjective
optimization problem and thus presents a multiobjective evo-
lutionary algorithm based on decomposition (MOEA/D) with
a problem-specific subproblem-dependent heuristic assign-
ment (SHA), called MOEA/D-SHA, for the multiobjective
FAP (MO-FAP). That is, we resort to balancing between
total interference and largest interference, and seeking a good
trade-off using multiobjective evolutionary algorithm. Sim-
ulation results show that the MOEA/D-SHA outperforms
significantly general-purpose MOEA/D as well as the state-
of-the-art in multiobjective evolutionary algorithms based
on Pareto dominance, i.e., NSGA-II. The advantages of
the MOEA/D-SHA over the state-of-the-art single-objective
approaches for the FAP are also shown through simulation
results.

The contribution of this study is threefold. First, the
FAP in satellite communication is formulated explicitly
as a multiobjective problem for the first time. Note that
multiobjective optimization formulation of the particular
FAP scenario in global system for mobile communications
(GSM) networks is now starting to be researched (Max-

imiano et al. 2009a,b, 2013). But the FAP in satellite com-
munication considered in this study is far different from
those reported in the literature Luna et al. (2011), Max-
imiano et al. (2009a,b, 2013) with similar names because
it comes from different application fields and thus has dif-
ferent problem features including constraints and objectives.
Simulation results confirm the multiobjective nature of the
FAP considered, and show some advantages in using the
multiobjective problem formulation over single-objective
approaches. Second, a multiobjective evolutionary algo-
rithm, called MOEA/D-SHA, is proposed for the MO-FAP,
where problem-specific SHA is designed. The proposed
MOEA/D-SHA is the first multiobjective optimization-based
algorithm for the FAP, and thus can be seen as a bench-
mark algorithm for future studies. Finally, the proposed
MOEA/D-SHA is comprehensively compared with other
popular multiobjective evolutionary algorithms and the state-
of-the-art single-objective algorithms for the FAP. Simula-
tion results show that the proposed algorithm can obtain
better performance. The proposed algorithm not only man-
ages to achieve almost the same or better solutions than
those obtained by single-objective algorithms, but also finds
simultaneously a set of alternative solutions. These solu-
tions show different trade-offs between two objectives, which
can be used to yield insight into the choices available to
the decision maker and hence facilitate final decision mak-
ing.

The remaining sections of this study are organized as
follows. Section 2 gives the background, including the for-
mulation of the MO-FAP, some concepts of multiobjective
problem, and briefly introduction of the DE. In Sect. 3, the
MOEA/D-SHA for the MO-FAP is given in detail. In Sect. 4,
benchmark data sets are used to evaluate the MOEA/D-SHA.
Last Section concludes this study.

2 Background

2.1 Formulation of FAP

Given two adjacent satellite systems, the whole goal of the
FAP is to reduce the intersystem co-channel interference by
rearranging the frequency assignment on carrier in system
2, while fixing the assignment in system 1. Since each car-
rier usually occupies a different length in a frequency band,
the segmentation strategy of carriers is firstly proposed by
Mizuike and Ito (1986, 1989). In the segmentation strategy,
the commonly shared frequency band is divided into a num-
ber of segments so that every carrier can be described by
a collection of consecutive unit segment. Then, an M × M
interference matrix E can be adopted to describe the interfer-
ence between two M-segment systems. The ij-th element ei j
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Earth Station 1

System 1 System 2

Satellite 1 Satellite 2

Interference

Earth Station 2

Fig. 1 Intersystem co-channel interference

in interference matrix E represents the co-channel interfer-
ence when segment i in system 2 uses a common frequency
with segment j in system 1.

The FAP can be formulated as a combinatorial optimiza-
tion problem with three constraints and two objectives. The
three constraints of the FAP are (Kurokawa and Kozuka 1993;
Funabiki and Nishikawa 1997; Liu et al. 2007; Wang et al.
2008, 2011; Salcedo-Sanz et al. 2004; Salcedo-Sanz and B-
Calz’on 2005; Salman et al. 2010):

Constraint 1: Every segment in system 2 must be assigned
to a segment in system 1;

Constraint 2: Each segment in system 1 can be assigned
by at most one segment in system 2;

Constraint 3: All segments of each carrier in system 2 must
be assigned to consecutive segments in system 1 in the same
order.

The two objectives ( fL, fT) of the FAP are (Kurokawa and
Kozuka 1993; Funabiki and Nishikawa 1997; Liu et al. 2007;
Wang et al. 2008, 2011; Salcedo-Sanz et al. 2004; Salcedo-
Sanz and B-Calz’on 2005; Salman et al. 2010):

fL: Minimize the largest element of the interference
matrix selected in the assignment;

fT: Minimize the total interference of all the selected ele-
ments.

Next, a small size benchmark instance (denoted as BM1
in literature Kurokawa and Kozuka 1993; Funabiki and
Nishikawa 1997; Liu et al. 2007; Wang et al. 2008, 2011;
Salcedo-Sanz et al. 2004; Salcedo-Sanz and B-Calz’on 2005;
Salman et al. 2010 and in this study) is given as an example

to explain the concepts of the FAP. The BM1 is firstly intro-
duced by Mizuike and Ito (1986, 1989), and widely adopted
by previous references (Kurokawa and Kozuka 1993; Fun-
abiki and Nishikawa 1997; Liu et al. 2007; Wang et al. 2008,
2011; Salcedo-Sanz et al. 2004; Salcedo-Sanz and B-Calz’on
2005; Salman et al. 2010) as an example. Thus, Figs. 1,
2, 3 are also adopted or extended from previous references
to describe the FAP concepts. Figure 1 illustrates the inter-
system co-channel interference between two adjacent satel-
lite systems. Sidelobe emission for earth station antennas
can cause the intersystem interference (indicated by dotted
arrows) when they are operated in the same frequency band.
Figure 2 shows an example of the co-channel interference
model. The communications are assumed to be operated in
the frequency band between Fa and Fb. Each carrier can be
described as a collection of consecutive unit segments in a
frequency band. Three and four carriers are utilized there
in each satellite system, respectively. The co-channel inter-
ference is evaluated by each pair of carriers using the same
frequency. Thus, to secure the communication quality of all
carriers, the largest interference must be minimized among
all pairs. In Fig. 2, interference is indicated by plain arrows
and dotted arrow indicates no interference. The total interfer-
ence should be also minimized to improve the overall com-
munication quality. Both systems have M = 6 segments, and
system 2 has N = 4 carriers. To reduce the co-channel inter-
ference between two systems, the frequency assignments in
system 2 are rearranged while the frequencies used in sys-
tem 1 are fixed. The representation of the full assignment of
segments can be described by an M × M matrix F , where
element fi j = 1 means that the segment i in system 2 has
been reassigned to segment j in system 1. Figure 3a illus-
trates the segmentation of the system in Fig. 2, and the opti-
mum assignment under the interference matrix in Fig. 3b.
In the interference matrix, Ci j denotes the j-th carrier in
system i , Si j denotes the j-th segment in system i, and the
asterisk element denotes infinity which indicates a penalty
cost to avoid impossible assignment of segments for carrier
allocation.

Thus, the first objective function can be described as fol-
lows:

fL = max(ei j × fi j ) (2)

The second objective function can be described as
follows:

fT =
M∑

i=1

M∑

j=1

ei j × fi j (3)
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Fig. 2 Co-channel interference
model of the system

C11 C12 C13

C21 C22 C23 C24

Fa

Fa

Fb Frequency

Fb Frequency

Interference

System 1

System 2

Fig. 3 a Segmentation of the
system in Fig. 2. b Interference
matrix of the system in Fig. 2 C11 C12 C13

C21 C22 C23 C24

System 1

System 2

Segment

C23 C24 C22 C21
System 2

Segment

Segment

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S24 S25 S26 S22 S23 S21

Initial assignment

Optimum assignment

(b)

(a)

C11 C12 C13

S11 S12 S13 S14 S15 S16

C21 S21 20 20 40 0 25 25

S22 50 10 30 0 55 *
C22

S23 * 50 30 0 15 55

C23 S24 30 30 45 0 35 35

S25 45 5 25 0 50 *
C24

S26 * 45 25 0 10 50

eij
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In this study, the FAP is handled as a multiobjective prob-
lem, named MO-FAP, where both largest interference and
total interference are simultaneously optimized without bias
as follows:

min F = { fL, fT} (4)

Our interpretation of the FAP as a multiobjective problem
according to Eq. (4) represents a philosophically different
view of the problem as the whole. This simple translation of
the FAP into a multiobjective problem is surprisingly effec-
tive, which will be shown in simulation.

2.2 Multiobjective optimization

A multiobjective problem can be defined as follows:

min F(X) = { f1(X), . . . , fm(X)},
s.t. : X ∈ �,

where � is the decision variable space. F : � → Rm consists
of m objective functions that are often conflicting with each
other. For a multiobjective problem, our goal is to seek a set
of solutions that have good trade-offs among the objectives.
It is also commonly required that this set of solutions is as
diverse as possible.

The concepts of domination relationship and Pareto
optimality in multiobjective optimization are defined as
follows.

Definition 1 Pareto dominance: Let u, v ∈ Rm , u dominates
v iff ui ≤ vi for each i ∈ {1, . . . , m} and u j < v j for at least
one j ∈ {1, . . . , m}.
Definition 2 Pareto optimality: A decision variable x∗ ∈ �

is said to be Pareto optimal if there is no other x ∈ � so
that F (X) dominates F (X∗). The set of all Pareto optimal
solutions in the decision space is called the Pareto optimal
set. The image of the Pareto optimal set in the objective space
is called the Pareto optimal front.

An algorithm for a multiobjective problem should return
a set of nondominated solutions (NDS) that can well approx-
imate the Pareto optimal front (Pareto optimal set) as diverse
as possible. Figure 4 illustrates the Pareto optimal front
in the MO-FAP with m = 2 (i.e., total interference and
largest interference). The Pareto optimal solutions in the
Pareto optimal front (marked as solid circles) provide bet-
ter total interference and/or largest interference than any
other solution in the objective space. The remaining solu-
tions (marked as open circles) are all dominated by at least
one solution of the Pareto optimal front. Solutions X A and
X B (marked as solid stars) are often called the extreme

Total interference

Largest interference

PF

a

b

c

Xa 

Xb 

Xc 

XA

XB 

λ1 λ2 = 0= 1,

λ1 λ2 = 1= 0,

λ1 λ2 = 0.5= 0.5,

Search direction

fL 

fT 

Fig. 4 Pareto optimal front of FAP and classification of the Pareto
optimal assignments of FAP

points of the Pareto optimal front. These extreme points
provide the lowest total interference and largest interfer-
ence, respectively, than any other solution in the objective
space.

Over the years, a number of metaheuristics, including evo-
lutionary algorithms (Zhou et al. 2011), simulated anneal-
ing and tabu search (Talbi et al. 2012), have been extended
to solve multiobjective problem. The evolutionary algo-
rithms can find a good approximation of the Pareto optimal
front in a single run due to their population-based nature,
which makes them more natural candidates for multiob-
jective problems. Thus, multiobjective evolutionary algo-
rithms have gained popularity and have been used exten-
sively to solve the multiobjective problem over the last
years (Zhou et al. 2011). The use of Pareto dominance for
fitness evaluation has been the mainstream in multiobjec-
tive evolutionary algorithm for the last two decades. The
NSGA-II (Deb et al. 2002) is a Pareto dominance-based
multiobjective evolutionary algorithm which can be broadly
regarded as a representative of multiobjective evolutionary
algorithms and, probably, the most widely used. It is rela-
tively simple, reliable, well-studied, and can readily incor-
porate constraints. The key characteristic of the NSGA-II
is that it uses a fast nondominated sorting and a crowded
distance estimation for comparing the quality of different
solutions during selection. The NSGA-II has shown supe-
rior performance on not only benchmark problems (Deb
et al. 2002), but also real-world application (Saha 2009;
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Wang et al. 2010; Praditwong et al. 2011; Garcia-Najera
and Bullinaria 2011), and thus has been an off-the-shelf
choice for solving multiobjective problem. Recently, it has
been pointed out in some studies that Pareto dominance-
based algorithms do not always work well on multiobjec-
tive problem with many objectives (Peng et al. 2009; Li et
al. 2010). Decomposition (or scalarizing function)-based fit-
ness evaluation is a promising alternative to Pareto domi-
nance especially for the many-objective problems and mul-
tiobjective combinatorial optimization problems (Peng et
al. 2009; Li et al. 2010). Thus, the classical approach for
multiobjective problem based on decomposition or aggrega-
tion is re-formularized into evolutionary algorithm recently
(Zhang and Li 2007; Li and Zhang 2009; Zhang et al.
2009). A representative one of this kind of algorithms is
MOEA/D (Zhang and Li 2007; Li and Zhang 2009; Zhang
et al. 2009). The MOEA/D framework has been studied
and used for dealing with a number of multiobjective prob-
lems (Mei et al. 2011; Konstantinidis and Yang 2011a,b; Li
and Landa-Silva 2011; Ke et al. 2013; Shim et al. 2012;
Czyzzak and Jaszkiewicz 1998). More details about mul-
tiobjective problem and other approaches to the multiob-
jective problems can be referred to the most recent review
(Zhou et al. 2011; Talbi et al. 2012).

2.3 Differential evolution

The DE (Storn and Price 1997) starts with a population
of NP D-dimensional individuals, which encode the can-
didate solution vectors, i.e., Xi = (xi

1, xi
2, . . . , xi

D), i =
1, . . . , NP. Then, the DE iteratively implements three oper-
ators: mutation, crossover and selection. Mutation and
crossover are used to generate new trial vectors for each
target vector, and selection then determines which vec-
tor will survive into the next generation. The three oper-
ators are briefly reviewed as follows (Storn and Price
1997).

Mutation For each target vector Xi that belongs to the cur-
rent population, the DE randomly samples three other differ-
ent individuals from the same generation to create a mutant
vector Ui = (ui

1, ui
2, . . . , ui

D). The d-th component of the
mutant vector is generated according to

ui
d = xr1

d + F(xr2
d − xr3

d ) (5)

where r1 �= r2 �= r3 �= i , and the scalar factor F (usu-
ally∈ [0, 1]) controls the amplification of the difference
(xr2

d − xr3
d ).

Crossover The target vector is mixed with the mutated
vector to yield a trail vector Y i . The d-th component of the

trail vector is generated as follows:

yi
d =

{
ui

d if (rand()< CR) or (d = drand)

xi
d otherwise

(6)

where rand() is a uniformly distributed random number
within the range [0,1]; CR ∈ [0, 1] is called crossover
rate; and drand is a randomly chosen integer in the range
[1, D].

Selection A one-to-one greedy selection scheme is used.
That is, if the trial vector Y i is better than its parent Xi , it
will replace its parent in the next generation; otherwise, the
parent will be retained in the population.

3 MOEA/D-SHA for MO-FAP

The MOEA/D framework (Zhang and Li 2007) is chosen
for solving the MO-FAP defined by Eq. (4). The reasons
are (Peng et al. 2009; Li et al. 2010; Zhang and Li 2007;
Ke et al. 2013): (1) the research literature shows that the

MOEA/D seems to be more suitable for tackling multi-
objective combinatorial optimization problems because it
can directly use problem-specific (local search) techniques
to intensify the exploration of promising regions in search
space, and (2) the MOEA/D framework provides a very nat-
ural framework for using single-objective search techniques.
The general framework of the MOEA/D is reviewed as
follows.

Instead of solving a multiobjective problem directly, the
MOEA/D explicitly decomposes it into NP scalar optimiza-
tion subproblems. It solves these subproblems simultane-
ously by evolving a population of solutions. At each gen-
eration, the population is composed of the best solution
found so far for each subproblem. The neighborhood rela-
tions among these subproblems are defined based on the dis-
tances between their aggregation weight vectors. Each sub-
problem is optimized using information from its neighboring
subproblems.

Although MOEA/D framework provides a very natural
framework for using single-objective search techniques, it
is crucial when and how a single-objective search tech-
nique can be used in MOEA/D ( Ke et al. 2013). This
study combines the advanced features from both the DE for
single-objective FAP (Salman et al. 2010) and MOEA/D,
and proposes a hybrid MOEA/D with subproblem-dependent
heuristic assignment, called MOEA/D-SHA, for the MO-
FAP.

3.1 MOEA/D-SHA framework

Instead of solving the MO-FAP defined by Eq. (4) directly,
the MOEA/D-SHA explicitly decomposes it into NP scalar
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optimization subproblems. The framework of the MOEA/D-
SHA for the MO-FAP is described as follows.

In response to the particularities of each problem, different
multiobjective evolutionary algorithms differ in the coding
scheme (responsible for the characterization of the search
space), objective function, and also operators that depend on
the kind of coding scheme adopted. As a consequence, the
MOEA/D-SHA is not the same as the MOEA/D of previous
papers (Mei et al. 2011; Konstantinidis and Yang 2011a,b; Li
and Landa-Silva 2011; Ke et al. 2013; Shim et al. 2012). It
employs the same framework, but is composed of dedicated
modules, for example, SHA procedure, to solve the MO-
FAP. The adaptation of the MOEA/D framework to the MO-
FAP is described in detail in the following subsection. The
main components of the MOEA/D-SHA include the decom-

position, solution representation, reproduction operator and
SHA.

3.2 Decomposition

MOEA/D-SHA decomposes the MO-FAP into NP single-
objective subproblems using weighted-sum approach, thus
the i th subproblem is defined as:

ming(Xi |λi ) = λi
1 fL(Xi ) + λi

2 fT (Xi ) (7)

where λi = (λi
1, λ

i
2) is the weight vector of subproblem i =

1,…, NP and λi
1 + λi

2 = 1. g(Xi |λi ) is used to emphasize
that λi is a coefficient in this objective function while Xi

is the variable to be optimized. The weighted-sum approach
described in Eq. (7) considers a convex combination of the
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different objectives. In this study, we consider a uniform
spread of the weights which is remain fixed for each sub-
problem i during the whole evolution. These weights are
determined as follows:

λi =
(

i − 1

NP − 1
,

NP − i

NP − 1

)
.

For example, given 5 subproblems, the weights for each
subproblems are (0,1), (1/4,3/4), (2/4,2/4), (3/4,1/4), (1,0),
respectively. In Fig. 4, some weights including (0,1),
(2/4,2/4), and (1,0) are shown to be corresponding to some
search directions in the objective space. How to set these
weights can also be found in (Zhang and Li 2007).

In the above definition, two objectives fL and fT are of
different scales, and direct use of them will make the algo-
rithm bias more to objective fT. Therefore, normalization
is required. The maximal and minimal values among the
largest (total) interference of all feasible solutions that have
been found so far are used for normalization as in (Mei et
al. 2011; Konstantinidis and Yang 2011a,b). It is argued that
MOEA/D faces difficulty when the objective functions have
not the same scale for the problems with many objectives
(Deb and Jain 2014). However, for the MO-FAP with only

two objectives, the normalization method considered in this
study can get good results as shown in previous research (Mei
et al. 2011; Konstantinidis and Yang 2011a,b).

In general, the weight vector λi is mainly used for
decomposing a multiobjective problem into single-objective
subproblems by adding different weights to the objec-
tives. This parameter can also be given a problem-specific
meaning as follows (Konstantinidis and Yang 2011a,b): the
weight vector λi of a subproblem i , can be used to pre-
dict the objective preference of particular design Xi and
therefore its position and search direction in the objec-
tive space. For example, the extreme solutions X A and
X B in Fig. 4 focus on optimizing one objective each,
respectively. That is, X A aims at minimizing the largest
interference objective ignoring total interference, while X B

aims at minimizing the total interference objective ignor-
ing largest interference. The goal of the MO-FAP is to
obtain a trade-off set of solutions between the extreme
solutions, providing the interested users with a diverse set
design choices (for example, Xa , Xb, Xc in Fig. 4) to
facilitate decision making. Thus, single-objective heuris-
tics by extracting knowledge from the problem domain
and the objectives properties can be designed and strate-
gically controlled by MOEA/D-SHA to optimize differ-
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Fig. 5 Simple assignment
procedure a Representation for
carrier’s priorities and b
decoding to FAP solution
(assignment)
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ent areas of the objective space (e.g., a, b and c in
Fig. 4) (Konstantinidis and Yang 2011a,b). The problem-
specific heuristics will be described later in details, and
the objective preference of each subproblem indicated by
the weight vector λi will be used to design subproblem-
dependent heuristics. This beneficial procedure cannot be
utilized by any nondecompositional MOEA framework
(Konstantinidis and Yang 2011a,b).

3.3 Solution representation and reproduction

In this study, the priority-based representation is adopted
(Salman et al. 2010). In this representation, each carrier is
associated with a value that represents its priority, which
is described by Fig. 5a. Thus, each individual X is repre-
sented by an array of size N (number of carriers), i.e., X
= (x1, …, xN ), where the value of j th gene of the indi-
vidual specifies the priority associated with j th carrier in
system 2.

Each gene is initialized with a value between [0,N ) rep-
resenting the carrier’s priority. The initial population is gen-
erated randomly with the aim of covering the entire search
space. Each individual is constructed as follows: First, a car-
rier is selected randomly and assigned the number of carriers
N as its priority value. Then, a different carrier is chosen
at random and assigned the value of N − 1 as its priority
value. This process is repeated until all the carriers have been
assigned different priority values.

For each individual, all the carriers are ranked or sorted
by descending order according to their priority values. Then,
according to the carrier’s order, segments from system 1 are
assigned to carriers in system 2 in a consecutive manner
using a simple assignment procedure illustrated by Fig. 5b.
Detailed implementation of simple assignment procedure can
also be found in (Salman et al. 2010). The simple assignment
procedure can always produce feasible solution.

The MOEA/D-SHA generates new solutions using the
DE mutation and crossover operators defined by Eqs. (5)–
(6).

3.4 SHA

The SHA procedure consists of two main components: mod-
ification of priority value and selection of heuristic strategy.
The SHA introduces more problem-specific heuristic infor-
mation and thus can be seen as an advanced or sophisticated
version of simple assignment procedure.

In the MO-FAP, large carriers with many segments should
be assigned as early as possible, otherwise, it would be dif-
ficult to assign them after many carriers have been already
assigned (Funabiki and Nishikawa 1997; Wang et al. 2008,
2011). Thus, the priority value in the individual repre-
sentation should consider the carrier length as problem-
specific heuristic information. Let c j represents the number
of segments or the length of carrier j , and priority value
of j th gene, x j , is modified according to the following
rule:

x j =
{

(x j/N ) · max
1≤k≤N

(ck) + c j if r < hM ,

c j · logM/N (x j ) otherwise.
(8)

where r (∈(0, 1)) is a random number. The rule Eq. (8)
includes two ways to modify the priority value, where
the probability of choosing one of the ways is controlled
by a parameter hM . hM is initialized as 0.5, and then
adjusted adaptively during the search. Specifically, hM =
Suc1/(Suc1+Suc2), where Suc1 and Suc2 represent the suc-
cess rate of constructing a feasible assignment matrix using
the first and second ways within the previous learning period
(LP) generations, respectively.

Based on the priority-based representation, the seg-
ments from system 1 are assigned to each carrier using
one of the following three heuristics (H1, H2 and H3)
(Liu et al. 2007):

H1: From the available consecutive segments in system 1
(i.e., not been assigned yet), select the ones which produce
the lowest largest interference with current carrier in system
2.
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Fig. 6 a Largest interference cost and b total interference cost of each
carrier using interference matrix in Fig. 3b

H2: From the available consecutive segments in system 1,
select the ones which produce the lowest total interference
with current carrier in system 2.

H3: From the available consecutive segments in system 1,
select the ones which produce both the lowest largest inter-
ference and the lowest total interference with current carrier
in system 2 (i.e., this is calculated by giving a weight for each
objective).

For these heuristics, two new matrices, namely, the largest
interference cost matrix (LI) and the total interference cost
matrix (TI), should be firstly generated from the main inter-
ference matrix (i.e., Fig. 3b). The element li j in the largest
interference cost matrix is given by the largest element among
ci elements for assigning carrier i to segments from j to
( j + ci − 1). That is, li j = max{ek j , . . . , ek+ci −1, j+ci −1},
where k is the first segment number of carrier i in the
M × M interference matrix F (Wang et al. 2008, 2011).
Figure 6a shows the largest interference cost matrix derived
from the interference matrix described by Fig. 3b. If the
carrier length for carrier i is 1, i.e., ci = 1, then row i for
carrier i in the cost matrix is the same as the row in the
interference matrix for carrier i . For example, c1 = 1 and c3

= 1, therefore, 1-st and 3-rd rows of the cost matrix is the
same as the C21 and C23 rows of the interference matrix.
If ci > 1, then we choose the largest value in the diag-
onal line (dashed line in the interference matrix described

by Fig. 3b) for each j . For example, c2 = 2 and c4 = 2,
then the maximum value of the crossed elements on the
diagonal line in the C22 and C24 rows is selected as the
corresponding value in the largest interference cost matrix
(Wang et al. 2008, 2011). The total interference cost matrix
can be generated in a similar way. The only difference is
that we should sum up all the values in the diagonal line
(dashed line in the interference matrix described by Fig.
3b) as the total interference cost element for each j in the
case of ci > 1. Figure 6b shows the total interference cost
matrix derived from the interference matrix described by
Fig. 3b.

Then, one of the subproblem-dependent heuristics (H1,
H2 or H3) is adaptively selected according to the objective
preference of each subproblem indicated by the weight vector
as mentioned in Sect. 3.2. The complete SHA procedure can
be described as follows.

In the SHA, the selection of heuristic for assignment
takes the objective preference of each subproblem (i.e., the
weighted vector λ) into consideration. If λ1 > 0.5, it means
that the subproblem focuses more on (or biases towards)
optimizing the first objective (i.e., fL), and thus H1 or H3
will be selected for assignment. This case mainly favors
the solutions of area a and b depicted by Fig. 4. Or else,
it means that the subproblem focuses more on optimizing
the second objective (i.e., fT), and thus H2 or H3 will be
chosen for assignment. This case mainly favors the solu-
tions of area b and c depicted by Fig. 4. The detailed
implementation of heuristic assignment is given as fol-
lows.
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In Step 1, current carrier locates free consecutive segments
whose length is no fewer than the length of current carrier.
In Step 2, current carrier checks every first segment of the
available consecutive segments whether or not to be assigned
using the specific condition according to the selected heuris-
tic assignment. Note that a parameter pH is used to con-
trol the probability of assignment in Algorithm 4. If pH is
set to 1, H3 will be executed in a completely greedy way,
while H1 and H2 will focus on optimizing one objective
ignoring the other. This may lead to local convergence. To
avoid trapping into local minima, pH is set to be less than 1,
for example 0.9 in this study, for introducing some random-
ness.

3.5 Comparisons between MOEA/D-SHA and DE

Although both the single-objective DE (Salman et al. 2010)
and the MOEA/D-SHA use the similar weighted aggregation
of two objectives defined by Eqs. (1) and (7), respectively,
they evolve in totally different way in solving the FAP. The
MOEA/D-SHA optimizes multiple single-objective opti-
mization subproblems with multiple fixed but uniform weight

vectors in parallel at each generation. The diversity of the
solutions is maintained through these preselected weight
vectors. Further, it exploits the neighborhood relationship
among the subproblems for making its search effectively
and efficiently. Thus, the MOEA/D-SHA maintains a set
of solutions (subproblems) which is expected to provide a
good approximation to the Pareto optimal front or Pareto
optimal set of problem in each run. In contrast, the single-
objective DE only optimizes a single-objective optimiza-
tion problem and finally returns a unique solution in each
run.

Furthermore, only one fixed problem-specific heuristic is
used in DE. However, in the MOEA/D-SHA, one of the
subproblem-dependent heuristics (H1, H2 or H3) is adap-
tively selected according to the objective preference of each
subproblem indicated by the weight coefficients.

4 Simulation results

Experimental studies have been carried out to evaluate the
efficacy of our proposed approach. All simulations were
implemented in C on a PC (Intel Core2 2.4 GHz, 2 GB
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Table 1 Specifications of the
eight benchmark instances
(BM1–BM8) and the case
parameters to generate random
instances with large size

Group Benchmark
or
case

Number of
carriers N

Number of
segments

M Range of
carrier length

Range of
interference

Group 1 BM 1 4 6 1–2 5–55

BM 2 4 6 1–2 1–9

BM 3 10 32 1–8 1–10

BM 4 10 32 1–8 1–100

BM 5 10 32 1–8 1–1,000

BM 6 18 60 1–8 1–50

BM 7 30 100 1–8 1–100

BM 8 15 50 1–7 1–1,000

Group 2 Case 9 50 200 1–10 1–10

Case 10 50 200 1–10 1–100

Case 11 50 200 1–10 1–1,000

Group 3 Case 12 80 200 1–5 1–100

Case 13 80 300 1–8 1–100

Case 14 80 400 1–10 1–100

Case 15 80 450 1–12 1–100

Case 16 80 500 1–14 1–100

Case 17 80 600 1–16 1–100

Group 4 Case 18 100 500 1–10 1–100

Case 19 150 400 1–5 1–100

Case 20 200 300 1–2 1–100

RAM). The goals of our experimental studies are to (1) study
the effect of the proposed SHA on the performance of the
MOEA/D-SHA, (2) test the strength of the MOEA/D-SHA
against the state-of-the-art in Pareto dominance multiobjec-
tive evolutionary algorithms, i.e., NSGA-II and (3) com-
pare with several state-of-the-art single-objective approaches
to evaluate whether the proposed multiobjective evolution-
ary algorithm can provide any advantage over the single-
objective approaches.

4.1 Experimental setup

We tested the MOEA/D-SHA on four groups with a total of
20 cases as those in (Wang et al. 2008, 2011). The details of
the cases or groups are shown in Table 1 and described as
follows (Wang et al. 2008, 2011).

The first group includes 8 benchmark instances (named
BM1–BM8) which are widely used in literature (Kurokawa
and Kozuka 1993; Funabiki and Nishikawa 1997; Liu et al.
2007; Wang et al. 2008, 2011; Salcedo-Sanz et al. 2004;
Salcedo-Sanz and B-Calz’on 2005; Salman et al. 2010). To
evaluate the performance of the MOEA/D-SHA in large size
MO-FAPs, Groups 2–4 are randomly generated. According
to the method and case parameters in (Wang et al. 2008,

2011), these instances are generated in the following steps:
(1) Choose the number of carriers N and the number of seg-
ments M for the instance. (2) Select the values of the range of
carrier length and the range of interference between the two
systems. To test the scalability of the MOEA/D-SHA, these
two parameters are gradually increased. (3) Generate a set of
carrier lengths ci (i = 1, . . ., N ) and interference matrix E
(M × M) using uniformly distributed random values in the
range defined in the step above.

According to the steps above, Group 2 (Case 9–11) is
designed to observe the influence of the magnitude of the
interference by varying the interference from 1–10 to 1–
1,000. The number of carriers N , the number of segments
M , and the range of carrier length are fixed to 50, 200 and 1–
10, respectively. Group 3 (Case 12–17) is designed to show
the effects of the carrier length. In this group, the range of car-
rier length changes from 1–5 to 1–16. Group 4 (Case 18–20)
is designed to show the ability of the multiobjective evolu-
tionary algorithm to deal with a large number of carriers up
to 200. These instances are the largest size problems tested
by the existing algorithms so far (Wang et al. 2011).

The parameters of the MOEA/D-SHA are empirically set
as: population size NP = 10N for BM1-8 instances and NP =
500 for Case 9–20; neighborhood size T = 20; the maximum
generation G = 500; F = 0.2 and CR = 0.9 as in DE for the
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FAP (Salman et al. 2010); LP = 10 and pH = 0.9 in the SHA.
These settings may be not optimal parameter settings, but the
MOEA/D-SHA with these parameters performs fairly well
over the test instances. From the empirical results of prelim-
inary experiments, we found that the MOEA/D-SHA per-
formed equally well with small changes of parameter values,
for example, LP = 20 or 30; pH = 0.7 or 0.8.

4.2 Performance measures

The performance of a multiobjective evolutionary algorithm
is usually evaluated from two aspects, i.e., proximity (con-
vergence) and diversity (distribution). Proximity means that
the obtained NDS should be as close to the true Pareto opti-
mal front as possible. Diversity means that the solutions in
the obtained NDS should be distributed as diversely and uni-
formly as possible. The two aspects can hardly be reflected by
a single metric, thus a number of metrics have been suggested
in the literature (Deb et al. 2002; Czyzzak and Jaszkiewicz
1998; Zitzler et al. 2002; Zitzler and Thiele 1999). In this
study, the following five metrics are used.

1. Distance from reference set (ID): This metric is proposed
by Czyzzak and Jaszkiewicz (1998). It is defined as fol-
lows:

ID(A) =
∑

Y∈R {minX∈A {d(X, Y )}}
|R| .

Given a set A, ID(A) provides information about the aver-
age distance from a solution in the reference set R to
the closest solution in A. In our experiment, the NDS
obtained by all the algorithms in 30 runs on a test instance
are combined, and those solutions remained nondomi-
nated in this set are used as the reference set. A smaller
value of ID(A) indicates that A is closer to R and thus is
preferable.

2. Spread (I�): This metric is proposed by Deb et al. (2002).
It can be stated as follows:

I�(A) = d f + dl + ∑n−1
i=1

∣∣di − d
∣∣

d f + dl + (n − 1) × d
,

where d f and dl are the Euclidean distances between the
leftmost and rightmost solutions of the Pareto optimal
front and the extreme solutions in A. n is the number of
solutions in A and di is the Euclidean distance between
the i th left and the (i + 1)th left solutions in A. d stands
for the average over all di ’s. I�.is an indicator of the
distribution of solutions. A smaller I� indicates that the
solutions are distributed more uniformly and have a bet-
ter extent. The leftmost and rightmost solutions among

the NDS obtained by all the 30 runs of the compared
algorithms are used to compute I� in our experiments.

3. Hypervolume (IH): This metric, proposed by Zitzler et
al. (2002), indicates the area in the objective space that is
dominated by at least one solution of the NDS. IH reflects
the closeness of the NDS to the Pareto optimal front. The
larger the IH, the closer to the Pareto optimal front the
corresponding NDS is. Also, the NDS obtained by all
the algorithms are approximately seen as Pareto optimal
front.

4. Coverage metric (IC): it is a commonly used metric for
comparing two sets of NDS A and B, originally pro-
posed by Zitzler and Thiele (1999). The IC, also denoted
as C(A, B) metric calculates the ratio of the NDS in B
dominated by the NDS in A, divided by the total number
of NDS in B. It is defined as follows:

C(A, B) = |{X ∈ B|∃Y ∈ A : Y � X}|
|B| .

Therefore, C(A, B) = 1 means that all NDS in B are
dominated by the NDS in A. Conversely, C(A, B) = 0
means that all NDS in A are dominated by the NDS in B.
Note that the sum of C(A, B) and C(A, B) is not always
equal to 1, because there may exist some solutions in A
and B that are not dominated by each other.

5. Nondominated solutions (NDS(A)): it is the cardinal-
ity or the number of NDS in set A, which is adopted in
(Konstantinidis and Yang 2011a,b). It is more desirable
to obtain a high number of NDS(A) to provide an ade-
quate number of Pareto optimal choices in cases of real-
life discrete optimization problems such as the FAP. In
contrast, in cases of continuous optimization (Konstan-
tinidis and Yang 2011a,b), a high number of NDS is not
desirable, since the decision-making procedure becomes
more complicated and more time-consuming. Note that
the NDS(A) should be considered in combination with
other metrics (e.g., I� and IC), since it is usually desir-
able to have a high number of NDS when the solutions
is of high quality (i.e., low IC) and spread (i.e., low I�)

in the objective space.

In this study, all the metrics are computed based on the nor-
malized objective vectors of the NDS. These metrics are used
to measure the performances of multiobjective optimization
algorithms from different aspects. I� is typically intended
to measuring diversity property. Metrics ID and IH take into
account both criteria, i.e., proximity and diversity. IC shows
the dominance relationship between two compared solutions
sets. More details about these metrics can be referred to (Zhou
et al. 2011; Shim et al. 2012; Czyzzak and Jaszkiewicz 1998;
Zitzler et al. 2002; Zitzler and Thiele 1999).
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Table 2 Average value of ID, I�, and IH of the MOEA/D (denoted as M), MOEA/D-H (denoted as M-H) and MOEA/D-SHA (denoted as M-S)

Instance ID I� IH Time (s)

M M-H M-S M M-H M-S M M-H M-S M M-H M-S

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.09 0.14 0.15

2 0.0333 0.0000 0.0000 0.0000 0.0000 0.0000 0.9666 1.0000 1.0000 0.09 0.14 0.15

3 0.4003 0.0000 0.0000 0.3199 0.0000 0.0000 0.6116 1.0000 1.0000 0.38 1.28 1.35

4 0.3606 0.0642 0.0625 0.6578 0.4721 0.4704 0.6213 0.8930 0.8939 0.38 1.28 1.37

5 0.2090 0.0859 0.0843 0.6556 0.2584 0.2416 0.6743 0.8976 0.9033 0.38 1.34 1.39

6 0.4890 0.2268 0.0678 0.7977 0.6187 0.5402 0.2813 0.6209 0.8970 1.05 6.09 6.04

7 0.6841 0.6671 0.0538 0.7896 0.8000 0.3416 0.2007 0.2180 0.9554 2.76 24.94 22.47

8 0.5147 0.1847 0.1511 0.6895 0.7602 0.8019 0.3453 0.8250 0.9224 0.76 3.69 3.76

9 0.7974 0.9671 0.0677 0.0299 0.0000 0.1463 0.0822 0.0332 0.9301 8.05 98.58 98.95

10 0.8706 0.8971 0.0720 0.9103 0.9433 0.6418 0.0408 0.0355 0.9307 8.16 98.78 99.08

11 0.8032 0.8307 0.0695 0.8811 0.9155 0.8065 0.0594 0.0559 0.9278 8.10 96.59 94.34

12 1.0416 1.0458 0.0334 0.8957 0.9603 0.5772 0.0217 0.0206 0.9839 13.53 163.12 172.19

13 1.0314 1.0325 0.0552 0.8952 0.9520 0.5819 0.0143 0.0150 0.9060 14.91 225.99 234.28

14 0.9536 0.9525 0.0804 0.9592 0.9527 0.6975 0.0181 0.0175 0.8128 16.33 296.36 276.91

15 0.9880 0.9869 0.1049 0.9510 0.9490 0.6174 0.0097 0.0102 0.8279 17.14 323.68 322.37

16 0.9161 0.9132 0.1306 0.9502 0.9136 0.6733 0.0134 0.0134 0.7616 17.94 367.22 351.61

17 0.8911 0.8901 0.1282 0.9164 0.9446 0.6380 0.0188 0.0194 0.7384 19.82 449.60 427.80

18 0.9887 0.9891 0.0856 0.9549 0.9511 0.5957 0.0068 0.0073 0.8504 22.18 447.82 449.24

19 1.1935 1.1913 0.0407 0.9749 0.9435 0.5843 0.0045 0.0047 0.9404 36.49 574.79 614.47

20 1.2705 1.2685 0.0125 0.9806 0.9775 0.5796 0.0047 0.0049 0.9791 50.60 631.56 626.19

Furthermore, to show the significant differences between
the MOEA/D-SHA and competitors, we adopt several
nonparametric statistical tests, i.e., Friedman test, Iman–
Davenport test, Holm test and Wilcoxon test (Derrac et al.
2011). All of the nonparametric statistical tests are carried
out by the KEEL software (Alcalá-Fdez et al. 2008).

4.3 Effectiveness of main components in MOEA/D-SHA

To confirm the effectiveness of the main components in the
MOEA/D-SHA, and thus gain a better understanding of how
and why the algorithm works, we conduct our first experi-
ment to compare the MOEA/D-SHA with its two variants.
In the first variant of the MOEA/D-SHA, the SHA proce-
dure described in Algorithm 3 is totally removed, thus in the
Step 2(3) of Algorithm 2, only simple assignment is used.
This variant is denoted as MOEA/D. In the second variant,
only the modification of priority value strategy (i.e., Step
1 in Algorithm 3) is removed. The heuristic strategies are
still reserved and thus this variant is denoted as MOEA/D-
H.

Tables 2, 3 show the average values of metrics over the 30
independent runs of the compared algorithms on the test sets.
For each instance and each performance metric, the single-
problem Wilcoxon rank sum test on paired algorithms (Der-

rac et al. 2011; Alcalá-Fdez et al. 2008) was further carried
out on the results obtained by 30 runs of the compared algo-
rithms, and the one that is significantly better than that of the
other two (with the significance level of 5 %) is in boldface.
To comprehensively evaluate the performance of the com-
pared algorithms, the NDS obtained on selected instances by
them in all 30 runs are also plotted in the objective space and
shown in Fig. 7. From the quantitative results in Tables 2, 3
and graphical representation of the NDS in Fig. 7, we point
out the following observations.

Firstly, we can find that the MOEA/D-SHA outperforms
the MOEA/D on all instances expect for small size instances
(BM1-BM3) in terms of metrics ID and IH, on all instances
expect for small size instances (BM1–BM3, BM8) in terms of
metric I�, and on all instances expect for small size instances
(BM1 and BM2) in terms of metric IC, respectively. Espe-
cially, for the large size instances, the average value of met-
ric IC in column C(M-S, M) is equal to 1.0, while that in
column C(M, M-S) is equal to 0. This means that for these
instances, all the solutions yielded by the MOEA/D are dom-
inated by those of the MOEA/D-SHA, which also can be
easily observed from Fig. 7. Moreover, the MOEA/D-SHA
obtains a higher number of the NDS. These results lead to the
conclusion that the MOEA/D-SHA can produce much more
NDS with good proximity and diversity performances than
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Table 3 Average value of IC and NDS of the MOEA/D (denoted as M), MOEA/D-H (denoted as M-H) and MOEA/D-SHA (denoted as M-S)

Instance NDS IC

M M-H M-S C(M,M-H) C(M-H,M) C(M,M-S) C(M-S,M) C(M-H,M-S) C(M-S,M-H)

1 1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 1 1 1 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000

4 3 4 4 0.0000 0.3333 0.0000 0.3333 0.0000 0.0000

5 4 4 4 0.0000 0.2500 0.0000 0.2500 0.0000 0.0000

6 3 8 5 0.0000 1.0000 0.0000 1.0000 0.0000 0.6250

7 5 5 4 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

8 5 5 5 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000

9 1 1 4 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000

10 5 4 9 0.5000 0.4000 0.0000 1.0000 0.0000 1.0000

11 6 3 10 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

12 6 6 4 0.8333 0.1667 0.0000 1.0000 0.0000 1.0000

13 5 5 8 0.2000 0.6000 0.0000 1.0000 0.0000 1.0000

14 4 4 12 0.7500 0.2500 0.0000 1.0000 0.0000 1.0000

15 4 3 10 0.6667 0.2500 0.0000 1.0000 0.0000 1.0000

16 3 4 14 0.5000 0.3333 0.0000 1.0000 0.0000 1.0000

17 3 3 10 0.3333 0.6667 0.0000 1.0000 0.0000 1.0000

18 3 4 15 0.2500 0.6667 0.0000 1.0000 0.0000 1.0000

19 4 3 6 0.3333 0.5000 0.0000 1.0000 0.0000 1.0000

20 5 5 5 0.2000 0.8000 0.0000 1.0000 0.0000 1.0000

the MOEA/D, which shows the positive contribution of the
SHA procedure.

Secondly, the MOEA/D-SHA outperforms the MOEA/D-
H on all instances expect for small size instances (BM1-
BM3) in terms of metrics ID and IH, on all instances expect
for small size instances (BM1–BM3, BM9) in terms of met-
ric I�,and on all instances expect for small size instances
(BM1–BM2, BM8) in terms of metric IC, respectively. For
the large size instances, the average value of metric IC in
column C(M-S, M-H) is equal to 1.0, while that in col-
umn C(M-H, M-S) is equal to 0. At the same time, the
MOEA/D-SHA obtains a higher number of the NDS, and
all the solutions yielded by the MOEA/D-H are domi-
nated by those of the MOEA/D-SHA for these instances
as shown in Fig. 7. Figure 8 shows the success rate of
constructing feasible solution by the SHA with and with-
out modification of priority value during the whole evolu-
tion process of the MOEA/D-SHA and MOEA/D-H, respec-
tively. From Fig. 8, we can find the SHA without modi-
fication of priority value in the MOEA/D-H is very diffi-
cult to produce feasible solution or assignment on larger
size instances, which severely deteriorates the performance
the MOEA/D-H. These results indicate that the MOEA/D-
SHA can produce much more NDS with good performances
than the MOEA/D-H, which suggests the positive contribu-

tion of the modification of priority value in the SHA proce-
dure.

Finally, the MOEA/D-H outperforms the MOEA/D on
small size instances BM4–BM8 in terms of most of met-
rics, which indicates the positive contribution of the heuristic
strategies. But the MOEA/D-H cannot consistently achieve
better performance on the larger size instances, i.e., Case
9–20. The reason is that the heuristic strategies alone are
very difficult to produce feasible assignment on larger size
instances as shown in Fig. 8. This result suggests that comb-
ing the modification of priority value and selection of heuris-
tic strategy is necessary for performance improvement.

It is natural that the MOEA/D-SHA and MOEA/D-H
spend more time because they include the problem-specific
heuristics.

To show the significant differences between the MOEA/D-
SHA and its two variants, MOEA/D and MOEA/D-H, on all
problems, nonparametric statistical tests (Derrac et al. 2011;
Alcalá-Fdez et al. 2008), i.e., Iman–Davenport (Friedman),
Holm and Wilcoxon test are adopted. First, we detect whether
there are significant differences between all the algorithms
for all the problems. Table 4 shows the average rankings
for all the algorithms considered, and the results of Iman–
Davenport (Friedman) test. The results in Table 4 demon-
strate that the MOEA/D-SHA is the best performing algo-
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Fig. 7 Nondominated solutions obtained on the selected instances by MOEA/D-SHA and its two variants

rithm, with an average ranking of 1.10, 1.33, and 1.10 for
metrics ID, I�, and IH, respectively. Furthermore, accord-
ing to the results of the Iman–Davenport (Friedman) test,
we can observe that there are significant differences between
the algorithms in all the cases. Second, to analyze the dif-
ferences between pairs of algorithms for all the problems,

we perform the Holm test considering the MOEA/D-SHA as
the control algorithm (because the MOEA/D-SHA has the
best average ranking). The results of Holm test are presented
in Table 5. For all the cases, the MOEA/D-SHA is statisti-
cally better than the MOEA/D and MOEA/D-H. Third, to fur-
ther show the significant differences between the MOEA/D-
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Fig. 8 Success rate of
constructing feasible solution by
the SHA with and without
modification of priority value in
the MOEA/D-SHA and
MOEA/D-H, respectively

Table 4 Average rankings of MOEA/D, MOEA/D-H and MOEA/D-
SHA by Friedman and Iman and Davenport test for all problems

ID I� IH

MOEA/D 2.65 2.45 2.65

MOEA/D-H 2.25 2.23 2.25

MOEA/D-SHA 1.10 1.33 1.10

p value
(Friedman
test)

2.00E-06 8.35E-04 2.00E-06

p value (Iman
and
Davenport
test)

2.49E-09 2.45E-04 2.49E-09

Significant Yes Yes Yes

Table 5 Results of Holm test for MOEA/D, MOEA/D-H and
MOEA/D-SHA (control algorithm)

Metric Algorithm z p value Significant

ID MOEA/D 4.9015 1.000E-06 Yes

MOEA/D-H 3.6366 2.760E-04 Yes

I� MOEA/D 3.5576 3.740E-04 Yes

MOEA/D-H 2.8461 4.427E-03 Yes

IH MOEA/D 4.9015 1.000E-06 Yes

MOEA/D-H 3.6366 2.760E-04 Yes

SHA and its variants, we carry out the pairwise Wilcoxon
signed-rank test, which is more powerful to identify dif-
ferences between two algorithms (Derrac et al. 2011). The
multi-problem Wilcoxon signed-rank test is conducted for
comparing pairs of algorithms on all the problems for each
metric. The results are presented in Table 6. From Table 6,
it is clear that the MOEA/D-SHA obtains higher R+ values
than R− values in all the cases. Furthermore, the p values of
all the cases are all less than 0.05, which indicates that the
MOEA/D-SHA is significantly better than its variants.

Table 6 Results of multi-problem Wilcoxon signed-rank test for
MOEA/D, MOEA/D-H and MOEA/D-SHA at α = 0.05

Metric Algorithm R+ R− p value α = 0.05

ID MOEA/D 190 0 1.21E-04 Yes

MOEA/D-H 188.5 1.5 1.55E-04 Yes

I� MOEA/D 190.5 10.5 3.90E-04 Yes

MOEA/D-H 175.5 14.5 1.12E-03 Yes

IH MOEA/D 190 0 1.21E-04 Yes

MOEA/D-H 188.5 1.5 1.55E-04 Yes

Overall, these results highlight the usefulness of the indi-
vidual components and their combined contribution to an
overall improvement in the algorithm performance.

4.4 Comparing MOEA/D-SHA with NSGA-II

The NSAG-II serves as a representative of the traditional
multiobjective evolutionary algorithms without problem-
specific heuristic or local search, and represents the way
of directly using an existing or off-the-shelf multiobjective
evolutionary algorithm for the MO-FAP. For fair compar-
ison, the NSGA-II also adopts the DE operators for off-
spring reproduction and simple assignment procedure for
assignment as the MOEA/D-SHA. Two algorithms also share
the same key parameters, such as population size NP, F
and CR. Since the NSGA-II does not employ a problem-
specific heuristic or local search process, it is assigned
a larger generation number, and thus the computational
time of the two algorithms is the same for fair compari-
son.

Table 7 shows the average values of metrics over the
30 independent runs of the compared algorithms on the
test sets. The NDS obtained on the selected instances by
MOEA/D-SHA and NSGA-II in all 30 runs are shown in
Fig. 9. From Table 7, we can find that the MOEA/D-SHA
outperforms the NSGA-II on all instances expect for small
size instances (BM1 and BM2) in terms of metrics ID, IH
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Table 7 Average value of ID, I�, IH, IC and NDS of the MOEA/D-SHA (denoted as M-S) and NSGA-II (denoted as N)

Instance ID I� IH IC NDS

M-S N M-S N M-S N C(M-S,N) C(N,M-S) M-S N

1 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1 1

2 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1 1

3 0.0000 0.4645 0.0000 0.2642 1.0000 0.5194 1.0000 0.0000 1 1

4 0.0347 0.3479 0.4846 0.6095 0.9363 0.5644 0.6667 0.0000 4 3

5 0.0854 0.3426 0.2365 0.5853 0.8991 0.4568 1.0000 0.0000 4 4

6 0.0611 0.4857 0.5425 0.7643 0.9059 0.2743 1.0000 0.0000 5 6

7 0.0615 0.6724 0.3392 0.8344 0.9481 0.2048 1.0000 0.0000 4 4

8 0.1407 0.4750 0.8170 0.7676 0.9360 0.3597 1.0000 0.0000 5 4

9 0.1073 0.9751 0.1549 0.0280 0.8615 0.0006 1.0000 0.0000 4 2

10 0.0769 0.6667 0.6387 0.8665 0.9232 0.1262 1.0000 0.0000 9 4

11 0.0779 0.6625 0.8038 0.9294 0.9136 0.1163 1.0000 0.0000 10 7

12 0.0802 1.0229 0.5769 0.8885 0.9735 0.0490 1.0000 0.0000 4 5

13 0.0618 0.8500 0.5535 0.9210 0.8811 0.0272 1.0000 0.0000 8 6

14 0.0884 0.7842 0.6921 0.9255 0.7987 0.0446 1.0000 0.0000 12 7

15 0.1089 0.7688 0.6153 0.8909 0.8228 0.0477 1.0000 0.0000 10 4

16 0.1365 0.7384 0.6696 0.8458 0.7542 0.0445 1.0000 0.0000 14 5

17 0.1467 0.7623 0.6297 0.8778 0.7074 0.0291 1.0000 0.0000 10 5

18 0.0905 0.7809 0.5925 0.8936 0.8437 0.0441 1.0000 0.0000 15 7

19 0.0422 0.9786 0.5832 0.9736 0.9391 0.0423 1.0000 0.0000 6 7

20 0.0127 1.0235 0.5783 0.8101 0.9789 0.0563 1.0000 0.0000 5 3

and IC, and on all instances expect for small size instances
(BM1, BM2, BM8, and BM9) in terms of metric I�, respec-
tively. For the large size instances, the average value of met-
ric IC in column C(M-S, N) is equal to 1.0, while that in
column C(N, M-S) is equal to 0. Further, the MOEA/D-
SHA obtains a higher number of the NDS on the most of
instances except for small size instances, and all the solu-
tions produced by the NSGA-II are dominated by those
of the MOEA/D-SHA for these instances as shown in Fig.
9.

Since the pairwise Wilcoxon signed-rank test is more pow-
erful to identify differences between two algorithms on all
problems (Derrac et al. 2011). The multi-problem Wilcoxon
signed-rank test is conducted for comparing the MOEA/D-
SHA and NSGA-II on all the problems for each metric.
The results are presented in Table 8. From Table 8, it is
clear that the MOEA/D-SHA obtains higher R+ values than
R− values in all the cases. Furthermore, the p values of
all the cases are all less than 0.05, which indicates that
the MOEA/D-SHA is significantly better than the NSGA-
II.

The quantitative results in Tables 7, 8 and graphical rep-
resentation of the NDS in Fig. 9 lead to the conclusion that
the MOEA/D-SHA is more efficient and effective than the
NSGA-II. The reason is that the NSGA-II, as most multiob-

jective evolutionary algorithms based on Pareto dominance,
tries to deal with the multiobjective problem as a whole and
without any problem-specific heuristic as a black box method
(Konstantinidis and Yang 2011a). This results in difficulties
to explore the search space efficiently. The decomposition
nature of the MOEA/D-SHA, on the other hand, alleviates
this difficulty by decomposing the multiobjective problem
into a population of single-objective subproblems, allow-
ing the incorporation of single-objective problem-specific
heuristic (e.g., the SHA) in a simple manner. This directs
the search into good feasible regions of the objective space,
improving the convergence and diversity of the MOEA/D-
SHA as shown in Fig. 9.

4.5 Comparing MOEA/D-SHA with single-objective
approaches

Previous results have shown that the proposed multiobjective
optimization algorithm can find simultaneously a set of alter-
native trade-off solutions. Some researchers (Jaszkiewicz
2003; Lacomme et al. 2006) coming from the combinato-
rial optimization community have claimed that the authors
of multiobjective algorithms should prove to be competi-
tive to single-objective algorithms in terms of quality of
solutions and computational efficiency. Hence, the MS-
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Fig. 9 Nondominated solutions obtained on the selected instances by MOEA/D-SHA and NSGA-II

SCHNN (Wang et al. 2011) and DE (Salman et al. 2010),
as the best state-of-the-art single-objective approaches for
the FAP, are selected for comparison. As in (Lacomme et
al. 2006), the leftmost or rightmost (extreme solutions) pro-
duced by the MOEA/D-SHA are chosen to compare with
the best solutions produced by the single-objective algo-

rithms. The aim of this comparison is to show that the
proposed multiobjective algorithm not only finds simulta-
neously a set of alternative trade-off solutions, but also
manages to achieve almost the same or better extreme
solutions than those obtained by single-objective algo-
rithms.
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Firstly, we focus on comparing the MOEA/D-SHA with
the single- objective algorithms concentrating on achieving
minimum largest interference. In the MS-SCHNN, only the
largest interference is encoded into the energy function to be
minimized. The configurations of the MS-SCHNN follow the
original paper (Wang et al. 2011) to guarantee its best per-
formance. The DE with H1 (called DEH1), and DE with H3
(called DEH3/L) obtaining solution with low largest inter-
ference are selected since they show the best performance on
the benchmark instances among all the six DE versions in
(Salman et al. 2010). The DEH1, DEH3/L, and MOEA/D-
SHA share the same key parameters, such as population size
NP, maximum generation number G, F and CR, and thus the
computational time of these algorithms is the same for fair
comparison.

Table 8 Results of multi-problem Wilcoxon signed-rank test for
NSGA-II and MOEA/D-SHA at α = 0.05

Metric Algorithm R+ R− p value α = 0.05

ID NSGA-II 208.5 1.5 1.03E-04 Yes

I� NSGA-II 199.5 10.5 3.90E-04 Yes

IH NSGA-II 208.5 1.5 1.03E-04 Yes

Table 9 shows the nondominated solutions with the min-
imum largest interference obtained by MOEA/D-SHA and
the best solutions obtained by the MS-SCHNN, DEH1 and
DEH3/L, respectively. The computational time of the algo-
rithms of the MS-SCHNN and MOEA/D-SHA is also given.
Note that the computational time of the DE-based algorithm
is the same as that of the MOEA/D-SHA, since they share the
same key parameters for fair comparison. For each instance,
the solution dominating the others is in boldface. From Table
9, it can be observed that the MOED/D-SHA obtains solu-
tions dominating those obtained by the MS-SCHNN on 13
out of 20 instances. The opposite case occurred on only one
instance. Both algorithms obtain the same solutions on 6
small size instances, i.e., BM1–BM6. The MS-SCHNN is
more time-consuming for larger size instances, i.e., case 14–
20. The DEH1 fails to obtain any feasible solution on 4
large size instances, i.e., case 14–17. On the remaining 16
instances, the MOEA/D-SHA obtains solutions dominating
those obtained by the DEH1 on 10 instances. Both algorithms
obtain the same solutions on 6 small size instances, i.e.,
BM1–BM5, and BM8. The DEH3/L even fails to obtain any
feasible solution on 6 large size instances, i.e., case 14–19.
On the remaining 14 instances, the MOEA/D-SHA obtains
solutions dominating those obtained by the DEH3/L on 8

Table 9 Nondominated solutions with the minimum largest interference obtained by MOEA/D-SHA and the best solutions obtained by single-
objective optimization algorithms (MS-SCHNN, DEH1 and DEH3/L)

Instance MOEA/D-SHA MS-SCHNN DEH1 DEH3/L

Largest Total Time (s) Largest Total Time (s) Largest Total Largest Total

1 30 100 0.16 30 100 0.06 30 100 30 100

2 4 13 0.15 4 13 0.03 4 13 4 13

3 7 85 1.36 7 85 0.63 7 85 7 85

4 64 880 1.38 64 880 0.60 64 880 64 880

5 640 8,693 1.40 640 8,693 0.57 640 8,693 640 8,693

6 32 981 6.05 32 981 4.53 32 1,032 32 1,017

7 61 2,799 22.47 61 2,892 19.90 61 2,824 61 3,178

8 620 12,653 3.77 620 15,937 2.50 620 12,653 620 12,653

9 6 565 102.30 7 589 124.40 6 591 7 589

10 60 4,852 104.60 67 5,280 127.57 64 5,444 77 6,179

11 640 50,425 102.90 678 60,666 126.43 640 50,894 676 61,813

12 41 2,795 171.20 41 3,082 210.23 43 3,260 59 4,259

13 50 6,891 242.90 61 7,047 475.17 85 7,411 89 8,959

14 60 10,791 330.60 80 12,201 774.70 – – – –

15 68 12,982 368.90 83 15,106 4,407.2 – – – –

16 69 15,979 418.40 85 17,748 4,369.3 – – – –

17 73 19,185 512.90 92 23,531 1,696.43 – – – –

18 62 13,100 490.10 77 15,070 1,537.07 81 14,049 – –

19 36 5,148 620.60 44 5,887 1,508.43 87 6,298 – –

20 17 1,523 639.20 16 1,434 1,000.33 21 1,622 31 2,544
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Table 10 Nondominated solutions with the minimum total interference obtained by MOEA/D-SHA and the best solutions obtained by single-
objective optimization algorithms (DEH2 and DEH3/T)

Instance MOEA/D-SHA DEH2 DEH3/T

Total Largest Total Largest Total Largest

1 30 100 100 30 100 30

2 13 4 13 4 13 4

3 85 7 86 7 85 7

4 821 99 821 99 821 99

5 6,910 817 6,910 817 6,910 817

6 923 46 923 46 923 46

7 2,447 74 2,409 80 2,560 93

8 11,182 938 11,182 938 11,182 938

9 517 9 507 9 551 9

10 4,175 84 4,362 90 5,008 90

11 45,530 978 4,4903 978 4,9145 963

12 2,598 66 2,592 66 3,382 95

13 5,759 85 6,628 94 7,614 99

14 9,340 88 – – – –

15 11,068 88 – – – –

16 12,777 97 – – – –

17 16,550 98 – – – –

18 10,914 95 11,863 98 13,615 99

19 4,421 54 – – – –

20 1,395 21 1,324 20 2,034 38

instances. Both algorithms obtain the same solutions on 6
small size instances, i.e., BM1–BM5, and BM8.

Secondly, we focus on comparing the MOEA/D-SHA
with the single- objective algorithms concentrating on achiev-
ing minimum total interference. Hence, the DE with H2
(called DEH2), and DE with H3 (called DEH3/T) obtain-
ing solution with low total interference, are selected from
(Salman et al. 2010). Table 10 shows the nondominated
solutions with the minimum total interference obtained by
MOEA/D-SHA and the best solutions obtained by DEH2 and
DEH3/T, respectively. The computational time of the algo-
rithms is almost the same as that in Table 9. The DEH2 fails
to obtain any feasible solution on 5 large size instances, i.e.,
Case 14–17 and Case 19. On the remaining 15 instances, the
MOEA/D-SHA obtains solutions dominating those obtained
by the DEH2 on 4 instances. The opposite case occurred
on 4 instances. Both algorithms obtain the same solutions
and nondominated solution on 6 and 1 (i.e., BM7) small size
instances, respectively. The DEH3/T also fails to obtain any
feasible solution on 5 large size instances, i.e., Case 14–17
and Case 19. On the remaining 15 instances, the MOEA/D-
SHA obtains solutions dominating those obtained by the
DEH3/T on 7 instances. Both algorithms obtain the same
solutions on 7 small size instances, and obtain nondominated
solutions on one small size instances.

In the DEH1, DEH2, and DEH3, due to order of carri-
ers and the heuristic method used when assigning segments,
some carriers may not find free consecutive segments equal
to their length. This means that population individuals of the
DEH1, DEH2, and DEH3 always stratify Constraint 2 and
Constraint 3 but not necessarily satisfy Constraint 1, espe-
cially for larger size instances. Hence, they fail to obtain any
feasible solution on large size instances. In contrast, the SHA
with modification of priority value in the MOEA/D-SHA
can alleviate this problem as shown in Fig. 8. On few large
size instances, the MOEA/D-SHA is outperformed slightly
by the single-optimization algorithms. The reason is that
MOEA/D-SHA uniformly allocates computational resources
to all subproblems to search for the whole Pareto optimal
front, while single-objective optimization algorithms solely
focuses on one problem whose size is equivalent to that of a
subproblem in the MOEA/D-SHA (Mei et al. 2011). Thus,
for some large size instances, the computational resources
assigned to each subproblem might not be sufficient for
the MOEA/D-SHA. Given limited computational resources,
this problem may be mitigated by adopting the dynamical
resource allocation strategy for subproblem because the dif-
ferent subproblems have different difficulty and thus require
different amounts of computational resources (Li and Zhang
2009).
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4.6 Discussion

The most important issue is whether the FAP really does
need to be treated as a multiobjective problem. To answer
this question, we should check whether the multiobjective
evolutionary algorithm finds more than one nondominated
solutions in the Pareto approximation sets (Garcia-Najera
and Bullinaria 2011; Tan et al. 2006; Castro-Gutierrez et
al. 2011). Results shown in Figs. 7 and 9 clearly con-
firm the multiobjective nature of the FAP. That is, more
than one nondominated solutions shown in Figs. 7 and 9
demonstrate the conflict between the two objectives. Since
the FAP is intrinsically a multiobjective problem in nature,
the MOEA/D-SHA recognizes these alternative or trade-
off solutions. Further, the MOEA/D-SHA obtains better
extreme results than the single-optimization algorithms in
many problem instances. Hence, there are indeed some
benefits of the multiobjective problem formulation of the
FAP.

In summary, the MOEA/D-SHA not only manages to
achieve better or competitive extreme solutions than single-
objective algorithms, but also finds simultaneously a set of
alternative solutions. These solutions show different trade-
offs between two objectives, which can be used to yield
insight into the choices available to the decision maker and
hence facilitate final decision making.

The MOEA/D-SHA focuses on generating Pareto opti-
mal solutions. From a decision maker’s point of view, the
goal of multiobjective optimization is to find the single solu-
tion giving the best compromise between multiple objectives.
This can be done using one of the multi-criteria decision-
making approaches. Recently, several studies (Bechikh et
al. 2011) have addressed the decision-making task to assist
the decision maker in choosing the final alternative. In fact,
the best compromise solution among Pareto optimal solu-
tions can be easily found in the case of only two objectives
because the decision maker can utilize a graphical repre-
sentation of the Pareto optimal solutions like Figs. 7 and 9
or a simple multi-criteria decision-making approach. That
is, some problem-specific expert’s knowledge or decision
maker’s preference can be incorporated then for selecting
the best solution from the Pareto optimal set produced by
a multiobjective optimizer. In the absence of explicit deci-
sion maker’s preferences, research in (Bechikh et al. 2011)
supposes that knee regions represent the decision maker’s
preferences themselves. Knee regions are potential parts of
the Pareto front presenting the maximal trade-offs between
objectives. For solutions residing in knee regions, a small
improvement in either objective will cause a large deterio-
ration in at least another one which makes moving in either
direction not attractive. Thus, solution in the knee regions
can be chosen as the final alternative in multi-criteria deci-
sion making.

5 Conclusions

This study explicitly formulates FAP in satellite commu-
nication as a bi-objective optimization problem and thus
presents a hybrid multiobjective evolutionary algorithm,
named MOEA/D-SHA, for the MO-FAP. The MOEA/D-
SHA combines the advanced features from both the DE
for single-objective FAP and MOEA/D. Simulation results
show that the MOEA/D-SHA outperforms significantly
general-purpose MOEA/D and an off-the-shelf multiob-
jective evolutionary algorithm, i.e., NSGA-II. The advan-
tages of MOEA/D-SHA over the state-of-the-art single-
objective approaches are also shown through simulation
results.

The most significant contribution of this study is our inter-
pretation of the FAP as a multiobjective problem, which
represents a philosophically different view of the problem
as the whole. Our simple translation of the FAP into a
multiobjective problem is surprisingly effective since the
MOEA/D-SHA obtains promising results for the MO-FAP.
Along this research line, other advanced multiobjective evo-
lutionary algorithms (Zhou et al. 2011; Talbi et al. 2012)
can also be adopted to solve this problem. Especially, mod-
ified MOEA/D methods (Li and Landa-Silva 2011; Ke et
al. 2013; Shim et al. 2012) with the proposed SHA can be
used to obtain Pareto optimal solutions for the MO-FAP in
future.

As mentioned in Sect. 1, there are different FAP mod-
els and many different types of instances within the models
(Aardal et al. 2007). Different FAP models have different
features of the problem, such as the handling of interference
among radio signals, the availability of frequencies, opti-
mization criterion or objective, and constraints (Aardal et al.
2007). The general idea of the MOEA/D-SHA for the FAP
in satellite communication can be extended to solve other
FAPs, for example, the FAP in digital cellular phone standard
GSM (Maximiano et al. 2013; Luna et al. 2011; Maximiano
et al. 2009a,b). But the problem-specific components should
be carefully redesigned. The main problem-specific compo-
nents include solution representation, reproduction operators
and SHA operators.

At the aspect of fundamental research perspective, the
interplay between problem-specific subproblem-dependent
heuristic for local search and MOEA/D framework for global
search should be further studied. As stated in (Ishibuchi et
al. 2003), it is important to maintain good balance between
local search (exploitation) and global search (exploration) in
multiobjective optimization algorithms. On the other hand,
though the MOEA/D provides a very natural framework for
using single-objective search techniques, how to utilize more
effectively single-objective local search for optimizing each
objective still should be further studied (Ishibuchi et al. 2008;
Peng and Zhang 2012).
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