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Abstract Chaos optimization algorithms (COAs) utilize
the chaotic map to generate the pseudo-random sequences
mapped as the decision variables for global optimization
applications. Many existing applications show that COAs
escape from the local minima more easily than classical sto-
chastic optimization algorithms. However, the search effi-
ciency of COAs crucially depends on appropriately start-
ing values. In view of the limitation of COAs, a novel
mutative-scale pseudo-parallel chaos optimization algorithm
(MPCOA) with cross and merging operation is proposed in
this paper. Both cross and merging operation can exchange
information within population and produce new potential
solutions, which are different from those generated by
chaotic sequences. In addition, mutative-scale search space
is used for elaborate search by continually reducing the
search space. Consequently, a good balance between explo-
ration and exploitation can be achieved in the MPCOA. The
impacts of different chaotic maps and parallel numbers on
the MPCOA are also discussed. Benchmark functions and
parameter identification problem are used to test the perfor-
mance of the MPCOA. Simulation results, compared with
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other algorithms, show that the MPCOA has good global
search capability.
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1 Introduction

From the mathematical aspect, chaos is defined as a pseudo-
random behavior generated by nonlinear deterministic sys-
tems (Yang et al. 2006). Generally speaking, chaos has sev-
eral important dynamical characteristics, namely, the sensi-
tive dependence on initial conditions, pseudo-randomness,
ergodicity, and strange attractor with self-similar fractal pat-
tern (Yang et al. 2006, 2007, 2012; Li and Jiang 1998; Yuan
and Wang 2008). Recently, chaos theory has been used to
develop novel global optimization techniques, and particu-
larly, in the specification of chaos optimization algorithms
(COAs) (Li and Jiang 1998; Yang et al. 2007, 2012, 2014;
Yuan and Wang 2008; Zhu et al. 2012; Hamaizia et al. 2012;
Okamoto and Hirata 2013) based on the use of numerical
sequences generated by means of chaotic map. Due to the
dynamic properties of chaotic sequences, a lot of existing
application results have demonstrated that COAs can carry
out overall searches at higher speeds than stochastic ergodic
searches that depend on the probabilities (Yang et al. 2012,
2014; Zhu et al. 2012; Hamaizia et al. 2012; Okamoto and
Hirata 2013). Furthermore, COAs generally exhibit better
numerical performance and benefits than stochastic algo-
rithms. The main advantages of COAs include: (a) COAs
escape from local minima more easily than classical sto-
chastic optimization algorithms such as genetic algorithm
(GA), simulated annealing (SA) and some meta-heuristics
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algorithms including particle swarm optimization (PSO), ant
colony optimization algorithm (ACO), differential evolution
(DE), and so on (Yang et al. 2014); (b) COAs don’t depend on
the strict mathematical properties of the optimization prob-
lem, such as continuity, differentiability; (c) COAs are easy
to be implemented and the execution time of COAs is short
(Li and Jiang 1998; Yang et al. 2007, 2012; Yuan and Wang
2008).

In addition to the development of COAs, chaos has also
been integrated with meta-heuristic algorithms, such as:
chaotic harmony search algorithm (Alatas 2010; Askarzadeh
2013), chaotic ant swarm optimization (Liu et al. 2013; Wan
et al. 2012; Li et al. 2012), chaotic particle swarm optimiza-
tion (Wu 2011; Cheng et al. 2012; Pluhacek et al. 2014),
chaotic evolutionary algorithm (Ho and Yang 2012; Arunk-
umar and Jothiprakash 2013), chaotic genetic algorithms
(Kromer et al. 2014; Ma 2012), chaos embedded discrete
self organizing migrating algorithm (Davendra et al. 2014),
chaotic differential evolution (Coelho and Pessoa 2011),
chaotic firefly algorithm (Coelho and Mariani 2012), chaotic
simulated annealing (Chen 2011; Hong 2011), chaos-based
immune algorithm (Chen et al. 2011). The simulation results
and applications have also shown the high efficiency, solu-
tions diversity and global search capability of chaos-based
optimization algorithms.

An essential feature of the chaotic sequence is that small
change in the parameter or the starting value leads to the
vastly different future behavior. Since the chaotic motions are
pseudo-random and chaotic sequences are sensitive to the ini-
tial conditions, therefore, COAs’ search and converge speed
are usually effected by the starting values. In view of the lim-
itation of COAs, a kind of parallel chaos optimization algo-
rithm (PCOA) has been proposed in our former studies (Yuan
et al. 2007, 2012, 2014), and simulation results show PCOA’s
superiority over original COAs. The salient feature of PCOA
lies in its pseudo-parallel mechanism. In the PCOA, multiple
stochastic chaos variables are simultaneously mapped onto
one decision variable, so PCOA searches from diverse ini-
tial points and detracts the sensitivity of initial conditions.
Although the PCOA in (Yuan et al. 2007, 2012, 2014) can
easily escape from local minima, its precise exploiting capa-
bility is insufficient. Therefore, PCOA is combined with local
search method, like simplex search method (SSM) and har-
mony search algorithm (HSA). However, this kind of hybrid
PCOA with local search method is far from perfect as: the
local search method has slow efficiency, the proper switch
point from PCOA to local search method usually affects the
search performance. In addition, parallel variables in PCOA
search independently without information exchange.

To improve original PCOA, a mutative-scale pseudo-
parallel chaos optimization algorithm (MPCOA) with cross
and merging operation is proposed in this paper. Both cross
and merging operation can exchange information within pop-

ulation and produce new potential parallel variables, which
are different from those generated by chaotic sequences. In
addition, mutative-scale search space is used to continually
reduce the search space. Using cross and merging opera-
tion as well as mutative-scale strategy, MPCOA achieves a
good balance between exploration and exploitation, without
hybrid with local search method. The impacts of different
chaotic maps and parallel numbers on the MPCOA are also
discussed.

The rest of this paper is organized as follows. Section 2
briefly describes chaotic maps. The PCOA approach is intro-
duced in Sect. 3. Section 4 gives presentation of the pro-
posed MPCOA. The MPCOA is tested with benchmark func-
tions and parameter identification problem in Sects. 5 and 6,
respectively. Conclusions are presented in Sect. 7.

2 Chaotic map

One-dimensional maps are the simplest systems with the
capability of generating chaotic behaviors. Eight well-known
one-dimensional maps which yield chaotic behaviors are
introduced as follows (Yuan et al. 2014; He et al. 2001; Tava-
zoei and Haeri 2007).

1. Logistic map: Logistic map generates chaotic sequences
in (0,1). This map is also frequently used in the COAs and it
is given by:

xn+1 = 4xn(1− xn) (1)

2. Tent map: Tent chaotic map is very similar to Logistic map,
which displays specific chaotic effects. Tent map generates
chaotic sequences in (0,1) and it is given by:

xn+1 =
{

xn/0.7, xn < 0.7

( 10
3 )xn(1− xn), xn ≥ 0.7

(2)

3. Chebyshev map: Chebyshev chaotic map is a common
symmetrical region map. It is generally used in neural net-
works, digital communication and security problems. Cheby-
shev map generates chaotic sequences in [−1,1]. This map
is formally given by:

xn+1 = cos(5cos−1xn) (3)

4. Circle map: Circle chaotic map was proposed by Kol-
mogorov. This map describes a simplified model of the phase
locked loop in electronics (Tavazoei and Haeri 2007). This
map is formally given by:

xn+1 = xn + 2.5−
(

5

2π

)
sin(2πxn) mod (1) (4)
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Circle map generates chaotic sequences in (0,1). In Eq.
(4), xn+1 is computed mod 1.

5. Cubic map: Cubic map is one of the most commonly used
maps in generating chaotic sequences in various applications
like cryptography. Cubic map generates chaotic sequences in
(0,1) and it is formally given by:

xn+1 = 2.59xn

(
1− x2

n

)
(5)

6. Gauss map: Gauss map is also one of the very well
known and commonly employed map in generating chaotic
sequences in various applications like testing and image
encryption. Gauss map generates chaotic sequences in (0,1),
and it is formally given by:

xn+1 =
{

0, xn = 0
1
xn

mod (1), xn �= 0
(6)

7. ICMIC map: Iterative chaotic map with infinite collapses
(ICMIC) generates chaotic sequences in (−1,1) and it is
formally given by:

xn+1 = sin

(
70

xn

)
(7)

8. Sinusodial map: Sinusodial map generates chaotic
sequences in (0,1) and it is given by:

xn+1 = sin(πxn) (8)

The chaotic motions of these eight chaotic maps in two-
dimension space (x1, x2) with 200 iterations are illustrated in
Fig. 1. Here, the initial values of two chaos variables are: x1 =
0.152, x2 = 0.843. From Fig. 1, it can also be observed that
the distribution or ergodic property of different chaotic maps
is different. Therefore, the search performance of different
chaotic maps differs from each other in view of convergence
rate and accuracy (Yuan et al. 2012, 2014; He et al. 2001;
Tavazoei and Haeri 2007).

3 PCOA approach

The salient feature of PCOA lies in its pseudo-parallel mecha-
nism. In the PCOA, multiple stochastic chaos variables (like
population) are simultaneously mapped onto one decision
variable, and the search result is the best value of parallel
multiple chaos variables.

Consider an optimization problem for nonlinear multi-
modal function with boundary constraints as:

min f (X) = f (x1, x2, . . . , xn), xi ∈ [Li , Ui ]. (9)

where f is the objective function, and X = (x1, x2, . . . , xn)

∈ Rn is a vector in the n-dimensional decision (variable)
space (solution space), and the feasible solution space is
xi ∈ [Li , Ui ], where Li and Ui represent the lower and
upper bound of the i th variable, respectively. PCOA evolves a
stochastic population of N candidate individuals (solutions)
with n-dimensional parameter vectors. The N is the pop-
ulation size, meanwhile, the number of parallel candidate
individuals. In the following, the subscripts i and j stand
for the decision variable and parallel candidate individual,
respectively.

The process of PCOA based on twice carrier wave mech-
anism is described as follows. The first is the raw search in
different chaotic traces, while the second is refined search to
enhance the search precision.

3.1 PCOA search using the first carrier wave

Step 1: Specify the maximum number of iterations S1 in the
first carrier wave, random initial value of chaotic map 0 <

γ
(0)
i j < 1, initial iterations number l = 0, parallel optimum

P∗j = ∞ and global optimum P∗ = ∞.

Step 2: Map chaotic map γ
(l)
i j onto the variance range of

decision variable by the equation:

x (l)
i j = Li + γ

(l)
i j (Ui − Li ) (10)

Step 3: Compute the objective function value of x (l)
i j , then

update the search result. If f (x (l)
j ) < P∗j , then parallel solu-

tion x∗j = x (l)
j , parallel optimum P∗j = f (x (l)

j ). If P∗j < P∗,
then global optimum P∗ = P∗j , global solution X∗ = x∗j .
This means that the search result is the best value of parallel
candidate individuals.

Step 4: Generate next value of chaotic map using one of the
chaotic maps in Eqs. (1), (2), (3), (4), (5), (6), (7), (8):

γ
(l+1)
i j = M(γ

(l)
i j ) (11)

Step 5: If l ≥ S1 , stop the first carrier wave; otherwise
l ←− l + 1 , go to Step 2.

3.2 PCOA search using the second carrier wave

Step 1: Specify the maximum number of iterations S2 in the
second carrier wave, initial iterations number l ′ = 0, random
initial value of chaotic map 0 < γ

(l ′)
i j < 1.

Step 2: Compute the second carrier wave by the equation:

x (l ′)
i j = x∗j + λi (γ

(l ′)
i j − 0.5) (12)

Step 3: Compute the objective function value of x (l ′)
i j , then

update the search result. If f (x (l ′)
j ) < P∗j , then parallel
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(h) Sinusodial map

Fig. 1 Chaotic maps in two-dimension space with 200 iterations
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solution x∗j = x (l ′)
j , parallel optimum P∗j = f (x (l ′)

j ). If P∗j <

P∗, then global optimum P∗ = P∗j , global solution X∗ = x∗j .

Step 4: Generate next value of chaotic map γ
(l ′+1)
i j as in Eq.

(11).

Step 5: If l ′ ≥ S2, stop the second carrier wave search
process; otherwise λi ←− tλi , l ′ ←− l ′ + 1 , go to Step 2.

The λ is an adjustable parameter and adjusts small ergodic
range around x∗j , and constant t > 1. It is difficult and heuris-
tic to determine the appropriate value of λi , initial value of
λi is usually set to 0.01(Ui − Li ) (Tavazoei and Haeri 2007).

4 MPCOA approach

A mutative-scale pseudo-parallel chaos optimization algo-
rithm (MPCOA) with cross and merging operation is pro-
posed in this section. Compared with original PCOAs,
the proposed MPCOA has two obvious characteristics: (1)
MPCOA doesn’t need twice carrier wave search, only one
carrier wave search can reach good solutions; (2) Cross oper-
ation, merging operation and mutative-scale search space are
applied in MPCOA, without hybrid with local search method.

4.1 Cross operation within population

In the original PCOAs, all parallel variables search indepen-
dently according to their respective chaotic sequences with-
out information interaction. In the proposed MPCOA, the
cross operation within population will be used to find new

potential solutions. The cross operation is illustrated in Fig. 2.
This kind of cross operation randomly chooses two parallel
variables from parallel solutions x∗j to exchange with each
other, and it may produce new potential solutions which usu-
ally are different from those generated by chaotic sequences.

4.2 Merging operation within population

Even if original PCOAs have reached the neighborhood of
global optimum, it needs to spend much computational effort
to reach the optimum eventually by searching numerous
points (Yuan and Wang 2008). The reason is that precise
exploiting capability of PCOA is poor. For this reason, merg-
ing operation within population is employed in the MPCOA.
The merging operation is illustrated in Fig. 3.

The merging operation within population from parallel
solutions x∗j can be denoted by:

x (M)
i1 = γi1 ∗ x∗i1 + (1− γi1) ∗ x∗i2 (13)

where γi1 is the chaotic map.
The merging operation randomly chooses two parallel

variables from parallel solutions to merge, and it may pro-
duce new potential solutions for optimization problem. In
essence, the merging operation is a kind of local exploiting
search as shown in Eq. (13).

Both cross and merging operation within population are
used as the supplement to the PCOA search. This means that
if the new parallel variables after cross or merging operation
have reached a better fitness than the original ones, the new

Fig. 2 Cross operation within population

Fig. 3 Merging operation within population
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parallel variables will replace the original ones. In another
situation, if the new parallel variables after cross or merging
operation bring a worse fitness than the original ones, the
new parallel variables using cross or merging operation will
be given up.

Both cross and merging operation within population are
conducted at each iteration during the PCOA search pro-
cedure. Another problem is to choose how many parallel
variables for cross or merging operation. The more cross or
merging operation within population, the more diversity of
parallel variables, while the more computing cost. In this
paper, the cross operation rate is Pcross = 0.1–0.5, and the
merging operation rate is Pmerging = 0.1–0.5, i.e., about 10–
50 % of parallel solutions have been executed the cross or
merging operation.

4.3 Mutative-scale search

With the increase of iterations, the parallel solutions for opti-
mization problem will be close to each other. So the precise
exploiting search is the main task after certain iterations.
Here, mutative-scale search using contractive search space
is considered for precise exploiting search.

Mutative-scale search space is conducted by the following
equations:

L ′i = x∗i −�(Ui − Li ) (14)

U ′i = x∗i +�(Ui − Li ) (15)

where � represents a mutative-scale factor which is a
decreasing parameter with respect to iterations l described
by:

� =
(

lmax − l

lmax

)φ

(16)

where φ is an integer usually set to 2–8.
To avoid L ′i , U ′i exceeding bounds of search space

[Li , Ui ], the new search ranges are restricted to their bounds:
If L ′i < Li , then L ′i = Li ; if U ′i > Ui , then U ′i = Ui .

Then, the search space will be contracted for better accu-
rate exploiting search, and the modified search space is used
in the follow-up procedure as:

Li = L ′i (17)

Ui = U ′i (18)

4.4 MPCOA implementation

The detailed implementation of the MPCOA is presented as
follows. The process of MPCOA is also illustrated in Fig. 4.

Fig. 4 Flowchart of the proposed MPCOA approach

Step 1: Specify the maximum number of iterations lmax, ran-
dom initial value of chaotic map 0 < γ

(0)
i j < 1, set iterations

number l = 0, parallel optimum P∗j = ∞ and global opti-
mum P∗ = ∞.

Step 2: Map chaotic map γ
(l)
i j onto the variance range of

decision variable as in Eq. (10).

Step 3: Compute the objective function value of X (l), then
update the search result. If f (x (l)

j ) < P∗j , then parallel solu-

tion x∗j = x (l)
j , parallel optimum P∗j = f (x (l)

j ). If P∗j < P∗,
then global optimum P∗ = P∗j , global solution X∗ = x∗j .

Step 4: Execute cross operation and produce new parallel
variable x (C)

j . Compute the objective function value of x (C)
j ,

then update the search result. If f (x (C)
j ) < P∗j , then x∗j =

x (C)
j , P∗j = f (x (C)

j ). If P∗j < P∗, then P∗ = P∗j , X∗ = x∗j .

Step 5: Execute merging operation and produce new parallel
variable x (M)

j . Compute the objective function value of x (M)
j ,

then update the search result. If f (x (M)
j ) < P∗j , then x∗j =

x (M)
j , P∗j = f (x (M)

j ). If P∗j < P∗, then P∗ = P∗j , X∗ = x∗j .

Step 6: Conduct mutative-scale search space [L ′i , U ′i ] as in
Eqs. (14), (15), then update the search space [Li , Ui ] as in
Eqs. (17), (18).
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Table 1 Benchmark functions

No. Function Function expression Bounds n Optimum

1 Camel-back f1(x, y) = (4− 2.1x2 + x4

3 )x2 + xy + (−4+ 4y2)y2 [−20, 20] 2 −1.0316284

2 Schaffer f2(x, y) = 0.5− sin2
√

x2+y2−0.5
(1+0.001(x2+y2))2 [−20, 20] 2 1.0

3 Goldstein f3(x, y) = {1+ (x + y + 1)2(19− 14x + 3x2 − 14y + 6xy + 3y2)} [−20, 20] 2 3.0

×{30+ (2x − 3y)2(18− 32x + 12x2 + 48y − 36xy + 27y2)}
4 Rastrigin f4(xi ) =∑n

i=1{x2
i − 10 cos(2πxi )+ 10} [−5, 5] 3 0

5 Griewank f5(xi ) = 1
4,000

∑n
i=1 x2

i −
∏n

i=1 cos( xi√
i
)+ 1 [−5, 5] 20 0

6 f6(xi ) = 1
N

∑n
i=1(x4

i − 16x2
i − 5xi ) [−10, 10] 20 −78.3323314

7 Rosenbrock f7(xi ) = 1
n

∑n
i=1{10(xi+1 − x2

i )2 + (xi − 1)2} [−10, 10] 20 0

8 Ackley f8(xi ) = −20 exp

{
−0.2

√∑n
i=1 x2

i
n

}
− exp

{∑n
i=1 cos(2πxi )

n

}
+ 20+ e [−10, 10] 20 0

Step 7: Generate next value of chaotic map γ
(l+1)
i j as in Eq.

(11).

Step 8: If l ≥ lmax , stop the search process; otherwise l ←−
l + 1 , go to Step 2.

5 Benchmark functions simulation

5.1 Benchmark functions

Well-defined benchmark functions which are based on the
mathematical functions can be used as objective functions to
measure and test the performance of optimization algorithms.
The efficiency and performance of the MPCOA are evaluated
with eight common benchmark functions as in Table 1.

Among these benchmark functions, the former four have
two or three decision variables, and the latter four have 20
decision variables. These functions are often multi-modal
and several of them have many local minima, as illustrated
in Fig. 5.

5.2 Different parallel numbers N for MPCOA

Like the population size to evolutionary computing, the par-
allel number N in MPCOA is one parameter that a researcher
has to deal with. We still largely depend on the experience or
trial-and-error approach to set parameters. Generally speak-
ing, too small parallel number N leads to similar conver-
gence of original COAs, while too large parallel number N
is computationally costly. Now we will investigate how par-
allel number N will influence the MPCOA performance. The
parameters in the MPCOA are: Pcross = 0.5, Pmerging = 0.5,
φ = 6, different parallel numbers N have been investigated,
tent map in Eq. (2) is used as the chaotic map. For differ-
ent optimization problems, appropriate number of maximum
iterations lmax of MPCOA is usually different. An appropriate
lmax is usually chosen with multiple runs until finding the one

which yields an appropriate result. In this simulation, lmax is
chosen by trial with multiple runs and is labeled in Fig. 6.
Convergence performance of MPCOA on benchmark func-
tions with different parallel numbers (N = 6, 12, 20, 30)
is shown in Fig. 6.

The simulation results on benchmark functions obtained
by MPCOA with different parallel numbers N are reported
in Table 2, which shows the statistical result in 20 runs. The
‘Best’, ‘Worst’ and ‘Mean’ represent the best, the worst and
the average objective function value by MPCOA in 20 runs,
respectively. The ‘Rate’ represents the success rate of reach-
ing the global optimum X∗ with the error less than 0.01.

It can be seen from Fig. 6 and Table 2 that parallel num-
ber N has a direct impact on the search result of MPCOA.
With the increase of parallel number N , the search speed
of MPCOA is faster and the search results are better. For
these benchmark functions, the proposed MPCOA achieves
satisfactory success rate and global optimum when N = 30.

5.3 Different chaotic maps for MPCOA

The performance of MPCOA using different chaotic maps
described in Eqs. (1), (2), (3), (4), (5), (6), (7), (8) will be
investigated here. The MPCOA parameters are: N = 20,
Pcross = 0.5, Pmerging = 0.5, φ = 6. The simulation
results on benchmark functions by the MPCOA using dif-
ferent chaotic maps are reported in Table 3. It can be seen
from Table 3 that there is very little difference with respect to
different chaotic maps for MPCOA. From Table 3, it can be
seen that the sinusodial map, tent map and Gauss map show
better simulation results than other maps in these tests.

5.4 Comparison of MPCOA with other PCOAs

The proposed MPCOA is also compared with other PCOAs
in Yuan et al. (2007, 2012). With the similar conditions and
parameters as Pcross = 0.5, Pmerging = 0.5, φ = 6 and
tent, map is used. The simulation results of success rate by
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Fig. 5 Benchmark functions f1− f8 illustrated in two-dimension space
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Fig. 6 Convergence performance of MPCOA on benchmark functions with different parallel numbers N
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Table 2 Simulation results obtained by MPCOA with different parallel numbers N

N Stats f1 f2 f3 f4 f5 f6 f7 f8

N = 6 Best −1.031611 0.999924 3.000026 0.000023 0.000015 −78.332122 0.000025 0.000010

Worst −1.030079 0.997144 3.000203 0.013295 0.092684 −78.108911 0.038068 0.058219

Mean −1.031254 0.998973 3.000081 0.002467 0.033172 −78.261844 0.01329 0.020560

Rate (%) 90 85 90 70 30 50 40 55

N = 12 Best −1.031627 0.999956 3.000009 0.000031 0.000014 −78.332207 0.000024 0.000007

Worst −1.031571 0.999035 3.000126 0.001893 0.073410 −78.138363 0.012648 0.047533

Mean −1.031602 0.999318 3.000058 0.000809 0.023561 −78.307064 0.002257 0.011381

Rate (%) 100 100 95 90 45 70 75 80

N = 20 Best −1.031628 1.0 3.0 0.000023 0.000015 −78.332331 0.000015 0.000008

Worst −1.031625 0.999637 3.000085 0.000782 0.042661 −78.327161 0.002134 0.012834

Mean −1.031627 0.999750 3.000065 0.000431 0.004982 −78.331905 0.000927 0.008245

Rate (%) 100 100 100 90 75 90 90 90

N = 30 Best −1.031628 1.0 3.0 0.0 0.000001 −78.332331 0.000004 0.0

Worst −1.031627 0.999812 3.000086 0.000240 0.022522 −78.332169 0.000849 0.005968

Mean −1.031627 0.999885 3.000041 0.000061 0.003735 −78.332284 0.000593 0.004130

Rate (%) 100 100 100 100 90 100 95 100

Table 3 Simulation results obtained by MPCOA using different chaotic maps

Map Stats f1 f2 f3 f4 f5 f6 f7 f8

Logistic Best −1.031627 0.999991 3.0 0.000041 0.000071 −78.332322 0.000033 0.000002

Mean −1.031625 0.999723 3.000081 0.000575 0.014522 −78.330407 0.001306 0.008225

Rate (%) 100 100 95 95 70 80 85 90

Tent Best −1.031628 1.0 3.0 0.000023 0.000015 −78.332331 0.000015 0.000008

Mean −1.031627 0.999750 3.000065 0.000431 0.004982 −78.331905 0.000927 0.008245

Rate (%) 100 100 100 90 75 90 90 90

Chebyshev Best −1.031626 0.999928 3.000009 0.000037 0.000045 −78.332330 0.000061 0.000021

Mean −1.031625 0.998522 3.000068 0.001507 0.010334 −78.326544 0.005605 0.007233

Rate (%) 100 90 95 85 65 85 80 95

Circle Best −1.031628 0.999990 3.000008 0.000066 0.000078 −78.332314 0.000025 0.000007

Mean −1.031622 0.999135 3.000089 0.000836 0.011372 −78.328211 0.002493 0.008514

Rate (%) 100 95 95 90 70 85 80 90

Cubic Best −1.031628 0.999866 3.0 0.000014 0.000020 −78.332330 0.000066 0.000003

Mean −1.031626 0.999671 3.000075 0.000643 0.012365 −78.327665 0.003229 0.007288

Rate (%) 100 100 100 95 65 80 85 95

Gauss Best −1.031628 0.999951 3.000006 0.000050 0.000011 −78.332331 0.000050 0.0

Mean −1.031627 0.999102 3.000068 0.001022 0.008550 −78.331439 0.001272 0.007529

Rate (%) 100 95 100 90 75 90 90 95

ICMIC Best −1.031627 0.999988 3.000011 0.000072 0.000066 −78.332314 0.000024 0.000011

Mean −1.031623 0.998852 3.000078 0.001458 0.010612 −78.330309 0.002218 0.009137

Rate (%) 95 95 100 80 60 85 80 85

Sinusodial Best −1.031628 1.0 3.0 0.000013 0.000006 −78.332331 0.000009 0.0

Mean −1.031627 0.999736 3.000049 0.000145 0.005707 −78.331872 0.001042 0.007147

Rate (%) 100 100 100 100 80 95 95 100
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Table 4 The success rate by different PCOAs

Algorithm N f1 (%) f2 (%) f3 (%) f4 (%) f5 (%) f6 (%) f7 (%) f8 (%)

PCOA1 6 80 85 65 55 25 50 40 60

12 90 85 90 75 40 60 65 75

20 95 90 95 90 65 80 80 85

30 100 95 100 90 75 85 90 90

PCOA2 6 80 85 90 60 25 45 45 60

12 85 90 90 85 45 65 60 70

20 95 90 95 90 60 80 85 90

30 100 95 100 95 70 90 90 100

MPCOA 6 90 85 85 70 30 50 40 55

12 100 100 95 90 45 70 75 80

20 100 100 100 90 75 90 90 90

30 100 100 100 100 90 100 95 100

Table 5 Simulation results obtained by different algorithms in 30 runs

Algorithm Stats f1 f2 f3 f4 f5 f6 f7 f8

PSO Best −1.031628 1.0 3.0 0.0 1e−06 −78.332269 3.5e−04 3.2e−05

Mean −1.031626 0.999984 3.000029 0.011968 0.004026 −67.541022 1.780975 0.848533

Std. Dev. 1.0e−06 7.0e−06 1.5e−05 8.6e−03 3.1e−03 7.6e−00 7.7e−01 3.6e−01

CMAES Best −1.031628 0.999925 3.0 0.029721 0.0 −78.332301 1e−06 3e−06

Mean −1.022527 0.996273 3.000137 0.070160 0.001355 −71.321755 0.275337 0.097554

Std. Dev. 8.4e−03 1.8e−03 5.8e−05 2.9e−02 8.2e−04 6.2e−00 1.2e−01 6.6e−02

SaDE1 Best −1.031628 0.999998 3.0 0.000527 2e−06 −78.332295 2e−06 1e−06

Mean −1.031627 0.997836 3.0 0.045876 0.003392 −67.814031 0.409426 0.136457

Std. Dev. 1.0e−06 1.7e−03 0.0e−00 3.2e−02 2.4e−03 8.5e−00 2.3e−01 8.2e−02

SaDE2 Best −1.031628 1.0 3.0 0.000561 0.0 −78.332306 4.1e−05 1e−06

Mean −1.031628 0.999328 3.000032 0.001673 0.008935 −72.136417 0.825630 0.035904

Std. Dev. 0.0e−00 4.3e−04 1.2e−05 7.3e−04 5.2e−03 5.5e−00 4.8e−01 1.4e−02

MPCOA Best −1.031628 1.0 3.0 1.3e−05 6e−06 −78.332331 9e−06 0.0

Mean −1.031627 0.999736 3.000049 0.000145 0.005707 −78.331872 0.001042 0.007147

Std. Dev. 1.0e−06 2.0e−04 3.1e−05 1.1e−04 2.4e−03 1.0e−03 1.5e−04 2.2e−03

these three algorithms are shown in Table 4, where ‘PCOA1’
and ‘PCOA2’ represent PCOA+CCIC and PCOA+HSA in
Yuan et al. (2007) and (2012), respectively. From Table 4,
one knows that with the increase of parallel number N , the
success rate of these PCOAs becomes higher. In each case,
the MPCOA shows higher success rate than other PCOAs.
The simulation results in Table 4 also verify the superiority
of MPCOA compared with other PCOAs.

5.5 Comparison of MPCOA with other algorithms

Here, the MPCOA ( parameters are: N = 20, Pcross = 0.5,
Pmerging = 0.5, φ = 6, sinusodial map is used) is also com-
pared with four widely used evolutionary algorithms, they
are: particle swarm optimization algorithm (PSO) (Thangaraj
et al. 2011), covariance matrix adaptation evolution strat-

egy (CMAES) (Igel et al. 2007), self-adaptive differential
evolution algorithm (SaDE1) (Brest et al. 2006) and self-
adaptive differential evolution algorithm (SaDE2) (Qin and
Suganthan 2005). The simulation results on benchmark func-
tions obtained by these algorithms in 30 runs are reported in
Table 5. In addition to the ‘Best’ and ‘Mean’, the standard
deviation of the mean objective function value (Std. Dev.) is
also compared. It can be seen from Table 5 that the proposed
MPCOA has achieved the best result among these algorithms
in f4, f6, f7 and f8.

6 Parameter identification of synchronous generator

In this section, simulations are performed to evaluate the
performance of the MPCOA for parameter identification of
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Fig. 8 Average relative errors of 11 variables obtained by different
algorithms

synchronous generator. The mathematical model of synchro-
nous generator and the fitness function for this problem are
the same in Zhu et al. (2012), Yuan et al. (2012). Similar to
Zhu et al. (2012), Yuan et al. (2012), 11 variables values (Xd ,
X
′
d , X

′′
d , T

′
d0, T

′′
d0, K , Xq , X

′′
q , T

′′
q0, M , D) are to be identified

by optimization algorithms. The parameters of MPCOA are
chosen as: N = 20, Pcross = 0.5, Pmerging = 0.5, φ = 6,
lmax = 3, 000, Sinusodial map is used, the number of deci-
sion variables n = 11. Here, the relative error is used to eval-
uate parameter identification performance as: ‖ x−x̂

x ∗100 %‖,
where x and x̂ are the actual parameter value and the identi-
fied value, respectively.

Average relative errors of 11 identified variables by dif-
ferent algorithms repeated for 10 runs are shown in Figs. 7

and 8. The ‘COA’, ‘PCOA1’, ‘PCOA2’ and ‘MPCOA’ rep-
resent original COA, PCOA+CCIC, PCOA+HSA and pro-
posed MPCOA, respectively. It can be seen from Figs. 7 and
8 that the MPCOA has the smallest average relative errors of
these 11 variables. The parameter identification results have
also verified that the proposed MPCOA has superiority over
original PCOAs.

7 Conclusion

In the present paper, a novel MPCOA with cross and merg-
ing operation is proposed to improve original PCOA. With
the increase of parallel number, MPCOA has better success
rate and converge speed. Simulation results show that there
is a little difference between different chaotic maps. It is
observed that obvious performance improvement is possible
by the MPCOA. Benchmark tests and parameter identifica-
tion results have shown that the MPCOA has better perfor-
mance than original PCOAs.

References

Alatas B (2010) Chaotic harmony search algorithms. Appl Math Com-
put 216(9):2687–2699

Arunkumar R, Jothiprakash V (2013) Chaotic evolutionary algorithms
for multi-reservoir optimization. Water Resour Manag 27(15):5207–
5222

Askarzadeh A (2013) A discrete chaotic harmony search-based sim-
ulated annealing algorithm for optimum design of PV/wind hybrid
system. Solar Energy 97:93–101

Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a comparative
study on numerical benchmark problems. IEEE Trans Evol Comput
10(6):646–657

Chen SS (2011) Chaotic simulated annealing by a neural network with
a variable delay: design and application. IEEE Trans Neural Netw
22(10):1557–1565

Chen JY, Lin QZ, Ji Z (2011) Chaos-based multi-objective immune
algorithm with a fine-grained selection mechanism. Soft Comput
15(7):1273–1288

Cheng MY, Huang KY, Chen HM (2012) K-means particle swarm opti-
mization with embedded chaotic search for solving multidimensional
problems. Appl Math Comput 219(6):3091–3099

Coelho LD, Pessoa MW (2011) A tuning strategy for multivariable
PI and PID controllers using differential evolution combined with
chaotic Zaslavskii map. Expert Syst Appl 38(11):13694–13701

Coelho LD, Mariani VC (2012) Firefly algorithm approach based on
chaotic Tinkerbell map applied to multivariable PID controller tun-
ing. Comput Math Appl 64(8):2371–2382

Davendra D, Senkerik R, Zelinka I, Pluhacek M, Bialic-Davendra M
(2014) Utilising the chaos-induced discrete self organising migrating
algorithm to solve the lot-streaming flowshop scheduling problem
with setup time. Soft Comput 18(4):669–681

Hamaizia T, Lozi R, Hamri NE (2012) Fast chaotic optimization algo-
rithm based on locally averaged strategy and multifold chaotic attrac-
tor. Appl Math Comput 219(1):188–196

He D, He C, Jiang LG, Zhu HW, Yu GR (2001 Chaotic characteris-
tics of a onedimensional iterative map with infinite collapses. In:

123



A mutative-scale pseudo-parallel chaos optimization algorithm 1227

IEEE transactions on circuits and systems I: fundamental theory and
applications, vol 48, no 7, pp 900–906

Ho SL, Yang SY (2012) A fast robust optimization methodology based
on polynomial chaos and evolutionary algorithm for inverse prob-
lems. IEEE Trans Magn 48(2):259–262

Hong WC (2011) Traffic flow forecasting by seasonal SVR with chaotic
simulated annealing algorithm. Neurocomputing 74(12-13):2096–
2107

Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for
multi-objective optimization. Evol Comput 15(1):1–28

Kromer P, Zelinka I, Snasel V (2014) Behaviour of pseudo-random
and chaotic sources of stochasticity in nature-inspired optimization
methods. Soft Comput 18(4):619–629

Li B, Jiang WS (1998) Optimizing complex function by chaos search.
Cybern Syst 29(4):409–419

Li YY, Wen QY, Zhang BH (2012) Chaotic ant swarm optimization
with passive congregation. Nonlinear Dyn 68(1–2):129–136

Liu LZ, Zhang JQ, Xu GX, Liang LS, Huang SF (2013) A modi-
fied chaotic ant swarm optimization algorithm. Acta Phys Sinica
62(17):170501

Ma ZS (2012) Chaotic populations in genetic algorithms. Appl Soft
Comput 12(8):2409–2424

Okamoto T, Hirata H (2013) Global optimization using a multipoint type
quasi-chaotic optimization method. Appl Soft Comput 13(2):1247–
1264

Pluhacek M, Senkerik R, Zelinka I (2014) Particle swarm optimization
algorithm driven by multichaotic number generator. Soft Comput
18(4):631–639

Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algo-
rithm for numerical optimization. In: IEEE CEC 2005. Proceedings
of IEEE congress on evolutionary computation, vol 2, pp 1785–1791

Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional
maps as chaotic search pattern in chaos optimization algorithms.
Appl Math Comput 187(2):1076–1085

Thangaraj R, Pant M, Abraham A (2011) Particle swarm optimization:
hybridization perspectives and experimental illustrations. Appl Math
Comput 217(12):5208–5226

Wan M, Wang C, Li L, Yang Y (2012) Chaotic ant swarm approach for
data clustering. Appl Soft Comput 12(8):2387–2393

Wu Q (2011) A self-adaptive embedded chaotic particle swarm opti-
mization for parameters selection of Wv-SVM. Expert Syst Appl
38(1):184–192

Yang DX, Gang L, Cheng GD (2006) Convergence analysis of first
order reliability method using chaos theory. Comput Struct 84(8–
9):563–571

Yang DX, Li G, Cheng GD (2007) On the efficiency of chaos opti-
mization algorithms for global optimization. Chaos Solitons Fractals
34(4):1366–1375

Yang YM, Wang YN, Yuan XF, Yin F (2012) Hybrid chaos optimization
algorithm with artificial emotion. Appl Math Comput 218(11):6585–
6611

Yang DX, Liu ZJ, Zhou JL (2014) Chaos optimization algorithms based
on chaotic maps with different probability distribution and search
speed for global optimization. Commun Nonlinear Sci Numer Simul
19(4):1229–1246

Yuan XF, Wang YN, Wu LH (2007) Parallel chaotic optimization algo-
rithm based on competitive-cooperative inter-communication. Con-
trol Decis 22(9):1027–1031

Yuan XF, Wang YN (2008) Parameter selection of support vector
machine for function approximation based on chaos optimization.
J Syst Eng Electr 19(1):191–197

Yuan XF, Yang YM, Wang H (2012) Improved parallel chaos optimiza-
tion algorithm. Appl Math Comput 219(8):3590–3599

Yuan XF, Zhao JY, Yang YM, Wang YN (2014) Hybrid parallel chaos
optimization algorithm with harmony search algorithm. Appl Soft
Comput 17:12–22

Zhu Q, Yuan XF, Wang H (2012) An improved chaos optimization
algorithm-based parameter identification of synchronous generator.
Electr Eng 94(3):147–153

123


	A mutative-scale pseudo-parallel chaos optimization algorithm
	Abstract 
	1 Introduction
	2 Chaotic map
	3 PCOA approach
	3.1 PCOA search using the first carrier wave
	3.2 PCOA search using the second carrier wave

	4 MPCOA approach
	4.1 Cross operation within population
	4.2 Merging operation within population
	4.3 Mutative-scale search
	4.4 MPCOA implementation

	5 Benchmark functions simulation
	5.1 Benchmark functions
	5.2 Different parallel numbers N for MPCOA
	5.3 Different chaotic maps for MPCOA
	5.4 Comparison of MPCOA with other PCOAs
	5.5 Comparison of MPCOA with other algorithms

	6 Parameter identification of synchronous generator
	7 Conclusion
	References


