
Soft Comput (2015) 19:1153–1169
DOI 10.1007/s00500-014-1329-2

METHODOLOGIES AND APPLICATION

A PSO-based timing-driven Octilinear Steiner tree algorithm
for VLSI routing considering bend reduction

Genggeng Liu · Wenzhong Guo · Yuzhen Niu ·
Guolong Chen · Xing Huang

Published online: 8 June 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Constructing a timing-driven Steiner tree is very
important in VLSI performance-driven routing stage. Mean-
while, non-Manhattan architecture is supported by several
manufacturing technologies and now well appreciated in
the chip manufacturing circle. However, limited progress
has been reported on the non-Manhattan performance-driven
routing problem. In this paper, an efficient algorithm, namely,
TOST_BR_MOPSO, is presented to construct the minimum-
cost spanning tree with a minimum radius for performance-
driven routing in Octilinear architecture (one type of the
non-Manhattan architecture) based on multi-objective parti-
cle swarm optimization (MOPSO) and Elmore delay model.
Edge transformation is employed in our algorithm to make
the particles have the ability to achieve the optimal solution
while Union-Find partition is used to prevent the generation
of invalid solution. For the purpose of reducing the num-
ber of bends which is one of the key factors of chip manu-

Communicated by V. Loia.

G. Liu · W. Guo (B) · Y. Niu · G. Chen · X. Huang
College of Mathematics and Computer Science,
Fuzhou University, Fuzhou 350116, China
e-mail: fzugwz@163.com

G. Liu
e-mail: liu_genggeng@126.com

Y. Niu
e-mail: yuzhenniu@gmail.com

G. Chen
e-mail: fzucgl@163.com

X. Huang
e-mail: fzu_hx@163.com

W. Guo · G. Chen
Fujian Provincial Key Laboratory of Network Computing
and Intelligent Information Processing, Fuzhou University,
Fuzhou 350116, China

facturability, we also present an edge-vertex encoding strat-
egy combined with edge transformation. To our best knowl-
edge, no approach has been proposed to optimize the number
of bends in the process of constructing the non-Manhattan
timing-driven Steiner tree. Moreover, the theorem of Markov
chain is used to prove the global convergence of our proposed
algorithm. Experimental results indicate that the proposed
MOPSO is worthy of being studied in the field of multi-
objective optimization problems, and our algorithm has a
better tradeoff between the wire length and radius of the rout-
ing tree and has achieved a better delay value. Meanwhile,
combining edge transformation with the encoding strategy,
the proposed algorithm can significantly reduce nearly 20 %
in the number of bends.

Keywords Very large scale integration (VLSI) ·
Performance-driven routing · Octilinear Steiner tree
(OST) · Particle swarm optimization (PSO) · Timing delay ·
Number of bends

1 Introduction

Global routing is one of the most important steps in very large
scale integration (VLSI) physical design. The construction
of Steiner minimum tree (SMT), which seeks to connect the
given points in the plane with additional points (called Steiner
points) in the minimum cost, is essential for each signal net
of the chip in the global routing stage. In recent years, the
optimization goals of global routing include the length of
interconnect wires, interconnect delay, congestion, vias and
others (Ho et al. 2007; Hu and Sapatnekar 2001).

The early construction methods for SMT focused on
achieving a minimal total length of interconnect wires.
Warme et al. (1998) presented an exact algorithm called

123

1154 G. Liu et al.

GeoSteiner, which is currently the fastest method for con-
structing the optimal Rectilinear Steiner minimal tree
(RSMT) in plane Steiner tree problem. However, GeoSteiner
has a high time complexity and is impractical with the
increasing scale of the problem. Recently, researchers have
started getting interested in more efficient heuristic algo-
rithms. A well-known near-optimal algorithm was presented
(Borah et al. 1994). A very fast and accurate RSMT algorithm
called fast lookup table estimation (FLUTE) was presented
by Chu and Wong (2008). FLUTE is optimal for the net
with degrees below 9 and very fast with high accuracy. An
RSMT algorithm based on discrete particle swarm optimiza-
tion (DPSO) and genetic operators was presented to mini-
mizing the wire length (Liu et al. 2011).

In recent years, as the chip feature size sharply shrinks,
timing delay has become a critical issue in the nanome-
ter VLSI routing. As a consequence, some performance-
driven routing algorithms have been studied. A provably
good timing-driven Steiner tree algorithm was presented
to optimize the interconnect delay (Cong et al. 1992). The
model for the minimum-cost spanning tree with a minimum
radius (MRMCST) was adopted to construct the routing trees
for performance optimization (Seo and Lee 1999). Hou et al.
(1999) developed a performance-driven routing formulation
whose objective is to meet a specified delay constraint at each
sink and introduced the flexibility of a Steiner point to reduce
wire delay. Yan (2006) proposed an efficient assignment
approach by reassigning the feasible locations of the Steiner
points in a routing tree to reconstruct a timing-constrained
flexibility-driven routing tree.

Generally, congestion and vias are the important metrics of
chip quality and impact the routability. A single-layer global
router was proposed to control the congestion and reduce the
number of bends (Sarrafzadeh et al. 1994). Since a bend in the
layer assignment or detailed routing phase usually implies a
switching of layers and causes the use of more vias, reduc-
ing the number of bends is helpful for reducing the number
of vias. Thus, Liang et al. (2007) presented an RSMT algo-
rithm based on gravitation direction to reduce the number
of bends through using the gravitation that a point received
from other points to judge its moving direction. Bozorgzadeh
et al. (2003) presented the concept of flexibility and an algo-
rithm which input a Steiner tree and output a more flexi-
ble Steiner tree to increase its routability. Yan (2006) also
exploited the flexibility improvement of the edges in a rout-
ing tree to release the routing congestion.

However, the above algorithms focus on the construc-
tion of the Manhattan Steiner tree. With advances in VLSI
fabrication technology, the interconnect effects become the
major challenge of chip performance. Manhattan architec-
ture which restricts the routing to be only horizontal and
vertical directions has limited the ability to optimize wire
length and timing delay. Consequently, there are more and

more interest in non-Manhattan routing which allows more
routing directions and could further improve the routability
(Koh and Madden 2000; Teig 2002).

In order to study non-Manhattan routing, the first work is
to construct the SMT in non-Manhattan architecture. Non-
Manhattan Steiner tree includes Octilinear Steiner tree (OST)
and Hexagonal Steiner tree. An exact algorithm and a vari-
ety of pruning techniques were introduced to construct the
Octilinear Steiner minimal tree (OSMT) (Coulston 2003).
An O(|V | + |E |) algorithm was proposed to build an OST
which must be isomorphic to the given Rectilinear Steiner
tree (Chiang and Chiang 2002). |V | and |E | are the number
of vertices and that of the edges of the given tree, respec-
tively. The spanning graph-based Octilinear Steiner tree algo-
rithms were presented by Zhu et al. (2005). Samanta et al.
(2006) proposed a heuristic method to constructing Hexago-
nal Steiner minimal tree. Since the SMT problem is an NP-
hard problem (Garey and Johnson 1997), some evolutionary
algorithms, which have been shown to have good application
prospects in solving NP-hard problems, were presented for
solving RSMT problem (Arora and Mose 2009; Liu et al.
2011) and OSMT problem (Arora and Mose 2009; Liu et al.
2012).

For the non-Manhattan routing problem, constructing the
timing-driven Steiner minimum tree is very important in
dominating the performance of a chip, although related
research is fairly inadequate. Yan (2008) proposed an effi-
cient transformation-based approach to construct a timing-
driven Octilinear Steiner tree (TOST) based on Octilinear
architecture. Furthermore, Samanta et al. (2011) constructed
a near-optimal timing-driven Hexagonal Steiner tree based
on the two-pole and Elmore delay estimate model in Hexag-
onal architecture. However, the quality of TOST constructed
by the former work was deeply dependent on the optimiza-
tion order of the Steiner points and the quality of the ini-
tial solution. Consequently, it was easy to be converged to
the local optimum. The latter proposed by Samanta et al.
(2011) focused on the delay estimation model and Hexago-
nal architecture. Furthermore, via minimization can reduce
circuit delay and enhance the manufacturability of the cir-
cuit. Reducing the number of bends is helpful for reducing
the number of vias and reducing the number of bends is eas-
ier than via minimization in the later phases. As a result,
it is necessary to study the Steiner tree construction algo-
rithm considering bend reduction. However, to the best of
our knowledge, no approach is proposed to reduce the num-
ber of bends for the non-Manhattan timing-driven Steiner
tree construction. Aiming at the aspects concerned above,
this paper employs an effective algorithm based on multi-
objective particle swarm optimization (MOPSO) to con-
struct a TOST for VLSI routing considering bend reduction,
namely, TOST_BR_MOPSO. Our main contributions are as
follows:

123

A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction 1155

1. In contrast to previous work (Liu et al. 2012) which
only takes into account the transformation of Steiner
point, we introduce the edge-transformation strategy to
improve the evolutionary process of the particles. And
the novel strategy could simultaneously transform the
Steiner points and edges of the routing tree. Conse-
quently, compared with OST (Liu et al. 2012), the routing
tree can decrease a certain amount of wire length on one
hand. It is very necessary that the initial particles have
the ability to transform to MRMCST by the introduction
of edge-transformation strategy on the other hand.

2. On the basis of the definition of the pseudo-Steiner point
and the flexibility of the pseudo-Steiner point, an efficient
encoding strategy is proposed to optimize the number of
bends by reassigning the exact location of each pseudo-
Steiner point in four different ways. Simultaneously, the
edge transformation is well combined with our proposed
edge-vertex encoding scheme for bend reduction which is
one of the highlights of our work. As a result, the method
with the encoding strategy can reduce nearly 20 % in the
number of bends. However, the work (Liu et al. 2012) did
not consider the bend reduction without using the edge
transformation.

3. We make use of the MRMCST model based on the
computation of the Octilinear distance to find a timing-
driven routing tree in an Octilinear architecture. In order
to simultaneously optimize the two objectives of wire
length and radius which are often competing objectives,
we design a multi-objective algorithm based on discrete
particle swarm optimization (PSO) for constructing the
timing-driven Octilinear routing tree. The experimental
results show that the final trees achieve a major decrease
in maximum source-to-sink delay and total source-to-
sink delay than the RSMTs and OSMTs which focus
on the optimization of wire length and are respectively
constructed in one literature (Liu et al. 2011) and the
other literature (Liu et al. 2012). Moreover, based on
the 0.18 µm technology (namely, tost IC technology),
the final tree constructed by our algorithm could obtain
2.08 % smaller than the TOST constructed by Yan (2008)
in wire length, 5.22 % smaller in radius, 4.93 % smaller
in the maximum source-to-sink delay, 10.07 % smaller
in the total source-to-sink delay and nearly 20 % smaller
in the number of bends. All that work is also different to
previous work (Liu et al. 2012).

4. Different from the work by Liu et al. (2012), we pro-
vide the detail process of convergence analysis for our
proposed algorithm, expressed in Sect. 3.3. To study the
performance of the proposed algorithm, three groups of
experiments including performance analysis of MOPSO,
comparison with the two Steiner minimal tree algorithms,
and comparison with the timing-driven Octilinear Steiner
tree construction method, are carried out in Sect. 4.

The remainder of the paper is organized as follows. We
formulate the problem and introduce some basic definitions
in Sect. 2. We describe the basic particle swarm optimiza-
tion algorithm and the PSO-based timing-driven Octilinear
Steiner tree algorithm considering bend reduction in Sect. 3,
while the detailed process of algorithm convergence analy-
sis is also provided. To prove the good performance of our
proposed algorithm, we present several comparisons with
other approaches and give the experimental results in Sect. 4.
Finally, the conclusions and possible future work are left for
Sect. 5.

2 Problem description

2.1 OSMT problem

Octilinear Steiner minimal tree problem is to connect all pins
in the plane through Steiner points to achieve a minimal total
length in VLSI routing. It allows 45◦ and 135◦ routing direc-
tions in addition to traditional horizontal and vertical orien-
tations (Zhu et al. 2005).

OSMT problem can be stated as follows. Let P =
{P1, P2, P3, . . . , Pm} be the set for the net N of m pins, where
each Pi is assigned with its coordinate (xi , yi). We show an
example net in Fig. 1. The input information for pins is listed
in Table 1. The layout is a case of Yan (2008). Each pin has
the corresponding coordinate (xi , yi), e.g., the pin 1 is located
at (1, 6).

2.2 Elmore delay model

In our work, the Elmore delay model (Boese et al. Boese93;
Yehea et al. 1999) is used to calculate the delay and this

0 2 4 6 8 10
0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Fig. 1 An example net. The layout coordinates of the pins is listed in
Table 1

Table 1 Input information for seven pins

No. 1 2 3 4 5 6 7

X_Label 1 3 5 6 7 9 10

Y_Label 6 4 1 6 3 1 5

123

1156 G. Liu et al.

1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

A

B

L

(a)
1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

A

B

S

(b)
1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

A

B

S

(c)
1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

A

BS

(d)
1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

A

B

S

(e)

Fig. 2 Four options of Steiner point for the given line segment. a Line segment L, b 0 choice, c 1 choice, d 2 choice, e 3 choice

delay model is described as follows. Given the net N and
one of the corresponding routing trees T (N), let ei , whose
resistance and capacitance are respectively denoted by re j

and ce j , denote the edge from node i to its parent point in
T (N). Let T (N)i denote the subtree of T (N) rooted at i and
Ci , which is the sum of capacitances of all sinks and edges
in T (N)i , be the lumped capacitance. Let n0 be the source
node, whose resistance and capacitance are denoted by R0

and C0, and then the Elmore delay of sink point i can be
calculated as follows.

ti = R0 × C0 +
∑

e j ∈path(s,i)

re j × (ce j /2 + C j) (1)

where path(s, i) is the set of all edges in the path from source
to i .

The Elmore delay model has the following advantages.
Firstly, the time complexity for evaluating the delay values
of all sink points in the routing tree to source point is O(n).
Thus, the computation of Elmore delay model is small. Sec-
ondly, the computational accuracy of the Elmore delay model
is higher than linear delay model. Finally, the near-optimal
or optimal routing trees calculated by Elmore delay model
have the equal prepotency with those calculated by other high
order delay model. Consequently, we evaluate the delay from
each sink point in the routing tree to source point according
to Eq. 1.

2.3 Definitions

Definition 1 In the λ-geometry, the routing direction is
iπ/λ, where i is an arbitrary integer and λ is an integer. Dif-
ferent routing directions are obtained with different values
of i and λ.

1. Manhattan architecture (or rectilinear architecture): The
value of λ is set to be 2, i.e., the routing direction is
iπ/2, which includes 0◦ and 90◦, namely, horizontal and
vertical orientation.

2. Hexagonal architecture: The value of λ is set to be 3, i.e.,
the routing direction is iπ/3, which includes 0◦, 60◦ and
120◦.

3. Octilinear architecture: The value of λ is set to be 4, i.e.,
the routing direction is iπ/4, which includes 0◦, 45◦,
90◦ and 135◦. Both (2) and (3) belong to non-Manhattan
architecture.

Definition 2 (Pseudo-Steiner) For convenience, we assume
that the endpoints except for the pins collectively referred to
as pseudo-Steiner points.

Definition 3 (0 Choice) In Fig. 2a, let A = (x1, y1) and B =
(x2, y2) be the two endpoints of a line segment L , x1 < x2.
The 0 Choice of pseudo-Steiner point corresponding to edge
L is given in Fig. 2b, which first from A leads Rectilinear
side to pseudo-Steiner point and then leads Octilinear side to
B.

Definition 4 (1 Choice) The 1 Choice of pseudo-Steiner
point corresponding to edge L, as shown in Fig. 2c, which
first from A leads Octilinear side to pseudo-Steiner point and
then leads Rectilinear side to B.

Definition 5 (2 Choice) The 2 Choice of pseudo-Steiner
point corresponding to edge L is given in Fig. 2d, which
first from A leads vertical side to pseudo-Steiner point and
then leads horizontal side to B.

Definition 6 (3 Choice) The 3 Choice of pseudo-Steiner
point corresponding to edge L, as shown in Fig. 2e, which
first from A leads horizontal side to pseudo-Steiner point and
then leads vertical side to B.

2.4 MRMCST model

Given the set of pins shown in Fig. 3a, the special distrib-
ution of those pins, which the source, namely, S, is in the
center of circle surrounded by other pins, could help us com-
pare images to distinguish the three different types of trees.
The minimum spanning tree (MST), as shown in Fig. 3b,
has the minimum wire length which is an important metric
for placement and routing. However, MST for routing may
result in longer critical paths which bring larger time delay
and worsen the performance of chip. In Fig. 3c, it shows
the shortest path tree (SPT) which rather has the minimum

123

A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction 1157

Fig. 3 Different topologies for
the given pin set. a The set of
pins, b minimum spanning tree,
c shortest path tree, d MRMCST
(Ho et al. 2007)

critical path, but the wire length may be larger than MSTs.
The radius of tree means the maximum timing delay in chip
design. Meanwhile, minimizing the wire length minimizes
a drivers output resistance and the total wire capacitance in
layout design. Thus, these two metrics should be optimized
for improving the overall chip performance (Ho et al. 2007).

Furthermore, MRMCST model with smooth trade-off
between the radius and the wire length, as shown in Fig. 3d,
could be used to construct a timing-driven routing tree (Ho
et al. 2007). Since the MRMCST problem is NP-hard (Seo
and Lee 1999), we resort to multi-objective particle swarm
optimization, which is discussed in Sect. 3, to both optimize
the radius and the wire length for better chip performance.

3 Algorithm

3.1 Basic PSO

Particle swarm optimization is a swarm intelligence method,
which considers a swarm containing p particles in a D-
dimensional continuous solution space. Each ith particle has
its own position and velocity. Assuming that the search space
is D-dimensional, the position of the ith particle is denoted
as a D-dimensional vector: Xi = (Xi1, Xi2, . . . , Xi D) and
the best particle in the swarm is denoted as Pg . The best
previous position of the ith particle is recorded and repre-
sented as Pi = (Pi1, Pi2, . . . , Pi D), while the velocity for the
ith particle can be defined by another D-dimensional vector:
Vi = (Vi1, Vi2, . . . , Vi D). According to these definitions, the
particle position and velocity can be manipulated according
to the following equations:

V t+1
i = w × V t

i + c1r1(Pt
i − Xt

i) + c2r2(Pt
g − Xt

i) (2)

Xt+1
i = Xt

i + V t+1
i (3)

where w is the inertia weight; c1 and c2 are acceleration coef-
ficients; r1 and r2 are both random numbers on the interval
[0, 1).

As a swarm-based evolutionary method, PSO which was
introduced by Eberhar and Kennedy (1995) has been proved
to be a powerful optimization tool. The advantages of PSO
over many other optimization algorithms are its implementa-
tion simplicity and ability to converge to a reasonably good
solution quickly. In the past several years, PSO has been suc-
cessfully applied in many researches and application areas

(Carlos et al. 2004; Liu et al. 2010; Guo et al. 2011; Shen et
al. 2011; Costas et al. 2012; Guo et al. 2012; Agrawal and
Silakari 2013; Rada-Vilela et al. 2013). It has been demon-
strated that PSO can get better results in a faster and cheaper
way compared with other methods.

3.2 PSO-based timing-driven Octilinear Steiner tree
considering bend reduction

As given in Eqs. 2 and 3 mentioned in the previous section, it
is obvious that the basic PSO cannot obtain a discrete solution
for our proposed tree as a result of its continuous nature, thus
some additional steps must be taken into the basic PSO. It
has led to many discrete PSO algorithms for solving discrete
problems. Three typical discrete PSO algorithms have been
proposed, including the discrete PSO algorithm of Kennedy
and Eberhart (1997), the discrete PSO algorithm for the trav-
eling salesman problem (TSP) by Clerc (2004), and the dis-
crete PSO algorithm for the permutation flowshop sequenc-
ing problem with makespan criteria by Pan et al. (2006).

The importance of VLSI physical design and the advan-
tages of PSO has led to many research results in partitioning,
floorplanning and routing. We proposed a multi-objective
discrete PSO algorithm for the problem of VLSI partition-
ing, while optimizing the minimum cut and timing delay
(Peng et al. 2010). We also proposed a novel intelligent deci-
sion algorithm based on the PSO technique to obtain a feasi-
ble floorplanning in VLSI circuit physical placement (Chen
et al. 2010). For the problem of routing, an improved PSO
was proposed for solving the obstacle-avoiding Rectilinear
Steiner minimum tree problem (Shen et al. 2011) and an
efficient RSMT algorithm based on PSO was presented by
Liu et al. (2011). However, those works for SMT are based
on Manhattan architecture. We have constructed an OST for
non-Manhattan routing based on PSO, but it only optimized
the wire length and did not involve timing performance and
other important metrics (Liu et al. 2012). Besides, we have
successfully constructed the preliminary framework of multi-
objective PSO (Guo et al. 2011, 2012) and presented the cor-
responding update operators and fitness function.

Inspired by the Pan et al. (2006) and our previous work,
an efficient MOPSO is designed in this paper to deal with the
problem TOST considering bend reduction. In the proposed
algorithm, the phenotype sharing function of the objective
space is applied in the definition of fitness function to simulta-

123

1158 G. Liu et al.

neously optimize the two objectives of wire length and radius.
Moreover, an efficient encoding scheme which can be well
combined with edge transformation is adapted to reduce the
number of bends in the process of TOST construction.

3.2.1 Two important metrics for performance-driven
routing

The two metrics of wire length and radius are very impor-
tant for performance-driven routing, since the cost (i.e., the
length of the tree) and radius of the routing tree constructing
for each net have an immediate impact on the timing delay.
Therefore, we can bring the MRMCST model to construct
the timing-driven Octilinear Steiner tree which is essential
for performance-driven routing. Different from the work pre-
sented by Ho et al. (2007) which is constructed in Euclidean
distance and does not show the experimental result, we try
to construct the Octilinear MRMCST model in which the
length between source and each sink is calculated in Octilin-
ear distance and show the experimental results in Sect. 4. The
Octilinear distance between point i and j, namely, Odis(i, j),
is defined as follows

Odis(i, j) =
{

�x + �y, if pspc = 2 or 3

(
√

2 − 1)min�x�y + max�x�y, else
(4)

where �x = |xi − x j | and �y = |yi − y j |. xi (x j) and
yi (y j) represent the horizontal and vertical coordinates of
point i (j), respectively. Clearly, |xi − x j | (|yi − y j |) denotes
the absolute value, and the min�x�y (max�x�y) denotes the
minimum (maximum) between �x and �y.

Definition 7 The length of the Octilinear Steiner tree is the
sum of each segment’s length which is formulated as:

L(TX) =
∑

ei ∈Tx

l(ei) (5)

where l(ei) represents the length of each segment ei in the
tree Tx .

Definition 8 The radius of the Octilinear Steiner tree is the
maximum length from the source to each sink in Octilinear
distance.

When calculating the sum of each segment’s length in
OST, we divide all segments into four categories: horizontal
side, vertical side, hypotenuse with 45◦, and hypotenuse with
135◦. Then we clockwise rotate hypotenuse with 45◦ into a
horizontal side and hypotenuse with 135◦ into a vertical side.
We sort the horizontal sides from bottom to up and from left to
right by their left vertex, while sorting the vertical sides from
left to right and from bottom to up by their bottom vertex,
and then the length of OST is the sum of those segments.

The performance-driven routing mainly optimizes the tar-
get of timing delay. Since Elmore delay is a good measure

of timing delay for an interconnect design, we calculate the
delay between the source of the tree and each sink based on
the Elmore delay model using Eq. 1. Let m j and n j be the
two endpoints of e j , and r0 (c0) denote the resistance (capac-
itance) per unit length, then the more specific equation for
calculating delay is as follows:

ti = R0 × C0 +
∑

e j ∈path(s,i)

Oi j × r0 × (Oi j × c0/2 + C j)

(6)

where Oi j = Odis(m j , n j).
Both wire length and radius minimizations are compara-

bly important for delay minimization (Ho et al. 2007). How-
ever, the two metrics are often competing. While trying to
minimize wire length, the radius maybe large, or vice versa.
Therefore, we design MOPSO, which as discussed later, aims
to simultaneously optimize the two metrics.

3.2.2 The multi-objective approach

VLSI routing, in both Manhattan and non-Manhattan archi-
tectures, is a complex multi-objective optimization problem.
Some metrics of electrical performance and geometrical con-
straints, which are conflicting and cannot be optimized simul-
taneously, must be taken into account in the process of nano-
level VLSI routing. This undoubtedly increases the com-
plexity of the nano-level VLSI routing. Therefore, how to
construct an efficient and stable multi-objective optimization
algorithm for VLSI routing is a significant issue.

Traditional algorithms for multi-objective optimization
problem polymerized several sub-objectives to form a single-
objective function with a positive coefficient, which is
defined by the decision-makers according to the actual situa-
tion, and then used the mature single-objective optimization
algorithms to tackle the problem. Those approaches includ-
ing weighted summation method, constraint method, and
objective programming method, and so on, were presented
to seek better solutions with relatively small computational
cost. However, they still have some disadvantages. Firstly,
since the decision-makers cannot obtain the prior knowledge
related to that issue, it is difficult to select the coefficients,
which would lead to be unable to construct the appropriate
algorithm. Secondly, using the methods mentioned above to
solve the issues is highly vulnerable to the impact of non-
inferior front distribution and is powerless to tackle the recess
of non-inferior front. In addition, each optimization process
which obtains the set of Pareto optimal solution using those
methods is independent and consequently it is extremely
difficult for the decision-makers to make decisions. Above
all, the traditional algorithms can only obtain a single opti-
mal solution while Pareto method might get multiple Pareto
approximate solutions for choosing by decision-makers.

123

A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction 1159

In this paper, we apply the multi-objective PSO on the
construction of timing-driven Octilinear Steiner tree for the
non-Manhattan performance-driven routing to optimize both
targets of wire length and radius, and at the same time reduce
the number of bends. Some basic preliminaries for MOPSO
are described as follows.

Definition 9 (Target Distance f di j) f di j is the distance
between two particles i and j. Supposed that the distance
has m dimensions which are noted as respectively, and

f di j = f1di j + f2di j + · · · + fmdi j

=
∣∣∣ f1(xi) − f1(x j)

∣∣∣ +
∣∣∣ f2(xi) − f2(x j)

∣∣∣

+ · · · +
∣∣∣ fm(xi) − fm(x j)

∣∣∣ , i �= j. (7)

There are two dimensions in our proposed algorithm,
noted as f1 and f2, respectively. f1 represents the function of
the wire length, and f2 represents the function of the radius
of the tree.

Definition 10 (Dominance Measure D(i)) D(i) expresses the
number of particles that dominate the ith particle in the cur-
rent population, and

D(i) =
p∑

j=1

nd(i, j) (8)

where p represents the population size. nd(i, j) is one if par-
ticle j dominates particle i, and zero otherwise.

Definition 11 (Sharing Function)

sh(f di j) =
{

1, if f di j ≤ σs

0, otherwise
(9)

where σs is a sharing parameter.

Definition 12 (Neighbor Density Measure N(i)) N(i) asso-
ciated with particle i is defined as

N (i) =
p∑

j=1

sh(f di j) (10)

Definition 13 (Fitness Function) The fitness of a given par-
ticle F(i) can be defined as follows:

F(i) = (1 + D(i))α × (1 + N (i))β (11)

where α and β are nonlinear parameters.

Compared with the single-objective PSO, during the
search process of MOPSO, particles often have more than
one personal best and global best value. We save these infor-
mation into two external archives in a same way as Balling
(2003), namely, A1 and A2, respectively. The archive A1
stores the present Pareto fronts of the population as a candi-
date set to guide the particles, while the archive A2 stores the

generational Pareto fronts of the population. In the process
of updating the position of particles, some better particle is
randomly selected to guide the flight of other particles. When
each update has finished, the candidate set A1 is renewed. A
proper mechanism of choosing a leader particle can help to
find more Pareto solutions in a shorter time. So it is very
important to decide how to choose the proper leader parti-
cle to direct the movement of particle. In order to avoid the
external archive from growing too big, we adopt ε-dominance
(Laumanns et al. 2002) to reduce the external archive.

3.2.3 Encoding scheme

Our algorithm represents a candidate OST as lists of span-
ning tree edges, each augmented with a pseudo-Steiner point
choice so that it specifies the conversion from the spanning
tree edge to the Octilinear edge. Each pseudo-Steiner point
choice, namely, pspc, includes four types shown in Defini-
tion 3–6 and the value of pspc is 0, 1, 2 or 3 which denote
0 Choice, 1 Choice, 2 Choice or 3 Choice, respectively. If
a net has n pins, a spanning tree would have n − 1 edges,
n − 1 pseudo-Steiner points and three extra digits which are
the particles fitness, the value of wire length and the value
of radius, respectively. Besides, two digits represent the two
vertices of each edge and n−1 digits represent n−1 pseudo-
Steiner points, so the length of a particle is 3×(n−1)+3. For
example, one OST tree (n = 7) can be expressed as one par-
ticle whose code can be expressed as the following numeric
string:

5 7 2 5 4 0 2 4 1 5 3 1 2 1 1 5 6 0 72 18.7279 11.0711

where the number ‘72’ is the fitness of the particle, which
is the value of phenotype sharing function of the objective
space. The last two digits ‘18.7279’ and ‘11.0711’ are the
value of wire length and the value of radius, respectively.
Each digit in bold font is the pseudo-Steiner point choice
of the corresponding edge. For example, the first substring
(5, 7, 2) represents one edge of the spanning tree which is
composed of Vertex 5, Vertex 7 and the pseudo-Steiner point
choice 2 in bold font.

Definition 14 (Bend Point) The point in the tree whose
degree is greater than 1 is defined as bend point, which may
be Steiner point, corner point or pin point.

In recent years, while VLSI feature size continues to
shrink in the very deep-submicron technology, the number of
vias becomes a critical issue in the global routing phase. Via
minimization can reduce circuit delay and enhance the man-
ufacturability of the circuit. Reducing the number of bends
is helpful for reducing the number of vias, since a bend in the
layer assignment or detailed routing phase usually implies a
switching of layers, causing the use of more vias. Reducing

123

1160 G. Liu et al.

2 4 6 8 10

1

2

3

4

5

6
1

2

3

4

5

6

7

(a)
2 4 6 8 10

1

2

3

4

5

6 1

2

3

4

5

6

7

(b)

Fig. 4 Two kinds of encoding schemes for the potential impact on the
bend reduction. a The encoding scheme with two pseudo-Steiner point
choices (Yan 2008), b the encoding scheme with four pseudo-Steiner
point choices

the number of bends is easier than via minimization in the
later phases, and hence it is necessary to study the Steiner
tree construction algorithm considering bend reduction.

Yan (2008) adopted the representation of tree edge like
the encoding scheme with two pseudo-Steiner point choices,
i.e., including 0 Choice and 1 Choice shown in Fig. 2b, c.
In contrast, the encoding scheme with four pseudo-Steiner
point choices is applied in our proposed algorithm which
has the potential ability to reduce the number of bends. The
reason is that the existence of the last two pseudo-Steiner
point choices maybe overlaps with the first two choices in
the location of bend. For example, as shown in Fig. 4b, the
edge (4, 2) and the edge (2, 5) have the overlapping location
of bend where the point 4 is defined as the source point of the
net by Yan (2008). Generally, this situation could frequently
exist among the net with more pins. Therefore, for the most
part, using the second encoding scheme combined with edge
transformation, as shown in Fig. 4b can be more helpful to
reduce the number of bends than the former, as shown in
Fig. 4a. And this situation has been experimentally verified
in latter section.

3.2.4 Update formula of the particle

Since the Steiner tree construction problem is a discrete
problem, we employ the novel discrete position updat-
ing method based on genetic operations and propose the
TOST_BR_MOPSO algorithm for timing-driven Octilinear
Steiner tree construction with considering bend reduction.

The update formula of the particle is represented as:

Xt
i = N3

(
N2

(
N1(Xt−1

i , w), c1

)
, c2

)
(12)

where w is an inertia weight, c1 and c2 are acceleration con-
stants. N1 denotes the mutation operation and N2, N3 denote
the crossover operations. We assume that r1, r2, r3 are ran-
dom numbers on the interval [0, 1).

In the process of constructing OSMT (Liu et al. 2012),
the update operations only take into account the transforma-
tion of Steiner point. However, the edges of MRMCST are

2 4 6 8 10

1

2

3

4

5

6 1

2

3

4

5

6

7

(a)
2 4 6 8 10

1

2

3

4

5

6
1

2

3

4

5

6

7

(b)

Fig. 5 The edge transformation in the evolutionary process of con-
structing MRMCST. a One Octilinear tree, b the other Octilinear tree

changing in the evolutionary process. For example, two Octi-
linear trees as shown in Fig. 5, the edge of tree is changing
between them, which the edge (4, 2) exists in the tree shown
in Fig. 5b but not in the other tree shown in Fig. 5a. Therefore,
in addition to the transformation of Steiner point, we need to
introduce the edge transformation into our proposed update
operations for constructing MRMCST. Moreover, the intro-
duction of the edge transformation increases the capacity to
optimize the wire length, which is discussed in Sect. 4.1.
Simultaneously, when edge transformation is adopted by the
update operations, it ensures that the optimization space of
the algorithm presented by Liu et al. (2011) contains the opti-
mal solution.

However, the introduction of edge transformation might
lead to the appearance of loop and generate the invalid solu-
tion in the iterative process, which destroys the soundness
of the particle encoding. How to overcome the shortcoming
caused by edge transformation in the evolutionary process of
constructing MRMCST? The Union-Find partition (Alfred
et al. 1983) which keeps track of the components connected
so far is integrated into the three update operations described
in the following sections.

The velocity of particles can be written as

W t
i = N1

(
Xt−1

i , w
)

=
{

M(Xt−1
i), r1 < w

Xt−1
i , others

(13)

where w denotes the mutation probability. In the process of
the particle mutation, we randomly select one edge of the
particle to be mutated and the tree is divided into two sub-
trees corresponding to two sets of pins. We can use the Union-
Find partition to get those two sets of pins and randomly
generate the two endpoints of the new mutated edge from
the two sets of pins, respectively. The principle is shown in
Fig. 6, where the edge M1 represents the edge to be removed
and the edge M2 represents the new edge. The pseudo code
of mutation operator is shown in Algorithm 1.

The cognitive personal experience of particles can be writ-
ten as:

St
i = N2

(
W t

i , c1
) =

{
C p(W t

i), r2 < c1

W t
i , others

(14)

123

A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction 1161

Algorithm 1 Mutation operator(p)
Input: Particle p
Output: New particle

I ni tiali ze each pin′s parti tion to singletons
r = random(1, n − 1); //n is the number of pins
for each edge ei o f p do

if ei �= er then
Union_parti tion(u, v);//u and v is endpoint of ei , u and v are
merged into the same set

end if
end for
while true do

p1 = random(1, n − 1);// generate a random number between
(1,n-1)
p2 = random(1, n − 1);
if Find_set (p1) �= Find_set (p2) then

Union_parti tion(p1, p2);//p1 and p2 are not in the same set
generate_edge(p1, p2);
break;

end if
end while

Fig. 6 Mutation operation with union-find partition

where c1 denotes the crossover probability of the particle with
the personal optimal solution. In the process of the particle
crossover with the personal optimal particle, we will gen-
erate the new particle which composes of the common por-
tion between the two particles and random portion from the
two particles. We store the other edges into the set of edges,
namely, remaining edges, and we randomly select the edge
from the remaining edges until the complete spanning tree is
generated while using the Union-Find partition to avoid the
appearance of loop in the process of random selection. The
principle is shown in Fig. 7, where C1, C2, C3, C4, C5, C6

represents the different edges between the two spanning tree,
and the set C1, C3, C5 represents the new edges of the new
spanning tree. The pseudo code of crossover operator is
shown in Algorithm 2.

The cooperative global experience of particles can be writ-
ten as

Xt
i = N3(St

i , c2) =
{

Cg(St
i), r3 < c2

St
i , others

(15)

where c2 denotes the crossover probability of the particle
with the global optimal solution. The process of the parti-
cle crossover with the global optimal particle is same to the

Fig. 7 Crossover operation with union-find partition

Algorithm 2 Crossover operator(p, q)
Input: Particle p and q
Output: New particle

I ni tiali ze each pin′s parti tion to singletons
Sort_edge(p, u);//sort edge of p according to the serial number of
the first endpoint u
Sort_edge(p, v);//sort edge of p according to the serial number of
the second endpoint v

Sort_edge(q, u);
Sort_edge(q, v);
set1 = Selecct_same_edge(p, q);
set2 = Select_di f f erent_edge(p, q);
Union_parti tion(u, v, set1);//merge each edge of set1
New particle = Generate_edge(set1);
while New particle is not a complete tree do

L(u, v) = Random_selectedge(set2);
if Find_set (u) �= Find_set (v) then

add L(u, v) to New particle;
Union_parti tion(u, v, L);

end if
end while

process of the particle crossover with the personal optimal
particle, and we no longer repeat description.

3.2.5 Parameter setting

Property 1 The setting of inertia weight affects the balance
between local search ability and global search ability of par-
ticle.

As we can see from the velocity update formula, the first
part provides the flight impetus of particle in search space,
and represents the effect of previous velocity on the flight
trajectory. Thus inertia weight is a numerical value which
indicates the extent of such influence.

Property 2 Larger inertia weight will make the algorithm has
strong global search ability.

Property 1 and Eq. 2 show that inertia weight decides
how much previous velocity will be preserved. Thus a lager
inertia weight can strengthen the capability of searching the
unreached area. It is conducive to enhance the global search
ability of the algorithm and jump out of the local minima.
A smaller inertia weight suggests that the algorithm mainly
search near the current solution. It is conducive to enhance
the local search ability and accelerate convergence.

123

1162 G. Liu et al.

In the work by Shi and Eberhart (1998), the researchers
presented a PSO algorithm based on liner decreasing iner-
tia weight. In order to ensure a stronger global search, they
employed a lager inertia weight early in the program, and a
smaller one in the later stages to guarantee the local search.
Simulation on four kinds of different benchmark functions
showed that such strategy of parameters actually improved
the performance of PSO.

Property 3 Larger acceleration coefficients c1 may cause
wandering in local scope. Larger acceleration coefficients
c2 will make the algorithm prematurely converge on local
optimal solution.

Acceleration coefficients c1 and c2 are used in communi-
cating between particles. Ratnaweera et al. (2004) proposed
a kind of strategy which employs a lager c1 and a smaller c2

in the early phases and the opposite in the later. In this way,
the algorithm will guarantee detailed search in local scope,
not have to directly move to the position of global optimal in
early phases, and speed up convergence in the later stages.
Similarly, the experiment achieved great results.

Based on the above analysis, we have tested 567 kinds
of the acceleration coefficients in Oliver30 TSP which is a
minimization problem (Chen et al. 2010). Each experimental
setting is conducted five runs and each average is calculated.
Consequently, c1 = 0.82–0.5 and c2 = 0.4–0.83 are consid-
ered as the optimal combination of parameter settings. We
adopt the idea of linear decline proposed by Shi and Eberhart
(1998) and the optimal combination of parameter settings of
c1 and c2 to update the acceleration coefficients according
to Eqs. 16 and 17. Besides, the other parameters in the pro-
posed algorithm are given as follows: population size is 200,
w decreases linearly from 0.95 to 0.4 according to Eq. 18
which is similar to the acceleration coefficients.

c1 = c1_start − c1_start − c1_end

evaluations
× eval (16)

c2 = c2_start − c2_start − c2_end

evaluations
× eval (17)

w = w_start − w_start − w_end

evaluations
× eval (18)

where eval represents the current iteration number and eval-
uations represents the maximum number of iterations.

3.2.6 Processes of TOST_BR_MOPSO

The detail procedure of TOST_BR_MOPSO can be summa-
rized as follows:

Step 1: Load the circuit netlist data, initialize various
parameters, and randomly generate the initial population.
Step 2: Calculate the fitness value of each particle accord-
ing to Eq. 11.

Step 3: Update the personal optimal solution of each par-
ticle and set A1 and then randomly select a guide particle
from A1.
Step 4: Adjust the position and velocity of each particle
according to Eqs. 12–15.
Step 5: Recalculate the wire length, radius and fitness
value of each particle.
Step 6: Update the set of global optimal solution of the
population, namely, A2.
Step 7: Check the termination condition (a good enough
position or the maximum number of iterations is reached).
If fulfilled, the run is terminated and output the set of
global optimal solution A2, i.e., the final solution. Oth-
erwise, go to Step 3.

3.2.7 Complexity analysis

Lemma 1 Assume the population size is p, the number of
iterations is iters and the number of pins is n. The time com-
plexity of the proposed algorithm is O(iter × p × n2).

Proof In the inner loop of the proposed algorithm, from
Step 3 to Step 6, it includes mutation, crossover and fit-
ness calculation. In the mutation and crossover operations,
the sorting steps determine those operations’ time complex-
ity: O(n log n), because the time of Union-Find partition is
just more than linear (Julstrom 2001). Besides, in the fitness
calculation, the time complexity of calculating the radius is
O(n2) while the sorting steps also determine calculating the
wire length of the routing tree. Therefore, the complexity of
the inner loop is O(n log n + n2 + n log n) = O(n2). The
outer loop is related to the number of particles p and the num-
ber of iterations iters, consequently, the time complexity of
the proposed algorithm is O(iter × p × n2).

3.3 Convergence analysis of TOST_BR_MOPSO

Definition 15 (Finite Markov Chain) Let X (X = Xk, k =
1, 2, . . .) be the stochastic process of discrete parameters
defined in probability space (, F, P) over a finite state
space S. If X has Markov properties, i.e., for any nonneg-
ative integer k and state i0, i1, . . . , ik−1 ∈ S, then X is a
finite Markov chain when

P(Xk+1 = ik+1|X0 = i0, X1 = i1, . . . , Xk = ik)

= P(Xk+1 = ik+1|Xk = ik) (19)

P(X0 = i0, X1 = i1, . . . , Xk = ik) > 0

where P(Xk+m = j |Xk = i) is called m-step transition
probability of X , which is the conditional probability of
process from state i at time k, after the mth step, to state
j at time k + m, denoted as Pi j (k, k + m). For i, j ∈ S, if
Pi j (k, k + 1), Pi j for short, does not depend on the time k,
the Markov chain is said to be homogeneous. P = [Pi j] is

123

A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction 1163

called transition matrix with Pi j as the element of i th row
and j th column. The long-term behavior of homogeneous
finite Markov chain was completely determined by its initial
distribution and first step transition probability.

Theorem 1 The Markov chain of TOST_BR_MOPSO is
finite and homogeneous.

Proof In its global search, TOST_BR_MOPSO obtains the
global and individual optimum through updating the posi-
tions of particles by stochastic mutation and crossover oper-
ator. Judging from the process of global searching, the gener-
ation of a new population depends on the current population.
Thus, the conditional probability of search process, from a
state to a certain specific state, satisfies Eq. 19. That means
it satisfies the property of Markov. Therefore, the Markov
chain of TOST_BR_MOPSO is finite and homogeneous.
In this algorithm, the set constituted of all the populations
{α1, α2, . . . , αm} is finite. That is, events occurring at time
k = 0, 1, . . . all belong to a finite countable event aggre-
gate, thus its Markov chain is finite as well. Hence, in the
above analysis theories and methods of Markov chain can be
directly applied to the analysis of this algorithm.

Theorem 2 Transition probability matrix of the Markov
chain made up of TOST_BR_MOPSO is positive definite.

Proof While searching, the population transits from state
ii ∈ S to state i j ∈ S, through mutation operator and
crossover operators with the global optimum and the indi-
vidual optimum. The transition probabilities of these three
operators are mi j , gi j , pi j , respectively. And the stochas-
tic matrixes what they consist of are M = {mi j }, G =
{gi j }, D = {di j }, respectively, let P = MG D, then
mi j > 0,

∑
i j ∈E mi j = 1; gi j ≥ 0,

∑
i j ∈E gi j = 1; di j ≥

0,
∑

i j ∈E di j = 1.
Therefore, M, G, D are all stochastic and M is positive

definite. Then we can prove P is positive definite. Let B =
G D. For ∀ii ∈ S, i j ∈ S, we have

bi j =
∑

λk∈E

gikdk j ≥ 0,

then
∑

λ j ∈E bi j = ∑
λ j ∈E

∑
λk∈E gikdk j = ∑

λk∈E gik∑
λ j ∈E dk j = ∑

λk∈E gik = 1.

Hence, B is a stochastic matrix, similarly, we get di j =∑
λk∈E bikmkj > 0.

Theorem 3 (Limit theorem for Markov chain) Assume that
P is a positive stochastic transition matrix of definite homo-
geneous Markov chain, then:

(1) There exists a unique probability vector P
T

> 0 which

satisfies P
T

P = P
T

.

(2) For any initial state i (eT
i as its corresponding initial

probability), we get limk→∞ eT
i Pk = P

T
.

(3) Limit probability matrix limk→∞ Pk = P , where P is

a n × n stochastic matrix, and all its rows equal to P
T

.

The limit theorem explains that the long-term probability
of Markov chain does not depend on its initial states. This
theorem is the basis for the convergence of an algorithm.

Lemma 2 If mutation probability m � 0, the algorithm is an
ergodic irreducible Markov chain which has only one limited
distribution and nothing to do with the initial distribution;
moreover, the probability at a random time and random state
is greater than zero.

Proof At the t th time, the j th state probability distribution
of population X (t) is:

Pj (t) =
∑

j∈S

Pi (1)P(t)
i j , t = 1, 2, . . . (20)

According to Theorem 3, we can get the formulation as
following:

Pj (∞) = lim
t→∞

(
∑

i∈S

Pi (1)P(t)
i j

)
=

∑

i∈S

Pi (1)P(∞)
i j > 0,

∀ j ∈ S

(21)

Definition 16 Suppose a stochastic variant Zt = max
{ f (x (t)

k (i))|k = 1, 2, . . . , N } which represents individual
best fitness at the t th step and i th state of the population.
Then the algorithm converges to the global optimum, if and
only if

lim
t→∞ P{Zt = Z∗} = 1, (22)

where Z∗ = max{ f (x)|x ∈ S} represents the global opti-
mum.

Theorem 4 For any i and j , the time transiting of an ergodic
Markov chain from the i th state to the j th state is limited.

Theorem 5 TOST_BR_MOPSO algorithm can converge to
the global optimum.

Proof Suppose that i ∈ S, Zt < Z∗ and Pi (t) is the probabil-
ity of TOST_BR_MOPSO algorithm at i th state and the t th
step. Obviously P{Zt �= Z∗} ≥ Pi (t), hence we can know
that P{Zt = Z∗} ≤ 1 − Pi (t).

According to Lemma 2, the i th state probability of the
operator in TOST_BR_MOPSO algorithm is Pi (∞) > 0,
then

lim
t→∞ P{Zt = Z∗} ≤ 1 − Pi (∞) < 1 (23)

123

1164 G. Liu et al.

Observe a new population such as X+
t = {Zt , Xt }, t ≥

1, xti ∈ S denoting the search space (which is a finite set
or a countable set), where Zt , the same to that in Definition
16, represents individual best fitness in current population,
Xt denotes the population during the search. As it is easy
to prove that the group shift process {X+

t , t ≥ 1} is still a
homogeneous and ergodic Markov chain, we can know that

P+
j (t) =

∑

i∈S

P+
i (1)P+

i j (t)

P+
i j > 0(∀i ∈ S,∀ j ∈ S0) (24)

P+
i j = 0(∀i ∈ S,∀ j /∈ S0)

So

(P+
i j)t → 0(t → ∞)

P+
j (∞) → 0(j /∈ S0) (25)

lim
t→∞ P{Zt = Z∗} = 1

4 Experimental results

All the algorithms have been implemented and executed in
MATLAB R2009a on a PC with 2.00 GHz CPU and 2.00 GB
RAM (Windows XP environment). One set of the test prob-
lems in OR-Library (Beasley 1990) is used to study the per-
formance of the proposed algorithm. To study the perfor-
mance of the proposed algorithm, four experiments are car-
ried out from Sects. 4.1 to 4.4.

4.1 Experimental validation of edge transformation

In order to verify the effectiveness of the proposed edge
transformation strategy, we compare our algorithm with the
OSMT construction algorithm without edge transformation
on the wire length. As shown in Table 2, the introduction
of edge transformation (the algorithm is named EOSMT)
increases the ability to optimize the wire length which is
1.57 % smaller than the wire length of OSMT (Liu et al.
2012).

4.2 Performance analysis of the proposed MOPSO

To study the performance of PSO under our multi-objective
strategy, the solution sets generated by the MOPSO are com-
pared with the NSGA II (Deb et al. 2002) and SPEA 2
(Zitzler et al. 2001) which are two classic multi-objective
evolutionary algorithms in ZDT1, ZDT2 and ZDT6 bench-
marks (Zitzler 1999). Those three benchmarks were proposed
by Zitzler (1999) and represented some typical function types
of non-inferior front in multi-objective optimization prob-
lem, respectively. ZDT1 is a convex function, ZDT2 is a

Table 2 Comparison on the wire length between EOSMT and OSMT

Instance Wire length (µm) Imp (%)

OMST EOMST OSMT−EOSMT
OSMT

1 33.0711 33.0711 0.00

2 27.4853 26.5563 3.38

3 35.4853 35.3848 0.28

4 27.0711 26.8995 0.63

5 26.2426 26.2426 0.00

6 34.7279 34.7279 0.00

7 36.4853 35.3137 3.21

8 34.8995 34.3137 1.68

9 31.8284 31.2426 1.84

10 33.1421 32.8995 0.73

11 28.7279 28.3137 1.44

12 27.0711 26.8995 0.63

13 29.0711 27.6569 4.86

14 32.0711 30.7279 4.19

15 27.2426 27.0711 0.63

Average 30.9748 30.4881 1.57

non-convex function, and ZDT6 is a noncontiguous func-
tion. In this paper, we use three quantitative indicators (unary
additive EPS indicator I 1

ε+, HYP indicator I −
H and unary R2

indicator I 1
R2), which proposed by Zitzler et al. (2003), to

verify the validity of our proposed multi-objective strategy.
For the three test functions ZDT1, ZDT2 and ZDT6, in

most cases, the proposed algorithm (MOPSO) can converge
to the Pareto front within 100 iterations and consume less
computing cost. The Kruskal–Wallis test statistical method
(Conover 1999) is used to compare the experimental results
of those algorithms. The Kruskal–Wallis test results of three
quantitative indicators are shown in Table 3. This table shows
each pair of the value of P which is composed of algorithm
Q R (row) and algorithm QC (column), and the correspond-
ing alternative hypothesis is that algorithm Q R is superior
to algorithm QC in indicator. The value of significance level
is 0.05. For the convenience of said, EPS represents I 1

ε+,
HYP represents I −

H and R2 represents I 1
R2 in our work. From

Table 3, as to the ZDT2, the proposed MOPSO algorithm is
better than the other multi-objective evolutionary algorithms
in the three indicators and it shows that the proposed algo-
rithm is especially suitable for solving the Pareto front of the
non-convex function. For the ZDT6, MOPSO is better than
the NSGA II and SPEA 2 in both R2 and HYP indicators
and just a bit poor in the EPS indicator. Based on Zitzler
et al. (2003), it also shows that if the results from multiple
Pareto compliant indicators are different, it is hard to know
which algorithm is better. Therefore, MOPSO algorithm can
achieve good results in the ZDT6 function of non-uniform
front. For ZDT1 problem, although MOPSO is inferior to the

123

A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction 1165

Table 3 The Kruskal–Wallis test results of EPS, HYP and R2 indicator

MOPSO NSGA II SPEA 2

ZDT 1 I 1
ε+

MOPSO – 1 1

NSGA II 4.17E−17 – 1

SPEA 2 3.49E−34 4.17E−17 –

I −
H

MOPSO – 1 1

NSGA II 2.54E−16 – 1

SPEA 2 4.01E−32 4.89E−15 –

I 1
R2

MOPSO – 1 0.99996

ZDT 2 NSGA II 7.60E−08 – 0.0551455

ZDT 2 SPEA 2 4.00E−05 0.944854 –

ZDT 2 I 1
ε+

MOPSO – 2.20E−06 2.16E−05

NSGA II 0.999998 – 0.72699

SPEA 2 0.999978 0.27301 –

I −
H

MOPSO – 0.000234484 0.00112884

NSGA II 0.999766 – 0.689058

SPEA 2 0.998871 0.310942 –

I 1
R2

MOPSO – 1.19E−14 7.16E−14

NSGA II 1 – 0.658011

SPEA 2 1 0.341989 –

ZDT 6 I 1
ε+

MOPSO – 1 1

NSGA II 3.28E−07 – 1

SPEA 2 1.29E−20 3.95E−11 –

I −
H

MOPSO – 3.10E−14 1.21E−20

NSGA II 1 – 0.000456755

SPEA 2 1 0.999543 –

I 1
R2

MOPSO – 8.72E−20 4.23E−29

NSGA II 1 – 1.43E−07

SPEA 2 1 1 –

NSGA II and SPEA 2 in the three indicators, the overall dif-
ference value is small. Given that the obvious differences with
other evolutionary algorithms cannot be found in the domi-
nance ranking distribution of the solution and the proposed
algorithm can converge to Pareto front under less number
of iterations, it can be seen that the proposed algorithm can
obtain satisfactory solutions in the optimization function of
convex Pareto front. From the comprehensive results of three
test functions, it can be seen that the proposed MOPSO algo-
rithm has stronger global searching ability and can converge
to Pareto front under less computational cost, and has a better

distribution of solutions. Thus it can be seen that MOPSO is
worthy of being studied in the field of multi-objective opti-
mization problems.

4.3 Comparison with the two SMT algorithms

In order to validate the proposed algorithm on the ability
of optimizing the wire length and radius of routing tree, we
compare it with the already existing SMT algorithms (Liu et
al. 2011, 2012), namely, RA and OA, which are in Rectilin-
ear and Octilinear architectures, respectively, and both only
consider the single objective of the wire length. Tables 4 and
5 show our experiment results as compared with the results
of RA and OA methods. Note that the instance ’S0’, shown
as the first instance in Tables 4, 5, 6, 7, comes from a case
study (Yan 2008). Columns 5 and 10 of Table 4 show that the
routing trees constructed by our proposed algorithm outper-
form the RSMTs (RA) by 24.07 % in the radius and 6.59 %
in the wire length. Columns 6 and 11 of Table 4 indicate that
the radius of TOST_BR_MOPSO is 19.30 % smaller than
the radius of OSMTs (OA), only with the 2.07 % additional
cost in wire length.

As can be observed from Table 5, the proposed algorithm
can get 32.97 and 36.13 % smaller than RSMTs (RA) in the
maximum delay value between source and each sink (namely,
max s-t delay) and the sum of each delay value between
source and each sink (namely, sum s-t delay), respectively.
Compared to OSMTs (OA), the proposed algorithm achieves
24.39 and 23.95 % far better results in the two perfor-
mance metrics. The experimental results show that the non-
Manhattan architecture is better in the ability of optimizing
the wire length and timing delay than Manhattan architecture,
and at the same time our algorithm can significantly optimize
the timing delay, but only at the cost of a small amount of
wire length increasing under the same routing architecture.

4.4 Comparison with the timing-driven Octilinear Steiner
tree construction method

Tables 6 and 7 show the comparison of the proposed
TOST_BR_MOPSO algorithm with timing-driven Octilin-
ear Steiner tree construction (Yan 2008), namely, TOA, under
the five metrics which includes the wire length, radius, max
s-t delay, sum s-t delay and the number of bends. In order
to effectively compare with TOA, each experimental data in
OR-Library is multiplied by 15 and rounded (in Sect. 4.3,
each experimental data in OR-Library is also processed in
this way). From Table 6, we can find that the two former met-
rics of our algorithm outperform TOA by 2.08 and 5.22 %,
respectively. Moreover, the three latter metrics of our algo-
rithm are 4.93, 10.07 and 19.67 % smaller than TOA on the
average as shown in Table 7. Because our algorithm tries a
global search and optimizes the wire length and radius which

123

1166 G. Liu et al.

Table 4 Comparison on the wire length and radius with the two SMT algorithms (RA and OA)

Instance Wire length (µm) Radius (µm)

RA OA Ours Imp (%) Imp (%) RA OA Ours Imp (%) Imp (%)

(A1) (B1) (C1) A1−C1
A1

B1−C1
B1 (A2) (B2) (C2) A2−C2

A2
B2−C2

B2

S0 21.0000 19.0711 18.7279 10.82 % 1.80 % 11.0000 9.4142 6.6569 39.48 % 29.29 %

1 35.0000 33.0711 33.8995 3.14 % −2.50 % 19.0000 17.8284 16.6569 12.33 % 6.57 %

2 31.0000 26.7279 30.5563 1.43 % −14.32 % 27.0000 22.8995 14.2426 47.25 % 37.80 %

3 38.0000 36.0711 35.9706 5.34 % 0.28 % 22.0000 25.0711 17.8995 18.64 % 28.61 %

4 29.0000 27.0711 28.3137 2.37 % −4.59 % 15.0000 15.0000 13.2426 11.72 % 11.72 %

5 28.0000 26.2426 26.8995 3.93 % −2.50 % 17.0000 16.4142 15.2426 10.34 % 7.14 %

6 40.0000 34.8995 35.9706 10.07 % −3.07 % 24.0000 21.6569 19.3137 19.53 % 10.82 %

7 40.0000 36.4853 35.3137 11.72 % 3.21 % 27.0000 24.0711 19.0711 29.37 % 20.77 %

8 38.0000 34.8995 36.5563 3.80 % −4.75 % 30.0000 28.4853 21.6569 27.81 % 23.97 %

9 33.0000 31.2426 32.1421 2.60 % −2.88 % 22.0000 19.4142 17.3137 21.30 % 10.82 %

10 38.0000 33.1421 34.2132 9.97 % −3.23 % 30.0000 25.3137 15.4853 48.38 % 38.83 %

11 32.0000 29.3137 29.1421 8.93 % 0.59 % 19.0000 19.4853 15.2426 19.78 % 21.77 %

12 29.0000 26.8995 28.8995 0.35 % −7.44 % 18.0000 17.6569 16.8284 6.51 % 4.69 %

13 32.0000 29.0711 27.7279 13.35 % 4.62 % 24.0000 22.2426 19.8995 17.09 % 10.53 %

14 35.0000 31.6569 31.1421 11.02 % 1.63 % 25.0000 23.2426 18.6569 25.37 % 19.73 %

15 29.0000 27.0711 27.0711 6.65 % 0.00 % 19.0000 17.8284 13.2426 30.30 % 25.72 %

Average 33.0000 30.1835 30.7841 6.59 % −2.07 % 21.8125 20.3765 16.2907 24.07 % 19.30 %

Table 5 Comparison on the max s-t delay and sum s-t delay with the two SMT algorithms (RA and OA)

Instance Max s-t delay (104 ps) Sum s-t delay (105 ps)

RA OA Ours Imp (%) Imp (%) RA OA Ours Imp (%) Imp (%)

(A3) (B3) (C3) A3−C3
A3

B3−C3
B3 (A4) (B4) (C4) A4−C4

A4
B4−C4

B4

S0 3.2104 1.6763 1.5660 51.22 6.58 2.3524 1.1357 0.8036 65.84 29.24

1 8.4546 7.1853 7.1764 15.12 0.12 5.4829 4.5786 5.1646 5.81 −12.80

2 14.4690 10.7030 5.8080 59.86 45.73 14.2160 9.2560 5.0689 64.34 45.24

3 14.3870 16.4570 8.6930 39.58 47.18 13.3370 13.8880 7.2170 45.89 48.03

4 5.3217 5.3149 4.5980 13.60 13.49 3.7561 3.3623 2.9936 20.30 10.97

5 8.4367 7.9756 6.9760 17.31 12.53 6.4900 6.2180 5.5906 13.86 10.09

6 12.0040 11.0600 9.9370 17.22 10.15 9.3503 8.9313 7.4255 20.59 16.86

7 26.2360 21.0310 14.0750 46.35 33.07 22.8060 18.4760 10.4730 54.08 43.32

8 24.8310 22.9950 14.2810 42.49 37.90 15.7080 13.7140 10.0090 36.28 27.02

9 12.3400 11.7040 8.4860 31.23 27.49 9.9499 9.7153 7.3543 26.09 24.30

10 18.5070 14.6500 6.6450 64.09 54.64 13.0862 10.1170 4.6610 64.38 53.93

11 8.6578 9.3386 6.7213 22.37 28.03 8.8057 7.7425 5.5512 36.96 28.30

12 8.8019 7.9013 7.7136 12.36 2.38 7.9341 5.8701 5.8414 26.38 0.49

13 15.8670 14.1490 11.6170 26.79 17.90 13.2660 9.6916 8.5143 35.82 12.15

14 14.0990 12.6580 10.2200 27.51 19.26 14.6920 12.9530 9.8520 32.94 23.94

15 10.8980 9.7978 6.4903 40.45 33.76 8.1944 7.5223 5.8524 28.58 22.20

Average 12.9076 11.5373 8.1877 32.97 24.39 10.5892 8.9482 6.3983 36.13 23.95

both have an immediate impact in the timing delay, we can
get a better timing delay than TOA which is based on greedy
strategy and easy to be convergent to the local optimum. Fur-

thermore, the significant reduction in the number of bends
shows that our proposed encoding strategy combined with
edge transformation is effective for bend reduction.

123

A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction 1167

Table 6 Comparison on the
wire length and radius with the
TOST algorithm (TOA)

Instance Wire length (µm) Radius (µm)

TOA Ours Imp (%) TOA Ours Imp (%)

(D1) (C1) D1−C1
D1 (D2) (C2) D2−C2

D2

S0 19.1421 18.7279 −2.16 8.0711 6.6569 17.52

1 33.4853 33.8995 −1.24 17.8284 16.6569 6.57

2 31.1421 30.5563 1.88 16.2426 14.2426 12.31

3 37.7279 35.9706 4.66 18.4853 17.8995 3.17

4 29.6569 28.3137 4.53 15.0000 13.2426 11.72

5 26.4853 26.8995 −1.56 15.8284 15.2426 3.70

6 36.9706 35.9706 2.70 19.8995 19.3137 2.94

7 36.4853 35.3137 3.21 19.0711 19.0711 0.00

8 37.9706 36.5563 3.72 21.6569 21.6569 0.00

9 34.7279 32.1421 7.45 17.6569 17.3137 1.94

10 34.6274 34.2132 1.20 17.4853 15.4853 11.44

11 29.5563 29.1421 1.40 15.0711 15.2426 −1.14

12 27.0711 28.8995 −6.75 18.2426 16.8284 7.75

13 29.3137 27.7279 5.41 21.0711 19.8995 5.56

14 31.8995 31.1421 2.37 18.6569 18.6569 0.00

15 27.6569 27.0711 2.12 13.2426 13.2426 0.00

Average 31.4949 30.7841 2.08 17.0944 16.2907 5.22

Table 7 Comparison on the max s-t delay, sum s-t delay and number of bends with the TOST algorithm (TOA)

Max s-t delay (104 ps) Sum s-t delay (105 ps) Number of bends

TOA Ours Imp (%) TOA Ours Imp (%) TOA Ours Imp (%)

(D3) (C3) D3−C3
D3 (D4) (C4) D4−C4

D4 (D5) (C5) D5−C5
D5

S0 1.8003 1.5660 13.01 1.3516 0.8036 40.54 8.0000 5.0000 37.50

1 7.5840 7.1764 5.37 5.2654 5.1646 1.91 10.0000 7.0000 30.00

2 8.7020 5.8080 33.26 6.6822 5.0689 24.14 12.0000 10.0000 16.67

3 8.3574 8.6930 −4.02 8.2290 7.2170 12.30 10.0000 9.0000 10.00

4 5.1806 4.5980 11.25 3.1631 2.9936 5.36 9.0000 8.0000 11.11

5 7.2874 6.9760 4.27 5.5906 5.5906 0.00 10.0000 8.0000 20.00

6 8.3432 9.9370 −19.10 6.6707 7.4255 −11.32 14.0000 10.0000 28.57

7 14.5640 14.0750 3.36 13.6470 10.4730 23.26 12.0000 10.0000 16.67

8 14.2820 14.2810 0.01 10.8670 10.0090 7.90 10.0000 8.0000 20.00

9 10.1480 8.4860 16.38 9.4058 7.3543 21.81 8.0000 8.0000 0.00

10 7.7577 6.6450 14.34 5.4999 4.6610 15.25 14.0000 11.0000 21.43

11 6.2610 6.7213 −7.35 5.0439 5.5512 −10.06 12.0000 10.0000 16.67

12 8.1007 7.7136 4.78 6.4449 5.8414 9.36 10.0000 8.0000 20.00

13 13.3840 11.6170 13.20 9.4219 8.5143 9.63 12.0000 9.0000 25.00

14 9.2866 10.2200 −10.05 10.1720 9.8520 3.15 10.0000 7.0000 30.00

15 6.5065 6.4903 0.25 6.3513 5.8524 7.86 9.0000 8.0000 11.11

Average 8.5966 8.1877 4.93 7.1129 6.3983 10.07 10.6250 8.5000 19.67

As shown in Table 8, the parameter values of five IC tech-
nologies are specified in the four previous columns and the
last five columns represent the comparison results on the wire

length, radius, max s-t delay, sum s-t delay and number of
bends with the TOA under different IC technologies. Since
standard deviation can reflect the discrete degree of a data

123

1168 G. Liu et al.

Table 8 Comparison on the wire length, radius, max s-t delay, sum s-t delay and number of bends with the TOST algorithm (TOA) under different
IC technologies

R0 () r0 (/µm) c0 (fF/μm) ck (fF) ICtechnology Wire length
(%)

Radius
(%)

Max s-t
delay (%)

Sum s-t
delay (%)

Number of
bends (%)

180.0 0.0075 0.118 23.4 Tost 2.08 5.22 4.93 10.07 19.67

164.0 0.0330 0.234 5.7 IC1 1.95 5.23 5.09 12.45 19.67

212.1 0.0730 0.083 7.1 IC2 2.16 5.10 6.31 13.24 19.67

270.0 0.1120 0.039 1.0 IC3 2.16 5.10 3.70 11.87 19.67

25.0 0.0080 0.060 1,000.0 MCM 2.42 5.22 7.24 13.20 19.67

1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Metrics

S
ta

nd
ar

d
de

vi
at

io
n

3 4
0

0.005

0.01

0.015

0.02

RWL

MD SD

B

MD
SD

y=0.014

y=0.014

WL: wire length
R: radius
MD: max s−t delay
SD: sum s−t delay
B: number of bends

Fig. 8 The standard deviation for each metric in Table 8

set, from Fig. 8, we can find that the standard deviation for
each metric is very small and less than 0.014 (especially the
standard deviation for the bend metric is zero) and it shows
that our proposed algorithm is very stable and effective under
different IC technologies.

5 Conclusions

Constructing the timing-driven Steiner tree is very impor-
tant in VLSI performance-driven routing stage. In this paper,
we presented an efficient algorithm to construct the MRM-
CST for performance-driven routing in Octilinear architec-
ture based on MOPSO and Elmore delay model. We adopted
edge transformation and Union-Find partition to make the
evolutionary process more effective. Furthermore, optimiz-
ing the number of bends which is one of the key factors
of chip manufacturability is meaningful for VLSI routing.
To the best of our knowledge, this is the first time to opti-
mize the number of bends in non-Manhattan performance-
driven routing. Experimental results on OR-Library indicate
that our algorithm demonstrates a great performance com-
pared to others and is very stable and effective under different
IC technologies. Further work will focus on non-Manhattan
obstacle-avoiding performance-driven routing problem.

Acknowledgments This work was supported in part by the National
Basic Research Program of China (2011CB808000), the National
Natural Science Foundation of China (Grant Nos. 11271002 and
61300102), the Fujian Province High School Science Fund for Distin-
guished Young Scholars (JA12016), and the Program for New Century
Excellent Talents in Fujian Province University (JA13021). The authors
would like to thank Prof. Yan Jin-Tai from Department of Computer
Science and Information Engineering, Chung-Hua University, for com-
ments and helpful discussions.

References

Agrawal S, Silakari S (2013) FRPSO: Fletcher–Reeves based parti-
cle swarm optimization for multimodal function optimization. Soft
Comput 1–17

Alfred VA, John EH, Jeffrey U (1983) Data structures and algorithms.
Addison-Wesley Longman Publishing, Boston

Arora T, Mose ME (2009) Ant colony optimization for power effi-
cient routing in manhattan and non-manhattan VLSI architectures.
In: Swarm intelligence symposium, pp 137–144

Balling R (2003) The maximin fitness function: multiobjective city and
regional planning. Proceedings of the 2nd international conference
on evolutionary multi-criterion optimization. Faro, Portugal, pp 1–15

Beasley JE (1990) OR-Library: distributing test problems by electronic
Mail. J Oper Res Soc 41(11):1069–1072

Boese KD, Kahng AB, Robins G (1993) Near optimal critical sink
routing tree constructions. In: Proceedings of the ACM/IEEE design
automation conference, pp 182–187

Borah M, Owens RM, Irwin MJ (1994) An edge-based heuristic for
Steiner routing. IEEE Trans Comput Aided Design 13(12):1563–
1568

Bozorgzadeh E, Kastner R, Sarrafzadeh M (2003) Creating and exploit-
ing flexibility in rectilinear Steiner trees. IEEE Trans Comput Aided
Design 22(5):605–615

Carlos ACC, Gregorio TP, Maximino SL (2004) Handling multiple
objectives with particle swarm optimization. IEEE Trans Evol Com-
put 8(3):256–279

Chen G, Guo W, Chen Y (2010) A PSO-based intelligent decision algo-
rithm for VLSI floorplanning. Soft Comput 14(12):1329–1337

Chiang C, Chiang CS (2002) Octilinear steiner tree construction. In:
Proceedings of the 45th midwest symposium on circuits and systems,
pp 603–606

Chu C, Wong YC (2008) FLUTE: fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design. IEEE Trans Comput
Aided Design 27(1):70–83

Clerc M (2004) Discrete particle swarm optimization, illustrated by
the traveling salesman problem. In: Onwubolu GC, Babu BV (eds)
New optimization techniques in engineering. Springer, Berlin, pp
219–239

123

A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction 1169

Cong J, Kahng AB, Robins G, Sarrafzadeh M, Wong CK (1992) Prov-
ably good performance-driven global routing. IEEE Trans Comput
Aided Design 11:739–752

Conover WJ (1999) Practical nonparametric statistics. Wiley, New York
Costas V, Konstantinos E, Isaac E (2012) Particle swarm optimization

with deliberate loss of information. Soft Comput 16(8):1373–1392
Coulston G (2003) Constructing exact octagonal steiner minimal trees.

In: Proceedings of the 13th ACM Great Lakes symposium on VLSI,
pp 1–6

Eberhar RC, Kennedy J (1995) A new optimizer using particles swarm
theory. In: Proceedings of the 6th international symposium on micro
machine and human science, Nagoya, pp 39–43

Garey M, Johnson D (1997) The rectilinear steiner tree problem is NP-
complete. SIAM J Appl Math 32:826–834

Guo W, Park JH, Yang LT, Vasilakos AV, Xiong N, Chen G (2011)
Design and analysis of a MST-based topology control scheme with
PSO for wireless sensor networks. 2011 IEEE Asia-Pacific services
computing conference. IEEE, Jeju Island, pp 360–367

Guo W, Xiong N, Vasilakos AV, Chen G, Yu C (2012) Distributed k-
connected fault-tolerant topology control algorithms with PSO in
future autonomic sensor systems. Int J Sens Netw 12(1):53–62

Julstrom BA (2001) Encoding rectilinear Steiner trees as lists of edges.
In: Proceeding of the 2001 ACM symposium on applied computing,
New York, pp 356–360

Ho TY, Chang YW, Chen SJ (2007) Full-chip nanometer routing tech-
niques. Springer, Berlin

Hou H, Hu J, Sapatnekar SS (1999) Non-hanan routing. IEEE Trans
Comput Aided Des 18(4):436–444

Hu J, Sapatnekar S (2001) A survey on multi-net global routing for
integrated circuits. Inter VLSI J 31(1):1–49

Kennedy J, Eberhart RC (1997) A discrete binary version of the particle
swarm algorithm. In: Proceedings of the world multiconference on
systemics, cybernetics and informatics, Piscataway, pp 4104–4109

Koh CK, Madden PH (2000) Manhattan or non-manhattan? a study
of alternative VLSI routing architectures. In: Proceedings of Great
Lake symposium on VLSI, pp 47–52

Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining conver-
gence and diversity in evolutionary multi-objective optimization.
Evol Comput 10(3):263–282

Liang J, Hong X, Jing T (2007) G-Tree: gravitation-direction-based
rectilinear Steiner minimal tree construction considering bend reduc-
tion. Proceedings of the 7th international conference on ASIC. IEEE,
Guilin, pp 1114–1117

Liu G, Chen G, Guo W (2012) DPSO based octagonal steiner tree
algorithm for VLSI routing. 2012 IEEE fifth international conference
on advanced computational intellligence. IEEE, Nanjing, pp 383–
387

Liu G, Chen G, Guo W, Chen Z (2011) DPSO-based rectilinear steiner
minimal tree construction considering bend reduction. In: Proceed-
ings of the 7th international conference on natural computation, pp
1161–1165

Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization
with differential evolution for constrained numerical and engineering
optimization. Appl Soft Comput 10(2):629–640

Pan QK, Tasgetiren MF, Liang YC (2006) A discrete particle swarm
optimization algorithm for the permutation flowshop sequecing
problem with makespan criteria. In: Proceedings of the 26th SGAI
international conference on innovative techniques and applications
of artificial intelligence, Cambridge, pp 19–31

Peng S, Chen G, Guo W (2010) A multi-objective algorithm based on
discrete PSO for VLSI partitioning problem. In: Proceedings of the
2nd international conference on quantitative logic and soft comput-
ing, Jimei, pp 651–660

Rada-Vilela J, Zhang M, Seah W (2013) A performance study on syn-
chronicity and neighborhood size in particle swarm optimization.
Soft Comput 17(6):1019–1030

Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hier-
archical particle swarm optimizer with time-varying acceleration
coefficients. IEEE Trans Evol Comput 8(3):240–255

Samanta T, Ghosal P, Rahaman H, Dasgupta PS (2006) A heuristic
methiod for constructing hexagonal steiner minimal trees for routing
in VLSI. In: 2006 IEEE international symposium on circuits and
systems, pp 1788–1791

Samanta T, Rahaman H, Dasgupta PS (2011) Near-optimal Y-routed
delay trees in nanometric interconnect design. IET Comput Digital
Tech 5(1):36–48

Sarrafzadeh M, Feng LK, Wong CK (1994) Single-layer global routing.
IEEE Trans Comput Aided Design 13(1):38–47

Seo DY, Lee DT (1999) On the complexity of bicriteria spanning tree
problems for a set of points in the plane. PhD Dissertation, North-
western University

Shen Y, Liu Q, Guo W (2011) Obstacle-avoiding rectilinear steiner min-
imum tree construction based on discrete particle swarm optimiza-
tion. In: Proceedings of the 2011 seventh international conference
on natural computation, pp 2179–2183

Shi YH, Eberhart RC (1998) A modified particle swarm optimizer. In:
Proceedings of the IEEE international conference of evolutionary
computation, Piscataway, pp 69–73

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
6(2):182–197

Teig S (2002) The X architecture: not your fathers diagonal wiring.
In: Proceedings of the ACM international workshop system level
interconnect prediction, pp 33–37

Warme DM, Winter P, Zachariasen M (1998) Exact algorithms for plane
steiner tree problems: a computational study., Advances in Steiner
TreesKluwer Academic Publishers, Dordrecht

Yan JT (2006) Dynamic tree reconstruction with application to timing-
constrained congestion-driven global routing. IEE Proc Comput Dig-
ital Tech 153(2):117–129

Yan JT (2008) Timing-driven octilinear steiner tree construction based
on steiner-point reassignment and path reconstruction. ACM Trans
Design Autom Electron Syst 13(2):26

Yehea II, Eby GF, Jose LN (1999) Equivalent elmore delay for RLC
trees. In: Proceedings of the 36th design automation conference, pp
715–720

Zhu Q, Zhou H, Jing T, Hong X, Yang Y (2005) Spanning graph-based
nonrectilinear steiner tree algorithms. IEEE Trans Comput Aided
Design 24(7):1066–1075

Zitzler E (1999) Evolutionary algorithms for multiobjective optimiza-
tion: methods and applications. Swiss Federal Institute of Technol-
ogy, Zurich

Zitzler E, Laumanns M, and Thiele L (2001) SPEA2: improving the
strength pareto evolutionary algorithm. In: Giannakoglou KC, Tsa-
halis DT, Periaux J, Papailiou KD, Fogarty T (eds) Evolutionary
methods for design optimization and control with applications to
industrial problems. International Center for Numerical Methods in
Engineering, pp 95–100

Zitzler E, Thiele L, Laumanns M et al (2003) Performance assessment
of multiobjective optimizers: an analysis and review. IEEE Trans
Evol Comput 7:117–132

123

	A PSO-based timing-driven Octilinear Steiner tree algorithm for VLSI routing considering bend reduction
	Abstract
	1 Introduction
	2 Problem description
	2.1 OSMT problem
	2.2 Elmore delay model
	2.3 Definitions
	2.4 MRMCST model

	3 Algorithm
	3.1 Basic PSO
	3.2 PSO-based timing-driven Octilinear Steiner tree considering bend reduction
	3.2.1 Two important metrics for performance-driven routing
	3.2.2 The multi-objective approach
	3.2.3 Encoding scheme
	3.2.4 Update formula of the particle
	3.2.5 Parameter setting
	3.2.6 Processes of TOST_BR_MOPSO
	3.2.7 Complexity analysis

	3.3 Convergence analysis of TOST_BR_MOPSO

	4 Experimental results
	4.1 Experimental validation of edge transformation
	4.2 Performance analysis of the proposed MOPSO
	4.3 Comparison with the two SMT algorithms
	4.4 Comparison with the timing-driven Octilinear Steiner tree construction method

	5 Conclusions
	Acknowledgments
	References

