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Abstract We discuss the Dempster–Shafer belief theory
and describe its role in representing imprecise probabilis-
tic information. In particular, we note its use of intervals
for representing imprecise probabilities. We note in fuzzy
set theory that there are two related approaches used for
representing imprecise membership grades: interval-valued
fuzzy sets and intuitionistic fuzzy sets. We indicate the
first of these, interval-valued fuzzy sets, is in the same
spirit as Dempster–Shafer representation, both use inter-
vals. Using a relationship analogous to the type of rela-
tionship that exists between interval-valued fuzzy sets and
intuitionistic fuzzy sets, we obtain from the interval-valued
view of the Dempster–Shafer model an intuitionistic view
of the Dempster–Shafer model. Central to this view is the
use of an intuitionistic statement, pair of values, (Bel(A)
Dis(A)), to convey information about the value of a variable
lying in the set A. We suggest methods for combining intu-
itionistic statements and making inferences from these type
propositions.

Keywords Second order uncertainty ·
Imprecision · Non-standard fuzzy sets · Dempster–Shafer ·
Intuitionistic model

1 Introduction

The Dempster–Shafer theory provides a well-established
structure for the representation of imprecise information
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about the value of uncertain variable (Dempster 1966; Shafer
1976; Zadeh Zadeh1986; Smets 1988, 1990; Yager 1992;
Smets and Kennes 1994; Yager et al. 1994; Denoeux 1998,
1999; Yager 1999, 2001; Ferson et al. 2002; Dempster
2008; Yager and Liu 2008). Using this theory, the proba-
bility that a variable lies in a set is expressed as an inter-
val. Here, we are allowing for imprecision in our knowledge
of probabilities. This type of situation is often referred sec-
ond order uncertainty. A similar example of second order
uncertainty occurs in fuzzy set theory. In this case, we have
imprecision in our knowledge of the membership grades
of a fuzzy set. Two approaches have been developed in
the domain of fuzzy sets for the representation of impre-
cise membership. These two approaches are interval-valued
fuzzy sets (Karnik and Mendel 2001; Mendel and Bob John
2002; Mendel et al. 2006; Mendel and Wu 2010; Mizu-
moto and Tanaka 1976; Rickard et al. 2010) and intuition-
istic fuzzy sets (Atanassov 1986, 2012; Bustince and Bur-
rillo 1996; Pasi et al. 2005; Szmidt and Kacprzyk 2001;
Xu and Yager 2009; Yager 2009). In the interval-valued
approach, the imprecision in membership grade is captured
by the use of an interval. In the intuitionistic approach, the
imprecision is captured by the use of two values, support
for membership and support against, which do not nec-
essarily sum to one as in the case of the standard fuzzy
set.

What is clear is that the representation of the imprecision
used in the Dempster–Shafer model is in the same spirit as
the interval-valued membership grades of fuzzy sets. Here,
our objective is to provide a view of the Dempster–Shafer
structure using a framework in the spirit of the intuition-
istic approach of fuzzy set theory. The accomplishment of
this objective is greatly aided by the known underlying rela-
tionship between interval-valued fuzzy sets and intuitionis-
tic fuzzy sets (Atanassov and Gargov 1989; Cornelis et al.
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2003; Deschrijver and Kerre 2003). Using the basic principal
of this relationship, we are able to go very naturally from the
classic interval-valued view of the imprecision in Dempster–
Shafer theory to an intuitionistic view of the imprecision in
Dempster–Shafer theory.

We note that in (Dymova and Sevastjantov 2010a,b,
2012), Dymova and Sevastjantov look at some connections
between intuitionistic fuzzy sets and Dempster–Shafer belief
structures; however, their focus and interest was different
than ours. In Dymova and Sevastjantov (2010a,b, 2012),
the authors focus on the problem of multi-criteria decision
making in situations in which the criteria satisfactions are
expressed in terms of intuitionistic membership grades. They
are interested in using Dempster–Shafer theory to help pro-
vide decision making tools for comparing the interval sat-
isfactions. Our focus is on the representation of information
about an uncertain variable and on understanding the compa-
rable ways we can provide this information using intervals,
as in the belief approach and pairs of values as in the intu-
itionistic approach.

2 Belief structures and imprecise information

A Dempster–Shafer belief structure (Yager and Liu 2008;
Liu and Yager 2008) provides a generalization of a proba-
bility distribution that can be used to model the case when
we have imprecise information about the probability distri-
bution. We note an even more general approach to mod-
eling imprecise probabilities is that introduced by Walley
(1982, 2000). Formally, a Dempster–Shafer belief structure
m on a space X is defined via a collection of non-empty sub-
sets of X, F1, . . . , Fq , called focal elements and a mapping
m(Fj ) ∈ (0, 1] such that

∑q
j=1 m(Fj ) = 1. Here, m(Fj )

is known as the weight associated with Fj . It is specifically
required that m(∅) = 0.

One interpretation of the D–S belief structure is that we
have a variable V that can take its value in the space X.
Instead of assigning a probability p j to each x j in X, we
allocate an amount of probability, m(Fj ), to be distributed
among the elements in Fj without specifically assigning it to
any of the elements. When the probability in m(Fj ) is allo-
cated in this manner, this introduces an imprecision in our
knowledge.

Two important concepts associated with Dempster–Shafer
structures are plausibility and belief (Shafer 1976). We recall
for any subset A of X

Pl(A) =
∑

j, A∩Fj �=∅
m(Fj ) =

q∑

j=1

m(Fj )Poss[A/Fj ]

Bel(A) =
∑

j, Fj ⊆A

m(Fj ) =
q∑

j=1

m(Fj )Cert(A/Fj )

=
q∑

j=1

m(Fj )(1 − Poss(A/Fj )

= 1 −
q∑

j=1

m(Fj )Poss(A/Fj )

We recall that Poss[A/Fj ] = Maxx [Min(A(x), Fj (x))]
and Cert[A/Fj ] = Minx [Max(A(x), F̄j (x))] = 1 −
Poss( Ā/Fj ) and A(x) and Fj (x) is the degree of membership
of x in the respective sets. In the case where the associated
sets are fuzzy sets, a number of approaches other than the
above have been suggested in the literature (Yen 1990, 1992;
Flaminio et al. 2013).

We note Bel(A) = 1−Pl(A). It is easily shown that these
are actually measures (Yager 1999) on the space X

Pl : 2X → [0, 1] where Pl(∅) = 0, Pl(X) = 1 and

Pl(A) ≥ Pl(B) if A ⊇ B

Bel : 2X → [0, 1] where Bel(∅) = 0, Bel(X) = 0 and

Bel (A) ≥ Bel(B)if A ⊇ B.

These concepts are used to define the upper and lower proba-
bility bounds of the imprecise probability of A. Here, Bel(A)
is the lower probability, denoted P−(A), and plausibility is
the upper probability, denoted P+(A). Thus here, the prob-
ability P(A) lies in an interval, P(A) ∈ [Bel(A), Pl(A)] . We
note [Bel(A), Pl(A)] is a sub-interval the unit interval, [0, 1].

A related situation occurs in what is called type two fuzzy
sets (Mizumoto and Tanaka 1976). In this environment, we
have imprecise membership grades associated with a fuzzy
set. A particular example of a type two fuzzy subset is the
so-called interval-value fuzzy set studied in great detail by
Mendel (Mendel and Bob John 2002; Mendel et al. 2006;
Mendel and Wu 2010). In this case, if F is an interval-valued
fuzzy subset of the space X then F(x), the membership grade
of the element x in F is a subset of the unit interval F(x) =
[FL(x), FU(x)].

A related formulation for imprecise membership grades
of a fuzzy set F was introduced by Atanassov (1986, 2012),
these are called intuitionistic membership grades. Here, we
associate with F(x), the membership of x in F , not an inter-
val, but a pair of values 〈FY(x), FN(x)〉. In this formula-
tion, FY(x) is called the degree of support for membership
and FN(x) is called the degree of support against member-
ship. Both FY(x) and FN(x) ∈ [0, 1] and it is required that
FY(x) + FN(x) ≤ 1. Here, 〈FY(x), FN(x)〉 can be referred
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to as an intuitionistic statement about the membership of x
in A.

A relationship was shown to exist between these two rep-
resentations of imprecise fuzzy membership grades (Deschri-
jver and Kerre 2003; Cornelis et al. 2003). In particular,
the interval-valued membership grade [FL(x), FU(x)] was
seen to be equivalent to an intuitionistic membership grade
pair 〈FY(x), FN(x)〉 where FL(x) = FY(x) and FN(x) =
1 − FU(x).

The analogy between the imprecise interval-valued mem-
bership grade of a fuzzy set F(x) ∈ [FL(x), FU(x)] and the
imprecise interval-valued probability of the belief structure
P(A) ∈ [Bel(A), Pl(A)] inspires us to consider an intuition-
istic representation of the interval associated with the proba-
bility of the set A, P(A). If we follow this analogy, we get an
intuitionistic representation of the imprecise value associated
with the probability of A as 〈Bel(A), 1− Pl(A)〉. We further
see that Bel(A) = 1− Pl(A) = 1−∑

j= Poss[ Ā/Fj )m(Fj )

and 1 − Pl(A) = 1 − ∑n
j=1 Poss

[
A/Fj

)
m(Fj ). Here, we

shall refer to 1 − Pl(A) as the degree of disbelief of A and
denote it as Dis(A) = 1 − Pl(A).

Using this here, we then have a pair 〈Bel(A), Dis(A)〉
where Bel(A) = 1 − Pl(A) and Dis(A) = 1 − Pl(A). Thus,
Bel(A) is the belief that the value of the variable V lies in
A and Dis(A) is the belief that the value of variable does
not lie in A. We note that Bel(A) + Dis(A) ≤ 1. We shall
refer to 〈Bel(A), Dis(A)〉 as an intuitionistic statement about
finding V in A and use the notational convenience IS(A) =
〈Bel(A), Dis(A)〉 to indicate an intuitionistic statement about
finding V in the set A.

We note that Dis is not a measure, actually it has com-
plementary properties of a measure (Wang and Klir 1992).
Dis : 2X → [0, 1] is such (1) Dis(X ) = 0, (2) Dis(∅) = 1
and (3) Dis(A) ≥ Dis(B) if A ⊆ B.

We note that in the framework of using the plausibility and
belief to represent imprecise probability where Bel(A) =
PL(A) and Pl(A) = PU(A), we can represent Prob(A) ∈
[PL(A), PU(A)], as a pair 〈PL(A), 1 − PU(A)〉. Here, we
can think of PL(A) as the guaranteed probability of A. We
can think of 1 − PU(A) as the degree of improbability of A.
We observe that PL(A) + (1 − PU(A)) ≤ 1.

3 Characterizing features of imprecise information

Given an intuitionist statement IS(A) = 〈Bel(A), Dis(A)〉
representing our knowledge about finding the value of V in
A, we can associate with this characterizing features related
to the quali t y of the information it contains. The first feature
is the commitment

Com(A) = Bel(A) + Dis(A)

Dis(A)

Bel(A)

Constant Con(A)

Fig. 1 Relationship between properties

The stronger the commitment, the better the information.
Values of Com(A) < 1 indicate some indecisiveness regard-
ing the allocation between Bel(A) and Dis(A). The second
feature is what we shall refer to clarity we define this as

Clarity (A)

= 1

Com(A)
[2 Max(Bel(A), Dis(A)) − Com(A)]

Clarity (A) = 2 Max[Bel(A), Dis(A)]
Com(A)

− 1

We see that when Bel(A) = Dis(A) = 1
2 Com(A) then

Clarity = 0. We see that when one of the Bel(A) = 1 or
Dis(A) = 1 then Max[Bel(A), Dis(A)] = 1 and Com(A) = 1
then Clarity(A) = 1. Thus, Clarity(A) ∈ [0, 1]. The larger
the value of the clarity the more the distinction regarding the
support for V lying in A and the support for V not lying in A.

We note that

1

2
Com(A) ≤ Max(Bel(A), Dis (A)) ≤ Com(A)

More generally if Bel(A) = Dis(A) = a then Clarity(A)

= 1
2a (2a − 2a) = 0. Thus, the minimal clarity occurs when

Bel(A) = Dis(A). Also, note that Bel(A) = Dis(A) corre-
sponds to the case possibility(A) = possibility(not Ā) = 1
in the framework of possibility theory, and this is known to be
a case of total ignorance, so clarity is (a sort of) the converse
of ignorance.

In Fig. 1, we illustrate the connection between Dis(A),

Bel(A), Com(A) and Clarity(A).
Another interesting special case occurs when the prob-

ability that V lies in A is precisely known, Prob(A) = α.

Here, Bel(A) = α and Pl(A) = α and thus Dis(A) =
1 − Pl(A) = 1 − α. In this case, Com(A) = 1 − α +
α = 1, we have full commitment. In this case, we get,
however, that Clarity(A) = 2Max[(1 − α), α] − 1. We
see this plotted as a function of α in Fig. 2. Thus, this
takes its minimal value, least clarity, when α = 0.5 and it
increases as either α decreases or increases from 0.5. It attains
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Fig. 2 Clarity as function of α

maximum clarity when we have a probability α of either
1 or 0.

In the preceding when we know the probability of A is α,
we have Pl(A) − Bel(A) = 0. Consider now the case where
Pl(A) − Bel(A) = β. Here,

1 − (Pl(A) − Bel(A)) = 1 − β

1 − Pl(A) + Bel(A) = 1 − β

Dis(A) + Bel(A) = 1 − β

Thus, the sum of the belief and disbelief is equal to the com-
plement of the imprecision, β. In this case,

Clarity (A)

= 1

Com(A)
[2 Max(Bel(A), Del(A)) − Com(A)]

= 2Max[Bel(A), Del(A)]
1 − β

− 1

We observe that this is maximized by making Max[Bel(A),
Dis(A)] as large as possible. Furthermore, we note a sym-
metry between belief and disbelief. We get this maximum
when either one of the two is as large as possible. Since
Dis(A) + Bel(A) = 1 − β thus clarity comes by maxi-
mizing the difference between belief and disbelief, making
[Dis(A) − Bel(A)] as big as possible. Here, then, if we have
Bel(A) = 1−β and Dis(A) = 0 then we get maximal Clarity
and we have Clarity(A) = 2 1−β

1−β
−1 = 1. On the other hand,

the minimal occurs when Bel(A) = Dis(A) = 1
2 (1 − β). In

this case, Max[Dis(A), Bel(A)] = (1 − β) and we get that
Clarity(A) = 0.

It is important to emphasize that the Clarity and Commit-
ment are measuring different things. We recall that Dis(A)+
Bel(A) is what we called the commitment. We observe that
the complement of commitment

1 − Com(A) = 1 − (Dis(A) + Bel(A)) = (1 − Dis(A))

− Bel(A) = Pl(A) − Bel(A)

is a kind of measure of imprecision or hesitancy. On the other
hand, the

Clarity(A) = 2Max[Bel(A), Dis(A)]
Comp(A)

− 1

is related to how the total committed value is distributed
between the Belief and Disbelief. The more unequally we
distribute the committed value the more clarity.

We note that we can alternatively express the clarity as

Clarity(A) = Max[Bel(A), Dis(A)]
Ave[Bel(A), Dis(A)] − 1

where Ave [Bel(A), Dis(A)] = Bel(A) + Dis(A)

2
.

We observe that if Com(A) = 1 then Clarity(A) = 2Max
[Bel(A), Dis(B)] − 1. In this case, the measure of clar-
ity has properties related to the DeLuca and Termini mea-
sure of fuzziness (DeLuca and Termini 1972; Yager 1979,
1980). Actually, it is the complement of the DeLuca and
Termini measure of fuzziness. We see this if we denote
F(z) = Clarity(A) where z = Max[Bel(A), Dis(A)]. If we
consider 1− F(z) we get the DeLuca and Termini properties

(1) If z = 1, then 1 − F(z) = 0.
(2) 1− F(z) attains its maximum value if z = Max(Del(A),

Del(B)] = 0.5, in this case, we get 1 − F(z) = 1.
(3) Since z = Max[Bel(A), Dis(A)] ≥ 0.5 then 1 − F(z)

increases as z increases.

Thus, we see that the Clarity is related to fuzziness, the
Clarity is the complement to fuzziness.

4 Entailment of Dempster–Shafer belief structures

In 1986, Yager introduced the idea of entailment associated
with D–S belief structures. Consider we have the knowledge
that P(A) ∈ R1 = [a1, b1]. Here, we have that P(A) lies
in the interval [a1, b1]. Assume R2 = [a2, b2] is another
interval such that a2 ≤ a1 and b2 ≥ b1. What is clear
is that we can say that P(A) ∈ [a2, b2]. Thus, while the
knowledge P(A) ∈ R2 is less informative than P(A)εR1

it is still a true statement. Thus, given that P(A) ∈ R1

we can infer that P(A) ∈ R2. We can go for the smaller
range to the wider range. Here, we say R1 entails R2,
the truth of R1 implies the truth of R2, we denote this
R1| − R2.

Let us look at the idea of entailment from an intuitionis-
tic perspective. Consider two ranges R1(A) = [a1, b1] and
R2(A) = [a2, b2] such that a1 ≥ a2 and b1 ≤ b2, R1 ⊆ R2.
So, here, starting with R1, we can always infer R2. Let us look
at the associated intuitionistic representation. Here, we have
IS1(A) = 〈a1, 1−b1〉 and IS2(A) = 〈a2, (1−b2)〉. In the first
case, Bel1(A) = a1 and Dis1(A) = 1 − b1 while in the sec-
ond case, Bel2(A) = a2 and Dis2(A) = 1 − b2. We further
see that Bel1(A) = a1 ≥ a2 = Bel2(A) and Dis1(A) =
1 − b1 ≥ 1 − b2 = Dis2(A). Here, we see that in the
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case of IS2(A), we have reduced the values associated with
both the belief and disbelief. Thus, starting with a statement
〈Bel1(A), Dis1(A)〉, we can always infer 〈Bel2(A), Dis2(A)〉
where Bel2(A) ≤ Bel1(A) and Dis2(A) ≤ Dis1(A). Then,
here, we have reduced our commitment with respect to our
belief and disbelief. Thus, inference from the intuitionistic
perspective is simply a matter of reducing the belief and
disbelief.

Thus, we see that starting with a Bel/Dis pair 〈Bel1, Dis1〉
we can infer a pair 〈Bel2, Dis2〉 so that Bel2 ≤ Bel1 and
Dis2 ≤ Dis1 while this always results in a reduction in com-
mitment the situation with respect to clarity is not as well
behaved. Thus, if Bel1 ≥ Dis1 the clarity is Bel1 − Dis1.
Assume now we infer 〈Bel2, Dis2〉 where Dis2 ≤ Dis1 but
Bel1 = Bel2 then we get a clarity of Bel1 − Dis2 ≥
Bel1 −Dis1 we have increased the clarity. On the other hand,
if Dis1 = Dis2 and Bel2 ≤ Bel1 but still Bel2 ≥ Dis2 then we
get a clarity of Bel2 − Dis1 ≤ Bel1 − Dis2 we have reduced
clarity.

In 1986, Yager provides a more general framework extend-
ing the idea of entailment to belief structures. Assume m1

and m2 are two D–S belief structures on X such that for
all subsets A of X , we have R1(A) ⊆ R2(A). What is
clear is that if we know m1 to be a correct representation
of our knowledge then we can infer that m2 is also correct.
In this case, we say m1 entails m2 and we write m1 | − m2.
We further note that in this case, m1 provides more infor-
mation but still m2 is not wrong. We see that in going
for m1 to m2, we have essentially reduced our committed
with regard to our belief and disbelief associated with our
information.

On the other hand, we observe that if m1 entails m2,
m1 | − m2, then for any A since R1(A) ⊆ R2(A)m2 is less
constraining that m1. The belief structure m2 is less restric-
tive.

In Yager (1986), we provided a form for an entailment
principle for Dempster–Shafer structures that says the fol-
lowing. Assume m is a belief structure with focal elements
A1, . . .AP and m(Ai ) = ai . Let another m1 be a belief
structure with focal elements B11, B12, . . ., B1n(1), B21,

. . ., B2n(2), . . . BPr1, . . .Bpn(P) with Ai ⊇ Bi j for all j = 1

to n(i) and
∑ n( j)

j=1m2(Bi j ) = a1 then m1 | − m. Then, from
m1 we can entail m. Furthermore, m is less constraining and
less informed than m1. The justification of this form for the
entailment principle is the fact given the relationship between
the focal elements in m and m1 it can be shown that for any
subset E we have R1(E) ⊆ R(E).

5 Providing intuitionistic information

The ability to provide the information about the uncertainty
associated with a variable using an intuitionistic type expres-

sion of the knowledge may be useful for some information
providers. Consider the situation in which an expert provides
information about the value of a variable V lying in a subset
A of the domain X in terms of an intuitionistic statement
IS(A) = 〈Bel(A), Dis(A)〉. With this statement, they are
saying their belief that the variable V lies in A is Bel(A)
and their disbelief is Dis(A). In providing this type of infor-
mation, there are just a few constraints. The first is that if
A = X , then we must have Bel(X) = 1 and Dis(X) = 0,
IS(X) = 〈1, 0〉. For A = ∅, we must have 〈0, 1〉, Bel(∅) = 0
and Dis(∅) = 1. Finally, for any other set A, all that are
required is Bel(A) + Dis(A) ≤ 1. Thus, this is very conve-
nient and comfortable way for a informant to express infor-
mation about the value of a variable. The following example
illustrates such a situation. We have just heard a lecture from
very interesting young scholar and a colleague asks my opin-
ion as to whether he is “over 21”. As I am uncertain I provide
the following information my Belief that he is over 21 is 0.6
and my Disbelief is 0.2.

Consider now we are providing the information IS(A) =
〈Bel(A), Dis(A)〉 = 〈a, b〉 about the value of some variable
V . Here, we are saying that our belief that V lies in A is a
and our disbelief is b.

Consider now a Dempster–Shafer belief structure m with
focal elements F1 = A, F2 = A and F3 = X where m(F1) =
Bel(A) = a, m(F2) = Dis(A) = b and m(F3) = 1 −
(Dis(A) + Bel(A)) = 1 − a − b. Conceptually, we see 1 −
(Dis(A) + Bel(A)) as the amount non-committed. We see
for this belief structure m, we have

Plm(A) =
3∑

j=1

m(Fj )Poss
[
A/Fj

]

= a + (1 − (b + a)) = 1 − b

Plm(A) =
n∑

j=1

m(Fj )Poss[ Ā/Fj ]

= b + (1 − (b + a)) = 1 − a

In this case, Belm(A) = 1 − Plm(A) = a and Dis(A) = 1 −
Plm(A) = b. Here, then, we have the ISm(A) = 〈a, b〉. Thus,
m correctly conveys the provided information. Thus, m is an
appropriate representation of the knowledge in the preceding
intuitionistic statement IS(A) = 〈Bel(A), Dis(A)〉 = 〈a, b〉.

We provide a theorem generalizing the preceding.

Theorem 1 Any belief structure m1 that satisfies ISm1(A) =
〈a, b〉 must have the following focal elements

(i) A collection of focal elements Fj ⊆ A whose total
weight is a.

(ii) A collection of focal elements Fj ⊆ A whose total
weight is b.
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(iii) A collection of focal Fj so that Fj ∩ A �= ∅ and Fj �⊂ A
whose total weight is 1 − (b + a).

Proof Consider now any belief structure m1 that satisfies
ISm1(A) = 〈a, b〉. Let us denote its focal elements as
F1, . . ., Fq and their weights as m1(Fj ). We observe that
we can partition this collection of focal elements into three
categories:

(1) Those that are contained in A, Fi ⊆ A. Let these be
F1, . . ., Fr .

(2) Those that intersect A but are not contained in A, Fr+1,

. . .FP .
(3) Those which does not intersect A, those contained in A,

FP+1, . . ., Fq .

Here, then,

Plm1(A) =
q∑

j=1

Poss
[
A/Fj

]
m1(Fj )

=
∑

j,Fj ∩A �=∅
m1(Fj ) =

P∑

j=1

m1(Fj )

From the fact that ISm1(A) = 〈a, b〉 where b = 1−Plm1(A),
we have Plm1(A) = 1 − b and hence,

∑p
j=1 m1(Fj ) =

1 − b. In addition, Belm1(A) = ∑
j, Fj ⊆A m1(Fj ) =

∑ r
j=1m1(Fj ) = a.

Furthermore, we note that

1 − b =
P∑

j=1

m1(Fj ) =
r∑

j=1

m1(Fj ) +
P∑

j=r+1

m1(Fj )

= a +
P∑

j=r+1

m1(Fj )

Thus, we see that

P∑

j=r+1

m1(Fj ) = 1 − (b + a) = 1 − b − a

Since

1 =
q∑

j=1

m1(Fj ) =
r∑

j=1

m1(Fj ) +
P∑

j=r+1

m1(Fj )

+
q∑

j=P+1

m1(Fj ) = a + (1 − b − a) +
q∑

j=P+1

m1(Fj )

thus, we see that
∑ q

j=P+1m1(Fj ) = b.

Recall our belief structure m with m(A) = a, m(A) = b
and m(X) = 1 − (b + a). We observe that all Fj for j = 1
to r are such Fj ⊆ A, all Fj for j = r + 1 to p are such that
Fj ⊆ A and all Fj for j = p + 1 to q are such that Fj ⊆
X then from the entailment principle we can infer m1 | −
m. Thus, all belief structures that satisfy IS(A) = 〈a, b〉
entail m, hence m is the least restrictive belief structure that
satisfies IS(A) = 〈a, b〉. Thus, implementing the knowledge
〈Bel(A), Dis(A)〉 = 〈a, b〉 by m is the most appropriate
representation as it assumes no additional information.

Let B be another subset of X . We see that B can have one
of three different possible relationships with A.

(1) B1 ⊆ A
(2) B2 ∩ A = ∅
(3) B3 ∩ A �= ∅ but B3 �⊂ A

Using the belief structure m described above, we see that

(1) For B1 ⊆ A, we have

Plm(B1) ≤ 1 − b

Plm(B1) ≥
3∑

j=1

m(Fj )Poss(B̄1/Fj )

= b + (1 − (b + a)) = 1 − a

Thus, Plm(B1) = 1 − b∗ where b∗ ≥ b and Plm(B1) =
1 − a∗ where a∗ ≤ a.

Here, then ISm(B1) = 〈Bel(B1), Dis(B1)〉 = 〈(1 −
Plm(B), 1 − Plm(B)〉 = 〈a∗, b∗〉. Thus, here, we essen-

tially decrease our belief and increase our disbelief
(2) For A ∩ B2 = ∅, we have

Plm(B2) = a Poss(B2/A) + b Poss(B2/A)

+(1 − (a + b))Poss(B2/X)

= 0 + b + (1 − (a + b) = 1 − a

Plm(B2) = a Poss(B2/A) + b Poss(B2/A)

+1 − (a + b)Poss(B2/X)

= a + b + (1 − a + b) = 1

Here, then ISm(B2) = 〈0, a〉
(3) B3 ∩ A �= ∅ butB3 �⊂ A

Plm(B3) = a Poss(B3/A) + b Poss(B3/A)

+(1 − (a + b))Poss(B3/X)

= a + b + (1 − (a + b) = 1
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Plm(B) = a Poss(B3/A) + b Poss(B3/A

+(1 − (a + b)Poss)(B3/X)

= a + b + (1 − a − b) = 1

Here, we see IS(B3) = (0, 0). ��

6 Credibility of intuitionistic statements

In many situations, information provided in a decision
process can have some associated degree of credibility. In
one case, this can be a reflection of how confident the sup-
plier is in his judgment. In other cases, it could be an exter-
nal judgment about the competence of the supplier. Here,
we are interested in modeling this type of qualification.
Given a piece of evidence of the form of an intuitionistic
statement about finding the value of the variable V in A,
I S(A) = 〈Bel(A), Dis(A)〉 = 〈a, b〉 we now consider
the case where the provided information has an associated
degree of credibility α ∈ [0, 1]. To reflect this credibility
in our modeling of the information provided, we use the
idea of discounting introduced by Shafer (1976). Consider
now the belief structure m with focal elements, F1 = A,
F2 = A and F3 = X in which m(F1) = a, m(F2) = b and
m(X) = 1 − (a + b). The effect of discounting this belief
structure by α results in a new belief structure m1 with the
same focal elements, F = A1, F2 = A and F3 = X , how-
ever, in the case of m1, we have m1(F1) = αa, m2(E2) = αb
and m2(X) = 1 − α(b + a). Consider now the object
〈Bel1(A), Dis1(A)〉 = 〈a1, b1〉 associated with this new
belief structure. Here,

Pl1(A) =
3∑

j=1

m1(Fj )Poss(A/Fj )

= αa + (1 − α)(b + a) = 1 − αb

From this, we get Dis1(A) = 1−Pl1(A) = αb. Furthermore,

Pl1(A) =
3∑

j=1

m1(Fj )Poss( Ā/Fj ) = αb

+(1 − α)(b + a) = 1 − αa

From this we get then Bel1(A) = 1 − Pl1(A) = αa.

The effect of discounting is to induce a new piece of effec-
tive information 〈αBel(A), αDis (A)〉 = 〈αa, αb〉. Thus, the
effect of associating a degree of credibility α with our infor-
mation 〈Bel(A), Dis(A)〉 is simply to reduce each Bel and Dis
proportionally by α. We see if α = 0 then we get 〈0, 0〉 which
corresponds to the belief structure with one focal element X .
It is the belief structure corresponding to no information.

7 Combining multiple pieces of information

Consider now the situation when we have multiple pieces of
information, 〈Bel1(A1), Dis1(A1)〉= 〈a1, b1〉 and 〈Bel2(A2),

Dis2(A2)〉 = 〈a2, b2〉. We can represent this information
using belief structures. Here, then, we have two belief struc-
tures, m1 and m2, generated from our expert opinions. Here,
m1 has focal elements A1, A1 and X with m1(A1) = a1,
m1(A1) = b1 and m1(X) = 1 − (a1 + b1). For m2, we have
focal elements A2, A2 and X with m2(2) = a2, m2(A2) = b2

and m2(X) = 1− (a1 +b2). A notable way to combine these
is to use the Dempster’s rule (Dempster 1967, 1968, 2008).
The Dempster’s rule can be seen to be a two-step process. In
the first step we form subsets, Fj , by taking the conjunction
of all pairs consisting of a focal element from each of the
being combined. We also associate with each a preliminary
weight, w(Fj ) which is the product of the weights of the focal
elements being combined to form Fj . We denote these pre-
liminary weights as w(Fj ). In the second step, we obtain as
the focal elements of the combined belief structure m all the
Fj �= ∅. We then obtain the weights of the focal elements by
dividing their preliminary weights by the sum of the prelim-
inary associated with the Fj �= ∅. This second step is called
normalization. In the following, we illustrate the implemen-
tation of the first step for the case of m1 and m2 given
above.

F1 = A1 ∩ A2 w(F1) = a1 · a2

F2 = A1 ∩ A2 w(F2) = a1 · b2

F3 = A1 ∩ X = A1 w(F3) = a1(1 − (a2 + b2))

F4 = A1 ∩ A2 w(F4) = b1 · a2

F5 = A1 ∩ A2 w(F5) = b1 · b2

F6 = A1 ∩ X = A1 w(F6) = b1(1 − (a2 + b2))

F7 = X ∩ A2 = A2 w(F7) = (1 − (a1 + b2)) · a2

F8 = X ∩ A2 = A2 w(F8) = (1 − (a1 + b)) − b2

F9 = X ∩ X = X w(F9) = (1 − (a1 + b1))(1 − (a2 + b2))

Going on to the second step, the normalization requires more
knowledge about sets A1 and A2.

We now consider the special case where A1 = A2 = A,
both pieces knowledge are with respect to the same set. Here,

Fj w(Fj )

F1 = A a1 · a2

F2 = ∅ a1 · b2

F3 = A a1(1 − (a2 + b2))

F4 = ∅ b1 · a2

F5 = A b1 · b2

F6 = A b1(1 − (a2 + b2))

F7 = A a2(1 − (a1 + b1))

F8 = A b2(1 − (a1 + b1))

F9 = X (1 − (a1 + b1)(1 − (a2 + b2))
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Let us now combine and rename these as follows

H1 = A and w(H1) = a1 · a2 + (a1(1 − (a2 + b2))

+a2(1 − (a1 + b1))

H2 = A and w(H2) = b1 · b2 + b1(1 − (a2 + b2))

+b2(1 − (a1 + b1))

H3 = X and w(H3) = (1 − (a1 + b1))(1 − (a2 + b2))

H4 = ∅ and w(H4) = a1b2 + a2b1

We now perform the appropriate normalization required in
the use of the Dempster’s rule (Shafer 1976) to get a belief
structure m as a result of combining m1 and m2. The belief
structure m has focal elements A, A and X where

m(A) = a1 · a2 + a1(1 − a2 − b2) + a2(1 − a1 − b1)

1 − (a1b2 + a2b1)

m(A) = b1b2 + b1(1 − a2 − b2) + b2(1 − a1 − b1)

1 − (a1b2 + a2b1)

m(X) = (1 − a1 − b1)(1 − a2 − b2)

1 − (a1b2 + a2b1)

An important point to emphasize is that the structure
of the belief structure m is the same as the two orig-
inal belief structures, it has focal elements A, A and
X . From this we can conclude that all the information
needed for generating m is contained in the single intu-
itionistic statement 〈Belm(A), Dism(A)〉 = 〈a, b〉. Let us
see the relationship between a and b and the original
pieces of information 〈Bel1(A1), Dis1(A1)〉 = 〈a1, b1〉 and
〈Bel2(A2), Dis2(A2)〉 = 〈a2, b2〉.

In the following, we use the notation T1 = a1 + b1 and
T2 = a2 + b2.

Here, then Dism(A) = 1 − Plm(A) = 1 −
1−a1a2+a1(1−T2)+a2(1−T1)+(1−T1)(1−T2)

1−(a1b2+a2b2)
after some arithmetic

manipulation, we get

Dism(A) = 1 − 1 − b1 − b2 + b2b1

1 − (a1b2 + b1a2)

= 1 − (1 − b1)(1 − b2)

1 − (a1b2 + b1a2)

Here, we see that

Dism(A) = 1 − (1 − Dis1(A)(1 − Dis2(A))

1 − (a1b2 + b1a2)

= 1 − Pl1(A) Pl2(A)

1 − (a1b2 + b1a2)

Furthermore, we observe that

Belm(A) = 1 − Plm(A)

= 1− b1b2+b2(1 − T2)+b2(1 − T1)+(1 − T1)(1 − T2)

1 − (a1b2 + b1a2)

Belm(A) = 1 − (1 − Bel1(A))(1 − Bel2(A))

1 − (a1b2 + b1a2)

Returning to our example of the young scholar who gave the
lecture, my colleague at the lecture indicates that he disagrees
with me. He says his belief that the lecturer was over 21 is 0
and his disbelief that the lecturer was over 21 is 0.9. Having
just been exposed to Dempster’s he suggests we now use the
Dempster rule to combine the two opinions. Here, we have
a1 = 0.6 and b1 = 0.2 and a2 = 0 and b2 = 0.9 from these
using the formulas above, we obtain the combined beliefs
and disbeliefs, a and b, as

a = 1 − (1 − a1)(1 − a2)

1 − (a1b2 + b1a2)
= 1 − 0.4

1 − (0.6 ∗ 0.9)
= 0.13

b = 1 − (1 − b1)(1 − b2)

1 − (a1b2 + b1a2)
= 1 − 0.8 ∗ 0.1

1 − (0.6 ∗ 0.9)
= 0.82

8 Conclusion

We introduced the Dempster–Shafer belief theory and
described its role in representing imprecise probabilistic
information. We noted its use of intervals for represent-
ing imprecise probabilities. We noted that in fuzzy set the-
ory, there are two related approaches used for representing
imprecise membership grades, interval-valued fuzzy sets and
intuitionistic fuzzy sets. We showed that the first of these,
interval-valued fuzzy sets, is in the same spirit as Dempster–
Shafer representation, both use intervals. Using a relation-
ship analogous to the type of relationship that exists interval-
valued fuzzy sets and intuitionistic fuzzy sets, we obtained
from the interval-valued view of the Dempster–Shafer model
an intuitionistic view of the Dempster–Shafer model. Central
to this view is the use of an intuitionistic statement, pair of val-
ues, (Bel(A) Dis(A)), to convey information about the value
of a variable lying in the set A. We suggested methods for
combining intuitionistic statements and making inferences
from these type propositions.
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