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Abstract We describe a hybrid and adaptive coevolution-
ary optimization method that can efficiently solve a wide
range of multi-objective optimization problems (MOOPs)
as it successfully combines positive traits from three main
classes ofmulti-objective evolutionary algorithms (MOEAs):
classical approaches that use Pareto-based selection for sur-
vival criteria, approaches that rely on differential evolution,
and decomposition-based strategies. A key part of our hybrid
evolutionary approach lies in the proposed fitness sharing
mechanism that is able to smoothly transfer information
between the coevolved subpopulations without negatively
impacting the specific evolutionary process behavior that
characterizes each subpopulation. The proposedMOEA also
features an adaptive allocation of fitness evaluations between
the coevolved populations to increase robustness and favor
the evolutionary search strategy that proves more successful
for solving the MOOP at hand. Apart from the new evolu-
tionary algorithm, this paper also contains the description of
a new hypervolume and racing-based methodology aimed at
providing practitioners from the field of multi-objective opti-
mizationwith a simplemeans of analyzing/reporting the gen-
eral comparative run-time performance of multi-objective
optimization algorithms over large problem sets.
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1 Introduction

A multi-objective optimization problem (MOOP) can be
defined as:

minimize O(x) = (o1(x), . . . , om(x))T, (1)

where x ∈ D, D is called the decision (variable) space,
O : D → R

m consists of m single-objective functions that
need to be minimized and Rm is called the objective space.
In many cases the decision space of the MOOP is itself mul-
tidimensional, e.g., D = R

n .
Usually, MOOPs do not have a single solution. This is

because the objectives to be minimized (o1 . . . om from (1))
are often conflicting in nature (e.g., cost vs. quality, risk vs.
return on investment) and no x ∈ D is able to simultaneously
minimize all of them. To define a complete solution for a
MOOP, we must first introduce the notions of Pareto domi-
nance and Pareto optimality. When considering two solution
candidates x, y ∈ D, solution x is said to Pareto-dominate
solution y (notation: x � y) if and only if oi (x) ≤ oi (y)
for every i ∈ {1, . . . ,m} and o j (x) < o j (y) for at least
one j ∈ {1, . . . ,m} (i.e., x is better than y with regard to
at least one objective and is not worse than y with regard to
any objective). A solution candidate x∗ ∈ D with the prop-
erty that there exists no y ∈ D such that y � x∗ is called
a Pareto-optimal solution to (1). The set that reunites all the
Pareto-optimal solutions is called the Pareto-optimal set (PS)
and this set is the complete solution of the MOOP. The pro-
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3552 A.-C. Zăvoianu et al.

jection of the Pareto set on the objective space is called the
Pareto front (PF).

Since formany problems, the PS is unknown andmay con-
tain an infinity of solutions, in real-life applications, decision
makers often use the Pareto non-dominated set (PN) which
contains a fixed number of solution candidates that are able
to offer a good approximation of the PS. Therefore, finding
high-quality Pareto non-dominated sets is the goal of most
multi-objective optimization algorithms (MOOAs). Section
4 contains a detailed discussion regarding quality assessment
in the case of PNs.

General research tasks in industrial environments often
deal with highly dimensional (6 ≤ n ≤ 60) multiple-
objective (2 ≤ m ≤ 6) optimization problems (MOOPs) that
also may display very lengthy optimization run-times. This
is because these industrial optimization scenarios require fit-
ness evaluation functions that are extremely computationally
intensive. For instance, in Yagoubi et al. (2011) MOOAs are
used for the optimization of combustion in a diesel engine
and the fitness evaluations require the usage of software emu-
lators. In Jannot et al. (2011), finite element simulations are
used during the fitness evaluation of an industrial MOOP
from thefield of electrical drive design. In these cases, despite
using modern solving techniques from the field of soft com-
puting like response surface methods, particle swarm opti-
mization, and evolutionary algorithms, for many real-life
MOOPs, a single optimization run can take several days,
even when distributing the computations over a computer
cluster.

As we strive to significantly reduce the run-times required
to solve industrial MOOPs, our experience is grounded in
three research lines:

– Applying non-linear surrogate modeling techniques on-
the fly to significantly reduce the dependency on com-
putationally intensive fitness evaluations (Zăvoianu et al.
2013a);

– deciding what type of parallelization/distribution method
is more likely to deliver the best results taking into con-
sideration theMOOAs that are used and the particularities
of the hardware and software architecture (Zăvoianu et al.
2013c);

– trying to develop a new MOOA that generally requires
fewer fitness evaluations to reach an acceptable solution,
regardless of the specific MOOP considered, and that is
robust with regard to its parameterization (Zăvoianu et al.
2013b);

While the third research direction is quite general and thus
appeals to a considerable larger audience than the former two,
it is also, by far, the most challenging. In the present article,
building on past findings, we describe the results of our latest

efforts directed towards developing an efficient and robust
multi-objective optimization algorithmbased on a hybrid and
adaptive evolutionary model.

The remainder of this paper is organized as follows: Sect. 2
contains a short review onmulti-objective evolutionary algo-
rithms, Sect. 3 contains the detailed description ofDECMO2,
Sect. 4 presents our ideas on how to perform a general com-
parison of run-time MOOA performance over large problem
sets and a formal description of what we understand by the
syntagm “robust and efficient” in the context of MOOAs,
Sect. 5 contains a comparative analysis of the performance
of DECMO2 versus four other MOOAs when considering
a wide range of artificial and real-life MOOPs, and Sect. 6
concludes the paper with a summary of achievements and
some perspectives for future work.

2 Multi-objective evolutionary algorithms

Because of their inherent ability to produce complete Pareto
non-dominated sets over single runs, multi-objective evolu-
tionary algorithms (MOEAs) are a particular type ofMOOAs
that have emerged as one of the most successful soft com-
puting models for solving MOOPs (Coello et al. 2007).

Among the early (by now, classical) MOEAs, NSGA-II
(Deb et al. 2002a) and SPEA2 (Zitzler et al. 2002) proved to
be quite effective and are still widely used in various applica-
tion domains. At a high level of abstraction, both algorithms
canbe seen asMOOPorientated implementations of the same
paradigm: the (μ+λ) evolutionary strategy. Moreover, both
algorithms are highly elitist andmake use of similar, two-tier,
selection for survival operators that combine Pareto ranking
(primary quality measure) and crowding indices (equality
discriminant). The names of these Pareto-based selection for
survival operators are: non-dominated sorting (for NSGA-II)
and environmental selection (for SPEA2). Canonically, both
NSGA-II and SPEA2 also use the same genetic operators:
simulated binary crossover—SBX (Deb and Agrawal 1995)
and polynomial mutation—PM (Deb and Goyal 1996).

More modern MOEAs, like DEMO (Robič and Filipič
2005) and GDE3 (Kukkonen and Lampinen 2005) intend
to exploit the very good performance exhibited by differ-
ential evolution (DE) operators (see Price et al. 1997) and
replaced the SBX and polynomial mutation operators with
various DE variants but maintained the elitist Pareto-based
selection for survival mechanisms introduced by NSGA-II
andSPEA2.Convergence benchmark tests (Robič andFilipič
2005; Kukkonen and Lampinen 2009) show that differential
evolution can help MOEAs to explore the decision space far
more efficiently for several classes of MOOPs.

Decomposition is the basic strategy behind many tra-
ditional mathematical programming methods for solving
MOOPs. The idea is to transform the MOOP (as defined in
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(1)) into a number of single-objective optimization problems,
in each of which the objective is an aggregation of all the
oi (x), i ∈ {1, . . . ,m} , x ∈ D. Provided that the aggregation
function is well defined, by combining the solutions of these
single-objective optimization problems, one obtains a Pareto
non-dominated set that approximates the solution of the ini-
tial MOOP. Miettinen (1999) provides a valuable review of
several methods for constructing suitable aggregation func-
tions.However, solving a different single-objective optimiza-
tion problem for each solution in the PN is quite inefficient.
A major breakthrough was achieved with the introduction of
MOEA/D in Zhang and Li (2007) and its DE-based variant
(MOEA/D-DE) in Li and Zhang (2009). This evolutionary
algorithm decomposes a multi-objective optimization prob-
lem into a number of single-objective optimization subprob-
lems that are then simultaneously optimized. Each subprob-
lem is optimized through means of (restricted) evolutionary
computation by only using information from several of its
neighboring subproblems. It is noteworthy that MOEA/D
proposes a different paradigm to multi-objective optimiza-
tion thanmost of the previousMOEAs, and that this approach
has proven quite successful, especially when dealing with
problems with complicated Pareto-optimal sets. A version of
MOEA/D (see Zhang et al. 2009) won the CEC2009 Com-
petition dedicated to multi-objective optimization. As such,
MOEA/D is considered state of the art by many researchers
in the field.

In Zăvoianu et al. (2013b), we described DECMO—
a hybrid multi-objective evolutionary algorithm based on
cooperative coevolution that was able to effectively incorpo-
rate the pros of both individual search strategies uponwhich it
was constructed. The idea was to simultaneously evolve two
different subpopulations of equal size: subpopulation P was
evolved using the SPEA2 evolutionarymodel, while subpop-
ulation Q was evolved using DEMO/GDE3 principles. After
various experiments, we discovered that a dual fitness shar-
ing mechanism is able to induce the most stable behavior and
to achieve competitive results. The DECMO fitness sharing
mechanism consists of:

– Generational weak sharing stages (i.e., trying to insert in
each subpopulation one random offspring generated in the
complementary subpopulation);

– fixed interval strong sharing stages (i.e., constructing an
elite subset of individuals from A = P∪Q and reinserting
this subset in P and Q with the intent of spreading the best
performing individuals across both subpopulations);

The aforementioned elite subset construction and the
insertion and reinsertion operations are all performed by
applying Pareto-based selection for survival operators (non-
dominated sorting or environmental selection).

DECMO can be considered a successful proof of concept
as it displayed a good performance on a benchmark com-
posed of several artificial test problems (the coevolutionary
algorithm was consistently able to replicate the behavior of
the best performing individual strategy and, for some prob-
lems, even surpassed it).

3 Our proposal: DECMO2

In this section, we describe DECMO2, a new and signifi-
cantly improved variant of our coevolutionaryMOEA. Apart
from Pareto-based elitism, differential evolution and coevo-
lution, DECMO2 has twomore key building blocks (integra-
tion of a decomposition strategy and search adaptation) and
initial results show that it is able to compete with, and some-
times outperform, state-of-the-art approaches like MOEA/D
and GDE3 over a wide range of multi-objective optimization
problems.

Like its predecessor, DECMO2 is a hybrid method that
uses two coevolved subpopulations of equal and fixed size.
The first one, P (|P| = Psize), is evolved using the stan-
dard SPEA2 evolutionary model. The second subpopula-
tion, Q (|Q| = Qsize), is evolved using differential evo-
lution principles. Apart from these, DECMO2 also makes
use of an external archive, A, maintained according to a
decomposition-based strategy. The coevolutionary mecha-
nism is redesigned to allow for an effective combination
of all three search strategies and of a search adaptation
mechanism.

We now proceed to describe the five building blocks of
the DECMO2 multi-objective optimization algorithm and,
finally, in Sect. 3.6 we present the algorithmic description of
our hybrid evolutionary approach.

3.1 Pareto-based elitism

The cornerstone of the SPEA2 model (used in DECMO2
to evolve subpopulation P) is the environmental selection
(for survival) operator introduced in Zitzler et al. (2002).
Because we make extensive reference to it, we shall mark it
with Esel(Pop, count), with the understanding that we refer
to the procedure through which we select a subset of maxi-
mum count individuals from an original set Pop. The first
step is to assign a general rank to each individual x, x ∈ Pop.
A lower value of this general rank indicates a higher quality
individual. This general rank is the sum of two metrics, the
raw rank r(x) (2) and the density d(x) (3). To compute the
raw rank, each individual x, x ∈ Pop is initially assigned
a strength value s(x) representing the number of solutions
it Pareto-dominates in Pop. The raw rank assigned to x is
computed by summing the strengths of all the individuals in
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the population that Pareto-dominate individual x , i.e.,

r(x) =
∑

y∈Pop : y�x

s(y). (2)

The density d(x) of individual x is computed as the inverse
of the distance to the k-th nearest neighbor, i.e.,

d(x) = 1

distE (x, k) + 2
(3)

where distE (x, k) is the Euclidean distance in objective
space between individual x and its k-th nearest neighbor
with k = √|Pop|. After each individual in Pop has been
ranked, we simply select the first count individuals with
lowest general rank values. The only noteworthy detail is
that the Esel(Pop, count) variant we use across DECMO2
first removes all duplicate values from Pop and then begins
the ranking process.

In DECMO2, at each generation t, t ≥ 1, from the current
subpopulation P , we use binary tournament selection, SBX
and polynomial mutation to create a new offspring popula-
tion P ′. We then proceed to construct the union of the parent
and offspring populations: P ′ = P ′ ∪ P . Finally, the pop-
ulation of the next generation is obtained after applying the
elitist environmental selection operator to extract the best
individuals from this union: P = Esel(P ′, Psize).

3.2 Differential evolution

Differential evolution is a global, population-based, stochas-
tic optimizationmethod introduced in Storn andPrice (1997).
By design, DE is especially suitable for continuous optimiza-
tion problems that have real-valued objective functions. Like
most evolutionary techniques, DE starts with a random ini-
tial population that is then gradually improved by means of
selection, mutation and crossover operations.

In the case of DECMO2, at each generation t, t ≥ 1, sub-
population Q will be evolved using the DE/rand/1/bin strat-
egy according to an evolutionary model that is very similar
to the ones proposed in DEMO (Robič and Filipič 2005) and
GDE3 (Kukkonen and Lampinen 2005).

At first we perform the initialization: Q′ = � and Q′′ =
Q. Afterwards, as long as Q′′ �= �, we randomly select
x ∈ Q′′ and:

– firstly, we construct the mutant vector v using the rand/1
part of the DE strategy by randomly selecting three indi-
viduals z1, z2, z3 ∈ Q such that z1 �= z2 �= z3 �= x and
then computing:

v = z1 + F(z2 − z3) (4)

where F > 0 is a control parameter.

– secondly, we generate the trial vector y using the binomial
crossover part of the DE strategy:

yi =
{

vi if Ui < CR or i = j

xi if Ui ≥ CR and i �= j
, (5)

where j is a randomly chosen integer from {1, . . . , n},
U 1, . . . ,Un are independent random variable uniformly
distributed in [0, 1], and CR ∈ [0, 1] is a control parame-
ter. n is the dimensionality of the decision space (D) of
the MOOP we wish to solve.

– thirdly, we remove x from the list of individuals that we
must evolve in the current generation (i.e., Q′′ = Q′′ \{x})
and update Q′:

Q′ =

⎧
⎪⎨

⎪⎩

Q′ ∪ {x} if x � y

Q′ ∪ {y} if y � x

Q′ ∪ {x} ∪ {y} if x � y and y � x

(6)

At the end of the previously described cycle, it is highly
likely that |Q′| > Qsize because when x and y are not dom-
inating each other, both individuals are added to Q′ [i.e., the
third case from (6)]. To obey the fixed subpopulation size
design principle, when computing the population of the next
generation, we apply the environmental selection operator
[i.e., Q = Esel(Q′, Qsize)].

3.3 Decomposition-based archive

Apart from the two coevolved populations, DECMO2 also
uses an archive population, A, that is maintained according
to a decomposition approach that is based on the Chebyshev
distance.

Let us mark with:

– z∗ = (z∗1, . . . , z∗m) the current optimal reference point of
(1). More formally, z∗i = min

{
oi (x)|x ∈ DE

}
for each

i ∈ {1, . . . ,m}when DE ⊂ D is the set containing all the
individuals that have been evaluated during the evolution-
ary search till the current moment.

– λi = (λi1, . . . , λ
i
m), λij ≥ 0 for all j ∈ {1, . . . ,m} and

∑m
j=1 λij = 1 and i ∈ {1, . . . , |A|} an arbitrary objective

weight vector;

– dCheb(x, λi ) = max1≤ j≤m

{
λij |oi (x) − z∗i |

}
, x ∈ D the

weighted Chebyshev distance between an individual x ∈
D and the current optimal reference point;

For anyMOOPwewish to solve, we consider a total of |A|
uniformly spread weight vectors: λ1, . . . , λ|A|. These vec-
tors are generated before the beginning of the evolutionary
process and remain constant throughout the entire optimiza-
tion run.When using them in the dCheb distance, these weight
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vectors are the means through which we define the decom-
position of the original MOOP problem into a number of
|A| single-objective optimization problems. As such, at any
given moment during the optimization, archive A is orga-
nized as a set of pairs (2-tuples) 〈λi , yi 〉, yi ∈ D, where λi is
fixed and yi ∈ DE has the property that it tries to minimize
dCheb(yi , λi ).

Given a current individual x that has just been generated
during the optimization run, after performing the standard
fitness evaluation:

– we update the reference point z∗;
– we construct A′—the improvable subset of the current
archive set:

A′ =
{
yi |∃〈λi , yi 〉 ∈ A : dCheb(x, λi ) < dCheb(y

i , λi )
}

(7)

– if A′ �= �, we:

– markwith y∗ that individual in A′ that has the property
that δCheb = dCheb(y∗, λ∗) − dCheb(x, λ∗) is maximal
(i.e., we apply a greedy selection principle);

– update the archive by replacing the most improvable
individual (i.e., A = A \ 〈λ∗, y∗〉) with the current
individual: A = A ∪ 〈λ∗, x〉;

It is worthy to note that the working principles behind the
decomposition-based archive are inspired and fairly similar
to those proposed by MOGLS [see Jaszkiewicz (2002)] and
especially MOEA/D.

3.4 Search adaptation

By design, nearly all evolutionary models are adaptive in
the sense that, by promoting “a survival of the fittest” strat-
egy, these algorithms are forcing the evolved population
to “adapt” with each passing generation (i.e., retain the
genetic features that are beneficial for solving the current
problem).

The central idea of the DECMO algorithm (Zăvoianu et
al. 2013b) was to combine the different search behaviors of
classicalMOEAs that rely on SBXandPMwith that of newer
approaches that use DE operators. This was done in light of
strong empirical evidence that one evolutionary model was
by far better than the other one (when using standard parame-
terization) on several well-known problems [i.e., an occur-
rence subject to the No Free Lunch Theorem byWolpert and
Macready (1997)]. By effectively incorporating both search
strategies, DECMO displayed a good average performance
and proved its ability to adapt on a meta level (i.e., to mimic
the best strategy for the problem at hand).

To improve the aforementioned results, for DECMO2 we
designed a mechanism that is aimed to directly bias the
coevolutionary process towards the particular search strat-
egy that is more successful during the current part of the
run. This is implemented by dynamically allocating at each
odd generation t, t ≥ 1 and t ∈ {2k + 1 : k ∈ Z} an extra
number (Bsize) of bonus individuals that are to be created
and evaluated by the search strategy that was able to achieve
the highest ratio of archive insertions in the previous (even-
numbered) generation. Therefore, at each even generation,
we are computing:

– φP—the archive insertion ratio achieved by the Psize off-
spring generated in subpopulation P via tournament selec-
tion, SBX and PM;

– φQ—the archive insertion ratio achieved by the Qsize off-
spring generated in subpopulation Q via DE/rand/1/bin;

– φA—the archive insertion ratio achieved when creating
Bsize offspring by applying DE/rand/1/bin on individu-
als selected directly from A. When creating offspring
directly from A, the parent individuals required by the
DE/rand/1/bin strategy are selected such as to correspond
to the Bsize single-objective optimization problems (i.e.,
2-tuples) that have not been updated for the longest peri-
ods.

Taking into account previous notation and descriptions, if, at
an arbitrary even generation t , φP > φQ and φP > φA, at
generation t+1, the size of the offspring population (i.e., P ′)
will be set to Psize + Bsize. Likewise, if, at an arbitrary even
generation t , φQ > φP and φQ > φA, at generation t + 1,
after the stopping criterion is initially met (i.e., Q′′ = �),
Q′′ will be re-initialized with a (smaller) set containing Bsize

individuals randomly extracted from Qt and the offspring
generation process will resume until Q′′ becomes void again.
If neither of the previous two success conditions aremet, then
the Bsize bonus offspring of generation t + 1 will be created
by applying DE/rand/1/bin on individuals selected directly
from A.

As we have defined all the individual population subdi-
vision in DECMO2, now, we can also give all the formulae
that describe the relation between the size of the archive and
the sizes of the two coevolved populations:

⎧
⎪⎨

⎪⎩

|A| = Psize + Qsize + Bsize

Psize = Qsize

Bsize = |A|
10

(8)

3.5 Cooperative coevolution

Coevolution is a concept inspired from biological systems
where two or more species (that are in a symbiotic, parasitic
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or predatory relationship) gradually force each other to adapt
(evolve) to either increase the efficiency of their symbiotic
relationship or survive. For a valuable overview please see
Chapter 6 from Luke (2013).

In the field of soft computing, coevolution is usually
applied to population-based optimization methods and is
implemented using subpopulations that are evolved simulta-
neously. N -population cooperative coevolution is a particular
type of coevolutionary process that is modeled according to
symbiotic relationships occurring in nature. The central idea
is to break up complicated high-dimensional search spaces
into N , much simpler, subspaces that are to be explored
by independent (sub)populations. To discover high-quality
solutions, it is necessary to (occasionally) share information
regarding fitness between the different populations.

In DECMO2, the particular way in which we apply
cooperative coevolution does not implement the previously
described search space partitioning concept. In our case, both
P and Q explore the same search space, i.e., D. Instead, our
approach profits from two general (complementary) charac-
teristics of the coevolutionary concept:

– it helps to maintain diversity in the evolutionary system;
– it enables the rapid dissemination of elite solutions;

According to the descriptions from the previous four sub-
sections, at the end of every generation t, t ≥ 1, the subpopu-
lations P and Q that will be involved in the next evolutionary
cycle (i.e., that of generation t + 1) have been computed and
archive A is in an up-to-date state. The very last step before
starting the computation cycles of generation t + 1 consists
of a fitness sharing stage between the three main population
subdivisions: P , Q, and A. The purpose of this stage is to
make sure that the best global solutions found till now are
given the chance to be present in both coevolved populations.

The first step is to generateC-an elite subset with the prop-
erty: |C | = Bsize, where Bsize has been defined in the previ-
ous subsection. This elite subset is easily constructed by first
performing the union C = P ∪ Q ∪ A and then applying the
environmental selection operator: C = Esel(C, Bsize). The
second step of the fitness sharing stage is to try to introduce
the individuals of this elite subset into the subpopulations P
and Q of the next generation. This is also done through the
usage of the environmental selection operator (as defined in
Sect. 3.1):

– P = P ∪ C and P = Esel(P, Psize);
– Q = Q ∪ C and Q = Esel(Q, Qsize);

3.6 The main DECMO2 loop

The initialization stage (i.e., “generation 0”) and the main
computational loop of our hybrid MOEA are presented in

Algorithm 1 Description of the DECMO2 hybrid multi-
objective evolutionary algorithm
1: function DECMO2(MOOP, archS, maxT )
2: P, Q ← �

3: 〈Psize, Qsize, Bsize〉 ← ExtractSizes(archS)
4: A ← InitializeArchive(MOOP, archS)
5: i ← 1
6: while i ≤ archS do
7: x ← CreateIndividual(MOOP)
8: InsertIntoArchive(A, x)
9: if i ≤ Psize then
10: P ← P ∪ {x}
11: else
12: if i ≤ Psize + Qsize and i > Psize then
13: Q ← Q ∪ {x}
14: end if
15: end if
16: i ← i + 1
17: end while
18: φP , φQ , φA ← 1
19: t ← 1
20: while t �= maxT do
21: if t ∈ {2k + 1 : k ∈ Z} then
22: if φP > φQ and φP > φA then
23: Psize = |P| + Bsize
24: end if
25: if φQ > φP and φQ > φA then
26: Qsize = |Q| + Bsize
27: end if
28: end if
29: Asize ← archS − Psize − Qsize
30: 〈P, φP 〉 ← EvolveNextGenSPEA2(P, Psize)
31: 〈Q, φQ〉 ← EvolveNextGenDE(Q, Qsize)
32: φA ← EvolveArchiveInd(A, Asize)
33: Psize = |P|
34: Qsize = |Q|
35: C ← P ∪ Q ∪ A
36: C ← Esel (C, Bsize)

37: P ← P ∪ C
38: P ← Esel (P, Psize)
39: Q ← Q ∪ C
40: Q ← Esel (Q, Qsize)

41: t ← t + 1
42: end while
43: C ← P ∪ Q ∪ A
44: C ← Esel (C, archS)

45: return C
46: end function

Algorithm 1. There are three input parameters:MOOP—the
definition of the problem to be solved, archS—the size of
the archive A (i.e., |A|), and maxT—the maximum number
of generations to be evolved. The algorithm returns a Pareto
non-dominated set (PN) of size archS.

There are seven auxiliary methods that we use across
Algorithm 1:

– ExtractSizes(archS)—this function computes Psize, Qsize,
and Bsize from the call argument archS (which equals
|A|), by solving (8);
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– InitializeArchive(MOOP, archS)—considering the nota-
tions from Sect. 3.3, this function first creates a total of
archSuniformly spreadweight vectors (i.e.,λ1,. . ., λarchS)
with the dimensionality required by the given MOOP. It
then proceeds to create and return an incomplete archive
of the form: A = {〈λ1, 〉, . . . , 〈λarchS, 〉};

– CreateIndividual(MOOP)—this function returns a rando-
mly created individual that encodes a possible solution for
the given MOOP;

– InsertIntoArchive(A, x)—this procedure looks if there
are any incomplete pairs (i.e., of the form 〈λi , 〉 with
i ∈ {1, . . . , |A|}) in archive A, and, if such a pair is found,
it updates the archive: A = A\〈λi , 〉 and A = A∪〈λi , x〉;

– EvolveNextGenSPEA2(P, Psize)—this function uses the
SPEA2evolutionarymodel described inSect. 3.1 to evolve
the solution set passed as the first call argument (i.e., P) for
one generation. It returns two entities: (1) a new, evolved,
population of size |P| and (2) the archive insertion ratio
achieved by the Psize offspring that were created during
the evolutionary process.

– EvolveNextGenDE(Q, Qsize)—this function uses theDE-
based evolutionary cycle described in Sect. 3.2 to evolve
the set passed as the first call argument (i.e., Q) for one
generation. It also returns two entities: (1) a new, evolved,
population of size |Q| and (2) the archive insertion ratio
achieved by the Qsize offspring that were created during
the evolutionary cycle.

– EvolveArchiveInd(A, Asize)—this function uses the DE/
rand/1/bin strategy (i.e., the combination of (4) and (5))
to create a number of Asize offspring using only individ-
uals directly selected from the pairs that make up archive
A. Each offspring individual created at this step is consid-
ered for the archive update procedure described in Sect.
3.3. The archive insertion ratio achievedwhen considering
the Asize generated offspring is the only entity returned
by this function. If Asize = 0, the function returns the
value 0.

When considering the above description, one of the major
shortcomings of our proposed multi-objective optimization
method is evident: high structural and computational com-
plexity. As we strived to create an efficient hybrid start-
ing from three different evolutionary approaches for solv-
ing MOOPs, ending up with a fairly complex optimization
procedure was something to be expected. However, it should
be noted that, apart from the parameterizations required by
the genetic operators we rely on (i.e., SBX, PM and DE),
our approach remains quite robust, as it does not require any
extra parameters. In Sect. 5, we present solid evidence that
DECMO2 displays a very good average performance on a
wide range of MOOPs and we think that this more than com-
pensates for the complexity of our method.

4 Comparing the performance of MOOAs

Aswithmost (meta)heuristic approaches,when talking about
the performance of a multi-objective evolutionary algorithm,
three criteria are primarily considered and usually need to be
balanced:

– the quality of the generated solution, i.e., howwell does the
PN returned at the end of the optimization run approximate
the PF of the MOOP to be solved?

– the convergence speed, i.e., what is the number of fitness
evaluations (notation: n f e) that must be performed during
the optimization run to reach a PN of acceptable quality?

– the generality of the algorithm, i.e., is the proposedmethod
able to display the previous two criteria on a wide range
of problems?

It should be noted that the above three criteria can be applied
to evaluate any multi-objective optimization algorithm. For
example, very fine-grained grid searches over the entire deci-
sion space will likely produce the best results with regard
to the quality and generality criteria, but such approaches
display excessively poor convergence speeds, which render
them useless in most cases.

Over the years, several metrics for assessing the PN qual-
ity criterion have been proposed. A comprehensive analysis
and review of most of these metrics can be found in Zitzler et
al. (2003). Some of the more popular metrics are: the gener-
ational distance (GD) and the inverted generational distance
(IGD) proposed in Van Veldhuizen and Lamont (1998) and
the hypervolume metric (H) proposed in Zitzler (1999). The
latter has the added advantage that it is the only PN qual-
ity comparison metric for which we have theoretical proof
of a monotonic behavior [see Fleischer (2003)]. As such,
by design, the PF of any MOOP has the highest achievable
H value. The monotonic property ofH can be understood in
the sense that, given two Pareto non-dominates sets, PNA and
PNB , ifH(PNA) > H(PNB), we can be certain that PNA “is
not worse than” PNB [see Zitzler et al. (2003) for details].
Furthermore, when comparing with GD and IGD, the hyper-
volume is easier to compute when the PF of the MOOP is
unknown (as it is the case with most real-life problems).

Measuring the convergence speed is a truly trivial task
once one has a clear idea of how to define acceptable quality
in the case of Pareto non-dominated sets. Unfortunately this
definition is highly domain-dependent and sometimes it also
depends on the experience (or even subjective opinions) of
the decision maker. For example, in many publication from
the field of multi-objective optimization, acceptable quality
means a (nearly) perfect approximation of the PF of a given
benchmark MOOP. When considering real-life applications
of multi-objective optimization, a PNmay be deemed of hav-
ing an acceptable quality if it “is not worse than” any other
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Fig. 1 Run-time H-measured performance on the four problems considered in our toy test set

PN ever discovered for the considered MOOP (even though
it is actually a rather poor approximation of the PF).

In light of the very computationally intensive nature of
the fitness functions required by the industrial MOOPs we
aim to solve, our idea of how to best balance quality, con-
vergence speed and generality in order to assess the perfor-
mance of a MOOA is that: given an arbitrary MOOP and
a maximal number of fitness evaluations (n f emax) that we
are willing to execute, the analyzed MOEA displays the
best possible performance if, for any n f e ≤ n f emax, the
PN obtained after performing n f e fitness evaluations “is not
worse than” the PN that might have been obtained by any
another available method after also performing n f e fitness
evaluations.

Although quite vague at a first glance, the previous state-
ment is the base from which we developed a practical rank-
ing framework for multi-objective optimization algorithms.
This framework is described in the next subsection and it
can offer practitioners valuable insight regarding the relative
performance of different:

– multi-objective optimization algorithms;
– parameterization settings for a given MOOA;

4.1 A racing-based ranking of performance in the context
of MOOPs

Let us consider a toy example in which we wish to com-
pare the performance of four different multi-objective opti-
mization algorithms (Alg-A, Alg-B, Alg-C, and Alg-D) on
a limited test set that consists of four benchmark MOOPs
(P1, P2, P3, and P4) with known PFs. For each optimization
run we perform 50,000 fitness evaluations. A more or less
standard approach would be to perform several independent
runs for each MOOA–MOOP pair and assess the quality and
convergence behavior by computing some metric over aver-
aged results. For example, the plots from Fig. 1 display the
average run-timeH-measured performance of the four algo-
rithms when considering 25 independent runs for each test.
For every run, the data points were obtained by calculating
the H of the current MOOA population after every 100 fit-
ness evaluations and afterwards computing the percentage
ratio (notation: H-%-ratio) obtained when comparing these
values against H(PF), where PF denotes the Pareto front of
theMOOP that is solved.As a side note,we shallwrite “fully”
(with quotes) when referring to a MOOA that is able to solve
a MOOP (i.e., H-%-ratio ≈ 100%) to emphasize the fact
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Fig. 2 Averaged run-time H-measured performance over the entire toy test set

that, in most cases (e.g., all continuous MOOPs), a PN can-
not be (by definition) more than a near perfect approximation
of the PF.

To quickly assess the general performance of the four
tested MOOAs (w.r.t. the example test set), it is very intu-
itive to plot theH-%-ratio-measured performance, averaged
over the entire problem set (e.g., Fig. 2). Such a chart is very
useful as it clearly shows:

– which algorithm generally starts to converge faster (e.g.,
Alg-D in the case of our example);

– which algorithm has the best average performance at the
end of the runs (e.g., Alg-C);

– which algorithms seem tohave a somewhat similar conver-
gence behavior during (a certain part of) the optimization
run. For example, Alg-D and Alg-B converge quite fast
(average H-%-ratio ≥ 70% after 15,000 fitness evalua-
tions) while Alg-A and Alg-C converge slower, but reach
slightly better average results at the end of the experi-
ment (after 50,000 fitness evaluations). Knowing this and
assuming that the used MOOP test set is relevant for real-
life situations, in practice, we would prefer Alg-D or even
Alg-B over Alg-C/Alg-A when faced with a limited num-
ber of fitness evaluations and we would use Alg-C or Alg-
A if there would be no such limitation.

Nevertheless, the average H plot from Fig. 2 is also mis-
leading because, through averaging, it helps to mask very
bad performance. As all four algorithms display averageH-
%-ratio values between 85 and 95% after 40000 fitness eval-
uations, we might believe that their general performance is

largely similar when it comes to the solutions discovered
towards the end of each run. In fact, the very good perfor-
mance of Alg-B on P1, P2 and P4 helps to cover up the
very poor behavior on problem P3. Similarly, the fact that
all four algorithms are (sooner or later) each able to fully
converge on one MOOP is also concealed. Although in our
very simple example, both problems can be solved by inde-
pendently consulting the relative performance of the four
MOOAs on each MOOP via numerical/visual inspection of
H-related performance, in rigorous performance compari-
son contexts, involving tens of MOOPs and several MOOAs,
such a case-by-case approach is very tedious, and, in the late
stages of convergence (wheremost good algorithms find PNs
of roughly similar quality), it can also become useless.

Our idea for simplifying the comparisonprocess is to inter-
pret the run-time hypervolume plot for each MOOP as if it
depicts the results of a multi-stage race between the four
MOOAs. The goal is to reach a H-%-ratio ≈ 100 as fast as
possible (i.e., “fully” converge after the lowest possible n f e).
The secondary goals are to have the highestH-%-ratio at the
end of each stage in the race. Therefore, it makes sense to
imagine a basic ranking schema where, at the end of each
stage, the analyzed MOOAs are ranked in ascending order
of their H-%-ratio starting with the worst performer. In our
toy example, 4 is assigned for the smallest H-%-ratio value
and 1 for the highest. There are two exceptions from this
rule:

– if the H-%-ratio at a certain stage is higher than 99%
(i.e., the obtained PN dominates more than 99% of the
objective space that is dominated by the PF), the analyzed
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Table 1 Ranks corresponding to the run-time H plots presented in Fig. 1

Problem Rank computation stages based on H-%-ratios

0 1 2 3 4 5 6 7 8 9 10 μP

Ranks achieved by Alg-A

P1 5 5 5 5 4 4 3 3 3 2 2 3.73

P2 5 1 1 1 1 1 1 1 1 1 0 1.27

P3 5 2 1 1 1 1 1 1 1 2 2 1.64

P4 5 5 5 5 4 4 4 4 4 4 4 4.36

μS 5.00 3.25 3.00 3.00 2.50 2.50 2.25 2.25 2.25 2.25 2.00

μA = 2.75, μF = 2.00

Ranks achieved by Alg-B

P1 5 5 5 2 2 2 2 2 2 3 3 3.00

P2 5 4 4 4 4 4 4 4 4 4 4 4.09

P3 5 5 4 4 4 4 4 4 4 4 4 4.18

P4 5 1 0 0 0 0 0 0 0 0 0 0.55

μS 5.00 3.75 3.25 2.50 2.50 2.50 2.50 2.50 2.50 2.75 2.75

μA = 2.95, μF = 2.75

Ranks achieved by Alg-C

P1 5 1 1 3 3 3 4 4 4 4 4 3.27

P2 5 5 3 3 3 3 3 2 2 2 2 2.82

P3 5 5 3 3 3 3 3 3 3 1 1 3.00

P4 5 5 3 3 3 3 3 0 0 0 0 2.27

μS 5.00 3.50 2.50 3.00 3.00 3.00 3.25 2.25 2.25 1.75 1.75

μA = 2.84, μF = 1.75

Ranks achieved by Alg-D

P1 5 5 2 1 1 1 1 1 1 1 1 1.82

P2 5 2 2 2 2 2 2 3 3 3 3 2.64

P3 5 1 2 2 2 2 2 2 2 3 3 2.36

P4 5 2 0 0 0 0 0 0 0 0 0 0.64

μS 5.00 2.5 1.5 1.25 1.25 1.25 1.25 1.5 1.5 1.75 1.75

μA = 1.86, μF = 1.75

For each algorithm, the values in italics are used to create the left-side plot from Fig. 3

algorithm is assigned the rank 0. This is how we mark
(reward) “full” convergence.

– if the H-%-ratio at a certain stage is lower than 1%, the
analyzed algorithm is assigned a rank which equals one
plus the total number of analyzedMOOAs (i.e., five in our
case). This is how we mark (penalize) a MOOA that has
not yet produced a relevant PN, i.e., a MOOA that has not
started to converge.

In the toy example, the comparison stages are equidistant
(i.e., they are set after every 5000 fitness evaluations) and, in
Fig. 1, each stage of the race is marked with a vertical solid
grey line. The rank information we obtained is presented in
Table 1. For eachMOOA, the table also presents four average
ranks:

– μP—the average rank achieved by the MOOA on an indi-
vidual problem. A value closer to 0 indicates that the algo-
rithmdisplays a goodperformance on the problem.μP can
be used to rapidly/automatically identify those problems
on which a MOOA performs very well (i.e., “fully” con-
verges very fast) or poorly (i.e., does not “fully” converge,
converges very slowly, etc.).

– μS—is the average rank across the entire test set at a given
stage (i.e., after a fixed number of n f es). These are useful
as we shall combine them to display the dynamics of the
relative MOOA performance over time.

– μF—is the average rank across the entire test in the final
stage (i.e., close to the end of the optimization). The
MOOA that has the smallest value of μF was able to
“fully” converge or discover higher quality PNs on more
problems than its competitors.
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Fig. 3 HRPCs obtained when applying the racing-based ranking methodology on the toy test set

– μA—is the overall average rank achieved by the MOOA
during the comparison. The value of μA can be used to
single out the MOOAs that tend to generally outperform
their counterparts.

In the left-side plot fromFig. 3we use theμS values to plot
hypervolume-ranked performance curves (HRPCs). We feel
that by introducing HRPCs, we are providing practitioners in
the field of multi-objective optimization with an extremely
useful tool for helping to rapidly assess the general compar-
ative performance of MOEAs (especially over test sets con-
taining many MOOPs). The basic ranking schema ignores
the magnitudes of the differences in performance and favors
the algorithm that is able to perform very well on the highest
number of MOOPs from the considered test set. When con-
sidering theHRPCs computed for the toy comparison context
(left-side plot from Fig. 3), the data points corresponding to
the last 2 ranking stages indicate that:

– there is a good balance between the number of MOOPs
on which Alg-D and Alg-C perform well by the end of the
optimization runs;

– Alg-A has managed to converge on at least one MOOP
right before the final stage as passing from a rank of 1 to
a rank of 0 is the only explanation for a drop of average
rank between the two stages that does not influence the
average ranks of the other three MOOAs.

The main advantage of HRPCs is that they can be easily
adjusted in order to outline certainMOOAperformance char-
acteristics by making small changes in the required ranking
procedure. For example, using the same run-time informa-
tion that was plotted in Fig. 1, we could focus our MOOA
comparison on analyzing if there are large differences in per-
formance between the tested algorithms by imposing that: at
a given stage, the difference between twoH-%-ratiosmust be
higher than 10% in order to justify a rank improvement, i.e.,

we impose aH-ranking threshold of 10%. According to the
this modification, if at a certain stage the four MOOAs have
the H-%-ratios (64, 78, 84, 99.5%), they will be assigned
the ranks (4, 3, 3, 0). The HRPCs obtained when applying
this, very pessimistic, ranking schema are presented in the
right-side plot from Fig. 3 and:

– the data points corresponding to the last 3 ranking stages
confirm that Alg-D and Alg-C have an average similar
convergence behavior towards the end of the runs;

– the data points corresponding to the last ranking stage
indicate that Alg-A seems to perform much worse (i.e.,
difference inH-%-ratio> 10%) than the other 3 MOOAs
on at least one extra MOOP;

We have devised this racing and hypervolume-based rank-
ing methodology that may combine information from:

– several HRPC plots (computed using different ranking
schemata);

– associated μP , μF , μA values;
– the plot of the averagedH-measured performance over the
entire problem test

to easily observe/report the general performance character-
istics of the MOOAs we wish to analyze over large problem
sets.

4.2 On robustness and efficiency in MOEAs

As mentioned in the introductory part, our main interests
with regards to multi-objective optimization algorithms are
related to enhancing these methods to improve the run-times
of industrial optimizations that rely on very computationally
intensive fitness evaluation functions. In the particular case
of MOOAs that can be parameterized (e.g., most MOEAs),
the prohibitive optimization run-times that occur when solv-
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3562 A.-C. Zăvoianu et al.

ing industrial MOOPs usually make systematic parameter
tuning approaches virtually impossible. This means that we
strongly prefer to rely on MOEAs that are very robust with
regard to their control parameters, meaning that they gener-
ally perform well on a wide range of problems when using
the parameterization settings recommended in the literature.

The second important characteristic that we demand from
a MOEA is efficiency. In non-academic terms, the idiom
“bang for the buck” encapsulates very well the essence of
this characteristic and, in light of the concepts presented till
this point, we consider that “H for n f e” is a good equiv-
alent, especially when dealing with very lengthy run-times
induced by computationally intensivefitness evaluation func-
tions. The only condition is that, in the case of MOEAs, effi-
ciency must be stable (i.e., displayed throughout the duration
of the optimization run), general (i.e., displayed on a wide
range of MOOPs), and, because of the stochastic nature of
evolutionarymethods, must be supported by averaged results
over many independent runs.

The newMOOA racing-based ranking comparison frame-
work, whichwe introduced in the previous subsection, is able
to offer insights with regard to both the efficiency and robust-
ness of a given MOEA provided that we construct compari-
son contexts where:

– we compare the given MOEA against MOOAs that are
themselves regarded as being generally successful (i.e.,
they are state of the art);

– we maintain a fixed parameterization of the tested algo-
rithms;

– the test sets contain a sufficient number of MOOPs with
different characteristics;

– we apply appropriate ranking schemata;

In the next section, we obey these rules to construct compar-
ison contexts that help to tune MOEA/D-DE and to evaluate
the robustness and efficiency of DECMO2.

5 Tests regarding the performance of DECMO2

To evaluate the performance of DECMO2, we consider two
types of comparisons:

– the first one aims to estimate the robustness and efficiency
of our hybrid and adaptive MOEA by applying the new
comparison methodology we proposed in Sect. 4 on a test
set consisting of 20 artificial benchmark problems;

– the second comparison is a case study regarding the con-
vergence behavior of DECMO2 and SPEA2 on two indus-
trial MOOPs from the field of electrical drive design opti-
mization. Both problems require very computationally
intensive fitness evaluation functions.

The 20 artificial benchmark problems we aggregated in
our test set are:

– DTLZ1, DTLZ2, DTLZ4, DTLZ6, and DTLZ7 from the
problem set proposed in Deb et al. (2002b);

– KSW10—a classic optimization problem with 10 vari-
ables and two objectives based on Kursawe’s function
described in Kursawe (1991);

– all nine problems from the LZ09 problem set described in
Li and Zhang (2009);

– WFG1, WFG4 andWFG8 from the problem set proposed
in Huband et al. (2003);

– ZDT3 and ZDT6 from the problem set described in Zitzler
et al. (2000);

When applying the race-based ranking methodology, we
defined ranking stages after every 1000 fitness evaluations
with the first ranking evaluation taking place at “generation
0” (i.e., we evaluated the randomly generated initial popula-
tion of the MOEAs). We performed 50 independent runs for
each MOEA–MOOP pair to obtain the hypervolume infor-
mation based on which the rankings were computed. We
applied two types of ranking schemata:

– the basic ranking schema which is identical to the one
described in Sect. 4.1;

– the pess-Thr ranking schema which has the same working
principles as the pessimistic ranking schema presented in
Sect. 4.1. Thr is the H-ranking threshold. For example, a
pess-5 ranking schema uses aH-ranking threshold of 5%.

The algorithms we compared DECMO2 against (using
the race-based ranking methodology) are SPEA2, GDE3,
MOEA/D-DE[theZhanget al. (2009) version], andDECMO.
In the case of the first three algorithms we relied on imple-
mentations available in the jMetal package [see Durillo and
Nebro (2011)]. We fixed the number of fitness evaluations to
50,000. Across all runs we used MOEA parameterizations
that are in accordance with those recommended in the liter-
ature. For SPEA2, we used a population and archive size of
200, 0.9 for the crossover probability and 20 for the crossover
distribution index of SBX, 1/n for the mutation probabil-
ity (where n is the number of variables of the MOOP to be
solved) and 20 for the mutation distribution index of PM.
For GDE3, we used a population size of 200 and the set-
tings CR = 0.3 and F = 0.5 for the DE/rand/1/bin strategy.
For MOEA/D-DE we used a population size of 500 and all
other parameters were set as described in Zhang et al. (2009).
For DECMO we used a size of 100 for each coevolved sub-
population, the same SBX and PM parameterizations used
for SPEA2 and the settings CR = 0.2 and F = 0.5 for the
DE/rand/1/bin strategy. In the case of DECMO2 we used an
archive size of 200 and
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Fig. 4 HRPCs obtained when testing the impact of various archive sizes on MOEA/D-DE

– in the case of subpopulation P: 1.0 for the crossover prob-
ability and 20 for the crossover distribution index of SBX,
1/n for the mutation probability and 20 for the mutation
distribution index of PM;

– in the case of subpopulation Q: the settings CR = 0.2 and
F = 0.5 for the DE/rand/1/bin strategy;

– in case of (the bonus) individuals evolved directly from A:
the settings CR = 1.0 and F = 0.5 for the DE/rand/1/bin
strategy;

In the case of DECMO and DECMO2, the control para-
meters for the DE/rand/1/bin strategy used in subpopulation
Q are chosen such as tomaintain a good trade between explo-
ration and intensification (F = 0.5) and, as shown in Zaharie
(2009), stimulate a minor increase in population diversity
(CR = 0.2). When evolving bonus individuals from A, CR is
set to 1.0 to stimulate population diversity to the maximum
inside the highly elitist archive.

While it is fair that all MOEAs except MOEAD/D-DE
should use the same population size since they are all con-
structed around the Pareto-based elitism paradigm, in the
case of MOEAD/D-DE, the size of the archive was set at 500
after using the race-based ranking methodology to estimate
the relative performance achieved by nine different archive
sizes (from 100 to 900).We applied the basic ranking schema
and obtained the HRPCs that are presented in the left-side
plot fromFig. 4. TheseHRPCs indicate that, on average, over
the 20 considered benchmark MOOPs:

– when using an archive size of 500, MOEAD/D-DE is able
to achieve the best results towards the end of the optimiza-
tion run (i.e., between the ranking stages 31 and 50);

– when using an archive size of 400, MOEAD/D-DE is able
to achieve the best results during the middle of the run
(i.e., between the ranking stages 8 and 30);

Having two strong candidates, we applied again the race-
based ranking methodology (this time using a pess-5 ranking

schema on only MOEAD/D-DE-400 and MOEAD/D-DE-
500. The obtained HRPCs are presented in the right-side
plot fromFig. 4 and they indicate that, on average, differences
between the twomethods are greater during the end of the run
than during the middle part of the run. As such, we decided
that, when keeping every other parameter fixed, an archive
size of 500 would enable MOEA/D-DE to achieve the best
overall performance on our benchmark problem set.

5.1 Results on artificial benchmark problems

Because in several future statements we shall use the phrase
“on average” to refer to conclusions drawn from various
results we present, it is important to clearly state what we
mean by this. Considering that we have experimented with 5
differentMOEAs over 20 differentMOOPs and thatwemade
50 independent runs for each MOEA–MOOP combination,
at every stage of our race-based ranking procedure we have
assigned ranks based on 2,000 (when comparing only two
MOEAs) to 5,000 (when comparing all five) hypervolume
measurements. Since the HRPCs are based on 51 ranking
stages, each of them aggregates information from 102,000
(plots with two HRPCs) to 255,000 independent hypervol-
ume measurements. To construct the plot of the averagedH-
measured performance of all five algorithms over the entire
benchmark problem set (i.e., the plot from Fig. 5), we sam-
pled H values after 1,000 fitness evaluations on each inde-
pendent run. Therefore, this plot is based on 2,500,000 inde-
pendent data points.

Figure 6 contains four subplots with the HRPCs obtained
by the five algorithms we tested with over the entire artifi-
cial problem set. In addition, Table 2 presents the μF and
μA values achieved by each tested MOEA when applying
the pess-1 ranking schema. With regard to “full” conver-
gence (i.e., reachingH-%-ratio> 99%), SPEA2 was able to
achieve it on 3 problems, GDE3 on 4 problems, MOEA/D-
DE and DECMO on 5 problems, and DECMO2 on 7 prob-
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Fig. 5 Averaged run-time H-measured performance over 20 artificial benchmark MOOPs

Fig. 6 HRPCs obtained when comparing DECMO2 with four other MOEAs over 20 artificial benchmark MOOPs
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Table 2 The average ranks achieved by the five tested MOEAs over
the benchmark problem set when applying a pess-1 ranking schema

Algorithm μF μA

SPEA2 3.6500 3.8265

GDE3 3.5000 3.7490

MOEA/D-DE 2.6500 3.4775

DECMO 2.9000 2.8902

DECMO2 2.1500 2.3294

The best values are italicized

lems. LZ09-F1 is the only MOOP on which DECMO2 was
unable to achieve “full” convergence, but another algorithm,
namely MOEA/D-DE, managed to do so.

Taking into account the setup of our tests and the argu-
ments from Sect. 4.2, all the previously mentioned results
allow us to conclude that DECMO2 is an efficient and robust
MOEA.

Although all the HRPCs from Fig. 6 and all the hypervol-
ume average values plotted in Fig. 5 show that, on average
(and at every stage of the run), our method produces bet-
ter hypervolumes than the other MOEAs we have compared
against, it is extremely important to interpret this information
in combination with the implications of the monotonicity of

the H metric mentioned in the introduction of Sect. 4. As
such, the strongest statement that we can make based on the
obtained results is that: on average, DECMO2 is not worst
than any of the other four MOEAs during any stage of the
optimization run. But, based on the presented results, the
same statement cannot be made for any of the other four
algorithms. In light of this, (for the considered comparison
context/test settings) we can we can weakly argue that, on
average, DECMO2 is the best choice among the five tested
MOEAs.

In accordance with the previous line of arguments, and
taking into account the HRPCs obtained with the pess-5 and
pess-10 ranking schemata,we can also conclude that, on aver-
age, especially in the initial phases of the optimization runs,
DECMO2 displays a convergence speed that is not outper-
formed by any of the other MOEAs. We believe that this
feature makes our hybrid algorithm a very strong candidate
for MOOPs where the solver is limited in the number of fit-
ness evaluations that it can perform per optimization run.

In Fig. 7, we plot the HRPCs obtained when only compar-
ing DECMO2 to MOEA/D-DE. They indicate clearly that,
on average, our hybrid and adaptive MOEA displays a better
convergence behavior during the early part of the run and
that MOEA/D-DE is, more or less, able to generally match
the performance of DECMO2 towards the end of the run.

Fig. 7 HRPCs obtained when comparing DECMO2 with MOEA/D-DE over 20 artificial benchmark MOOPs
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Fig. 8 HRPCs obtained when comparing DECMO2 with DECMO over 20 artificial benchmark MOOPs

In Fig. 8, we plot the HRPCs obtained when only com-
paring DECMO2 to DECMO. The HRPCs corresponding to
the basic and pess-1 ranking schemata indicate that, in com-
parison with its predecessor, on average, DECMO2 displays
at least some small improvements throughout the entire opti-
mization run. When applying the pess-5 and pess-10 ranking
schemata, DECMO2 only shows an improved average per-
formance during the early part of the run and a slightly better
average performance towards the end of the run. Neverthe-
less, the general idea is that by adding a decomposition-based
strategy and an adaptive allocation of fitness evaluations, we
were able to increase the overall performance of our initial
coevolutionary method and enable it to successfully com-
pete with a very well known and successful multi-objective
optimizer like MOEA/D-DE over a wide range of artificial
MOOPs.

5.2 Case study: electrical drive design

Although extremely valuable for the algorithm design, pro-
totyping and parameter tuning stages, as we are primarily
motivated by practical applications of multi-objective opti-
mization, we generally regard the assessment of MOOA per-
formance on artificial MOOPs as a mere means to an end.

The final objective is to obtain a robust MOOA that is able
to successfully tackle real-life MOOPs.

Using the same parameterizations we experimented with
on the artificial problem set, we applied DECMO2 on two
fairly complicated MOOPs from the field of electrical drive
design, allowing for 10,000 fitness evaluations per run. In
both problems, the goal is to configure 22 real-valued para-
meters to simultaneously optimize 4 objectives regarding
cost and efficiency. For each problem, to evaluate the quality
of a single design, we must perform a series of computation-
ally intensive operations consisting of a meshing stage and
one or more finite element simulations. The overall impact
of these required simulations is that, even when distributing
the fitness evaluations over a high throughput cluster com-
puting environment, performing 10,000 fitness evaluations
takes between 6 and 7 days to complete.

Because of the extremely long run-times, we only per-
formed two independent runs with DECMO2 for each prob-
lem and saved information regarding the best found solu-
tions after every 100 fitness evaluations. For both industrial
MOOPs we also have (historical) run-time quality informa-
tion from optimizations conducted with SPEA2 (two inde-
pendent runs for each MOOP). Using as reference the best
known sets of solutions for both problems, in Fig. 9, we
present the run-timeH-measured performance of DECMO2
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Fig. 9 Run-time H-measured performance of DECMO2 and SPEA2 on two industrial MOOPs

and SPEA2 on the two industrial problems. The results indi-
cate thatDECMO2 is able to converge faster. In this particular
case, the faster convergence of DECMO2 roughly translates
into finding PNs that have the same H values as those that
were discovered one day later when using SPEA2.

6 Conclusion

In this paper, we have described DECMO2, a hybrid multi-
objective optimization algorithm that uses coevolution to

successfully combine three different principles for solving
MOOPs: Pareto-based dominance, differential evolution and
decomposition-based strategies. DECMO2 also incorporates
an adaptive allocation of fitness evaluations to accelerate con-
vergence by rewarding the incorporated evolutionary model
that is able to deliver the best performance during a given
part of the optimization run.

A considerable part of the present paper (Sect. 4.1) is ded-
icated to introducing a new methodology aimed at providing
practitioners from the field of multi-objective optimization
with a simple means of analyzing/reporting the general com-
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parative run-time performance of MOOAs over large prob-
lem sets. This methodology is largely based on a racing per-
spective over averaged hypervolume measures and can be
used either to fine tune algorithms over given problem sets or
to analyze the relative robustness and efficiency of MOOAs
(see the discussion from Sect. 4.2).

In Sect. 5, we present results using the newly intro-
duced MOOA comparison methodology that substantiates
the claim that DECMO2 displays both robustness and effi-
ciency when comparing against four other MOEAs (SPEA2,
GDE3, MOEA/D-DE and DECMO) over a challenging
benchmark of 20 artificialMOOPs fromdifferentwell known
problem sets. The results section also contains a small case
study regarding the comparative performance of DECMO2
and SPEA2 on two real-life industrial MOOPs that feature
computationally intensive fitness evaluation functions. The
results of this study confirm the general characteristic of
DECMO2 to converge fast.

In light of all the presented results, we finally argue that
DECMO2 is a valuable addition to the ever-growing set
of MOEAs and that, despite its structural complexity, this
hybrid evolutionary algorithm is very robustwith regard to its
parameterization and, therefore, especially suited for solving
real-life MOOPs that have computationally intensive fitness
evaluation functions.

With regard to DECMO2, future work will revolve around
developing a steady-state asynchronous version of the algo-
rithm and around testing and analyzing the comparative
performance on more industrial MOOPs. We also plan to
extend our racing-based MOOA comparison methodology
by designing a ranking schema that uses statistical signifi-
cance testing.
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