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Abstract The present work deals with modeling and analy-
sis of laser material processing technologies which were
commonly used in the recent past. The characteristics of laser
machining and laser welding have been determined using
response surface method (RSM), artificial neural network
(ANN) and adaptive neuro-fuzzy inference system (ANFIS).
For each process, an experimental setup was designed and
site-conducted using central composite design (CCD). Then
their performance measures (responses) have been mod-
eled and predicted based on RSM, ANN and ANFIS. The
accuracies of developed models were compared with each
other based on prediction error percent. The effects of each
process’s parameters on its performance measures were ana-
lyzed based on graphs which were plotted using the most
accurate model. Results indicated that for both types of laser
manufacturing processes, the ANFIS method predicted more
accurate results. Following ANFIS, ANN and RSM showed
almost precise prediction in modeling of performance mea-
sures. Hence, the ANFIS technique can be applied for mod-
eling of laser material processing technologies.
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1 Introduction

Laser light differs from ordinary light because it has the
photons of same frequency, wavelength and phase. Thus,
unlike ordinary light, laser beams are highly directional and
have high power density and better focusing characteris-
tics (Chryssolouris 1991). These unique characteristics of
laser beam are useful in processing of materials. The laser
beams are widely used for machining and other manufac-
turing processes such as, cutting, drilling, micromachining,
marking, welding, sintering, surfacing and heat treatment.

The main factors which contribute to laser manufacturing
processes are laser power, laser scanning speed, laser pulse
duration, laser pulse diameter and laser focusing distance.
Due to wide range of processing factors, development of
the predictive models for correlation relationships between
processes parameters and their performance measures is a
major challenge. For this purpose, in recent years, researchers
have focused on the modeling of processes based on data
obtained through experimental observations. In this case,
statistical analysis such as response surface methodology
(RSM) is used most commonly to correlate empirical rela-
tionship between process factors and responses. Choudhury
and Shirley (2010) applied RSM for analyzing effect of laser
power, cutting speed and air pressure on heat affected zone
thickness, surface roughness and dimensional accuracy while
laser cutting of three types of polymeric materials. Dhupal
et al. (2009) used five factors–five levels central composite
design for evaluating the effect of laser turning process para-
meters such as lamp current, pulse frequency, pulse width,
cutting speed and assist gas pressure on the quality of the
laser turned micro-grooves. Kuar et al. (2006) utilized RSM
and central composite design for finding optimal settings of
lamp current, pulse frequency, pulse width and air pressure
for minimizing the thickness of heat affected zone and taper-
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ing of micro-drilled holes. Ghosal and Manna (2013) applied
RSM for modeling and optimization of laser machining of
Al/Al2O3 metal matrix composite. They designed 32 exper-
iments based on rotatable central composite design to inves-
tigate effects of laser power, modulation frequency, gas pres-
sure, wait time, pulse width on the material removal rate
and tapering of grooves. The literatures previously stated
were reviewed and surveyed for application of RSM on laser
machining processes. This method was also used for analyz-
ing other alternatives of laser manufacturing processes. For
example, Acherjee et al. (2009) used the response surface
method for analyzing effect of laser power, welding speed,
standoff distance and clamp pressure on welding strength and
welding width of welding processes included thermoplastic
materials. In another attempt, Acherjee et al. (2012) applied
RSM along with desirability approach to find optimal set-
tings of laser power, scanning speed, and focusing distance
and clamp pressure for simultaneous optimization of Lap-
shear strength and weld-seam width of dissimilar materials.
Also, the RSM method is most commonly used for model-
ing of bead geometry of laser cladding process. Onwubolu
et al. (2007) utilized the RSM for predicting clad angle,
clad height and clad width of surfaces which were coated by
laser cladding process. Sun and Hao (2012) combined RSM
with desirability approach for modeling and optimization of
dimensional accuracy of melt pool profile.

Predictive models based on artificial intelligence are sec-
ondary tools that use data generated through experiments for
modeling of manufacturing processes characteristics. Arti-
ficial neural network, fuzzy logic and neuro-fuzzy system
are widely used for modeling of manufacturing processes.
Teimouri et al. (2012) used various types of neural networks
for modeling spring-back in V-bending process. Teimouri
and Baseri (2012b) applied back-propagation neural network
(BPNN) along with radial basis function neural network for
predicting material removal rate and surface roughness of
dry EDM process. Additionally, they applied neural network
and neuro-fuzzy inference system for modeling of surface
roughness change while magnetic abrasive finishing of hard-
ened AISI 52100 steel (Teimouri and Baseri 2012a). Shayan
et al. (2013) also used the neural network and RSM to esti-
mate cutting velocity, surface roughness and over cut of dry
wire cut machining of cemented tungsten carbide. In another
attempt Teimouri and Baseri (2013a) applied fuzzy logic
for forward and backward prediction of friction stir weld-
ing process parameters. According to reviewed literatures, it
can be inferred that although the predictive models based arti-
ficial intelligence have been extensively used for modeling
various types of manufacturing processes, there are not many
of publications that applied these methods for modeling of
laser manufacturing process.

The aim of the present work is to find appropriate method
for modeling the characteristics of laser machining and laser

welding processes. For this purpose, the experimental obser-
vations of literatures (Ghosal and Manna 2013) and (Acher-
jee et al. 2012) are used. For each process the RSM, ANN
and ANFIS are applied separately, and the accuracies of
developed models are compared with each other according
to values of prediction error percent (PEP). Afterward the
effects of process parameters on performance measures of
each process are analyzed using graphs which are obtained
through the most accurate method. The present works con-
sists of five main sections. After introduction, in Sect. 2,
the methodologies of RSM, ANN and ANFIS are described
based on existing references. The Sect. 3 is allocated to the
experimentations including experimental setup, experimen-
tal material and experimental designs for each process. The
Sect. 4 includes obtained results and related discussions.
Finally, section five will summarize the results and explain
conclusions. The present work deals with application of sta-
tistical method like RSM, and intelligent methods like ANN
and ANFIS in laser manufacturing processes. The laser man-
ufacturing processes are really expensive; therefore, appli-
cation of these methods is beneficial to reduce the cost of
the process by preventing from conducting huge number of
experiments.

2 Methodologies

2.1 Response surface methodology (RSM)

Response surface methodology (RSM) is a collection of
mathematical and statistical techniques useful for analyzing
problems in which several independent variables influence a
dependent variable or response, and the goal is to optimize
this response. In many experimental conditions, it is possible
to represent independent factors in quantitative form as given
in following equation. Then these factors can be thought of as
having a functional relationship with a response as follows:

Y = φ(X1, X2, . . . , Xk) ± er (1)

This represents the relation between response Y and X1, X2,

. . . , Xk of k quantitative factors. The function � is called
response surface or response function. The residual er mea-
sures the experimental errors. For a given set of independent
variables, a characteristic surface is responded. When the
mathematical form of � is not known, it can be approximated
satisfactorily within the experimental region by a polyno-
mial.

In this investigation, RSM was applied to develop mathe-
matical models in the form of multiple regression equations
for the quantitative characteristics of laser machining and
laser welding processes. In applying the RSM, the depen-
dent variable is viewed as a surface to which a mathematical

123



Application of soft computing techniques for modeling and analysis of MRR and taper 795

model is fitted. For the development of regression equations
related to various quality characteristics of laser machining
and laser welding processes, the second order response sur-
face was assumed to be:

Y = b0 +
k∑

i=1

bi Xiu +
k∑

i=1

bii X2
iu +

k∑

i, j=1

bi j Xiu X ju (2)

where Y is the response; b0, bi , bii and bi j are the coeffi-
cients; Xiu is the variable; u is the experiment number (1–31
for laser machining or 1–30 for laser welding); k is the factor
number (1–5 for laser machining or 1–4 for laser welding);
X2

iu is the second order term of variable and Xiu × X ju are
the interaction terms.

Further clarifications about details of RSM and its imple-
mentation can be found in literature (Shayan et al. 2013).

In the present study application of RSM is analyzed on
laser machining process and laser welding process. To better
recognize the developed model of each process, the parame-
ters of laser machining process are characterized by xi and
parameters of laser welding process is characterized by yi .

2.2 Back-propagation neural network (BPNN)

Use of neural network is popular in telecommunication, sig-
nal processing, pattern recognition, prediction, automated
control and economical analysis. Back-propagation neural
network has been adopted in literatures due to its accuracy
and fast response. The BP structure consists of an input layer,
some hidden layers and an output layer. In this structure neu-
rons are connected to each other by some weighted links.
The information from input layer is mapped to output layer
through one or more hidden layers. The relationship between
input–output of a single node can be written as following
equation.

ak = f

(
∑

i=1

Wki pi + bk

)
(3)

where ak is the value of node output, Wki is the weight con-
nection between inputs and nodes, pi is the output of previous
nodes in their hidden layer, and bk is the bias value of the
node and finally f is activation function. Generally the acti-
vation functions selected for hidden layers are log-sigmoid.
The linear function is recommended for the output layer.

Modeling and prediction of specified process characteris-
tics by BPNN consist of two main stages, namely, training
and testing. In the training stage, a network is trained by using
collection of experimental data (about 80 %) and the network
parameters such as number and size of hidden layer(s), type
of transfer functions and network learning rate are set. In the
testing stage, the trained network is tested by the remaining

data sets (20 % of data) and its performance is checked based
on value of mean absolute error (MAE) described by Eq. (4).
Also, due to small number of experiments (only 31 exper-
iments for laser machining process and 30 experiments for
laser welding process those includes 6 replications at center
point), the cross-validation is neglected.

MAE = 1

T

T∑

i=1

|ti − ai | (4)

where T is the number of testing data, ti is the target value
and ai is ANN modeled value.

The training and testing of a network are repeated under
various network architectures, various transfer functions and
different learning rates until the network reaches the low-
est value of MAE according to trial and error methodol-
ogy. For further information about implementation of BPNN,
it is suggested that interested readers read literatures
(Teimouri et al. 2012; Teimouri and Baseri 2012a, b; Shayan
et al. 2013) which were written by corresponding author.

2.3 Adaptive neuro-fuzzy inference system (ANFIS)

An ANFIS is a hybrid predictive model which uses both
neural network and fuzzy logic to generate mapping rela-
tionship between inputs and outputs (Teimouri and Baseri
2013b). The structure of this model consists of five layers
with each layer being constructed of several nodes. Similar
to a neural network, in an ANFIS structure the inputs of each
layer are gained by the nodes from previous layer. The ANFIS
network includes m inputs (X1 . . . Xm), each one consisting
of n membership functions (MFs). Moreover, a layer with R
fuzzy rules and also an output layer are contributed to con-
struction of this model. The number of nodes in the first layer
can be calculated by the product of m as number of inputs
and n as number MFs (N = m ·n). Number of nodes in other
layers (layer 2–4) relates to number of fuzzy rules (R).

Like a neural network, modeling of specified process char-
acteristics by ANFIS consists of two main stages of train-
ing and testing. Here, the number of membership functions
(MFs) and types of MFs are the main network parameters and
play important roles in prediction by ANFIS. Like a neural
network, in modeling by ANFIS, the training and testing
are repeated under various network architectures (number of
MFs) and various types of MFs until the network reaches to
lowest value of RMSE according to the following equation:

RMSE =
√√√√ 1

M

M∑

z=1

(Sz − Yz)2 (5)

where M is number of data in testing (in this work M = 31
and 30 for laser machining and laser welding, respectively)
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Sz is the real value of a given output obtained by experiments
and Yz is the value of predicted output by developed models.

For further information about implementation of the
ANFIS, the interested readers can read reference (Teimouri
and Baseri 2013b; Teimouri et al. 2013; Babajanzade-Roshan
et al. 2013; Kashiry Fard et al. 2013).

In present work, due to small number of experiments (only
31 experiments for laser machining process and 30 experi-
ments for laser welding process those includes 6 replications
at center point), the cross-validation of ANN and ANFIS is
performed by splitting experimental data sets of Tables 2
and 4 in five folds. In other words, training/testing of a net-
work is applied for five times under various training/testing
data configurations (Teimouri and Baseri 2013b). Appen-
dixes A and B presents data sets with theirs correspond-
ing five folds those are used for training/testing of laser
machining and laser welding, respectively. In these tables (i.e.
“Appendixes A and B”) data sets which symbolized by “*”
are used for testing of network and the other non-symbolized
sets are utilized for training.

In the present study the MAE and RMSE are used to find
appropriate structure of ANN and ANFIS, respectively. They
are used according the default of neural network toolbox and
ANFIS Toolbox in MATLAB software. Also, to compare
accuracy of developed models, another comparative tool,
namely, prediction error percent (PEP) is defined as percent-
age of deviation of predicted value from absolute value.

3 Experimentations

In this section experimental setup, materials and procedures
are explained for laser drilling and laser welding, sepa-
rately. The specifications of each experiment are described
as follows:

3.1 Experimentations of laser machining process

For this process, an ytterbium laser machine equipped with
CNC attachment was used to conduct experiments. The
workpiece material is from Al/Al2O3 metal matrix composite
that is extensively used in air plane industry. Due to high hard-
ness and corrosion resistance of this metal it is categorized
as difficult-to-cut material. The process predominant factors
were laser power, modulation frequency, gas pressure, wait
time and pulse width. The ranges of factors were selected
based on machine quality and laboratory experiments. The
main responses of the process were material removal rate
(MRR) and phenomenon of tapering (Ta). The MRR is cal-
culated by dividing workpiece mass loss to machining time.
Also, the taper of machined holes is calculated by following
equation.

Table 1 Laser machining predominant factors and their levels

Process factors Symbols Units Levels

−2 −1 0 1 2

Laser power x1 W 400 500 700 900 1,000

Modulation frequency x2 Hz 600 700 800 900 1,000

Gas pressure x3 bar 15 16 17 18 20

Wait time x4 s 0.1 0.15 0.2 0.25 0.3

Pulse width x5 % 75 80 90 95 100

Ta(rad) =
[
Tan−1(D − d)/2t

]
(6)

where D is measured diameter at top of the machined hole,
d is the measured diameter at bottom of the machined hole
and t is the workpiece thickness.

Table 1 presents the process factors and their levels. The
rotatable central composite DOE technique was used for
design and conduction of experiments. Table 2 presents the
experimental design matrix and obtained values of material
removal rate and tapering of machined holes. Further clarifi-
cations about experimentations of laser drilling process can
be found in literature (Ghosal and Manna 2013).

3.2 Experimentations of laser transmission welding process

For this process, experimental observations are performed
with a continuous wave diode laser system. The system
installation consists of a 30 W coherent fibered array pack-
age (FAP) diode laser with a 3-axes CNC work table. The
diode laser is operated at 809.4 nm wavelength and the focal
length used is 13 mm. The workpiece materials for join-
ing dissimilar polymers are Plexiglass 6N acrylic (PMMA)
granules from Evonik Rohm GmbH and Terlurans GP-22
ABS granules from BASF. The predominant factors of this
process were laser power, welding speed, standoff distance
and clamp pressure. Table 3 presents process factors and their
levels. The experiments were designed and conducted based
on four factors-five levels central composite design to study
effect of process factors on weld strength and weld width.
The weld strength is calculated by a microprocessor con-
trolled Instron universal testing machine with an accuracy
of 70.4 % of rated capacity (model: 8801, maximum capac-
ity: 100 kN) that is suitable for lap-shear pull test of welded
specimens. For measuring weld seam width, a STM6 micro-
scope offers high performance three axis measurements of
parts, with sub-micron precision. Inbuilt LED illuminator is
used for reflected coaxial illumination during measurements.
Table 4 presents design matrix and experimental results for
laser transmission welding process.
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Table 2 Design matrix and
experimental results for laser
drilling processes

No. Factors Responses

x1 x2 x3 x4 x5 MRR (g/s) Taper (rad)

1 −1 −1 −1 −1 1 0.2404 0.0040

2 1 −1 −1 −1 −1 0.1701 0.0043

3 −1 1 −1 −1 −1 0.2357 0.0049

4 1 1 −1 −1 1 0.3184 0.0040

5 −1 −1 1 −1 −1 0.3126 0.0030

6 1 −1 1 −1 1 0.2988 0.0050

7 −1 1 1 −1 1 0.2272 0.0046

8 1 1 1 −1 −1 0.2272 0.0048

9 −1 −1 −1 1 −1 0.2299 0.0052

10 1 −1 −1 1 1 0.2346 0.0042

11 −1 1 −1 1 1 0.2316 0.0043

12 1 1 −1 1 −1 0.2346 0.0038

13 −1 −1 1 1 1 0.2312 0.0036

14 1 −1 1 1 −1 0.2356 0.0042

15 −1 1 1 1 −1 0.2351 0.0044

16 1 1 1 1 1 0.2332 0.0042

17 −2 0 0 0 0 0.2334 0.0040

18 2 0 0 0 0 0.2363 0.0048

19 0 −2 0 0 0 0.2321 0.0042

20 0 2 0 0 0 0.2330 0.0045

21 0 0 −2 0 0 0.2344 0.0040

22 0 0 2 0 0 0.2355 0.0041

23 0 0 0 −2 0 0.2604 0.0047

24 0 0 0 2 0 0.2324 0.0043

25 0 0 0 0 −2 0.2372 0.0045

26 0 0 0 0 2 0.2381 0.0049

27 0 0 0 0 0 0.2399 0.0046

28 0 0 0 0 0 0.2391 0.0047

29 0 0 0 0 0 0.2416 0.0047

30 0 0 0 0 0 0.2761 0.0044

31 0 0 0 0 0 0.2824 0.0043

Table 3 Laser welding predominant factors and their levels

Process factors Symbols Units Levels

−2 −1 0 1 2

Laser power y1 W 9 12 15 18 21

Welding speed y2 mm/s 4 8 12 16 20

Stand-off-distance y3 mm 26 32 38 44 50

Clamp pressure y4 MPa 0.9 1.5 2.1 2.7 3.3

For further information about experimentations, it is sug-
gested that interested readers read the experimental section
of literature (Acherjee et al. 2012).

4 Results and discussions

In this section, results of soft computing models for predic-
tion of characteristics of laser machining, laser welding and
laser cladding processes are presented. For each process, the
characteristics are modeled based on RSM (using Design
Expert V8 DOE software), ANN (using MATLAB R17
neural network ToolBox) and ANFIS (using MATLAB R17
ANFIS ToolBox). Subsequently, the accuracies of developed
models are compared based on PEP. Afterward, the effects of
process parameters on performance measures of each process
are analyzed based on graphs which were obtained through
the most accurate models.
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Table 4 Design matrix and
experimental results for laser
welding process

No. Factors Responses

y1 y2 y3 y4 Weld strength
(N/mm)

Weld width
(mm)

1 −1 −1 −1 −1 38.29 3.19

2 1 −1 −1 −1 31.14 3.43

3 −1 1 −1 −1 45 2.74

4 1 1 −1 −1 46.14 3.14

5 −1 −1 1 −1 62.43 4.51

6 1 −1 1 −1 79.26 5.17

7 −1 1 1 −1 32.57 3.36

8 1 1 1 −1 58.71 4.10

9 −1 −1 −1 1 38.71 3.15

10 1 −1 −1 1 22.14 3.42

11 −1 1 −1 1 55.29 2.74

12 1 1 −1 1 40.43 3.15

13 −1 −1 1 1 65.57 4.92

14 1 −1 1 1 71.71 5.28

15 −1 1 1 1 46.86 3.35

16 1 1 1 1 57.14 4.37

17 −2 0 0 0 55.14 3.26

18 2 0 0 0 65.57 4.31

19 0 −2 0 0 40.57 4.78

20 0 2 0 0 48.29 3.42

21 0 0 −2 0 9.71 2.21

22 0 0 2 0 41.71 4.26

23 0 0 0 −2 63.71 3.81

24 0 0 0 2 62.29 4.14

25 0 0 0 0 63.29 4.08

26 0 0 0 0 65.43 3.91

27 0 0 0 0 64 3.98

28 0 0 0 0 63.57 4.10

29 0 0 0 0 62.14 3.99

30 0 0 0 0 64.57 4.01

4.1 Modeling and analysis of laser machining process
characteristics

4.1.1 Modeling of MRR and Ta by RSM

4.1.1.1 Modeling of MRR Based on regression statistics,
it was decided to use a second order model with two-factor
interaction terms to correlate empirical relationships between
process factors and MRR. Also, the analysis of variances
(ANOVA) was done for finding significant factors. Table 5
presents ANOVA results for modeling of MRR. The model
Prob > f is lower than 0.05 (i.e. 0.004) that means the model
is significant. Also, the value of Prob > F for term of “lack-
of-fit” is much higher than 0.05 (i.e. 0.8184) that means

the “lack of fit” is insignificant. In this table the values of
“Prob > F” <0.0500 indicate model terms are significant
and vice versa. Hence the modified model of MRR based on
significant factors is presented at following equation:

MRR = 0.24 − 9.192 × 10−3x4 + 9.92E

−003x1x2 + 0.019x1x5 − 0.019x2x3

−0.011x3x5 (7)

where x1 is laser power, x2 is modulation frequency, x3 is
gas pressure, x4 is wait time and x5 is pulse width.

4.1.1.2 Modeling of Ta According to regression statistics,
the quadratic model was found to be a suitable model for
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Table 5 ANOVA results for
MRR Source Sum of squares Degree of

freedom
Mean of
square

F value Prob > F Significance

Model 0.020 15 1.33E−003 4.09 0.004 Significant

x1 8.9 E−006 1 8.9E−006 0.027 0.8712 Insignificant

x2 2.94E−006 1 2.94E−006 9E−3 0.9257 Insignificant

x3 4.84E−004 1 4.84E−004 1.48 0.2415 Insignificant

x4 2.02E−003 1 2.02E−003 6.20 0.0242 Significant

x5 7.7E−004 1 7.75E−004 2.37 0.1433 Insignificant

x1x2 1.57E−003 1 1.57E−003 4.82 0.0433 Significant

x1x3 6.16E−005 1 6.16E−005 0.19 0.6701 Insignificant

x1x4 8.41E−006 1 8.41E−006 0.026 0.8746 Insignificant

x1x5 5.64E−003 1 5.64E−003 17.23 0.0008 Significant

x2x3 5.65E−003 1 5.65E−003 17.28 0.0007 Significant

x2x4 1.72E−005 1 1.72E−005 0.053 0.8215 Insignificant

x2x5 2.75E−005 1 2.75E−005 0.084 0.7754 Insignificant

x3x4 5.85E−004 1 5.85E−004 1.79 0.1997 Insignificant

x3x5 1.91E−003 1 1.19E−003 5.84 0.028 Significant

x4x5 1.29E−003 1 1.29E−003 3.95 0.0643 Insignificant

Residual 5.23E−003 16 3.27E−004 – – –

Lack-of-fit 2.85E−003 11 2.59E−004 0.54 0.8148 Insignificant

prediction of tapering by RSM. The ANOVA results for
modeling of tapering have been presented in Table 6. The
model Prob > f is lower than 0.05 (i.e. 0.0019) that means
the model is significant. Also, the value of Prob > F for
term of “lack of fit” is much higher than 0.05 (i.e. 0.2635)
that means the “lack-of-fit” is insignificant. In this table
values of “Prob > F” <0.0500 indicate model terms are
significant and vice versa. Hence the modified model of
Ta based on significant factors is presented at following
equation:

Ta = 4.53 × 10−3 − 1.33 × 10−4x2
3

−2.063 × 10−4x1x2 + 2.93 × 10−4x1x3

−1.68 × 10−4
1 x4 + 1.81 × 10−4x2x3

−1.56 × 10−4x2x4 + 1.68 × 10−4x3x5

−1.18 × 10−4x4x5 (8)

4.1.2 Modeling of MRR and Ta by ANN

In order to train a back-propagation network for modeling of
MRR and tapering, of the 31 data sets, 25 were stochastically
selected for network training. The remaining six data sets
were then tested by the trained network.

As discussed in Sect. 2.2 training and testing of network
under various BP-NN topographies are repeated until the
lowest value of MAE is obtained. Hence, here, for modeling
of MRR and Tapering, various topographies (networks with
various hidden layers and different hidden neurons) under
various data folds were trained and tested and their MAEs

were calculated based on trial and error method. Table 7
presents the obtained values of MAE for various ANN topog-
raphy and different folds. It is seen from the Table 7 that
a network with topography of 5-10-2 is the most accurate
model due to its lowest values of MAEs. Figure 1 indicates
comparison of predicted values of testing data which were
obtained through BP-NN with real data obtained through
experiments regarding fold #3 (i.e. fold with highest MAEs).
It can be inferred from this figure that even for worst pre-
diction (regarding fold #3) there is tight agreements between
measured and predicted values of testing data .Hence, the
5-10-2 topography was selected as most accurate architec-
ture for modeling of MRR and Ta in modeling of process via
ANN.

4.1.3 Modeling of MRR and Ta by ANFIS

For modeling of MRR and Ta by ANFIS, the numbers of
25 data sets from Table 2 were used for training of ANFIS
network, and then the trained network was tested by the
other six remaining data sets. To implement cross valida-
tion on modeling of MRR and taper by ANFIS, five data
folds were identified (according to “Appendix A”). Based on
trial and error methodology, the ANFIS network has been
trained and tested by various types of MFs until the low-
est value of RMSE is obtained. While modeling of MRR
and Ta by ANFIS, selection of the structures with higher
than 2 MFs for each input resulted in overfitting and due
to wide range of process factors and levels, the run time
was very long. Table 8 indicates the RMSEs which were
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Table 6 ANOVA results for
tapering

Source Sum of squares Degree of
freedom

Means of
squares

F value Prob > F Significance

Model 5.53E00−6 20 2.7E00−7 6.10 0.0019 Significant

x1 1.83E00−7 1 1.83E00−7 4.05 0.0694 Insignificant

x2 1.83E00−7 1 1.83E00−7 4.05 0.0694 Insignificant

x3 2.04E00−8 1 2.05E00−8 0.45 0.5163 Insignificant

x4 9.37E00−8 1 9.37E00−8 2.07 0.1785 Insignificant

x5 4.16E00−10 1 4.16E00−10 9.17E−3 0.9254 Insignificant

x2
1 6.06E00−8 1 6E−008 1.33 0.2724 Insignificant

x2
2 9.85E00−8 1 9.85E−008 2.17 0.1687 Insignificant

x2
3 5.185E00−7 1 5.18E−007 11.42 0.0061 Significant

x2
4 1.22E00−8 1 1.22E−008 0.27 0.6134 Insignificant

x2
5 2.56E00−8 1 2.56E−008 0.56 0.4684 Insignificant

x1x2 6.8E00−7 1 6.8E−007 14.99 0.0026 Significant

x1x3 1.38E00−6 1 1.38E−006 30.41 0.0002 Significant

x1x4 4.55E00−7 1 4.55E−007 10.04 0.0090 Significant

x1x5 1.05E00−7 1 1.05E−007 2.33 0.1554 Insignificant

x2x3 5.2E00−7 1 5.25E−007 11.58 0.0059 Significant

x2x4 3.9E00−7 1 3.9E−007 8.6 0.0136 Significant

x2x5 5.06E00−8 1 5.06E−008 1.12 0.3136 Insignificant

x3x4 1.056E00−7 1 1.05E−007 2.33 0.1554 Insignificant

x3x5 4.55E00−7 1 4.55E−007 10.04 0.0090 Significant

x4x5 2.25E00−7 1 2.25E−007 4.97 0.0476 Significant

Residual 5E00−7 11 4.54E−008 – – –

Lack-of-fit 3.5E00−7 6 5.85E−008 0. 97 0.2635 Insignificant

Table 7 Obtained MAE for
various neural network
topographies under various data
folds for MRR and Taper

The best structure regarding
lowest prediction error are in
bold

Structure Mean absolute error (MAE)

Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Average

MRR

5-7-2 0.1652 0.1524 0.1632 0.1391 0.1362 0.1512

5-8-2 0.1431 0.1471 0.1488 0.1265 0.1287 0.1388

5-9-2 0.1319 0.1202 0.1362 0.1183 0.1165 0.1246

5-10-2 0.1121 0.1087 0.1142 0.1021 0.1052 0.1084

5-11-2 0.1322 0.1232 0.1298 0.1249 0.1324 0.1284

5-12-2 0.1541 0.1397 0.1467 0.1578 0.1752 0.1548

Taper

5-7-2 0.0015 0.0019 0.0017 0.0018 0.0014 0.00166

5-8-2 0.0011 0.0013 0.0017 0.0014 0.0012 0.00134

5-9-2 0.0008 0.0010 0.0015 0.0011 0.0008 0.00104

5-10-2 0.0006 0.0008 0.0011 0.0007 0.0005 0.00074

5-11-2 0.0013 0.0012 0.0018 0.0010 0.0009 0.00124

5-12-2 0.0018 0.0018 0.0020 0.0015 0.0013 0.00168

obtained through modeling of MRR and Ta under various
types MFs and different data folds while the structure is
2-2-2-2-2. It can be inferred from this table that for both
MRR and Ta the ANFIS network with triangular types of
MFs guarantees lowest RMSE. Figure 2 shows the agree-

ment between measured values of MRR and Ta for testing
under data fold #3. (i.e. highest RMSEs). It can be inferred
from this figure that the developed ANFIS model has supe-
riority in prediction of laser machining process even for the
worst prediction.
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(a)

(b)

Fig. 1 Comparison of measured and 5-10-2 ANN predicted values of
testing data for a MRR b Ta for fold #3

4.1.4 Comparison accuracies of developed models

To compare the accuracies of a developed model, the predic-
tion error percentage (PEP) is defined as follows:

PEP = 1

n

n∑

i=1

|ai − yi |
ai

(9)

where ai is the measured value obtained by experiments and
yi is the predicted value by the developed RSM, ANN and
ANFIS models.

Figure 3a, b indicates graph of PEP for modeling of MRR
and Ta by RSM, ANN and ANFIS, respectively. It can be
seen from the figure that the developed ANFIS outperforms
ANN and in modeling of MRR and Ta due to lowest values
of PEP almost in all 31 data sets.

The main reason for outperforming of ANFIS than ANN
and RSM, is to regard inputs and outputs in both cases of
crisp and linguistic data collections due to contribution of
neural network and fuzzy logic, respectively. Hence, for a

(a)

(b)

Fig. 2 Comparison of measured and ANFIS predicted values of testing
data for a MRR b Ta for fold #3

complex process such as laser machining, this method can
approximate the variations as a powerful artificial intelli-
gence method. Following the ANFIS model, the neural net-
work has outperformed the RSM. This is due to intelligent
nature of neural network that leads to more precise prediction
rather than statistical method such as RSM.

4.1.5 Effect of laser machining parameters on MRR
and Ta based on developed ANFIS model

As it was resulted in previous section, the ANFIS was
selected as the most accurate model for prediction both MRR
and Ta. Hence, the developed ANFIS model can be used for
analyzing effects of laser machining process parameters on
MRR and Ta. 3D plots of ANFIS surfaces were drawn and
the parameter effects have been analyzed as follows.

4.1.5.1 Effects of machining parameters on MRR Figure
4a–c indicates interaction effects of process parameters on

Table 8 Obtained RMSEs for
various ANFIS MFs under
various data folds for MRR and
taper

The best structure regarding
lowest prediction error are in
bold

Structure Root mean square error (RMSE)

Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Average

MRR

Triangle 0.0741 0.0773 0.0813 0.0621 0.0701 0.07298

Trapezoid 0.2311 0.1982 0.1725 0.1982 0.2311 0.20676

Generalized bell 0.1432 0.1477 0.1566 0.1322 0.1653 0.149

Gaussian 0.1139 0.1282 0.1324 0.1021 0.1174 0.118

Taper

Triangle 0.0002 0.0003 0.0003 0.0001 0.0002 0.00022

Trapezoid 0.0010 0.0008 0.0009 0.0011 0.0008 0.00074

Generalized bell 0.0005 0.0007 0.0006 0.0006 0.0007 0.00062

Gaussian 0.0004 0.0004 0.0006 0.0007 0.0005 0.00052
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Fig. 3 PEP for modeling of a
MRR and b Ta by RSM, ANN
and ANFIS

(a)

(b)

material removal rate based on surfaces which were plotted
by developed ANFIS models. For increasing productivity of
the process, it is necessary for the MRR to increase. Hence
maximal MRR is desirable.

Figure 4a demonstrates interaction effect of laser power
and modulation frequency on MRR. For drawing of this plot
the other factors such as assisted gas pressure, wait time
and pulse width are kept constant at their center levels (e.g.
17 bar, 0.2 s and 90 % respectively). According to this fig-
ure, it is seen that the combination of high laser power and
high laser modulation frequency results in a higher MRR.
By the increasing laser power a greater amount of thermal
energy is transferred to the workpiece. Hence, more material
is removed and MRR increases at high laser power. Alterna-
tively, at high laser modulation frequency the thermal energy
is transferred to the workpiece for much more time within
a specified machining time. Therefore, the combination of
high laser power and high modulation frequency lead to high
material removal rate.

Figure 4b illustrates interaction effects of wait time and
gas pressure. For drawing of this plot the other factors such as
laser power, modulation frequency, and pulse width are kept
constant at their center levels (e.g. 500 W, 800 Hz and 85 %
respectively). It can be seen from the figure that irrespective
to wait time, the material removal rate firstly increases by
increasing in gas pressure, then by further increase in gas
pressure the MRR decreases slightly. When the gas pres-
sure increases (from initial level to a specified value), the
jet of high flow nitrogen gas facilitates removal of molten
material from workpiece. However, further increasing gas
pressure, further flow of gas is injected into the machin-
ing gap and due to the cooling nature of nitrogen it may
lead to reduction of thermal energy which is transferred to

workpiece. On the other hand it is seen from the figure that
irrespective to the gas pressure, by increasing wait time the
material removal rate increases correspondingly, then by fur-
ther increasing laser wait time the MRR decreases gradually.
While the wait time increases from 0.1 to 0.15–0.2 s, the
MRR increases accordingly due to providing enough relax-
ing time for removing molten metal from machined holes.
However by further increasing wait time from 0.2 to 0.3 s,
the material removal rate decreases correspondingly, due to
increasing in non-cutting time. In other word, no material is
removed while the wait time increases from 0.2 to 0.3 s.

Figure 4c presents interaction effect of laser power and
pulse width on MRR. For drawing of this plot the other factors
such as modulation frequency, assisted gas pressure and wait
time are kept constant at their center levels (e.g. 800 Hz, 17
bars and 0.2 s respectively). It can be seen from this figure that
high pulse power and high pulse width combination result
in a high MRR. In this case, it can be discussed that greater
thermal energy transfer to the workpiece results from a wider
pulse area. Hence, it can damage more area and remove more
material. Therefore, the MRR is high while high laser power
and high pulse width are selected.

4.1.5.2 Effect of machining parameters on Ta Figure 5a–c
illustrates interaction effects of process parameters on taper
phenomenon of machined hole based on surfaces which were
plotted by a developed ANFIS model. The lower value of
taper implies high product quality and high accuracy. There-
fore, the minimal taper is desirable.

Figure 5a demonstrates interaction effects of laser power
and modulation frequency on taper of machined hole. For
drawing of this plot the other factors such as assisted gas
pressure, wait time, and pulse width are kept constant at their
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Fig. 4 ANFIS surfaces for interaction effects of parameters on MRR.
a Interaction of laser power and modulation frequency. b Interaction of
gas pressure and wait time. c Interaction of laser power and pulse width

center levels (e.g. 17 bars, 0.2 s and 90 % respectively). The
figure shows that a low laser power and low modulation fre-
quency combination results in low taper. On one hand, low
laser power generates lower thermal energy, as a result top
surface of work sample where the laser beam is focused, get
melted and vaporized slowly and low volume of material
is removed from the top surface during penetration into the
remaining thickness, which produces low taper. On the other
hand, at very low modulation frequency, the laser energy is
relatively high, but the time between two successive incident
beams is more, therefore, material has been removed only
from the narrow focusing spot on the top surface of work
sample. Due to low assisted gas pressure, narrow localized
heating occurred as a result low tapered hole is generated
(Kuar et al. 2006).

Figure 5b presents interaction effect of assisted gas pres-
sure and wait time on taper of laser drilled hole. For the draw-
ing of this plot the other factors such as laser power, modu-
lation frequency, and pulse width are kept constant at their
center levels (e.g. 700 W, 800 Hz and 90 % respectively). It
can be seen from the figure that at low wait time (high thermal

Fig. 5 ANFIS surfaces for interaction effects of parameters on Ta. a
Interaction of laser power and modulation frequency. b Interaction of
gas pressure and wait time. c Interaction of laser power and pulse width

energy) the taper is increased while the gas pressure increases
from its initial level to 17 bars. At low wait time the thermal
energy is relatively high and increasing in gas pressure can
help the metal removal process. Therefore in such situations
more material is removed from the top surface of workpiece
and taper increases. By further increase in gas pressure due
to cooling characteristic of nitrogen the thermal energy is
decreased and it disturbs regular metal removal mechanism
and leads to low taper. Also, it is seen from the figure that
the wait time has no significant effect on taper. By a precise
notation to this figure, it is seen that by increasing the wait
time the taper increases due to better removal of molten met-
als from machining hole and improvement of metal removal
process. However, by further increasing the wait time, the
taper decreases gradually due to increase in non-cutting time
and lower thermal energy within constant machining time.

Figure 5c indicates interaction effects of laser power and
pulse width on taper of machined hole. For the drawing of this
plot the other factors such as modulation frequency, assisted
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Table 9 ANOVA results for
welding strength

Source Sum of squares Degree of
freedom

Means of
square

F value Prob > F Significance

Model 6,956.97 14 496.93 144.25 <0.0001 Significant

y1 76.36 1 76.36 22.17 0.0003 Significant

y2 41.79 1 41.79 12.13 0.0033 Significant

y3 2,037.07 1 2,037.07 591.35 <0.0001 Significant

y4 0.090 1 0.090 0.026 0.8737 Insignificant

y2
1 22.05 1 22.05 6.4 0.0231 Significant

y2
2 360.99 1 360.99 104.79 <0.0001 Significant

y2
3 2,505.65 1 2,505.65 727.37 <0.0001 Significant

y2
4 1.52 1 1.52 0.44 0.5168 Insignificant

y1 y2 34.37 1 34.37 9.98 0.0065 Significant

y1 y3 586 1 586 170.11 <0.0001 Significant

y1 y4 168.81 1 168.81 49 <0.0001 Significant

y2 y3 1,229.23 1 1,229.23 356.98 <0.0001 Significant

y2 y4 57.34 1 57.34 16.65 0.001 Significant

y3 y4 9.47 1 9.47 2.75 0.1181 Insignificant

Residual 51.67 15 3.44 – – –

Lack-of-fit 45.32 10 4.53 3.57 0.0865 Insignificant

gas pressure and wait time are kept constant at their center
levels (e.g. 800 Hz, 17 bars and 0.2 s respectively). It can be
seen from this figure that very high laser power and very high
pulse width combination leads to a high value of taper. It is
obvious that at high laser power, the high pulse width results
in focusing of high thermal energy at wider area. Hence, more
volume of material is removed from the top surface of the
workpiece and it may lead to high taper. Therefore, to obtain
low taper, selection of a lower pulse width and lower laser
power are suggested.

4.2 Modeling and analysis of laser welding process
characteristics

4.2.1 Modeling of weld strength and weld width by RSM

4.2.1.1 Modeling of weld strength (WS) According to
sequential sum of squares and lack-of-fit tests, it was decided
to use quadratic model to correlate relationship between
laser welding process factors and welding strength. Table 9
presents the ANOVA results for finding significant factors.
The model Prob > f is lower than 0.05 (i.e. <0.0001) that
means the model is significant. Also, the value of Prob > F
for term of “lack-of-fit” is much higher than 0.05 (i.e. 0.0865)
that means the “lack of fit” is insignificant. In this table
the Values of “Prob > F” <0.0500 indicate model terms
are significant and vice versa. Hence the modified model of
WS based on significant factors is presented at following
equation:

WS = 68.38 + 1.78y1 − 1.32y2

+9.21y3 − 0.9y2
1 − 3.63y2

2 − 0.956y2
3

+1.47y1 y2 + 6.05y1 y3 − 3.25y1 y4

−8.77y2 y3 + 1.89y2 y4 (10)

where y1 is laser power, y2 is welding speed, y3 is standoff
distance and y4 is clamp pressure.

4.2.1.2 Modeling of weld width (WW) Based on regression
statistics, sequential sum of squares and lack-of-fit tests, it
was decided to use a quadratic model for correlation empir-
ical relationship between inputs and outputs. The ANOVA
results for finding significant parameters have been presented
in Table 10. According to this table, the model Prob > f is
lower than 0.05 (i.e. <0.0001) that means the model is sig-
nificant. Also, the value of Prob > F for term of “lack of fit”
is much higher than 0.05 (i.e. 0.1054) that means the “lack
of fit” is insignificant. In this table the values of “Prob > F”
<0.0500 indicate model terms are significant and vice versa.
Hence the modified model of WW based on significant
factors is presented at following equation:

WW = 4.01 + 0.26y1 − 0.37y2 + 0.59y3 + 0.058y4

−0.06y2
1 − 0.2y2

3 + 0.065y1 y2 + 0.091y1 y3

−0.2y2 y3 (11)

where y1 is laser power, y2 is welding speed, y3 is standoff
distance and y4 is clamp pressure.
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Table 10 ANOVA results for
weld width

Source Sum of squares Degree of
freedom

Means of
squares

F value Prob > F Significance

Model 15.44 14 1.1 91.98 <0.0001 Significant

y1 1.6 1 1.6 133.57 <0.0001 Significant

y2 3.26 1 3.26 271.54 <0.0001 Significant

y3 8.4 1 8.4 700.66 <0.0001 Significant

y4 0.082 1 0.082 6.81 0.0197 Significant

y2
1 0.1 1 0.1 8.35 0.0112 Significant

y2
2 9.21E−003 1 9.21E−003 0.77 0.3944 Insignificant

y2
3 1.07 1 1.07 89.6 <0.0001 Significant

y2
4 4.57E−003 1 4.57E−003 0.38 0.5460 Insignificant

y1 y2 0.068 1 0.068 5.64 0.0314 Significant

y1 y3 0.13 1 0.13 11.11 0.0045 Significant

y1 y4 2.5E−005 1 2.5E−005 2.08E−003 0.9642 Insignificant

y2 y3 0.67 1 0.67 56.07 <0.0001 Significant

y2 y4 2.5E−003 1 2.5E−003 0.21 0.6545 Insignificant

y3 y4 0.042 1 0.042 3.5 0.0808 Insignificant

Residual 0.18 15 0.012 – –

Lack-of-fit 0.16 10 0.016 3.2 0.1054 Insignificant

Table 11 Obtained MAE for
various neural network
topographies under various data
folds for weld strength and Weld
width

The best structure regarding
lowest prediction error are in
bold

Structure Mean absolute error (MAE)

Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Average

Weld strength

4-3-2 4.7339 4.9233 5.1344 5.2132 5.0112 5.0032

4-4-2 4.2388 4.1654 4.2145 4.5482 4.6211 4.3576

4-5-2 3.7652 3.4322 3.7422 4.0188 4.1422 3.8201

4-6-2 3.2134 3.1138 3.2219 3.4377 3.0145 3.2003

4-7-2 3.9876 3.9877 4.0912 4.2112 3.8973 4.035

4-8-2 4.7652 4.7699 4.8977 4.9823 4.8876 4.8605

Weld width

4-3-2 0.5543 0.5432 0.5233 0.5643 0.5119 0.5394

4-4-2 0.5214 0.5082 0.4763 0.4873 0.4521 0.4890

4-5-2 0.4632 0.4321 0.4212 0.4123 0.4211 0.42998

4-6-2 0.3801 0.3422 0.3721 0.3892 0.3615 0.3690

4-7-2 0.4532 0.4435 0.4532 0.4877 0.4533 0.4581

4-8-2 0.5893 0.5231 0.5432 0.5689 0.5319 0.55128

4.2.2 Modeling of weld strength and weld width by ANN

For modeling of weld strength and weld width by neural
network, among 30 data sets which were cited in Table 4,
numbers of 24 data sets were selected for training of the net-
work and the trained network was tested by the 6 remaining
data sets. For purpose of cross validation, five data folds were
determined (see “Appendix B”). Table 11 presents values of
MAEs for various neural network topographies under differ-
ent data folds. It is seen from the table that a 4-6-2 topography

ensures lower MAE than other trained/tested architecture.
Figure 6 indicates there is tight agreement between measured
and predicted values of weld strength and weld width even
under the worst prediction (i.e. data fold #4).

4.2.3 Modeling of weld strength and weld width by ANFIS

In order to develop an accurate relationship between laser
welding process inputs and responses by ANFIS, among 30
data sets which were cited in Table 4, number of 24 data sets
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(a)

(b)

Fig. 6 Comparison of measured and 4-6-2 ANN predicted values of
testing data for a weld strength, b weld width for fold #4

was selected for training of network and the trained network
was tested by the 6 remaining data sets. Here, cross validation
also performed under 5 data folds (“Appendix B”). Table 12
presents obtained RMSEs under various MFs and different
data folds. According to Table 12, it is seen that the 2-2-2-2
ANFIS structure with triangular type of fuzzy membership
function guarantees lowest RMSEs for both weld strength
and weld width. Figure 7 indicates comparison of measured
value of testing data with predicted values obtained through
ANFIS for data fold #2. It is seen from the figure that there
is tight agreement between measured values and predicted
values even for data fold #2 (i.e. worst prediction).

4.2.4 Comparison accuracies of developed models

As discussed earlier, the PEP (Eq. 9) is used for compari-
son accuracies of developed models. Figure 8 indicates the

(a)

(b)

Fig. 7 Comparison of measured and ANFIS predicted values of testing
data for a weld strength, b weld width for fold #2

PEP graph versus all data sets for welding strength and
weld width. It is observed from the figure that the developed
ANFIS model has lower values of PEP (near to zero) while
predicting of laser welding process characteristics. Next to
ANFIS, the ANN model has much more precise prediction
over RSM. The differences between accuracies of ANFIS
and ANN with RSM are very high. The main reason is intelli-
gent nature of ANFIS and ANN while the RSM is a statistical
model that is not as precise.

4.2.5 Effect of laser welding parameters on welding
strength and welding width based on developed
ANFIS model

Based on the results, the ANFIS was selected as the most
accurate model. Hence, it can be used for analyzing this

Table 12 Obtained RMSEs for
various ANFIS MFs under
various data folds for weld
strength and weld width

The best structure regarding
lowest prediction error are in
bold

Membership functions Root mean square error (RMSE)

Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Average

Weld strength

Triangle 1.9831 2.0912 1.7922 1.8314 1.7855 1.8966

Trapezoid 8.2365 10.21 9.1452 7.6541 8.9651 8.8421

Generalized bell 5.6314 6.1966 4.2322 3.5421 4.2365 4.7677

Gaussian 4.6977 4.1821 6.2314 2.6998 4.6541 4.4930

Weld width

Triangle 0.2154 0.2344 0.2229 0.2019 0.1965 0.2176

Trapezoid 1.0147 1.1221 0.9251 0.8931 0.8569 0.9629

Generalized bell 0.7455 0.8211 0.7169 0.4692 0.4251 0.6355

Gaussian 0.5647 0.6682 0.5589 0.3544 0.3022 0.4896
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Fig. 8 PEP for modeling of a
welding strength and b Welding
width by RSM, ANN and
ANFIS

(a)

(b)

process. 3D-surfaces from developed ANFIS models have
been plotted to demonstrate interaction effects of laser weld-
ing on weld strength and weld width. The discussions about
these graphs are presented below.

4.2.5.1 Effect of laser welding parameters on weld strength
Figure 9a and b indicates interaction effects of process para-
meters on weld strength based on surfaces which were plot-
ted by developed ANFIS models. Formally the higher value
of weld strength implies that appropriate welding strategy
has been selected. Hence, here, maximal weld strength is
desirable.

Figure 9a demonstrates interaction effect of laser power
and welding speed on weld strength. For the drawing of this
plot the other factors such as standoff distance and clamp
pressure were kept constant at their center levels (e.g. 38 mm
and 2.1 MPa respectively). It is shown from the figure that
high laser power and medium welding speed combination
leads to formation of welds with high shear strength. Increase
of laser power at medium welding speed results in increase
of line energy and hence a good bond is formed; therefore the
lap shear strength increases accordingly. At lower welding
speed (irrespective to laser power) due to injection of high
heat input to weld area, high line energy is formed and may
cause to degradation of the base material. While at higher
welding speed, low heat input causes to low line energy and
it may lead to weak weld due to lack of proper penetration,
low heat transfer and low material mixing.

Figure 9b indicates that the clam pressure is not as sig-
nificant factor as the standoff distance. For the drawing of
this plot the other factors such as laser power and welding

speed were kept constant at their center levels (e.g. 15 W
and 12 mm/s respectively). Irrespective to clamp pressure, by
increasing standoff distance from its initial level to 38 mm the
weld strength increases accordingly, but by further increase
in standoff distance from 38 to 50 mm the weld strength
decreases. On one hand, while the standoff distance increase
from the initial level to 38 mm, the laser power energy den-
sity increases, and may cause appropriate penetration and
proper material mixing. Therefore welds with high strength
are formed. On the other hand, by further increasing standoff
distance, very high energy density leads to decomposition
and degradation of base material. Hence, weld with weak
strength are formed while high standoff distance is selected.

4.2.5.2 Effect of welding parameters on weld width Figure
10a and b indicates interaction effects of process parameters
on weld width based on surfaces which were plotted by devel-
oped ANFIS models. For prevention of fatigue failure due to
stress concentration, lower weld seam width is desirable.

Figure 10a indicates interaction effects of laser power and
welding speed on weld seam width. To draw this plot the
other factors such as standoff distance and clamp pressure
were kept constant at their center levels (e.g. 38 mm and 2.1
MPa respectively). According to this figure, it can be inferred
from the figure that higher laser power and lower welding
speed combination leads to formation of larger weld seam
width. This effect is due to the increase of line energy, which
is directly proportional to the laser power and inversely to the
welding speed. Hence, by increasing heat input to the weld
area, more volume of base materials is welded and resulting
larger weld seam width. Therefore, for smaller weld seam
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Fig. 9 ANFIS surfaces for interaction effects of parameters on weld
strength. a Interaction of laser power and welding speed. b Interaction
of standoff distance and clamp pressure

Fig. 10 ANFIS surfaces for interaction effects of parameters on weld
seam width. a Interaction of laser power and welding speed. b Interac-
tion of standoff distance and clamp pressure

width, selection of lower laser power and higher welding
speed are suggested.

Figure 10b illustrates interaction effects of standoff dis-
tance and clamp pressure on weld width. For the drawing of
this plot the other factors such as laser power and welding
speed were kept constant at their center levels (e.g. e.g. 15 W

and 12 mm/s respectively). From the figure, it is seen that irre-
spective to clamp pressure, the weld width increases while
the standoff distance increases from 26 to 44 mm and then
it becomes almost constant. The main reason is increasing
in laser energy density while increasing in standoff distance.
At higher energy density higher volume of base material are
molten and leads to larger weld seam width.

5 Conclusion

The present work was designed and fulfilled for model-
ing the characteristics of laser machining and laser weld-
ing process via soft computing methodologies. The charac-
teristics of laser machining process were material removal
rate and taper of machined holes. Also, the characteristics of
laser welding process were lap shear strength and weld seam
width. For modeling characteristics of these processes, RSM,
artificial neural network (ANN), and ANFIS have been uti-
lized. The accuracy of each model was compared with others
based on the prediction error percent. Also, the effect of each
process parameters (based on interaction terms) was studied
using surfaces which were plotted based on the most accu-
rate model. A summary of obtained results are described as
follows:

For laser machining process

1. In modeling of MRR and Ta by RSM, various fitting tests
such as sequential model sum of squares, lack-of-fit test
and model summary statistics were examined. Results of
all fitting tests indicated that the quadratic models with
two factor interaction guarantees more accurate predic-
tion than other regression polynomial models.

2. By testing and training of various BPNN architectures,
a 5-10-2 network topography was selected as the most
accurate architecture due to its lowest value of mean
absolute error (MAE) rather than the other trained and
tested topographies

3. In modeling of MRR and Ta by ANFIS, the 2-2-2-2-
2 ANFIS structure with triangular types of membership
function lead to high accuracy prediction for both MRR
and Ta.

4. The ANFIS network had the lowest values of error per-
cent among all developed models; hence it was selected
as the most accurate model for prediction and analyzing
MRR and Ta in laser machining process. Next to ANFIS,
the ANN has acceptable accurate prediction while it was
compared with RSM.

For laser welding process

1. In modeling of weld strength and weld width by RSM,
various fitting tests such as sequential model sum of
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squares, lack-of-fit test and model summary statistics
were examined. Results of all fitting tests indicated that
the quadratic model with two factor interactions guaran-
tees more accurate prediction than other regression poly-
nomial models.

2. A 4-6-2 BPNN architecture was selected as the most
accurate topography for prediction of weld strength and
weld width by neural network due to its lowest value of
MAE which was obtained through trial and error

3. For modeling of weld strength and weld width by ANFIS,
various structures with various types of MFs were exam-
ined. Finally, it was concluded that for both weld strength
and weld width the 2-2-2-2 ANFIS structure with trian-
gular type of MF guaranteesmore precise prediction.

4. By comparison accuracies of all developed models, the
ANFIS was selected as the most accurate predictor due to
its lowest PEP. Following ANFIS, ANN has much more
precise prediction than RSM.

5.1 Final conclusion

According to the previous sections, it is concluded that the
developed ANFIS models have superior predictions for laser
machining and laser welding processes. Due to its low values
of prediction error percentage, it can be applied as a precise
predictor for estimation characteristics of various alternatives
of laser manufacturing processes such as laser bending, laser
cladding, laser hardening and etc. Due to the fact that the
laser materials processing technologies are really expensive,
the developed model can give an understanding about selec-
tion of appropriate process parameters without needing to
a large number of experiments. Otherwise stated, to reach
desirable performance in each process, the developed model
is beneficial to select optimal parameters without conducting
extensive experiments and it has strong economical justifi-
cation.

Appendix A

See Table 13.

Table 13 Splitting of experimental data sets of laser machining process
in five folds for implementation of cross validation

No. Fold #1 Fold #2 Fold #3 Fold #4 Fold #5

1 *

2 *

3 * *

4 *

5 *

6 *

7 *

8 *

9 *

10 *

11 *

12 *

13 *

14 *

15 *

16 *

17 *

18

19 *

20 *

21

22 *

23 *

24 *

25 *

26 *

27 *

28 *

29 *

30 *

31 *
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Appendix B

See Table 14.

Table 14 Splitting of experimental data sets of laser welding process
in five folds to implement of cross validation

No. Fold #1 Fold #2 Fold #3 Fold #4 Fold #5

1 *

2 * *

3 *

4 *

5 *

6 *

7 *

8 *

9 *

10 *

11 *

12 *

13 *

14 *

15

16 *

17 *

18 *

19 *

20 *

21 *

22 *

23 *

24 *

25 *

26

27 *

28 *

29 * *

30 *
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