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Abstract Fuzzy segmentation methods, especially fuzzy
c-means algorithms, have been widely used in medical imag-
ing in past decades. This paper proposes a novel neigh-
borhood intuitionistic fuzzy c-means clustering algorithm
with a genetic algorithm (NIFCMGA). This new clustering
algorithm technology can retain the advantages of an intu-
itionistic fuzzy c-means clustering algorithm to maximize
benefits and reduce noise/outlier influences through neigh-
borhood membership. Furthermore, the genetic algorithms
were used simultaneously to select the optimal parameters
of the proposed clustering algorithm. This proposed tech-
nology has been successfully applied to the clustering of
different regions of magnetic resonance imaging and com-
puterized tomography scanning, which may be extended
to the diagnosis of abnormalities. Comparisons with other
approaches demonstrate the superior performance of the pro-
posed NIFCMGA.
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1 Introduction

Segmentation is a process of partitioning an image space into
several non-overlapping meaningful homogeneous regions.
Segmentation is a crucial step toward image analysis because
it can be stated in terms of partitioning the image into differ-
ent regions, each having homogeneous features. In general,
segmentation imaging adopts a clustering (unsupervised)
method. Notably, clustering technology has been widely
applied to problem solving, decision-making applications,
and image segmentation. During recent years, imaging has
widely required fuzzy technology because of the uncertainty
present in terms of vagueness of class definitions, bound-
aries, and imprecise gray levels. In recent years, imaging has
required the use of fuzzy technology to compensate for the
uncertainty associated with class definitions, boundaries, and
imprecise gray levels. For example, the imprecision of values
at various pixels can result in ambiguity, while membership
value gradations can reduce the degree to which boundary
regions are defined. The value of fuzzy techniques is their
ability to incorporate the ambiguities in the performance of
image processing tasks.

Among the various clustering techniques, the most widely
used techniques include the hard c-means (k-means), fuzzy
c-means (FCM), their variants, evolutionary algorithms, and
artificial neural networks (Bezdek 1981; de Jesús Rubio and
Pacheco 2009; Hruschka et al. 2009; Jain and Dubes 1988;
Hwang and Rhee 2007; Srivastava et al. 2012; Yang 1993;
Zhang 2000). Furthermore, among fuzzy clustering tech-
nologies, fuzzy c-means (FCM) is the most important for
image segmentation (Bezdek et al. 1993). FCM assigns each
pixel to fuzzy clusters without labels and allows pixels to
belong to multiple clusters with varying degrees of member-
ship. Much research has applied FCM to image segmentation,
especially medical images, because medical images always
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include considerable uncertainty and unknown noise. Clark
et al. (1994) used FCM for segmenting and labeling MRI vol-
umes of the brain. Their study combines knowledge-based
techniques where unsupervised fuzzy clustering could effec-
tively segment and label normal MRI slices of the brain.
Tolias and Panas (1998) proposed a fuzzy vessel tracking
algorithm for retinal images. The pre-process of fuzzy vessel
tracking algorithms adopted FCM to define the membership
function of linguistic values and then used a tracking algo-
rithm to modify the membership function. Their proposed
algorithm resulted in good tracking of well-defined vessels
in the image and missed only vessels of small diameter and
low contrast. Pham and Prince (1999) proposed an adaptive
fuzzy c-means algorithm (AFCM) for the fuzzy segmentation
of magnetic resonance brain images. The AFCM can obtain
lower error rates than FCM. Shen et al. (2005) used neigh-
borhood attraction to extend the FCM clustering algorithm to
MRI fuzzy segmentation. Moreover, the parameters of FCM
can be optimized using a neural network model. Maji and
Pal (2008) proposed rough-fuzzy c-means (RFCM) for brain
MRI segmentation. The rough set mechanism can assist FCM
to handle overlapping classes. Hence, the RFCM can achieve
better performance in brain MRI segmentation cases. He et
al. (2008) proposed an integrated approach for the segmenta-
tion of multi-spectral MRI. This proposed method takes into
account the non-spherical occupancy and volume differences
in the clusters in the feature space. Qualitative and quanti-
tative evaluation indicates satisfactory performance of the
approach. Kannan et al. (2010) developed an effective robust
fuzzy c-means based kernel function for a segmentation of
breast and brain MRI. To overcome heavy noise, outliers,
and other imaging artifacts, their proposed method develops
a novel objective function based on the objective function of
FCM that incorporates the robust kernel-induced distance.
In experiment results, the proposed method obtains superior
clustering results. Chen et al. (2011) developed a general-
ized multiple-kernel FCM for the image segmentation prob-
lem. Simulations of the segmentation of synthetic and med-
ical images demonstrate the flexibility and advantages of the
proposed approach. Ji et al. (2011) adopted a novel adaptive
method to compute the weights of local spatial factors in the
objective function to impose sufficient local spatial continu-
ity. Their proposed modified possibilistic FCM successfully
applies to real MRI scenarios. Experimental results show
that the proposed method is effective and more robust for
various levels of noise and with higher accuracy in the con-
text of brain MRI segmentation. Chaira (2011) proposed an
intuitionistic FCM (IFCM) clustering algorithm for medical
images. The intuitionistic fuzzy sets (IFSs) consider another
uncertainty parameter, which is the hesitation degree that
arises while defining the membership function, and thus the
cluster centers may converge in a more desirable location
than the cluster centers obtained using FCM. Experimental

results elicit better performance than conventional FCM and
type-2 fuzzy algorithms.

From past research, some phenomena can be observed:
(1) the FCM-based clustering algorithm can be success-
fully applied to medical image segmentation; (2) the defining
methods of the membership function will influence the per-
formance of FCM-based clustering algorithms; (3) the FCM-
based clustering algorithm should overcome noise/outlier
effects when applied to the image segmentation problem.
Based on these viewpoints, this study proposes a novel
neighborhood intuitionistic fuzzy c-means clustering algo-
rithm. The novel algorithm adopts the advanced concept
of intuitionistic fuzzy c-means clustering and, to overcome
noise/outliers effects, the objective function and procedure
of updating membership consider neighboring pixels.

The remainder of this paper is organized as follows: Sects.
2 and 3 introduce the intuitionistic fuzzy sets and FCM clus-
tering technology, respectively, and Sect. 4 presents the pro-
posed neighborhood intuitionistic fuzzy c−means cluster-
ing algorithm. Section 5 provides the experimental results of
NIFCM in the context of medical imaging; Sect. 6 offers con-
clusions and suggestions for further research. Table 1 shows
the main notations in this paper.

2 Intuitionistic fuzzy sets (IFSs)

Fuzzy set theory, proposed by Zadeh (1965), has been suc-
cessfully applied in various fields. This theory states that the
membership of an element to a fuzzy set is a single value
between zero and one. However, in reality, it is not always
certain that the degree of non-membership of an element to
a fuzzy set is simply equal to 1 minus the degree of member-
ship; i.e., there may be some hesitation degree (see definition
below). Thus, as a generalization of fuzzy sets, the concept
of IFSs was introduced by Atanassov (1986). Bustince and
Burillo (1996) showed that this notion coincides with the
notion of vague sets (VSs).

The IFSs is put forth as an extension of fuzzy sets. An
IFSs A in a fixed set E is an objective with regard to the
expression:

A = {〈x, μA(x), νA(x)〉 |x ∈ E } (1)

where the functions μA : E → [0, 1] and νA : E → [0, 1]
denote the degree of membership and the degree of non-
membership of the element x ∈ E , respectively. For every
x ∈ E :

0 ≤ μA(x) + νA(x) ≤ 1. (2)

When μA(x) + νA(x) = 1, for every x ∈ E , then the IFSs
will degenerate into a fuzzy set. Hence, we can consider a
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Table 1 Main notations list

μ Degree of membership c Number of clusters

ν Degree of non-membership m Parameters in updating the
clustering membership functions

π Hesitation degree α Yager’s intuitionistic fuzzy parameter

d Distance between data point
and center of the cluster

L number of epochs

θ Center of the cluster δ Tolerance for the solution accuracy

Nμ Modified membership of pixel
by neighborhood pixel tuning

E Error function/fitness function

fuzzy set with its membership function μA(x), having the
IFSs expression as:

A = {〈x, μA (x), 1 − μA (x)〉 |x ∈ E }. (3)

For each IFSs A in E , the hesitation degree has consideration.
We define the hesitation degree of an element x ∈ E in A by
the following expression:

πA(x) = 1 − μA(x) − νA(x), (4)

we can consider a as a hesitancy degree of x to A. From Eq.
(4), it is evident that

0 ≤ πA(x) ≤ 1 for all x ∈ E . (5)

Therefore, to describe an intuitionistic fuzzy set completely,
we need at least two functions from the triplet, according to
Atanassov (1989, 1999): (1) membership function; (2) non-
membership function; and (3) hesitation degree.

With regard to intuitionistic fuzzy sets, intuitionistic fuzzy
generators or fuzzy complements were created from Yager
generating functions (Bustince and Burillo 1996). The fuzzy
complement functional is defined as:

N (μ(x)) = g−1(g(1) − g(μ(x))) (6)

where g(.) is an increasing function and g:[0,1]→[0,1].
The Yager class can be generated using the following func-

tion in the above Eq. (6):

g(x) = xα. (7)

So, Yager’s intuitionistic fuzzy complement is written as:

N (x) = (1 − xα)1/α, α > 0 where N (1) = 0, N (0) = 1.

(8)

Non-membership values are calculated from Yager’s intu-
itionistic fuzzy complement N (x). Thus, with the help of
Yager’s intuitionistic fuzzy complement, IFSs become:

A =
{〈

x, μA (x) , (1 − μA (x)α)1/α
〉
|x ∈ E

}
. (9)

The hesitation degree is:

πA(x) = 1 − μA (x) − (1 − μA (x)α)1/α. (10)

3 Fuzzy c-means algorithm

Clustering analysis involves the discovery of a data structure
and partitions a data set into a number of subsets with cor-
related data. Clustering has been widely applied in several
fields, such as taxonomy, geology, business, engineering sys-
tems, medicine, and image processing (for example, Bezdek
1981; Yang 1993; Honda and Ichihashi 2004; Kohonen 1997;
and Liu and Wang 2007). Among the various partitioning
techniques, the most widely used techniques include the hard
c-means (k-means), FCM, their variants, and artificial neural
networks (for example, Bezdek 1981; Jain and Dubes 1988;
Hwang and Rhee 2007; Yang 1993; and Zhang 2000). In
FCM and fuzzy clustering concepts, the membership func-
tion of clusters can be defined by a distance function; thus,
the degrees of memberships may express the proximity of
the data to the multi-cluster centers. First, parameters as the
number of classify (c), parameter in updating the clustering
membership functions (m), number of epochs to carry out
(L), and tolerance for the solution accuracy (δ) are set. Sub-
sequently, by the FCM, the initial memberships of the data
xi , i = 1, . . ., N , with the crisp input–output to the clus-
ters j ( j = 1, . . ., c) are generated randomly and denoted
as U (l) = [μ(l)

i j ]N×c(l = 0) under
∑

∀ j μ
(l)
i j = 1∀i . Alter-

natively, a conventional clustering method may be used, in
which a crisp partition of (xi , yi )’s to c-clusters can be per-
formed. The procedure of the FCM can be performed with
the initial l value set to 0. The FCM objective function can
be formulated as follows:

Jm (μ; X) =
c∑

j=1

N∑
i=1

(
μ

(l)
i j

)m × di j (xi , θ
(l)
j ) (11)

where d is the square Euclidean distance between data xi

and center of the cluster j , θ j . The parameter m is a weight-
ing exponent on each fuzzy membership and determines
the amount of fuzziness of the resulting classification. For
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m = 1, the objective function Eq. (11) reduces to the classi-
cal within-group sum of the squared errors objective function
and FCM becomes equivalent to the hard clustering tech-
nologies. In past research, the commonly set value is m = 2
(Pedrycz and Rai 2008; Fan et al. 2009; Chaira 2011).

di j (xi , θ
(l)
j ) = (xi − θ

(l)
j )T I (xi − θ

(l)
j )

μ
(l)
i j ∈ [0, 1],

c∑
j=1

μ
(l)
i j = 1, and 0 <

N∑
i=1

μ
(l)
i j < N . (12)

μ
(l+1)
i j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝∑c

h=1

(
d(xi ,θ

(l+1)
j )

d(xi ,θ
(l+1)
h )

)(2/(m−1))
⎞
⎠

−1

, if d(xi , θ
(l+1)
j ) > 0,

1, if d(xi , θ
(l+1)
j ) = 0,

θ
(l+1)
j =

∑N
i=1 μ

(l+1)
i j xi

∑N
i=1 μ

(l+1)
i j

. (13)

FCM optimizes the objective function by continuously
updating the membership functions and centers of clus-
ters until optimization between iterations is less than a
threshold (δ).

4 Neighborhood intuitionistic fuzzy c-means algorithm

A new algorithm is proposed here to improve the IFCM
method and is applied to a medical imaging system for
assisting diagnostic physicians. First, the medical images are
uploaded to an images database. Second, the medical images
are transformed to a gray matrix, and then the user is able
to define the number of clusters. Third, the NIFCM obtains
each cluster of pixels. Finally, the original image is colored
by a cluster of pixels, allowing a physician to perform their
diagnostic duties. The main mechanisms are described in the
following section.

4.1 Neighborhood intuitionistic fuzzy c-means algorithm

The main construct of NIFCM is based on IFCM (Chaira
2011). To improve upon the FCM method, the construct of
IFCM modifies the objective function of the conventional

FCM using IFSs and adopts intuitionistic fuzzy entropy
(IFE). The IFE is introduced in the clustering (Chaira 2011;
Zadeh 1965) that aims in maximizing the good points in the
class, and the goal is to minimize the entropy of the histogram
of an image in the objective function of NIFCM. Moreover,
the membership value of IFCM determines the clustering
result, and the membership value of IFCM is determined
by the similarity measurement, as in Eq. (12). The similar-
ity measurement is a measure of the difference between the
intensity of a pixel and the cluster and has no effective resis-
tance to noise. Therefore, our proposed method considers
membership of neighborhoods and the self to modify the
membership value of IFCM. This neighborhood attraction
can effectively correct the membership of pixel and reduce
noise pixel in image processing.

Our proposed NIFCM also retains the advantaged con-
struct of IFCM. The objective function of NIFCM that con-
tains two terms is minimized and is as follows:

Jm(NU, v; X) =
c∑

j=1

N∑
i=1

(
Nμ

(l)
i j

)m × di j

(
xi , θ

(l)∗
j

)

+
c∑

j=1

π∗
j e1−π∗

j

where Nμi j is modified membership of pixel by neighbor-
hood pixel tuning. π∗

j = 1
N

∑n
i=1 π j i , i ∈ [1, N ]. π j i is the

hesitation degree of the i th element in cluster j which can
be seen in Eq. (10).

Minimization of Jm is based on suitable tuning Nμi j

(membership matrix) and θ (cluster center) using an iterative
process. First, to incorporate intuitionistic fuzzy properties
into conventional fuzzy clustering algorithms, the intuition-
istic fuzzy membership (μ∗

i j ), which considers the hesitation
degree [Eq. (10)], and cluster center (θ∗

j ) values, should be
determined through the following equations:

μ
(l+1)∗
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −
⎛
⎝1 −

⎛
⎝

(
∑c

h=1

(
d(xi ,θ

(l+1)
j )

d(xi ,θ
(l+1)
h )

)(2/(m−1))
)−1

⎞
⎠

α⎞
⎠

1/α

, if d(xi , θ
(l+1)
j ) > 0,

1, if d(xi , θ
(l+1)
j ) = 0,

θ
(l+1)∗
j =

∑N
i=1 μ

(l+1)∗
i j xi

∑N
i=1 μ

(l+1)∗
i j

. (14)

Based on Eq. (14), the tuning membership (Nμi j ) can be
determined as follows:

Nμ
(l+1)
i j = μ

(l+1)∗
i j /

(
μ

(l+1)∗
i j +

∑
k∈S

μ
(l+1)∗
jk

)
, (15)
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Fig. 1 Neighborhood structure definitions

Table 2 Neighborhood intuitionistic fuzzy c-means algorithm

NIFCM algorithm

Input: data xi , c, m, intuitionistic fuzzy α

Output: fuzzy partition Nμi j , prototypes θ

Algorithm:

Initial U to random fuzzy partition

Do

Update θ , U according to Eq. (14)

Update Nμi j according to Eq. (15)

Until termination criteria are satisfied or maximum iterations have
been reached Return Nμi j and θ

where S is neighborhood pixels. The illustration of neighbor-
hood is depicted in Fig. 1. With different numbers of S, the
performance of clustering results will be affected. The larger
S may easily result in an overfitting phenomenon, in which
the image cannot clearly be recognized by a professional
physician. Therefore, the number of neighborhood pixels (S)

can set 4 or 8 pixels with different images.
The procedure of NIFCM can be stated as follows or

Table 2:
Step 1: Determine the number of clusters (c), the para-

meters in updating the clustering membership functions (m),
Yager’s intuitionistic fuzzy parameter (α), number of epochs
to carry out (L), and the tolerance for the solution accuracy
(δ).

Step 2: The initial memberships of the data (xi , yi ), i =
1, …, N , with crisp input–output to the clusters j ( j = 1,
…, c) generated randomly and denoted as U (l) = [μ(l)

i j ]N×c

(l = 0) under
∑

∀ j μ
(l)
i j = 1∀i .

Step 3: Calculate the intuitionistic cluster center (θ∗
j ).

Step 4: Update intuitionistic fuzzy membership (μ∗
i j ).

Step 5: Calculate membership (Nμi j ) with neighborhood
pixel tuning and the objective function of NIFCM (Jm).

Step 6: If the number of epochs equals a given scale (L) or
the tolerance for the solution accuracy equals a given scale
(δ), present the optimal membership (Nμi j ) is a solution;
otherwise, l = l+1, and revert to Step 3.

Furthermore, in this study, an error index (E) is used to
measure the performance (Yasnoff et al. 1977).

E = |BET ∩ BGT| + |FET ∩ FGT|
BGT + FGT

(16)

where FGT and BGT are the foreground and background
area pixels of the ground truth image. FET and BET are the
foreground and background area pixels of the experimental
threshold image.

Parameter selection is also crucial to the success of the
NIFCM model, such that suitable parameters for the intu-
itionistic fuzzy method can noticeably improve performance.
Many studies have adopted GAs for the selection of para-
meters, the results of which have demonstrated the efficacy
of this approach (Chang et al. 2009; Jangjit 2009; Tao and
Wang 2007). Thus, this study employed a GA (Holland 1975)
for the selection of parameters (S, m, and α) in the NIFCM
model. GA is evolution-based algorithm, which begins from
a population of randomly generated individuals and proceed
through generations. In each generation, the fitness of every
individual in the population is evaluated. Multiple individuals
are then stochastically selected from the current population
(according to their fitness), whereupon a new population is
formed through crossover and mutation mechanisms. The
new population is then used in following iterations of the
algorithm until the stop conditions have been satisfied. The
operations of GA in the NIFCM with GA (NIFCMGA) model
are described as follows:

Step 1 (Initialization): An initial population of chro-
mosomes was randomly generated. The parameters were
encoded in a binary format, represented by a chromosome.

Step 2 (Evaluating fitness): In this study, a negative E was
adopted as the fitness function.

Step 3 (Selection): According to the fitness function, chro-
mosomes with higher fitness values were more likely to yield
offspring in the following generation. Roulette wheel selec-
tion was applied for the selection of chromosomes, in which
only elite chromosomes were reserved for reproduction.

Step 4 (Crossover and mutation): Mutations were per-
formed randomly by converting a 1 bit into a 0 bit or a 0 bit
into a 1 bit. We employed the single-point-crossover prin-
ciple. Segments of paired chromosomes between two deter-
mined break-points were swapped. The rates of crossover
and mutation were probabilistically determined.

Step 5 (Next generation): A population for the next gen-
eration is assembled.

Step 6 (Stop conditions): If the number of generations
equaled a given value, then present the optimal chromosomes
as a solution; otherwise, revert to Step 2.

To reduce forecasting errors, the error function (E) was
used as a fitness function of the GA. Thus, each iteration

123



464 C.-W. Huang et al.

obtained a lower E value. The parameter search procedure
was repeated until the stop criterion was reached.

5 Experimental results and discussions

Various imaging modalities, such as MRI, CT, and ultrasound
(US) imaging, have been widely used in the diagnosis of var-
ious diseases with the assistance of medical image analysis
techniques. For diagnosing brain, vertebra, and oral diseases,
CT and MRI are two of the most popular imaging modalities.
However, for observing features and estimating diseases from
a series, brain, vertebra and oral CT and MRI are challeng-
ing. Therefore, this study developed the NIFCM with GA to
help identify lesions, segment organs, and help guide surgi-
cal processes. Moreover, the proposed method and compari-
son method, which are traditional FCM, IFCM with manual
setting, can be implemented, and the NIFCMGA also exam-
ined the Gaussian low-pass filter in the study. In the study,
two MRI and two CT images, respectively, brain tumor MRI,
vertebra MRI, a tumor vertical view CT in alveolus, and a
tumor lateral view CT in alveolus, were examined. The brain
tumor MRI is from Karayiannis and Pai (1999). The verte-
bra MRI and two CT images are sourced from a professional
hospital. To verify the performance of the segmentation of
the proposed method against other methods, a ground truth
image or manually segmented images are taken. In each of
the methods, misclassification error was calculated using Eq.
(16) with the number of noise pixels, in which the class of
pixel differs from that of neighboring pixels. Intuitively, a
lower number of noise pixels is a clear indication of a higher
quality image. Furthermore, the intuitive judgment from a
professional physician, which can be determined by the rat-
ings excellent, good, average, weak and poor, can also be
considered for verifying the performance of segmentation.
Intuitive judgment is provided by a professional physician;
therefore, the estimated ranking of methods may be more
precise, considering that superior methods are better able to
assist in the diagnosis of disease.

5.1 Parameters experiment

The FCM, IFCM, NIFCMGA, models were coded in MAT-
LAB 7.0. First, different m values of weighting exponent on
each fuzzy membership (1.5, 2.0, 2.5, and 3.0), using exper-
imental settings from Hung et al. (2011), were tested in the
FCM and IFCM, and the parameter of Yager’s intuitionistic
fuzzy complement was set at α = 2 in the IFCM and NIFCM
models, as been suggested by Chaira (2011). The parameters
of NIFCMGA were determined by GA in this research. Table
3 shows the results of various models with different m values
in four images.

In the parameters experiment, some phenomena can be
observed as follows: (1) FCM with various m values obtained
worse performances than other methods in brain tumor MRI,
Vertebra MRI, and two tumor vertical view CT images. (2)
IFCM easily results in overfitting in the two CT images. (3)
NIFCMGA with S = 4 has outperformance in all images,
respectively. (4) NIFCMGA with testing parameters robustly
obtained images and better performances in our cases. The
reason is that NIFCM adopts the neighborhood mechanism
to modify the clustering membership, which can effectively
provide stable membership values in observing the parame-
ters. (5) Although using NIFCMGA may cost more CPU
time than traditional methods, the results of NIFCMGA can
evidence that NIFCMGA clustering technology fits more for
handling the medical images.

5.2 Experimental results

Figure 2 shows the experiment results of a brain tumor MRI
using various clustering methods. In Fig. 2a, the original
brain MRI is poorly illuminated. The brain tumor MRI is
used to evaluate the segmented images, as the tumor appears
very bright and is well separated from surrounding tissue.
The red cycle region indicates a brain tumor. Observing the
results of three clustering methods, some phenomena can be
observed: (1) Fig. 2b and c shows that the FCM and IFCM
can clearly index the tumor, but the two methods have more
noise effects; (2) in Fig. 2d, the NIFCMGA clustering tech-
nology can also clearly index the tumor, and reduce noise
effects. (3) A Gaussian low-pass filter was used to reduce the
noise in the image presented in Fig. 2e, f. Unfortunately, this
process also removed details required to render the shape of
the brain tumor and the texture of the brain, as shown in Fig.
2e and f.

Table 4 shows that the NIFCMGA obtains superior per-
formance whether it is estimated by a misclassification error
index or by intuitive judgment. The NIFCMGA has a lower
misclassification error. Moreover, in an intuitive judgment,
the NIFCMGA also is judged as being Good by professional
physicians.

Figure 3 shows the experiment results of a b vertebra MRI
using various clustering methods. In Fig. 3a, the original ver-
tebra MRI is very ambiguous. Figure 3b and c shows that the
FCM and IFCM cannot effectively reduce noise effects; oth-
erwise in Fig. 3d, the NIFCMGA clustering technology can
also provide clear and high quality image, and reduce noise
effects. Using Gaussian low-pass filter cannot clearly show
the texture of vertebra MRI in Fig. 3e, f. Table 4 shows that
the NIFCMGA obtains superior performance whether it is
estimated by a misclassification error index or by intuitive
judgment. The NIFCMGA is judged as being Excellent by
professional physicians.

123



Intuitionistic fuzzy c-means clustering algorithm 465

Table 3 Testing error (E) of
various models with different m
values

— Overfitting (image cannot
clearly be recognized by a
professional physician)

Method Parameters Error (E) × 10−5 No. of noise pixel/CPU time
(Min)

Brain tumor MRI (Cluster = 4)

FCM m = 1.5 407.24 72/0.1341

m = 2.0 333.71 59/0.0956

m = 2.5 435.52 77/0.1518

m = 3.0 373.30 66/0.1049

IFCM with α = 2 m=1.5 333.71 59/0.1641

m = 2.0 333.71 59/0.1109

m = 2.5 339.37 60/0.2773

m = 3.0 378.96 67/0.1419

NIFCM GA S = 4, m = 2.0008,
α = 2.9048

45.24 8/17.2012

Gaussian low-pass
filter + NIFCMGA

0 0/17.5197

Vertebra MRI (Cluster = 4)

FCM m = 1.5 1,170 3066/0.2394

m = 2.0 1,140 2,993/0.0714

m = 2.5 1,140 2,993/0.3513

m = 3.0 1,140 2,993/0.1153

IFCM with α = 2 m = 1.5 1,550 4,056/0.1770

m = 2.0 1,100 2887/0.0382

m = 2.5 1,100 2887/0.1050

m = 3.0 1,140 2993/0.0685

NIFCMGA S = 4, m = 2.2571,
α = 1.0073

70.19 187/21.3520

Gaussian low-pass
filter + NIFCMGA

0 0/21.5410

A tumor vertical view CT (Cluster = 5)

FCM m = 1.5 19.455 51/0.8904

m = 2.0 26.321 69/0.4700

m = 2.5 20.981 55/0.0886

m = 3.0 24.796 65/0.9555

IFCM with α = 2 m = 1.5 16.022 42/3.4211

m = 2.0 13.733 36/ 3.9219

m = 2.5 12.970 34/ 2.4831

m = 3.0 38.528 101/ 1.4732

NIFCM GA S = 4, m = 1.0426,
α = 1.6936

4.5776 12/15.3294

Gaussian low-pass
filter + NIFCMGA

0 0/16.2598

A tumor lateral view CT (Cluster=5)

FCM m = 1.5 780 2034/0.7143

m = 2.0 780 2,034/0.2971

m = 2.5 780 2,034/0.2734

m = 3.0 770 2,025/ 0.8161

IFCM with α = 2 m = 1.5 1190 3113/4.6320

m = 2.0 1,190 3113/ 3.9177

m = 2.5 — —

m = 3.0 — —

NIFCMGA S = 4, m = 2.8851,
α = 1.7809

72.861 191/13.2734

Gaussian low-pass
filter + NIFCMGA

0 0/12.9299
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(a) Brain MRI (b) FCM (c) IFCM

(d) NIFCMGA (e) Gaussian low-pass filter (f) Gaussian low-pass filter + 

NIFCMGA

Fig. 2 Experimental results of brain tumor MRI with various clustering methods

Figures 4 and 5 show the results of vertical view of tumor
using CT as well as lateral view in the alveolus with vari-
ous clustering methods. CT image quality is dependent upon
balancing these characteristics and parameters to produce the
best possible image for the anatomical region being scanned.
In Fig. 4a, the vertical view CT is a higher quality image. An
overview of Fig. 4 shows that the three methods (Fig. 4b–
d) can clearly index the tumor, for the tumor region has a
bright background. Notably, traditional FCM may not obtain
a clear image from a visual viewpoint. In Fig. 5a, the tumor
lateral view CT does not clearly present an image in the
tumor region. In Fig. 5b–d, all methods can be shown to
clearly index the tumor. The tumor region is brighter than
the neighboring regions. Figures 4d, e and 5d, e show the
results of Gaussian low-pass filter in the two CT image. In
CT image has higher quality image. However, the shape of
tumor region also cannot be clearly displayed. Table 4 also
shows that the NIFCMGA elicits superior performance in the
two CT images.

The NIFCMGA can significantly obtain performance
which number of noise pixel can be reduced in all exam-
ples. This can evidence the proposed concept of neighbor-
hood which can certainly reduce noise effects and provide
very clear medical image for professional physician. An
overview of the experimental results reveals some phenom-
ena: (1) The NIFCMGA can elicit better performance in MRI

and CT images; (2) the proposed concept of neighborhood
can clearly reduce noise effects and improve IFCM; and (3)
although the mechanism of neighborhood and GA spend
more CPU time, the NIFCMGA can effectively reduce noise
pixels in medicine images. (4) The Gaussian low-pass fil-
ter can reduce the noise, but the shape and texture cannot
clearly display in all image especially diseased region. (5)
NIFCMGA provided better performance when the quality of
images was poor.

Figure 6 presents histograms of the intensity image in
four examples. Outlier regions can be observed from the his-
togram of an image, indicating the regions with the great-
est difference in intensity. For example, the lower intensity
regions (the 2 and 3 clusters) are outlier regions in Fig. 6a.
The NIFCMGA clustering technique is able to cluster simi-
larity intensities from Fig. 6b, d, f, and h.

6 Conclusions

Numerous studies have focused on fuzzy segmentation meth-
ods in medical imaging. This study developed a novel
NIFCMGA and applied it to medical imaging. The results
indicate that the NIFCMGA model offers a promising alter-
native for medical image segmentation. The superior perfor-
mance of the NIFCMGA can be attributed to two factors.
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Table 4 A comparison of the
misclassification error and
intuitive judgment in brain
tumor MRI and intuitive
judgment in two CT images
using various methods

a Intuitive judgment from
professional physician

Method Parameters Error (E) × 10−5 No. of noise pixel/CPU
time (min)

Intuitive
judgmenta

Brain tumor MRI (Cluster = 4)

FCM m = 2.0 333.71 59/0.0956 Weak

IFCM m=2.0, α = 2.0 333.71 59/0.1109 Weak

NIFCMGA S = 4, m = 2.0008,
α = 2.9048

70.19 187/21.3520 Good

Gaussian
low-pass filter
+ NIFCMGA

0 0/17.5197 Weak

Vertebra MRI (Cluster = 4)

FCM m = 2.0 1,140 2,993/0.0714 Weak

IFCM m=2.0, α = 2.0 1,100 2,887/0.0382 Average

NIFCMGA S = 4, m = 2.2571,
α = 1.0073

70.19 187/21.3520 Excellent

Gaussian
low-pass filter
+ NIFCMGA

0 0/21.5410 Weak

A tumor vertical view CT (Cluster = 5)

FCM m = 1.5 19.455 51/0.8904 Weak

IFCM m = 2.5, α = 2.0 12.970 34/ 2.4831 Average

NIFCMGA S = 4, m = 1.0426,
α = 1.6936

4.5776 12/15.3294 Excellent

Gaussian
low-pass filter
+ NIFCMGA

0 0/16.2598 Weak

A tumor lateral view CT (Cluster = 5)

FCM m = 3.0 770 2,025/ 0.8161 Good

IFCM m = 2.0, α = 2.0 1,190 3113/ 3.9177 Weak

NIFCM S = 4, m = 2.8851,
α = 1.7809

72.861 191/13.2734 Excellent

Gaussian
low-pass filter
+ NIFCMGA

0 0/12.9299 Good

Fig. 3 Experimental results of
vertebra MRI example with
various clustering methods

(a)  A vertebra MRI image (b)  FCM (c)  IFCM

(d)  NIFCMGA (e)  Gaussian low-pass filter (f)  Gaussian low-pass filter + 
NIFCMGA
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(a)  A tumor vertical view CT 
image in alveolus

(e)  Gaussian low-pass filter (f)  Gaussian low-pass filter + (d)  NIFCMGA

(b)   FCM (c)  IFCM 

NIFCMGA

Fig. 4 Experimental results of tumor vertical view CT in alveolus with various clustering methods

(a)  A tumor lateral view CT 
image in alveolus

(d)  NIFCMGA image (e)  Gaussian low-pass filter (f)  Gaussian low-pass filter + 
NIFCMGA

(b)  FCM image (c)  IFCM image

Fig. 5 Experimental results of tumor lateral view CT in alveolus with various clustering methods
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Intuitionistic fuzzy c-means clustering algorithm 469

Fig. 6 Comparison of
histogram with four examples

(a)  Original brain tumor MRI (b)  NIFCMGA (Brain tumor MRI) 

(c)  Original vertebra MRI image (d)  NIFCMGA(Vertebra MRI image) 

(e)  Original tumor vertical view CT image in 
alveolus

(f)  NIFCMGA(Tumor vertical view CT image) 

(g)  Original tumor lateral view CT image in 
alveolus

(h)  NIFCMGA(Tumor lateral view CT image) 
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First, the concept of neighborhood can reduce noise effects.
Second, the GA mechanisms can effectively improve upon
the performance of medical image segmentation. The inter-
action of other types of medical images and the NIFCMGA
model may be addressed in future studies, and the other
heuristic methods to find global optimal parameters could
also be considered for improving the performance, such as
immune algorithms, particle swarm optimization, and so on.
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