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Abstract Particle swarm optimization (PSO) is an effec-
tive method for solving a wide range of problems. How-
ever, the most existing PSO algorithms easily trap into local
optima when solving complex multimodal function opti-
mization problems. This paper presents a variation, called
adaptive PSO based on clustering (APSO-C), by consider-
ing the population topology and individual behavior control
together to balance local and global search in an optimiza-
tion process. APSO-C has two steps. First, via a K-means
clustering operation, it divides the swarm dynamically in
the whole process to construct variable subpopulation clus-
ters and after that adopts a ring neighborhood topology for
information sharing among these clusters. Then, an adaption
mechanism is proposed to adjust the inertia weight of all indi-
viduals based on the evaluation results of the states of clusters
and the swarm, thereby giving the individual suitable search
power. The experimental results of fourteen benchmark func-
tions show that APSO-C has better performance in the terms
of convergence speed, solution accuracy and algorithm reli-
ability than several other PSO algorithms.
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1 Introduction

A particle swarm optimization (PSO) algorithm is a kind of
Swarm Intelligence (SI) technology, which was initially pro-
posed (Eberhart and Kennedy 1995; Kennedy and Eberhart
1995) in 1995. Inspired by birds flocking, the core concept of
PSO is to find out the optima or sub-optima of an objective
function through the co-operation and information sharing
among particles. Since PSO is efficient, simple and robust, it
has been widely used in multi-objective optimization (Leong
and Yen 2008), artificial neural network training (Grimaldi et
al. 2004), image segmentation (Chander et al. 2011), vehicle
routing problems (Khouadjia et al. 2012), job-shop schedul-
ing problems (Ge et al. 2008), optimal power flow (Kang
et al. 2012a, b) and other fields. However, as other evolu-
tionary algorithms, how to balance between exploration and
exploitation is still a key and unresolved problem for PSO.
At the beginning of exploration, all the particles can enjoy
fast moving and gather around the best positions found so
far. At the late stage, the whole swarm becomes dense near
several points and particles cannot escape from these local
extreme areas. If the shortcoming can be overcome, PSO will
be more powerful and thus applicable to more problems.

Most researchers have focused on the communication
topology of a swarm or behavior of individuals separately
and obtained some impressive results (Banks et al. 2007).
From them the swarm benefits little from static single popu-
lation structure. On one hand, a dynamic topology is a good
choice. A simple and efficient dynamic neighborhood topol-
ogy would be beneficial to improve the information shar-
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ing and bio-diversity in a swarm. On the other hand, the
behavior of individuals determines their search ability. Some
researchers have proposed effective adaptive strategies, such
as life time (Lanzarini et al. 2006), multiple stage learning
(Brits et al. 2002) and quantum behavior (Sun et al. 2011;
Li et al. 2012), to improve PSO. However, the population
topology is closely associated with individual behavior. The
intelligence of individuals is from learning from the environ-
ment. Hence, the swarm topology and individual behavior
should be considered together comprehensively.

This work proposes a new approach based on the topolog-
ical structures and self-adaptive control of individuals, called
adaptive PSO based on clustering (APSO-C). The proposed
algorithm takes a clustering method to divide the swarm into
several subpopulations dynamically. These subpopulations
share their information from the solution space with a ring
topology. Compared with the topology of gbest and lbest
versions (Kennedy and Eberhart 1995; Kennedy 1997), it
shortens the information transmission distance and avoids
excessive concentration of particles. Then a method is used
to evaluate the performance of each cluster. Based on the
evaluation results, each individual adjusts its inertia weight
adaptively to balance the local and global searches. These
operations are carried out automatically after individuals’
renewal is completed. Thus each subpopulation can obtain
different components at each generation. It yields positive
effect on the diversity and activity of the swarm. Clustering,
adaption and new learning mechanism together provide a
quite different solution to improve PSO. Tests are performed
to verify that the occurrence of prematurity is reduced and
the search ability of the swarm is enhanced via APSO-C.

The rest of the paper is organized as follows. Section 2
reviews PSO and its developments. APSO-C is presented
in Sect. 3 including the dynamic population decomposition
and adaptation strategies. Section 4 experimentally compares
APSO-C with various existing PSO algorithms taken from
the literature through benchmark functions. Finally, conclu-
sions are drawn in Sect. 5.

2 Background and related work

2.1 Particle swarm optimization

In the classic PSO, a group of particles are set in a multi-
dimensional space and they can fly freely to search the
best position. Each individual can be treated as a point
in the search space and characterized by its position and
velocity. Suppose that the search space is D-dimensional,
then the position of the i-th particle can be represented
by a D-dimensional vector xi = (xi1, xi2, . . . , xi D), and
the velocity by another vector vi = (vi1, vi2, . . . , vi D).
The best previously visited position of the i-th particle is

denoted as pbesti = (pi1, pi2, . . . , pi D). Define gbest=
(g1, g2, . . . , gD) as the best global position that the swarm
has found so far. The velocity and position equations are
given as follows:

vt+1
id = vt

id + c1r1
(

pt
id − xt

id

) + c2r2
(
gt

d − xt
id

)
(1)

xt+1
id = xt

id + vt+1
id (2)

where ∀ i ∈ NN , NN = {1, 2, . . . N }, N is the size of the
swarm; d is the index of the co-ordinate being updated; c1

and c2 are positive constants, called acceleration constants;
r1 and r2 represent random numbers, following the uniform
distribution over [0, 1].

2.2 Existing particle swarm optimization

Since PSO was first produced, many developed versions have
been presented in literature. We can classify them from two
aspects: population topology and individual behavior control
as briefly reviewed next.

2.2.1 Population structure and topology

A population structure is the foundation of a swarm. Differ-
ent structures may drive the swarm to behave differently. In
the early research, the structure (Kennedy 1999; Eberhart and
Kennedy 1995) is single in common, implying that all parti-
cles are in the same microenvironment and under the same
control. In this model it is effective for particles to interact
with others and the groups have a rapid speed of the con-
vergence. Under it, Kennedy (1997), and Shi and Eberhart
(1998a) analyze the effect of parameters on the PSO perfor-
mance. Based on the evaluation of swarm distribution and
particle fitness, an evaluation method for a swarm state is
proposed in Zhan et al. (2009). It defines four different pop-
ulation evolutionary states: exploration, exploitation, conver-
gence and jumping. The automatic control of parameters and
execution of an elitist learning strategy are performed at run-
time to improve the search efficiency and convergence speed.
Through the analysis of particle behavior in a search process,
dynamic population size strategies are used. In a kind of vari-
able population size PSO (Lanzarini et al. 2006), life time and
neighborhood are considered to allow the size of the popula-
tion to vary. A variant (Montes de Oca et al. 2011a, b) adopts
incremental social learning to realize time-varying popula-
tion size. Particles are introduced to swarm gradually. Based
on a kind of variable neighborhood search strategy and a path
relinking strategy, Marinakis and Marinaki (2013) propose
a new PSO model with expending neighborhood. It starts
from a small size neighborhood and increases the size of the
neighborhood in each iteration. Chen and Zhao (2009) pro-
pose an adaptive variable population size by periodic partial
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increasing or declining of individuals in the form of a ladder
function. Like a living body, a particle has its life time.

Inspired from a biological society’s structure, researchers
have proposed varying population and multiple subpopula-
tions to improve the performance of PSO. With the con-
ception that a group means an environment for individu-
als to learn in swarm intelligence, Jie et al. (2008) propose
knowledge-based co-operative PSO. In it, a learning mech-
anism based on billboard is established and three different
states are adopted to measure sub-populations that contain
growing, near mature or mature statuses. It is common that
communities exist in a society. Kennedy (2000), Li (2004),
and Passaro and Starita (2006) take a clustering operation to
divide the society into several subpopulations. Madeiro et al.
(2009) apply adaptive density-based clustering algorithm to
create neighbors for particles. Competition is the main evo-
lutionary power for biology to avoid extinction. Brits et al.
(2002) mix the niching technology and PSO to develop a
niching particle swarm optimizer. In each niche, a particle
searches its local area based on its personal experience only.
Subpopulations are then merged when they intersect. This
model simulates the evolutionary process of a biocommunity.
Similarly, a PSO with a simple yet effective niching algo-
rithm is developed to improve the performance (Li 2010).
GAPSO (Liu et al. 2012) is based on a greedy algorithm
and niche structure. A ring topology is employed in each
niche instead of a fully connected topology in it. Recently,
a Gaussian classifier-based evolutionary strategy (Dong and
Zhou 2014) is proposed to solve multimodal optimization
problems under a multi-subpopulation structure in evolution-
ary algorithms (EAs). It employs Gaussian models to capture
the landscape shapes of objective functions and a zoom fac-
tor to accelerate the search speed. Also, it can be applied in
PSOs to guide subpopulations.

A topology is the description of information interaction
patterns among individuals. Particles co-operate or compete
with others through information exchanges to evolve the
whole swarm. Some researchers (Passaro and Starita 2006;
Mendes et al. 2003; Kennedy and Eberhart 2002) have proved
that a topology is seriously important for PSO performance.
The gbest and lbest topology are the classic examples of a
static topology. In gbest, the best neighbor in the entire pop-
ulation influences the target particle and is a fully connected
group. While, in lbest, each particle is only connected to sev-
eral other members in its neighbor. Kennedy (1999) adopts
a small world technology to analyze several different topol-
ogy structures including Circles, Wheels, Stars and Random.
Through the combined tests of a topology and benchmark
function, the conclusion is drawn that the best selection of a
topology is related to the characteristics of problems. After
that, Kennedy and Eberhart (2002) study a group of clas-
sic topologies: gbest, lbest, pyramid, von Neumann and four
clusters. The results show that lbest can keep a high rate of

success but with low convergence speed. Such researches
focus on a static topology. However, the experiments show
that dynamic and unstable topology favors information inter-
action for individuals. Thus some PSO versions with dynamic
topology and adjustment are reported. Based on a dynamic
neighborhood, a new learning model is proposed (Nasir et al.
2012). It uses a learning strategy in which all other particles’
historical best information is used to update a particle’s veloc-
ity. To adaptively generate the population topology, a scale-
free network model is used as a self-organizing construc-
tion mechanism in Zhang and Yi (2011). Some researchers
also study the effect of synchronicity in communications and
neighborhood size (Rada-Vilela et al. 2013). They suggest
that a random asynchronous model may be better than syn-
chronous and asynchronous methods.

2.2.2 Individual behavior control

Similar to other real or virtual swarms, particles in PSO
improve their knowledge and ability by learning from the
environment. But high convergence speed makes the diver-
sity decrease fast. This means when particles crowd in the
same area, they express similar characteristics but show lit-
tle difference. Thus the particles cannot absorb new knowl-
edge from their neighborhood. Therefore, their behaviors are
restricted and evolution is stagnant. The long-standing ques-
tion is how to control and adjust their behavior to keep the
swarm in evolution.

The PSO core is the updating formula of particles, which
contain three components (Kennedy 1997). The first one is
the effect of their present velocity; the second one is the
cognition modal for learning from their own memory; and
the last one is the social modal which indicates the influence
from the swarm or neighbor. Without the first one, a swarm
would contract to the global best individual within the initial
area, like a local search. With the first one only, the particles
would keep flying until the boundary is reached, resembling
global search. Based on the original PSO, Shi and Eberhart
(1998a) introduce a modified PSO with inertia weight ω to
balance between exploration and exploitation as:

vt+1
id = ωvt

id + c1r1
(

pt
id − xt

id

) + c2r2
(
gt

d − xt
id

)
(3)

The experiments show that a larger value of ω would drive
the swarm to exploit new areas, thereby causing the swarm
dispersed, and smaller ω would make the swarm tend to
explore local areas resulting in precocity. To adjust ω to bal-
ance the global and local search, Shi and Eberhart (1998b)
provide a dynamic strategy to reduce ω from 0.9 to 0.4 lin-
early according to the iterations during running. But the
PSO search process is a complex nonlinear process. This
linear method fails to perform well due to the nonlinearity.
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Shi and Eberhart (2001) proposed a new method to adjust the
inertia weight. Based on the present best solution and ω, it
calculates the changing rate of ω by a defined fuzzy system
to determine ω in the next iteration.

Constriction is also a kind of method for controlling the
behavior of particles. Clerc and Kennedy (2002) adopt a con-
striction factor χ to modify the velocity as:

vt+1
id = χ

[
vt

id + c1r1
(

pt
id − xt

id

) + c2r2
(
gt

d − xt
id

)]
(4)

χ = 2

|2 − ϕ − √
ϕ2 − 4ϕ| (5)

For the choice between ω and χ , Eberhart and Shi (2000)
compare the two models and conclude that they are alge-
braically equivalent.

In traditional PSO, each particle’s behavior is affected
by its previous success, best previous success of its neigh-
bors, current positions and previous velocity. The informa-
tion from remaining neighbors is not considered. Based on
(Clerc and Kennedy 2002), researchers (Mendes et al. 2004;
Kennedy and Mendes 2006) propose an algorithm called
fully informed particle swarm optimization. In this model,
a particle is affected by all its neighbors, not like in the orig-
inal model in which each is affected by its own experience
and the best success in its neighbors. The equation to update
velocity is as follows:

vt+1
id = χ

⎡

⎣vt
id +

Ki∑

n=1

U (0, ϕ) − (
pt

nd − xt
id

)

Ki

⎤

⎦ (6)

To overcome the premature convergence and stagnation
problems and enrich the PSO with better search capacity
in a multidimensional search space, a method combining a
constriction factor and inertia weight is proposed (Mandal et
al. 2011).

Presently, an animated area is to combine desirable proper-
ties from different approaches to mitigate their weaknesses in
SI algorithm research. Kang et al. (2012a) incorporate PSO
with group search optimizer to provide a novel improved
algorithm, in which the optimal information leading mecha-
nism and computation mode of PSO are kept and the his-
torical individual optimal information is introduced. In a
chaos-embedded PSO (Alatas et al. 2009), sequences gen-
erated from a chaotic system to make a random choice for
PSO to improve the global convergence and prevent prema-
ture termination. Similarly, ant colony optimization (ACO)
is also an SI algorithm that simulates co-operational behav-
iors of ants for searching food to solve problems. Holden
and Freitas (2005) provide a hybrid version of PSO and ACO
and apply it to solve hierarchical classification problems suc-
cessfully. A genetic algorithm (GA) is an evolutionary algo-
rithm that uses mutation, crossover and selection operations
to solve problems. It has better performance but low conver-

gence rate. A modified Broyden-Fletcher-Goldfarb-Shanno
method is integrated into PSOs to improve a particle’s local
search behavior (Li et al. 2011). Culture algorithms have
been frequently used to vary the parameters of an individ-
ual solution for optimization problems. Daneshyari and Yen
(2011) introduce a cultural framework to adapt the personal-
ized flight parameters of the mutated particles. Considerable
work on hybridization of PSO with other algorithms is done
as summarized in Banks et al. (2007).

3 Adaptive PSO based on clustering

By considering both swarm communication topology and
individual behavior control, we propose an adaptive PSO
method with dynamic division of population, based on the
model of PSO with inertia weight. It focuses on two major
aspects:

1. How to make a simple dynamic subpopulation structure?
A community structure has the remarkable characteris-
tics of social biology. In a human society active individ-
uals would join different organizations to gain different
knowledge. An individual can be absorbed into organi-
zations passively or participate in some actively. This
movement not only takes the individual to new develop-
ing scope but also brings different culture or information
to the organizations. In this work, we incorporate clus-
tering into the swarm evolutionary process in which a
swarm is split according to the property of individuals,
to form multiple subpopulations. This dynamic multi-
subpopulation structure is used to improve the grouping
behavior of the swarm and reduce the number of pre-
mature incidents. Based on the dynamic structure, a new
velocity updating model is provided to adjust such learn-
ing way of an individual that the effects from the best
ones in dynamic subpopulations are considered.

2. How to bring more intelligence to individuals in dynamic
subpopulations? Obviously, within a dynamic subpopu-
lation structure, heterogeneous sub-swarms with differ-
ent sizes and ability will be formed. These particles in
different clusters have different needs, e.g., some need to
explore new areas and some want to exploit local areas.
The issue is how to improve the search ability of the
swarm based on heterogeneous multi-swarms. We pro-
pose a method to adaptively adjust parameters based on
cluster evaluation that assess the state of subpopulations
in the swarm after clustering, to adjust the behavior of
particles.

We call the proposed algorithm as APSO-C. Its popula-
tion decomposition and evaluation strategies will be further
described next.
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3.1 Dynamic population decomposition based
on a clustering strategy (DPDC)

Similar to an organism society, the action of a single parti-
cle is mainly affected by the best ones in its neighborhood.
Researches (Kennedy and Eberhart 2002; Mendes et al. 2003)
point out that the swarm topology affects an individual’s
behavior substantially. According to “Birds of a feather flock
together”, we adopt a clustering method to divide a swarm
into several subpopulations according to the similar proper-
ties dynamically. Different from some methods like exchang-
ing individuals among subpopulations at regular intervals
or taking a fixed size of subpopulations, this recombination
of individuals is consistently operated within the optimiza-
tion process, which is executed after swarm moving. After
each division, we make several heterogeneous subpopula-
tions with different number and characteristics of individuals.
In this model, with the migration of the individuals among
different subpopulations, the information exchanges are also
enhanced.

A K-means algorithm is an effective method for cluster-
ing, and the core is to minimize the sum of distance between
each particle and the centers. Some researchers (Kennedy
2000; Passaro and Starita 2006) have applied it to analyze
the swarm, but here we modify the standard clustering oper-
ation and propose a novel updating equation for particles.
Similarly, we select K members as the centers (p1, p2,. . .,
pK ) and define the distance between two particles as dis
(x i , x j ) = ∑D

d=1 (xid − x jd)T (xid − x jd). Then the objec-
tive can be expressed as Min F = ∑K

k=1
∑

xi ∈Ck
dis(xi , pk),

where Ck is the k-th cluster. The operation can be described
as follows:

Step 1: Select K particles (p1, p2,…, pK) randomly as the
centers of clusters.
Step 2: Calculate the distance between the rest of individuals
and these centers. According to the minimum distance rule,
assign the rest to the nearest cluster. Record the value of
F = ∑K

k=1
∑

xi ∈Ck
dis(xi , pk).

Step 3: For each cluster, choose the average value of the
particle positions as its new center.
Step 4: If the termination condition is met (e.g. the maximum
number of times is reached), output the result; and otherwise
return to Step 2.

Actually, a swarm implicates an aggregative trend. The
population will cover an area between pt

i and gt . Consider-
ing the self-aggregative behavior, we modify the clustering
objective. The operation is designed as a progressive cluster-
ing mode associated with the swarm search process, which
does not need to reach a steady state of swarm clustering at
each step. We call it as dynamic population decomposition
based on a clustering strategy (DPDC).

In this process, the best individual is selected as its cluster-
best solution after clusters are formed. Considering the rela-
tions of all clusters, a ring structure is used to share and trans-
mit the information among them in this work. Each cluster is
connected to other two clusters in its own neighborhood in
the cluster array under the ring topology, and in each cluster
the particles communicate with each other by a structure like
the gbest topology. Denote cluster j’s best solution found
so far by Cb j and best one in particle i’s neighborhood is
nbesti = (nbi1, nbi2, . . . , nbi D) where particle i belongs to
cluster j. Then we make a comparison among Cb j−1, Cb j

and Cb j+1, and choose the better one as particle i’s nbesti .
Both g and nbesti have important effect on the process of
learning from the environment of a particle. Hence we rebuild
its velocity updating mode.

vt+1
id = ωvt

id + c1r1
(

pt
id − xt

id

)

+1

2
c2r2

[(
gt

d − xt
id) + (nbt

id − xt
id

)]
(7)

After the process, a new swarm structure is built dynami-
cally under a ring topology among different clusters and an
individual will update its position based on the information
from its previous best, neighborhood best and global best
found by a swarm. Thus, it can be seen that this strategy is
different from other existing ones, (e.g., Kennedy 2000; Li
2010), which are mainly based on the classic topology and
mode. Next, a novel adaptation strategy is presented.

3.2 Adaptation based on cluster evaluation strategy (ACE)

Each cluster formed following the above way has a differ-
ent number of particles. Owing to the different ability of
particles, clusters behave differently at the search level. For
example, the average distance from the particles to the best
particle may not be same. Thus we can classify all clusters
based on the difference to find a new way to improve the
search ability of particles. To describe ACE clearly, we give
the following definitions first.

Definition 1 The population of cluster j is denoted by |C j |;
Define fi j as particle i’s fitness in cluster j. The average

fitness of cluster j is a j = ∑|C j |
i=1 fi j/|C j |; Define fi as the

particle i’s fitness. The average fitness of a swarm is A =∑N
i=1 fi/N where N is population.

Definition 2 The initial maximum and minimum inertia
weights of particles are expressed as ωmax and ωmin. At gen-
eration t the inertia weight of particle i is ωt+1

i , which can be
adjusted based on ωmax, ωminand ωt

i according to its state.

Since each individual is at a different position in a search
process, it shows different characteristics and ability. The
fitness can be used to show the difference. The particles at
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a different stage need to strengthen their ability that they
require when searching the space. For example, the particles
in an inferior position need to escape from a poor area and
speed up to explore other areas; while the particles in an
advantageous position need to explore the area deeply to find
a better solution. This novel algorithm improves the ability
of particles based on a clustering operation. For each cluster,
particles in it have different strengths and weaknesses. Thus
the average fitness of the clusters is different. This difference
can be used to evaluate the clusters and to adjust ω for an
individual.

Assume that the objective is to minimize the fitness. From
the comparison, two different states are listed as follows:

Case 1: a j ≥ A: This state means that the subpopulation is
in an inferior position which is far from the best one. Hence
the search steps should be set bigger for improving the global
search ability and avoiding local search. We adjust the search-
ing step by increasing the inertia weight ω; and

Case 2: a j < A: In this state, the subpopulation is located in
a better area. For this subpopulation, they need to reduce the
step length in search to improve local search ability and to
avoid missing the optimal solutions nearby. Thus we adjust
the step by reducing ω.

According to the above analysis, each individual can real-
ize the self-adaption adjustment of parameter ωt

i by Eqs. 8
and 9, respectively:

ωt+1
i = ωt

i + max
{
abs

(
ωmax − ωt

i

)
, abs

(
ωmin − ωt

i

)}

a j ≥ A (8)

ωt+1
i = ωt

i − min
{
abs

(
ωmax − ωt

i

)
, abs

(
ωmin − ωt

i

)}

a j < A (9)

where particle i belongs to cluster j.

3.3 Step of APSO-C

Based on DPDC and ACE, the of APSO-C has two main
parts. The first part is the swarm clustering in which a K-
means method is adopted to cluster the swarm into several
subpopulations, and the information interaction among sub-
populations is performed with a ring-topology structure. The
second one is parameter adjustment that aims to adjust the
search behaviors of particles according to the states of sub-
populations.

APSO-C adjusts the structure of a swarm and the behavior
of a particle in every generation, as detailed in the following
steps.

Step 1: Set randomly xi and vi , i ∈ NN (where N is the size
of the swarm). Calculate fi and initialize ωmax, ωmin and ωi

for each individual;

Step 2: Select randomly K particles as the clusters’ centers.
Take a clustering method to divide the swarm and obtain
subpopulations C j , ∀ j ∈ NK ;
Step 3: Calculate the fitness of each particle. Set the best
position pbesti that is found so far by particle i where ∀ i ∈
N|C j | as the cluster j’s best position Cb j at present.
Step 4: Choose the best position in the neighborhoods as
nbesti for each particle under the ring topology;
Step 5: Select the best position of the swarm found so far as
gbsest;
Step 6: If the termination condition is met, output the result;
and otherwise, use Eqs. 8 and 9 to adjust ωi , and update vi

and xi for each particle by Eqs. 7 and 2. Go to Step 2;

4 Experiments and discussion

4.1 Experiment and benchmark functions

To evaluate APSO-C, this work designs three experiments:
Comparison under the same initial value, Comparison with
the same iteration, and Sensitivity analysis of ωmax in APSO-
C. We choose fourteen benchmark functions from (Liang et
al. 2006; Hsieh et al. 2009; Suganthan et al. 2005). Note
that f1 and f2 are unimodal, f3 (when the dimension is
greater than three) and f4 are multimodal. They are four
basic functions. Because some functions are separable and
can be solved by using D 1-D searchers (Hsieh et al. 2009),
where D is the dimension of the problem. Rotation, shift-
ing and hybridization are introduced to overcome the known
disadvantages of the functions. The new functions are more
complex than the original ones. The properties of these func-
tions are listed in Table 1.

Table 1 Global optimum, search range, initialization range of the test
functions

Fun fmin Search Initialization
Space Range

f1 0 [−100, 100]D [−100, 75]D

f2 0 [−100, 100]D [−100, 75]D

f3 0 [−2.084, 2.084]D [−2.084, 2.084]D

f4 0 [−5.12, 5.12]D [−5.12, 3.5]D

f5 −450 [−100, 100]D [−100, 100]D

f6 −450 [−100, 100]D [−100, 100]D

f7 −450 [−100, 100]D [−100, 100]D

f8 −450 [−100, 100]D [−100, 100]D

f9 390 [−100, 100]D [−100, 100]D

f10 −140 [−32, 32]D [−32, 32]D

f11 −330 [−5, 5]D [−5, 5]D

f12 −330 [−5, 5]D [−5, 5]D

f13 −130 [−3, 1]D [−3, 1]D

f14 −300 [−100, 100]D [−100, 100]D
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(1) Sphere function:

f1 =
D∑

i=1

x2
i

(2) Quadric function:

f2 =
D∑

i=1

⎛

⎝
i∑

j=1

x j

⎞

⎠

2

(3) Rosenbrocks function:

f3 =
D−1∑

i=1

(
100

(
x2

i+1 − xi

)2 + (xi − 1)2
)

(4) Rastrigin function:

f4 =
D∑

i=1

(x2
i − 10 cos(2πxi ) + 10)

(5) Shifted sphere function:

f5 =
D∑

i=1

z2
i + fbias

where z = x − o, o = [o1, o2, . . . , oD]

(6) Shifted schwefel’s problem 1.2:

f6 =
D∑

i=1

⎛

⎝
i∑

j=1

z j

⎞

⎠

2

+ fbias

where z = x − o, o = [o1, o2, . . . , oD]

(7) Shifted rotated high conditioned elliptic function:

f7 =
D∑

i=1

(106)
i−1
D−1 Z2

i + fbias

where z = x − o ∗ M, o = [o1, o2, . . . , oD]

(8) Shifted schwefel’s problem 1.2 with nosie fitness:

f9 =
⎛

⎝
D∑

i=1

⎛

⎝
i∑

j=1

z j
2

⎞

⎠

⎞

⎠ ∗ (1 + 0.4|N (0, 1)|) + fbias

where z = x − o, o = [o1, o2, . . . , oD]

(9) Shifted Rosenbrocks function:

f8 =
D−1∑

i=1

(
100(z2

i − zi+1)
2 + (zi − 1)2

)
+ fbias

where z = x − o, o = [o1, o2, . . . , oD]

(10) Shifted rotated Ackley’s with global optimum on bounds:

f10 = −20 exp

⎛

⎝−0.2

√√√√ 1

D

D∑

i=1

x2
i

⎞

⎠

−exp

(
1

D

D∑

i=1

cos(2πxi )

)

+ 20 + e + fbias

where z = (x − o) ∗ M, o = [o1, o2, . . . , oD]

(11) Shifted Rastrigin’s function:

f11 =
D∑

i=1

(
z2

i − 10 cos(2π zi ) + 10
)

+ fbias

where z = (x − o), o = [o1, o2, . . . , oD]

(12) Shifted rotated Rastrigin’s function:

f12 =
D∑

j=1

(
z2

i − 10 cos(2π zi ) + 10
)

+ fbias

where z = (x − o) ∗ M, o = [o1, o2, . . . , oD]

(13) Expanded extended Griewank’s + Rosenbrock’s:

f13 = fs( f3(z1, z2)) + fs( f3(z2, z3)) + . . . +
fs( f3(zD−1, zD)) + fbias

where fs =
D∑

i=1

x2
i

400
−

D∏

i=1

cos(
xi√

i
) + 1

z = x − o + 1, o = [o1, o2, . . . , oD]

(14) Expanded rotated extended Scaffe’s F6:

f14) = F(z1, z2) + F(z2, z3)

+ · · · + F(zD−1, zD) + F(zD, z1)

wherez = x − o + 1, o = [o1, o2, . . . , oD]
F(x, y) = 0.5 + sin2(

√
x2 + y2 − 0.5)

(1 + 0.001(x2 + y2))2

Seven peer algorithms including FIPS (Mendes et al.
2004), PSO_g and PSO_l (Kennedy 1999), Biogeography-
based optimization (BBO, Simon 2008), Firefly Algorithm
(FA, Yang 2010), Artificial Bee Colony (ABC, Karaboga and
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Table 2 Comparison of APSO-C with different initialized ω of 10-D function tests

Function ω = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

f1

Max 3.57E−68 1.28E−58 2.34E−58 9.57E−49 4.91E−52 5.65E−64 2.10E−66 1.11E−63 2.89E−66

Min 2.76E−78 2.60E−81 3.79E−82 3.56E−81 7.16E−81 3.55E−80 4.83E−77 1.11E−80 3.26E−80

Mean 1.80E−69 6.42E−60 1.17E−59 4.79E−50 2.45E−53 2.83E−65 1.27E−67 5.62E−65 1.55E−67

SD 7.97E−69 2.87E−59 5.23E−59 2.14E−49 1.10E−52 1.26E−64 4.68E−67 2.47E−64 6.44E−67

f2

Max 8.53E−22 1.49E−21 2.37E−20 4.64E−19 9.70E−19 1.01E−21 2.33E−20 8.76E−23 8.04E−21

Min 6.89E−26 1.16E−27 6.00E−28 6.72E−27 2.33E−26 9.48E−29 8.22E−30 5.37E−27 3.80E−28

Mean 1.79E−22 1.58E−22 2.11E−21 2.33E−20 5.11E−20 7.48E−23 1.42E−21 1.09E−23 6.20E−22

SD 3.21E−22 4.28E−22 6.37E−21 1.04E−19 2.16E−19 2.28E−22 5.20E−21 1.95E−23 1.82E−21

f3

Max 1.16E+02 2.53E+01 2.49E+02 7.37E+00 1.25E+02 1.13E+02 1.04E+02 1.80E+01 1.67E+02

Min 5.87E−01 8.61E−04 4.78E−04 9.92E−02 1.68E−03 3.81E−02 1.87E−04 7.58E−02 1.57E−01

Mean 9.13E+00 4.49E+00 2.14E+01 3.05E+00 1.60E+01 1.29E+01 7.62E+00 5.29E+00 1.13E+01

SD 2.54E+01 5.33E+00 5.78E+01 2.03E+00 3.37E+01 3.19E+01 2.27E+01 4.91E+00 3.66E+01

f4

Max 6.96E+00 1.19E+01 5.97E+00 6.96E+00 6.96E+00 7.96E+00 5.97E+00 5.97E+00 5.97E+00

Min 9.95E−01 9.95E−01 9.95E−01 0.00E+00 9.95E−01 9.95E−01 9.95E−01 0.00E+00 9.95E−01

Mean 3.43E+00 3.83E+00 3.38E+00 3.38E+00 3.23E+00 3.58E+00 3.25E+00 2.74E+00 3.08E+00

SD 1.72E+00 2.76E+00 1.59E+00 1.95E+00 1.79E+00 2.08E+00 1.41E+00 1.48E+00 1.33E+00

f5

Max −450 −450 −450 −450 −450 −450 −450 −450 −450

Min −450 −450 −450 −450 −450 −450 −450 −450 −450

Mean −450 −450 −450 −450 −450 −450 −450 −450 −450

SD 0 0 0 0 0 0 0 0 0

f6

Max −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

Min −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

Mean −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

SD 2.37E−05 8.82E−06 1.57E−04 2.63E−05 9.81E−06 9.44E−06 1.31E−05 2.69E−05 2.08E−05

f7

Max 2.70E+05 3.92E+05 3.00E+05 3.88E+05 4.24E+05 2.78E+05 3.99E+05 2.88E+05 3.03E+05

Min 2.64E+04 1.62E+04 1.13E+04 6.14E+03 2.40E+04 3.23E+03 1.51E+04 1.38E+04 1.60E+04

Mean 9.74E+04 9.46E+04 1.03E+05 1.11E+05 1.05E+05 8.79E+04 9.97E+04 9.57E+04 9.86E+04

SD 6.16E+04 8.52E+04 7.89E+04 1.06E+05 1.01E+05 7.42E+04 1.05E+05 5.91E+04 8.28E+04

f8

Max −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

Min −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

Mean −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

SD 4.44E−03 4.11E−03 1.23E−03 1.95E−03 2.42E−03 7.04E−03 1.49E−03 2.16E−03 3.13E−03

f9

Max 6.03E+02 5.01E+02 5.74E+02 5.50E+02 3.99E+02 5.48E+02 5.54E+02 4.81E+02 6.37E+02

Min 3.91E+02 3.90E+02 3.90E+02 3.91E+02 3.92E+02 3.91E+02 3.90E+02 3.90E+02 3.90E+02

Mean 4.19E+02 4.00E+02 4.02E+02 4.31E+02 3.94E+02 4.01E+02 4.01E+02 3.97E+02 4.14E+02

SD 5.37E+01 2.45E+01 4.04E+01 6.10E+01 1.87E+00 3.45E+01 3.61E+01 1.99E+01 6.07E+01
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Table 2 continued

Function ω = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

f10

Max −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.20E+02 −1.19E+02 −1.19E+02 −1.19E+02

Min −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02

Mean −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02 −1.20E+02

SD 6.74E−02 1.10E−01 1.28E−01 1.17E−01 7.89E−02 7.11E−02 1.22E−01 9.91E−02 9.04E−02

f11

Max −3.16E+02 −3.23E+02 −3.14E+02 −3.21E+02 −3.22E+02 −3.22E+02 −3.22E+02 −3.23E+02 −3.23E+02

Min −3.30E+02 −3.28E+02 −3.29E+02 −3.30E+02 −3.29E+02 −3.29E+02 −3.29E+02 −3.28E+02 −3.30E+02

Mean −3.25E+02 −3.26E+02 −3.26E+02 −3.26E+02 −3.26E+02 −3.26E+02 −3.25E+02 −3.26E+02 −3.26E+02

SD 3.01E+00 1.40E+00 3.36E+00 2.43E+00 2.04E+00 1.93E+00 1.98E+00 1.27E+00 1.92E+00

f12

Max −2.91E+02 −2.92E+02 −2.90E+02 −2.85E+02 −2.85E+02 −2.80E+02 −2.82E+02 −2.88E+02 −2.95E+02

Min −3.22E+02 −3.27E+02 −3.25E+02 −3.23E+02 −3.22E+02 −3.23E+02 −3.26E+02 −3.23E+02 −3.25E+02

Mean −3.06E+02 −3.14E+02 −3.10E+02 −3.08E+02 −3.10E+02 −3.05E+02 −3.11E+02 −3.08E+02 −3.12E+02

SD 9.88E+00 8.68E+00 1.01E+01 1.04E+01 1.07E+01 1.19E+01 1.07E+01 1.17E+01 8.01E+00

f13

Max −1.29E+02 −1.29E+02 −1.28E+02 −1.29E+02 −1.29E+02 −1.29E+02 −1.28E+02 −1.28E+02 −1.29E+02

Min −1.30E+02 0 −1.30E+02 −1.30E+02 −1.29E+02 −1.30E+02 −1.30E+02 −1.30E+02 −1.30E+02 −1.30E+02

Mean −1.29E+02 −1.29E+02 −1.29E+02 −1.29E+02 −1.29E+02 −1.29E+02 −1.29E+02 −1.29E+02 −1.29E+02

SD 2.77E−01 2.99E−01 4.38E−01 2.43E−01 2.84E−01 2.99E−01 3.81E−01 2.97E−01 2.36E−01

f14

Max −2.96E+02 −2.96E+02 −2.95E+02 −2.96E+02 −2.96E+02 −2.96E+02 −2.96E+02 −2.96E+02 −2.96E+02

Min −2.97E+02 −2.97E+02 −2.97E+02 −2.98E+02 −2.98E+02 −2.97E+02 −2.98E+02 −2.98E+02 −2.98E+02

Mean −2.97E+02 −2.97E+02 −2.96E+02 −2.97E+02 −2.97E+02 −2.97E+02 −2.97E+02 −2.97E+02 −2.97E+02

SD 3.70E−01 4.46E−01 4.30E−01 4.82E−01 4.58E−01 3.94E−01 5.03E−01 5.04E−01 4.18E−01

Table 3 Comparison of APSO-C with different initialized ω of 30-D function tests

Function ω = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

f1

Max 8.67E−38 6.22E−40 9.48E−26 1.20E−40 1.25E−32 5.72E−41 1.79E−48 6.02E−32 3.23E−22

Min 8.26E−72 2.48E−68 3.56E−69 5.43E−77 2.73E−72 3.94E−68 1.80E−70 2.68E−66 2.85E−70

Mean 4.34E−39 3.11E−41 4.83E−27 6.24E−42 6.23E−34 2.88E−42 9.77E−50 3.01E−33 1.61E−23

SD 1.94E−38 1.39E−40 2.12E−26 2.68E−41 2.78E−33 1.28E−41 4.00E−49 1.35E−32 7.22E−23

f2

Max 1.27E−01 2.72E−01 1.23E−01 1.69E−01 2.16E−01 2.33E−01 2.08E−01 3.33E−01 3.81E−01

Min 1.16E−02 5.12E−03 2.08E−03 2.01E−03 6.83E−03 3.68E−03 4.46E−03 4.31E−03 1.38E−03

Mean 5.50E−02 6.19E−02 4.13E−02 6.03E−02 7.77E−02 7.39E−02 6.25E−02 9.39E−02 6.98E−02

SD 3.00E−02 7.04E−02 3.43E−02 4.73E−02 6.82E−02 7.52E−02 6.18E−02 9.41E−02 8.74E−02

f3

Max 7.63E+01 1.32E+02 9.02E+01 1.33E+02 1.46E+02 1.86E+02 1.71E+02 2.39E+02 9.79E+01

Min 7.07E+00 2.05E−01 2.09E−01 2.98E−02 1.92E+00 5.00E+00 9.66E−01 2.56E+00 1.20E−01

Mean 2.33E+01 4.55E+01 3.68E+01 2.72E+01 4.03E+01 4.14E+01 4.52E+01 4.42E+01 2.69E+01

SD 1.90E+01 3.83E+01 3.06E+01 3.19E+01 3.72E+01 4.57E+01 5.00E+01 6.16E+01 3.26E+01
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Table 3 continued

Function ω = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

f4

Max 8.56E+01 7.66E+01 8.46E+01 6.47E+01 8.86E+01 8.86E+01 8.95E+01 6.96E+01 9.15E+01

Min 3.28E+01 1.99E+01 2.49E+01 1.59E+01 2.39E+01 1.99E+01 2.19E+01 2.19E+01 1.39E+01

Mean 5.02E+01 4.62E+01 4.48E+01 4.35E+01 4.90E+01 4.84E+01 3.98E+01 4.40E+01 4.85E+01

SD 1.41E+01 1.33E+01 1.53E+01 1.30E+01 1.91E+01 1.46E+01 1.59E+01 1.43E+01 1.89E+01

f5

Max −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

Min −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

Mean −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

SD 1.16E−10 9.98E−11 9.77E−12 6.63E−12 6.73E−11 1.64E−10 5.02E−12 3.16E−10 2.37E−11

f6

Max −4.47E+02 −4.47E+02 −4.47E+02 −4.44E+02 −4.47E+02 −4.43E+02 −4.46E+02 −4.48E+02 −4.48E+02

Min −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02 −4.50E+02

Mean −4.49E+02 −4.49E+02 −4.49E+02 −4.49E+02 −4.49E+02 −4.49E+02 −4.49E+02 −4.49E+02 −4.49E+02

SD 8.03E−01 9.27E−01 6.72E−01 1.28E+00 7.50E−01 1.53E+00 9.66E−01 5.50E−01 5.24E−01

f7

Max 7.94E+06 4.91E+06 7.19E+06 5.89E+06 5.88E+06 4.76E+06 4.87E+06 4.72E+06 4.10E+06

Min 9.85E+05 1.19E+06 1.27E+06 1.07E+06 1.27E+06 8.74E+05 1.27E+06 1.05E+06 6.54E+05

Mean 2.93E+06 2.80E+06 3.00E+06 2.62E+06 3.09E+06 2.58E+06 2.53E+06 2.58E+06 2.39E+06

SD 1.61E+06 1.01E+06 1.44E+06 1.24E+06 1.24E+06 1.23E+06 1.01E+06 1.03E+06 9.99E+05

f8

Max 2.12E+03 9.14E+02 1.74E+03 2.75E+03 2.39E+03 2.17E+03 2.24E+03 2.02E+03 1.67E+03

Min −9.86E+00 −1.26E+02 −1.01E+01 −4.55E+00 −1.04E+02 2.38E+01 −1.92E+02 −1.56E+02 6.07E+01

Mean 6.57E+02 4.73E+02 9.17E+02 7.21E+02 5.49E+02 8.44E+02 7.06E+02 6.26E+02 6.31E+02

SD 6.17E+02 3.33E+02 5.26E+02 7.60E+02 5.71E+02 6.42E+02 5.93E+02 6.64E+02 4.37E+02

f9

Max 6.36E+02 7.35E+02 .99E+02 6.40E+02 9.31E+02 5.39E+02 6.82E+02 6.23E+02 6.69E+02

Min 3.95E+02 3.94E+02 3.93E+02 3.95E+02 3.94E+02 3.91E+02 3.92E+02 3.90E+02 3.92E+02

Mean 4.41E+02 4.73E+02 4.58E+02 4.44E+02 4.76E+02 4.36E+02 4.34E+02 4.56E+02 4.52E+02

SD 6.01E+01 9.47E+01 6.61E+01 6.58E+01 1.20E+02 4.67E+01 6.96E+01 6.59E+01 7.49E+01

f10

Max −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02

Min −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02

Mean −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02 −1.19E+02

SD 6.43E−02 7.47E−02 8.42E−02 5.81E−02 6.05E−02 9.07E−02 9.59E−02 7.21E−02 7.52E−02

f11

Max −2.39E+02 −2.22E+02 −2.70E+02 −2.52E+02 −2.56E+02 −2.54E+02 −2.66E+02 −1.94E+02 −2.58E+02

Min −3.07E+02 −3.13E+02 −3.07E+02 −3.15E+02 −3.15E+02 −3.00E+02 −3.13E+02 3.06E+02 −3.11E+02

Mean −2.80E+02 −2.88E+02 −2.92E+02 −2.91E+02 −2.86E+02 −2.82E+02 −2.91E+02 −2.82E+02 −2.90E+02

SD 1.64E+01 2.39E+01 1.12E+01 1.43E+01 1.71E+01 1.25E+01 1.34E+01 2.52E+01 1.37E+01

f12

Max −2.46E+01 −5.84E+01 −9.62E+01 −8.12E+01 −9.52E+01 2.34E+01 −8.23E+01 −1.86E+01 −2.75E+01

Min −2.37E+02 −2.31E+02 −2.21E+02 −2.60E+02 −2.64E+02 −2.44E+02 −2.65E+02 −2.32E+02 −2.89E+02

Mean −1.55E+02 −1.50E+02 −1.62E+02 −1.77E+02 −1.70E+02 − 1.37E+02 −1.80E+02 −1.48E+02 −1.68E+02

SD 5.61E+01 4.78E+01 3.92E+01 5.04E+01 4.30E+01 6.96E+01 4.74E+01 6.66E+01 5.83E+01
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Table 3 continued

Function ω = 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

f13

Max −1.13E+02 −1.18E+02 −1.16E+02 −1.13E+02 −1.06E+02 −1.15E+02 −1.17E+02 −1.18E+02 −1.18E+02

Min −1.27E+02 −1.27E+02 −1.27E+02 −1.27E+02 −1.27E+02 −1.27E+02 −1.27E+02 −1.27E+02 −1.27E+02

Mean −1.24E+02 −1.24E+02 −1.23E+02 −1.23E+02 −1.23E+02 −1.23E+02 −1.24E+02 −1.24E+02 −1.24E+02

SD 2.98E+00 2.59E+00 2.77E+00 4.18E+00 4.57E+00 2.85E+00 2.60E+00 2.13E+00 2.67E+00

f14

Max −2.86E+02 −2.87E+02 −2.86E+02 −2.87E+02 −2.86E+02 −2.87E+02 −2.87E+02 −2.86E+02 −2.87E+02

Min −2.88E+02 −2.88E+02 −2.88E+02 −2.88E+02 −2.89E+02 −2.88E+02 −2.88E+02 −2.89E+02 −2.88E+02

Mean −2.87E+02 −2.87E+02 −2.87E+02 −2.87E+02 −2.87E+02 −2.87E+02 −2.87E+02 −2.87E+02 −2.87E+02

SD 4.55E−01 3.73E−01 3.87E−01 3.42E−01 5.56E−01 3.14E−01 3.69E−01 4.86E−01 3.93E−01

Basturk 2007) and Comprehensive Learning PSO (CLPSO,
Liang et al. 2006) are compared with APSO-C. In CLPSO,
the individual would update the position based on prob-
ability in each dimension. Liner inertia weight is taken.
ωmax = 0.95, ωmin = 0.4, c = 1.5, and the refreshing gap
m = 7. FIPS uses all the neighbors to influence the veloc-
ity of particles. The constriction coefficient χ = 0.729, and
acceleration coefficient ϕ = 4.1. PSO_g and PSO_l are the
canonical PSO with gbest topology and lbest (ring) topol-
ogy. Both algorithms set the linear control of inertia weight.
ωmax = 0.95, ωmin = 0.4, and c1 = c2 = 1.5. In APSO-
C, c1 = c2 = 2, ωmax = 0.95, ωmin = 0.4, initialized
ω = 0.65(exception in experiment 1) and K = 5.The para-
meters in BBO, FA and ABC are set as suggested. All the
sizes of populations are set as 30 in each algorithm. These
algorithms are executed on same machine with an Intel Core
Duo CPU 2.10 GHz, 2G memory and Windows 7 OS.

4.2 Experiment 1: sensitivity analysis of APSO-C

In APSO-C, ω is a vital parameter that affects the search per-
formance. We try to adjust it adaptively to reduce the depen-
dence of an initial value. Here we define different values of
ω from 0.55 to 0.95 and the interval is 0.05. According to
the analysis (Shi and Eberhart 1998a) of ω in swarm search,
ωmin is 0.4 and ωmax is 0.95. The maximum iteration counts
are same as before. The results are shown in Tables 2 and 3.
No matter of 10-D or 30-D tests, for the unimodal problems,
APSO-C obtains good solutions with different ω under the
same number of iterations. From the mean and SD, the solu-
tions are relatively excellent. For most multimodal problems,
the proposed algorithm also performs well and obtains the
best values. Various values influence the results but slightly.

From the analysis of results we can see that different initial
values of ω have little effect on the performance of APSO-C.
In conclusion, the adaptive operation can reduce its depen-

dence on initial values of ω. That means the initial value can
be set as a random value between ωmin and ωmax.

4.3 Experiment 2: comparison with same value

In this experiment, APSO-C is compared with other PSOs
and swarm intelligence optimization algorithms on their
search coverage. All the algorithms are executed with the
same initial values for each benchmark function. The max-
imum iteration count is set 1,000 for 10-D problems,
and 3,000 for 30-D problems. Each algorithm is executed
20 times. The curves are obtained based on the average
performances.

Figures 1 and 2 reveal the results of the selected algorithms
in 10-D and 30-D problems. From the comparison, it can be
seen that, APSO-C offers, more or less, better performance,
no mater unimodal or multimodal functions. Because uni-
modal benchmark functions f1 and f2 are changed mildly in
the scope. Most test algorithms have slow search, but APSO-
C has a fast convergence speed and obtains the highest pre-
cisions solution.

For multimodal problems, no algorithm has obvious
advantages than others. For example, BBO is a little bet-
ter than APSO-C in f10 and f12, but inferior in f5 and f9,
and their performances on other problems are similar. The
results suggest that the different performance of algorithms
may depend on the characteristics of the problems. They also
suggest that APSO-C has some minor advantage on aver-
age. No mater how multimodal functions differ, APSO-C
can obtain better performance or one close to the best ones
found by other algorithms. It is more stable than others. This
implies that the proposed algorithm has good search ability
and fast convergence. With a dynamic multi-swarm structure
and adaption, APSO-C eases the conflicts between conver-
gence speed and premature termination, and balances global
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Fig. 1 Median convergence characteristics of 10-dimension problems
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Fig. 2 Median convergence characteristics of 30-dimension problems
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Table 4 Comparison results of min, mean, max and SD in 10 dimensions

Algorithm Min Mean Max SD Min Mean Max SD

f1 f2

APSO-C 1.82E−77 2.58E−63 5.14E−62 1.15E−62 1.54E−27 8.74E−23 9.10E−22 2.07E−22

FIPS 1.33E−32 2.42E−31 7.36E−31 2.30E−31 4.44E−18 1.30E−15 7.68E−15 2.16E−15

PSO_g 1.14E−25 2.48E−21 3.17E−20 7.23E−21 1.81E−09 5.82E−08 3.55E−07 9.62E−08

PSO_l 7.69E−15 2.78E−12 1.86E−11 4.35E−12 2.22E−04 3.19E−03 1.74E−02 4.43E−03

BBO 2.34E−01 5.56E−01 1.39E+00 3.22E−01 8.85E+00 7.53E+01 2.02E+02 6.33E+01

FA 4.04E−05 9.83E−05 2.36E−04 4.29E−05 8.19E−05 3.06E−04 9.75E−04 2.16E−04

ABC 9.48E−17 2.12E−16 2.97E−16 6.94E−17 3.40E+02 6.03E+02 9.63E+02 1.76E+02

CLPSO 4.05E−12 5.99E−11 1.63E−10 4.17E−11 9.64E+03 1.78E+04 3.42E+04 6.65E+03

f3 f4

APSO−C 1.40E−04 2.91E+00 7.29E+00 1.98E+00 9.95E−01 1.94E+00 2.98E+00 6.83E−01

FIPS 9.58E−01 1.52E+00 2.10E+00 2.85E−01 1.74E−13 1.53E+00 3.98E+00 1.19E+00

PSO_g 1.38E+00 4.73E+00 8.95E+00 1.75E+00 1.77E−08 3.85E+00 6.96E+00 1.84E+00

PSO_l 2.47E+00 5.14E+00 6.68E+00 1.44E+00 1.99E+00 5.49E+00 1.06E+01 2.49E+00

BBO 4.48E−01 7.09E+00 6.76E+01 1.46E+01 1.10E−01 3.01E−01 8.37E−01 2.10E−01

FA 5.47E+00 7.36E+00 9.59E+00 1.18E+00 3.98E+00 7.71E+00 1.89E+01 3.43E+00

ABC 3.60E−01 2.03E+00 5.36E+00 1.39E+00 1.78E−15 4.20E−07 8.29E−06 1.85E−06

CLPSO 1.56E+00 3.33E+00 4.76E+00 8.58E−01 1.33E−06 3.04E−05 1.93E−04 5.22E−05

f5 f6

APSO−C −4.50E+02 −4.50E+02 −4.50E+02 0.00E+00 −4.50E+02 −4.50E+02 −4.50E+02 6.22E−06

FIPS −4.50E+02 −4.50E+02 −4.50E+02 0.00E+00 −4.50E+02 −4.50E+02 −4.50E+02 1.39E−11

PSO_g −4.50E+02 −4.50E+02 −4.50E+02 0.00E+00 −4.50E+02 −4.50E+02 −4.50E+02 6.35E−07

PSO_l −4.50E+02 −4.50E+02 −4.50E+02 1.76E−13 −4.50E+02 −4.50E+02 −4.50E+02 2.28E−02

BBO −4.50E+02 −4.49E+02 −4.48E+02 4.22E−01 −4.33E+02 −3.45E+02 −1.60E+02 7.83E+01

FA −4.50E+02 −4.50E+02 −4.50E+02 3.30E−05 −4.50E+02 −4.50E+02 −4.50E+02 1.33E−04

ABC −4.50E+02 −4.50E+02 −4.50E+02 0.00E+00 −4.42E+02 −3.88E+02 −3.08E+02 3.65E+01

CLPSO −4.50E+02 −4.50E+02 −4.50E+02 1.48E−10 −4.29E+02 −3.92E+02 −3.30E+02 2.60E+01

f7 f8

APSO−C 5.73E+03 9.27E+04 2.36E+05 6.78E+04 −4.50E+02 −4.50E+02 −4.50E+02 1.97E−03

FIPS 2.85E+04 1.19E+05 4.98E+05 1.09E+05 −4.34E+02 3.83E+02 2.47E+03 9.38E+02

PSO_g 2.54E+04 2.00E+05 1.34E+06 2.85E+05 −4.50E+02 −4.50E+02 −4.50E+02 5.53E−04

PSO_l 4.86E+04 2.77E+05 7.23E+05 1.78E+05 −4.50E+02 −4.49E+02 −4.44E+02 1.49E+00

BBO 5.21E+05 3.00E+06 7.89E+06 2.14E+06 −3.91E+02 2.63E+02 1.69E+03 4.85E+02

FA 2.02E+04 1.80E+05 6.71E+05 1.69E+05 −4.50E+02 −4.50E+02 −4.50E+02 2.36E−04

ABC 3.04E+05 1.60E+06 3.72E+06 9.24E+05 2.66E+02 2.77E+03 6.02E+03 1.53E+03

CLPSO 1.88E+05 9.68E+05 2.94E+06 6.59E+05 −4.09E+02 −2.14E+02 2.37E+01 1.06E+02

f9 f10

APSO-C 3.90E+02 3.93E+02 3.97E+02 1.83E+00 −4.50E+02 −4.50E+02 −4.50E+02 1.97E−03

FIPS 3.91E+02 4.39E+02 9.36E+02 1.33E+02 −4.34E+02 3.83E+02 2.47E+03 9.38E+02

PSO_g 3.91E+02 4.21E+02 6.15E+02 5.68E+01 −4.50E+02 −4.50E+02 −4.50E+02 5.53E−04

PSO_l 3.90E+02 3.94E+02 3.99E+02 2.70E+00 −4.50E+02 −4.49E+02 −4.44E+02 1.49E+00

BBO 4.52E+02 7.77E+02 1.67E+03 3.29E+02 −1.20E+02 −1.20Ev02 −1.19E+02 8.68E−02

FA 3.96E+02 1.21E+03 8.91E+03 1.92E+03 −1.20E+02 −1.20E+02 −1.20E+02 8.68E−02

ABC 3.90E+02 3.99E+02 4.29E+02 1.01E+01 −1.20E+02 −1.20E+02 −1.20E+02 5.92E−02

CLPSO 3.93E+02 4.05E+02 4.24E+02 9.39E+00 −1.20E+02 −1.20E+02 −1.19E+02 1.05E−01
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Table 4 continued

Algorithm Min Mean Max SD Min Mean Max SD

f11 f12

APSO-C 3.90E+02 3.93E+02 3.97E+02 1.83E+00 −3.21E+02 −3.11E+02 −3.02E+02 5.49E+00

FIPS 3.91E+02 4.39E+02 9.36E+02 1.33E+02 −3.27E+02 −3.20E+02 −3.09E+02 4.44E+00

PSO_g 3.91E+02 4.21E+02 6.15E+02 5.68E+01 −3.19E+02 −3.04E+02 −2.88E+02 7.78E+00

PSO_l 3.90E+02 3.94E+02 3.99E+02 2.70E+00 −3.22E+02 −3.06E+02 −2.94E+02 7.28E+00

BBO −3.30E+02 −3.30E+02 −3.29E+02 1.51E−01 −3.19E+02 −3.01E+02 −2.76E+02 1.08E+01

FA −3.27E+02 −3.23E+02 −3.12E+02 3.61E+00 −3.27E+02 −3.20E+02 −3.09E+02 4.12E+00

ABC −3.30E+02 −3.30E+02 −3.30E+02 0.00E+00 −3.11E+02 −2.97E+02 −2.77E+02 8.58E+00

CLPSO −3.30E+02 −3.30E+02 −3.30E+02 1.74E−05 −3.21E+02 − 3.12E+02 −3.02E+02 4.66E+00

f13 f14

APSO-C −1.30E+02 −1.29E+02 −1.28E+02 3.16E−01 −2.97E+02 −2.97E+02 −2.96E+02 4.04E−01

FIPS −1.29E+02 −1.29E+02 −1.28E+02 2.28E−01 −2.97E+02 −2.97E+02 −2.96E+02 2.60E−01

PSO_g −1.29E+02 −1.29E+02 −1.29E+02 2.78E−01 −2.98E+02 −2.97E+02 −2.96E+02 4.70E−01

PSO_l −1.30E+02 −1.29E+02 −1.28E+02 3.16E−01 −2.98E+02 −2.97E+02 −2.96E+02 2.91E−01

BBO −1.30E+02 7− 1.29E+02 − 1.29E+02 1.86E−01 −2.97E+02 −2.96E+02 −2.96E+02 3.08E−01

FA −1.30E+02 −1.29E+02 −1.29E+02 3.25E−01 −2.98E+02 −2.96E+02 −2.96E+02 3.84E−01

ABC −1.30E+02 −1.30E+02 −1.29E+02 7.87E−02 −2.97E+02 −2.96E+02 −2.96E+02 2.13E−01

CLPSO −1.30E+02 −1.29E+02 −1.29E+02 1.60E−01 −2.97E+02 −2.96E+02 −2.96E+02 1.12E−01

Table 5 Comparison Results of Min, Mean, Max and SD in 30 Dimensions

Algorithm Min Mean Max SD Min Mean Max SD

f1 f2

APSO-C 2.35E−68 4.37E−53 6.41E−52 1.44E−52 1.94E−06 5.19E−05 1.65E−04 4.72E−05

FIPS 2.44E−51 6.44E−51 1.32E−50 2.77E−51 8.43E−05 5.84E−04 2.17E−03 5.09E−04

PSO_g 1.63E−22 1.14E−18 3.90E−18 1.35E−18 2.54E+00 1.23E+01 2.80E+01 7.68E+00

PSO_l 5.86E−09 3.75E−08 8.07E−08 1.86E−08 1.25E+02 2.17E+02 3.36E+02 6.26E+01

BBO 5.71E−01 1.39E+00 2.19E+00 5.11E−01 1.39E+03 2.63E+03 4.13E+03 7.04E+02

FA 6.01E−04 8.96E−04 1.21E−03 1.84E−04 3.29E−02 4.65E−01 3.04E+00 6.49E−01

ABC 7.17E−16 3.23E−15 1.55E−14 3.66E−15 1.27E+04 1.69E+04 1.99E+04 2.15E+03

CLPSO 3.91E−10 1.08E−09 2.93E−09 5.61E−10 1.39E+04 4.17E+04 9.67E+04 2.14E+04

f3 f4

APSO-C 3.88E−03 4.81E+01 1.96E+02 4.97E+01 2.19E+01 5.66E+01 1.27E+02 2.43E+01

FIPS 1.90E+01 1.96E+01 2.00E+01 3.13E−01 1.50E+01 2.63E+01 5.40E+01 9.48E+00

PSO_g 1.54E+01 3.97E+01 7.92E+01 2.44E+01 2.59E+01 3.91E+01 5.27E+01 7.66E+00

PSO_l 2.06E+01 3.68E+01 8.14E+01 2.00E+01 4.51E+01 6.37E+01 9.37E+01 1.27E+01

BBO 1.06E+01 5.52E+01 8.21E+01 2.75E+01 2.82E−01 7.39E−01 1.73E+00 3.11E−01

FA 2.55E+01 2.75E+01 2.91E+01 1.00E+00 2.09E+01 3.85E+01 6.37E+01 1.18E+01

ABC 1.84E+01 2.26E+01 2.84E+01 2.89E+00 2.61E−10 5.32E−02 9.95E−01 2.22E−01

CLPSO 1.75E+01 2.21E+01 2.69E+01 2.65E+00 5.20E−04 1.89E−03 7.61E−03 1.53E−03

f5 f6

APSO-C −4.50E+02 −4.50E+02 −4.50E+02 4.45E−11 −4.50E+02 −4.49E+02 −4.47E+02 5.30E−01

FIPS −4.50E+02 −4.50E+02 −4.50E+02 2.26E−14 −4.50E+02 −4.50E+02 −4.50E+02 4.15E−02

PSO_g −4.50E+02 −4.50E+02 −4.50E+02 3.45E−14 −4.40E+02 −4.20E+02 −3.64E+02 1.95E+01

PSO_l −4.50E+02 −4.50E+02 −4.50E+02 9.91E−08 −2.36E+02 −1.05E+02 9.42E+01 9.57E+01

BBO −4.49E+02 −4.48E+02 −4.47E+02 6.48E−01 7.86E+02 2.51E+03 4.26E+03 9.74E+02
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Table 5 continued

Algorithm Min Mean Max SD Min Mean Max SD

FA −4.50E+02 −4.50E+02 − 4.50E+02 1.35E−04 −4.50E+02 −4.50E+02 −4.49E+02 1.94E−01

ABC −4.50E+02 −4.50E+02 −4.50E+02 0.00E+00 5.02E+03 9.55E+03 1.52E+04 2.78E+03

CLPSO −4.50E+02 −4.50E+02 −4.50E+02 6.41E−10 4.67E+03 5.74E+03 7.68E+03 8.91E+02

f7 f8

APSO-C 1.15E+06 3.22E+06 5.97E+06 1.42E+06 −2.57E+02 2.45E+02 7.19E+02 3.22E+02

FIPS 4.29E+05 8.52E+05 1.48E+06 2.68E+05 1.27E+04 1.83E+04 2.84E+04 3.84E+03

PSO_g 9.81E+05 6.09E+06 1.33E+07 3.63E+06 −2.38E+02 4.47E+02 3.18E+03 7.77E+02

PSO_l 2.08E+06 8.79E+06 1.68E+07 3.73E+06 8.78E+02 2.57E+03 5.06E+03 1.17E+03

BBO 1.18E+07 2.03E+07 2.91E+07 4.99E+06 1.78E+04 3.00E+04 4.52E+04 8.01E+03

FA 4.49E+05 2.05E+06 3.71E+06 8.20E+05 −4.46E+02 1.17E+03 4.93E+03 1.63E+03

ABC 6.11E+06 1.59E+07 2.63E+07 5.67E+06 2.77E+04 5.07E+04 6.28E+04 7.36E+03

CLPSO 1.66E+07 3.16E+07 4.96E+07 9.28E+06 1.15E+04 1.75E+04 2.21E+04 3.30E+03

f9 f10

APSO-C 3.93E+02 4.07E+02 4.18E+02 9.14E+00 −1.19E+02 −1.19E+02 −1.19E+02 7.00E−02

FIPS 4.08E+02 5.10E+02 7.65E+02 1.05E+02 −1.19E+02 −1.19E+02 −1.19E+02 6.78E−02

PSO_g 4.01E+02 6.27E+02 1.75E+03 3.95E+02 −1.19E+02 −1.19E+02 −1.19E+02 6.43E−02

PSO_l 3.94E+02 4.79E+02 5.89E+02 6.33E+01 −1.19E+02 −1.19E+02 −1.19E+02 6.28E−02

BBO 6.76E+02 1.89E+03 6.53E+03 1.46E+03 −1.19E+02 −1.19E+02 −1.19E+02 6.28E−02

FA 4.17E+02 2.84E+03 1.27E+04 4.27E+03 −1.20E+02 −1.19E+02 −1.19E+02 8.11E−02

ABC 3.90E+02 4.01E+02 4.59E+02 1.55E+01 −1.19E+02 −1.19E+02 −1.19E+02 6.99E−02

CLPSO 4.08E+02 4.42E+02 4.92E+02 2.45E+01 −1.19E+02 −1.19E+02 −1.19E+02 5.37E−02

f11 f12

APSO-C −3.13E+02 −2.98E+02 −2.80E+02 9.66E+00 −2.39E+02 −1.88E+02 −1.54E+01 6.76E+01

FIPS −3.13E+02 −3.01E+02 −2.85E+02 7.31E+00 −2.67E+02 −2.24E+02 −1.86E+02 2.21E+01

PSO_g −3.12E+02 −2.83E+02 −2.62E+02 1.24E+01 −2.49E+02 −1.74E+02 −1.15E+02 4.04E+01

PSO_l −2.86E+02 −2.57E+02 −2.13E+02 1.92E+01 −1.97E+02 −1.29E+02 −3.36E+01 4.42E+01

BBO −3.30E+02 −3.29E+02 −3.29E+02 3.40E−01 −2.58E+02 −2.02E+02 −1.13E+02 3.37E+01

FA −3.10E+02 −2.92E+02 −2.62E+02 1.27E+01 −3.09E+02 −2.94E+02 −2.81E+02 8.66E+00

ABC −3.30E+02 −3.30E+02 −3.30E+02 1.03E−06 −1.18E+02 −4.33E+00 7.60E+01 4.61E+01

CLPSO −3.30E+02 −3.30E+02 −3.30E+02 8.10E−04 −2.13E+02 −1.70E+02 −1.36E+02 1.94E+01

f13 f14

APSO-C −1.27E+02 −1.24E+02 −1.20E+02 1.73E+00 −2.88E+02 −2.87E+02 −2.87E+02 3.06E−01

FIPS −1.26E+02 −1.21E+02 −1.17E+02 2.32E+00 −2.88E+02 −2.87E+02 −2.87E+02 2.57E−01

PSO_g −1.27E+02 −1.24E+02 −1.17E+02 2.04E+00 −2.89E+02 −2.88E+02 −2.87E+02 4.87E−01

PSO_l −1.23E+02 −1.18E+02 −1.12E+02 2.78E+00 −2.88E+02 −2.88E+02 −2.87E+02 3.49E−01

BBO −1.29E+02 −1.28E+02 −1.28E+02 3.53E−01 −2.88E+02 −2.87E+02 −2.86E+02 2.92E−01

FA −1.28E+02 −1.25E+02 −1.21E+02 1.65E+00 −2.88E+02 −2.87E+02 −2.86E+02 4.36E−01

ABC −1.28E+02 −1.28E+02 −1.27E+02 2.75E−01 −2.87E+02 −2.87E+02 −2.86E+02 1.55E−01

CLPSO −1.27E+02 −1.27E+02 −1.26E+02 2.73E−01 −2.87E+02 −2.87E+02 −2.87E+02 1.82E−01

search and local search. Regardless unimodal or multimodal
problems, APSO-C can obtain highly satisfied solutions.

4.4 Experiment 3: comparison with the same iteration count

In the second experiment, APSO-C with other four algo-
rithms is compared with random initial value for each func-
tion. All algorithms are also executed 20 times independently.

As in the first experiment, the maximum iteration counts for
10-D and 30-D problems are, respectively, 1,000 and 3,000.
The statistics includes the minimum value (min), maximum
value (max), mean value (mean) and standard deviation (SD).
The results can be seen in Tables 4 and 5.

It is clear from the results that APSO-C obtains much
better solution than other algorithms in f1 , f2 and f3 under
the same number of iterations. However, though APSO-C
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meets the accuracy requirements, it is inferior to others in the
test of f4 with 30 dimensions. For f5– f14, APSO-C offers
good performance and obtains the global best solutions for
some of them. Through the operations of dynamical cluster-
ing and adaptive adjusting, the proposed APSO-C improves
the performance of local search, global search and robust-
ness. The ability of particles is strengthened by considering
comprehensive attractors of the best solution from the swarm
and subpopulations. The solution efficiency and accuracy are
increased for most benchmark problems.

5 Conclusion

This paper presents an adaptive PSO method (APSO-C)
based on swarm structure topology and individual behavior
control. Two different strategies are proposed, i.e., dynamic
population decomposition based on a clustering strategy and
adaptation based on a cluster evaluation strategy. In the first
strategy, the population is divided via a K-means method into
several clusters that contain different numbers of particles
with different ability. Then the clusters take a ring topology
to exchange information. At the second strategy, through the
cluster ability evaluation on searching status and parameter
adaption for each individual, particles adjust their parameters
to balance their local and global search.

Results from the experiments show that APSO-C obtains
a better result than some other typical PSO algorithms in lit-
erature and reaches the expectations in terms of convergence
speed, solution accuracy, and parameter sensitivity given the
same benchmark functions.

In the future work, we will focus on the following issues:

1. To evaluate the search ability of an individual particle, we
need to consider the comparison value with the average
fitness of dynamic clusters and the swarm. One of the
important questions is whether there are other effective
evaluation methods;

2. The effects of best positions in neighborhood and in a
swarm are treated the same for an individual in this work.
In the future their different effect will be investigated;

3. The clustering process is essential to obtain subpopula-
tions, and is also the key influencing factor of algorithm
efficiency. From some tests, the swarm can obtain a good
state of subpopulation division in APSO-C after execut-
ing a K-means method for two to four times. But how to
choose the optimal number of execution times and num-
ber of clusters remains open;

4. Because the swarm has a bias towards the single objective
in the proposed algorithm, multiple global optima may
confuse the individuals. Thus, more study is needed on
“multi-optima issue” (Dong and Zhou 2014) in our future

research. Furthermore, the application of the proposed
method to some industrial optimization problems (Fang
et al. 2012; Kang et al. 2013; Wu and Zhou 2007; Xing
et al. 2012; Xiong et al. 2009; Yu et al. 2009) should be
pursued.
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