
Soft Comput (2014) 18:669–681
DOI 10.1007/s00500-014-1219-7

FOCUS

Utilising the chaos-induced discrete self organising migrating
algorithm to solve the lot-streaming flowshop scheduling problem
with setup time

Donald Davendra · Roman Senkerik · Ivan Zelinka ·
Michal Pluhacek · Magdalena Bialic-Davendra

Published online: 30 January 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract The Dissipative Lozi chaotic map is embedded in
the discrete self organising migrating algorithm (DSOMA),
as a pseudorandom generator. This novel chaotic based algo-
rithm is applied to the constraint based lot-streaming flow-
shop scheduling problem. Two new and unique data sets gen-
erated using the Lozi and Delayed Logistic maps are used
to compare the chaos embedded DSOMA and the generic
DSOMA utilising the venerable Mersenne Twister. In total,
100 data sets were tested by these two algorithms, for the
idling and the non-idling case. From the obtained results, the
chaos variant algorithm is shown to significantly improve the
performance of generic DSOMA.

Communicated by I. Zelinka.

D. Davendra (B) · I. Zelinka
Department of Computing Science,
Faculty of Electrical Engineering and Computer Science,
VSB-Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
e-mail: donald.davendra@vsb.cz

I. Zelinka
e-mail: ivan.zelinka@vsb.cz

R. Senkerik · M. Pluhacek
Department of Informatics and Artificial Intelligence,
Faculty of Applied Informatics, Tomas Bata University in Zlin,
Nad Stranemi 4511, 760 05 Zlin, Czech Republic
e-mail: senkerik@fai.utb.cz

M. Pluhacek
e-mail: pluhacek@fai.utb.cz

M. Bialic-Davendra
Centre for Applied Economic Research, Faculty of Management
and Economics, Tomas Bata University in Zlin,
nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic
e-mail: bialic@fame.utb.cz

Keywords Lot-streaming flowshop scheduling ·
Lozi map · Delayed Logistic map · Discrete Self Organising
Migrating algorithm

1 Introduction

One of the core premise of evolutionary algorithms (EA) is
their reliance on stochasticity, the ability to generate a ran-
dom events, which in turn, provides the spark of perturbation
towards the desired goal. The task of generating this sto-
chasticity is generally in the realm of pseudorandom number
generators (PRNG); a structured sequence of mathematical
formulation which tries to yield a generally optimal range of
distributed numbers between a specified range.

A wide variety of such random number generators exist,
however, the most common in usage is the Mersenne Twister
(Matsumoto and Nishimura 1998). A number of its variants
have been designed; for a full listing please see Matsumoto
(2012). Some other common PRNG are the Mother Of All,
CryptoAPI, Indirection, Shift, Accumulate, Add, and Count
(ISAAC), Keep it Simple Stupid (KISS) and Mutiply-With-
Carry (MWC).

This paper explores a novel approach to generating PRNG,
one with a lineage in chaos theory. The term chaos describes
the complex behaviour of simple, well behaved systems.
When casually observed, this behaviour may seem erratic and
somewhat random, however, these systems are deterministic,
whose precise knowledge of future behaviour is well known.
The question is then to reconcile the notion of nonlinearity
of these systems.

Sudden and dramatic changes in some nonlinear systems
may give rise to complex behaviour called chaos. The noun
chaos and the adjective chaotic are used to describe the time
behaviour of a system when that behaviour is aperiodic (it

123

670 D. Davendra et al.

never exactly repeats) and appears apparently random or
noisy (Hilborn 2000).

This a periodic non-repeating behaviour of chaotic sys-
tems is the core foundation of this research. The objective
is then to use a valid chaotic system, and embed it in the
EA’s as a PRNG. Four general branches of chaotic systems
exist, which are the dissipative systems, fractals, dissipative
and high-dimensional systems and conservative systems. The
systems used for this research are the discrete dissipative sys-
tems of Lozi and Delayed Logistic maps. These two systems
are relatively simple in terms of period density, and therefore,
easier to obtain data through sectional cropping.

Many chaotic maps in the literature possess certainty,
ergodicity and the stochastic property. Recently, chaotic
sequences have been adopted instead of random sequences
with improved results. They have been used to improve the
performance of EA’s (Alatas et al. 2009; Caponetto et al.
2003). They have also been used together with some heuris-
tic optimisation algorithms (Davendra et al. 2010; Zuo and
Fan 2006) to express optimisation variables. The choice of
chaotic sequences is justified theoretically by their unpre-
dictability, i.e. by their spread-spectrum characteristic, non-
periodic, complex temporal behaviour, and ergodic proper-
ties (Ozer 2010).

A mathematical description of the connection between
chaotic systems and random number generators has been
given by Herring and Julian (1989). In this paper, a strong
linkage has been shown between the Lehmer generator
(Lehmer 1951) and the simple chaos dynamical system of
Bernoulli shift (Palmore and McCauley 1987). By observa-
tion, it is obvious that the Bernoulli shift itself is similar in
form to the Lehmer generator. Therefore, it was postulated
that prime modulus multiplicative linear congruential gener-
ators are implementations of deterministic chaotic processes
(Herring and Julian 1989).

A chaotic piecewise-linear one dimensional (PL1D) map
has been utilised as a chaotic random number generator in
Stojanovski and Kocarev (2001). The construction of the
chaos random number system is based on the exploitation
of the double nature of chaos, deterministic in microscopic
space and by its defining equations, and random in macro-
scopic space. This new system is mathematically proven to
overcome the major drawbacks of classical random number
systems, which are its reliance on the assumed randomness
of a physical process, inability to analyse and optimise the
random number generator, inability to compute probabilities
and entropy of the random number generator, and inconclu-
siveness of statistical tests.

A family of enhanced chaotic pseudo random num-
ber generators (CPRNG) has been developed by Lozi
(2008), where the main imputes is the generation of very
long series of pseudo-random number generations. This is
accomplished through what is called the ultra weak cou-

pling of chaotic systems, such as the Tent Map, which is
enhanced in order to conceal the chaotic genuine function
(Lozi 2009).

Differential evolution (DE), which is a population based
global optimization algorithm over continuous spaces apply-
ing stochastic state transition rules, first proposed by Price
(1999) has been modified using chaotic sequences. Daven-
dra et al. (2010) has applied the canonical DE to solve the
PID optimisation problem, whereas Ozer (2010) applied a
sequence of chaotic maps to optimise a range of benchmark
problems, with the conclusion that the Sinus map and Circle
map have somewhat increased the solution quality and with
the ability to escape the local optima. The economic dispatch
problem was solved by Lu et al. (2011), where the Tent Map
was utilised as a chaotic local search in order to bypass the
local optima.

Concerning combinatorial optimisation problems, Yuan
et al. (2008) has developed a chaotic hybrid DE, where the
parameter selection and operation are handled by chaotic
sequences, whereas Davendra et al. (2010) utilised both the
population generation and parameter selection using a hybrid
DE-Scatter Search algorithm to solve the travelling salesman
problem.

The motivation of this work is to ascertain if any improve-
ment can be attained in an EA by embedding a chaos map.
Since current literature has applied chaos to a magnitude of
such research with varying application of the chaos maps
(population generation, mutation crossover, escaping the
local optima etc.), we decided to totally replace the PRNG
with a chaotic map. The Lozi map was chosen as it is a very
simple map, which can be totally described in a few equa-
tions, making it easier to implement. Additionally, the Lozi
map has proven to be an excellent generator in the previ-
ous work on DE for real value optimisation (Davendra et al.
2010).

This research looks at modifying the discrete self organ-
ising migrating algorithm (DSOMA) (Davendra 2009, 2013;
Davendra and Bialic-Davendra 2013), yet another population
based global optimisation algorithm over discrete spaces,
with the Lozi chaotic map and utilising it to solve the lot-
streaming flowshop problem with setup time. The primary
aim of this work, therefore, is to ascertain if there is any
improvement to the algorithm when comparing the chaotic
variant to the standard DSOMA variant, utilising the best
PRNG; the Mersenne Twister. Secondly, we have generated
two unique data sets using the Lozi and Delayed Logistic
systems for testing.

2 Lozi map

The Lozi map is a two-dimensional piecewise linear map
whose dynamics are similar to those of the better known

123

Utilising chaos-induced DSOMA to solve lot-streaming flowshop with setup time 671

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

x

y

Fig. 1 Lozi map

Henon map (Hennon 1979), and which admits strange attrac-
tors.

The advantage of the Lozi map is that one can compute
every relevant parameter exactly, due to the linearity of the
map, and the successful control can be demonstrated rigor-
ously.

The Lozi map equations are given in (1) and (2).

Xn+1 = 1 − a · |Xn| + b · Yn (1)

Yn+1 = Xn (2)

The parameters used in this work are a = 1.7 and b =
0.5 as suggested in Caponetto et al. (2003) and the initial
conditions are X0 = −0.1 and Y0 = 0.1. The Lozi map is
shown in Fig. 1.

3 Delayed logistic map

The Delayed Logistic (DL) map equations are given in (3)
and (4).

Xn+1 = A · Xn · (1 − Yn) (3)

Yn+1 = Xn (4)

The parameter used in this work is a = 2.27 and the initial
conditions are X0 = 0.001 and Y0 = 0.001. The DL map is
shown in Fig. 2.

Generally, two different aspects of random number are
required, real and integer. The real number is required within
the range of 0–1, whereas the integer is generally required
between 1 and some upper bound like the size of the individ-
ual or the population size.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Fig. 2 Delayed logistic

0.2 0.4 0.6 0.8 1.0

Value

100

200

300

400
F

re
qu

en
cy

Fig. 3 Lozi map data sample between [0, 1]

Each point of the chaotic system is a two-dimensional
point in space. Generally, either of the x, or y axis values can
be used as the random number, however, we have used the
data from the x axis.

A sample histogram of the data values in the x-axis affixed
between 0 and 1 is given in Fig. 3.

In order to obtain numbers between the specified bounds
and in the precise order, initially a large number of chaotic
numbers are generated using the chaotic map and stored in
memory. Based on the requirement, each number is modified
sequentially for usage.

4 Discrete self-organising migrating algorithm

DSOMA (Davendra 2009, 2013; Davendra and Bialic-
Davendra 2013) is the discrete version of SOMA (Zelinka

123

672 D. Davendra et al.

Individual 1

Individual 2

2 4 6 8 10

Element

2

4

6

8

10
P

os
it

io
n

Fig. 4 Two individuals in search space

2 4 6 8 10

Element

1.01.52.0

0

5

10

P
os

it
io

n

Fig. 5 End view of the two individuals in 3D search space

2

4

6

8

10

Element
1.0

1.5

2.0

0

5

10

P
os

it
io

n

Fig. 6 Isometric view of the two individuals in 3D search space

2004), developed to solve permutation based combinator-
ial optimisation problem. The SOMA ideology of the sam-
pling of the space between two individuals is modified
for application in the combinatorial domain. Assume that
there are two individuals in a search space. The objective
for DSOMA is to transverse from one individual to another,
while mapping each discrete space between these two indi-
viduals (Fig. 4). Figures 5 and 6 are 3D representations,
where the DSOMA mapping is shown as the surface join-
ing these two.

The major input of this algorithm is the sampling of the
jump sequence between the individuals in the populations,
and the procedure of constructing new trial individuals from
these sampled jump sequence elements.

The overall outline for DSOMA can be given as:

1. Initial phase

(a) Population generation: An initial number of permutative
trial individuals is generated for the initial population.

(b) Fitness evaluation: Each individual is evaluated for its
fitness.

2. DSOMA

(a) Creating jump sequences: Taking two individuals, a
number of possible jump positions is calculated between
each corresponding element.

(b) Constructing trial individuals: Using the jump posi-
tions; a number of trial individuals is generated. Each
element is selected from a jump element between the
two individuals.

(c) Repairment: The trial individuals are checked for feasi-
bility and those, which contain an incomplete schedule,
are repaired.

3. Selection

(a) New individual selection: The new individuals are eval-
uated for their fitness and the best new fitness based indi-
vidual replaces the old individual, if it improves upon
its fitness.

4. Generations

(a) Iteration: Iterate the population till a specified migra-
tion.

DSOMA requires a number of parameters as given in Table
1. The major addition is the parameter Jmin , which gives the
minimum number of jumps (sampling) between two individ-
uals. The SOMA variables PathLength, StepSize and
PRT Vector which are defined a priori by the user based
on the recommendations in Zelinka (2004), are not initialised
in DSOMA as they are dynamically calculated by DSOMA
using the adjacent elements between the individuals.

4.1 Initialisation

The population is initialised as a permutative schedule rep-
resentative of the size of the problem at hand (5). As this is

123

Utilising chaos-induced DSOMA to solve lot-streaming flowshop with setup time 673

Table 1 DSOMA parameters

Name Range Type

Jmin (1+) Minimum number of jumps

Population 10+ Number of individuals

Migrations 10+ Number of iterations

Fig. 7 Pseudocode for generating initial population

the initial population, the superscript of x is initialised to 0.
The rand() function obtains a value between 0 and 1, and the
INT() function rounds down the real number to the nearest
integer. The if condition ensures that each element within the
individual is unique.

x0
i, j =

⎧
⎨

⎩

1 + INT (rand () · (N − 1))

if x0
i, j /∈

{
x0

i,1, . . . , x0
i, j−1

}

i = 1, . . . , β; j = 1, . . . , N

(5)

Each individual is vetted for its fitness (6), and the best indi-
vidual, whose index in the population can be assigned as L
(leader) and it is designated the leader as X0

L with its best
fitness given as C0

L .

C0
i = �

(
X0

i

)
, i = 1, . . . , β (6)

The pseudocode for generating a population is given in Fig. 7.
After the generation of the initial population, the migration

counter t is set to 1 where t = 1, . . . , M and the individual
index i is initialised to 1, where i = 1, . . . , β. Using these
values, the following sections (Sects. 4.2, 4.3, 4.4, 4.5) are

recursively applied, with the counters i and t being updated
in Sects. 4.6 and 4.7 respectively.

4.2 Creating jump sequences

DSOMA operates by calculating the number of discrete jump
steps that each individual has to circumnavigate. In DSOMA,
the parameter of minimum jumps (Jmin) is used in lieu of
PathLength, which states the minimum number of indi-
viduals or sampling between two individuals.

Taking two individuals in the population, one as the
incumbent (Xt

i) and the other as the leader (Xt
L), the pos-

sible number of jump individuals Jmax is the mode of the
difference between the adjacent values of the elements in the
individual (7). A vector J of size N is created to store the
difference between the adjacent elements in the individuals.
The mode() function obtains the most common number in J
and designates it as Jmax .

J j =
∣
∣
∣xt−1

i, j − xt−1
L , j

∣
∣
∣ , j = 1, . . . , N

Jmax =
{

mode(J) if mode(J) > 0
1 otherwise

(7)

The step size (s), can now be calculated as the integer
fraction between the required jumps and possible jumps (8).

s =
{⌊

Jmax
Jmin

⌋
if Jmax ≥ Jmin

1 otherwise
(8)

Create a jump matrix G, which contains all the possible
jump positions, that can be calculated as:

Gl, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xt−1
i, j + s · l if xt−1

i, j + s · l < xt−1
L , j and

xt−1
i, j < xt−1

L , j

x t−1
i, j − s · l if xt−1

i, j + s · l < xt−1
L , j and

xt−1
i, j > xt−1

L , j
0 otherwise

j = 1, . . . , N ; l = 1, . . . , Jmin

(9)

The pseudocode for creating jump sequences is given in
Fig. 8.

4.3 Constructing trial individuals

For each jump sequence of two individuals, a total of
Jmin new individuals can now be constructed from the
jump positions. Taking a new temporary population H
(H = {Y1, . . . , YJmin}), in which each new individual Yw

(w = 1, . . . , Jmin), is constructed piecewise from G. Each
element yw, j

(Yw = {yw, j , . . . , yw,N }, j = 1, 2, . . . , N) in the indi-
vidual, indexes its values from the corresponding j th column
in G. Each lth (l = 1, . . . , Jmin) position for a specific ele-
ment is sequentially checked in Gl, j to ascertain if it already

123

674 D. Davendra et al.

Fig. 8 Pseudocode for creating jump sequences

Fig. 9 Algorithm for constructing trial individuals

exists in the current individual Yw. If this is a new element, it
is then accepted in the individual, and the corresponding lth
value is set to zero as Gl, j = 0. This iterative procedure can
be given as in (10) and the pseudocode for constructing trial
individual is represented in Fig. 9.

yw, j =

⎧
⎪⎪⎨

⎪⎪⎩

Gl, j

⎧
⎨

⎩

if Gl, j /∈ {yw,1, . . . , yw, j−1}
and Gl, j �= 0;

then Gl, j = 0;
0 otherwise

l = 1, . . . , Jmin; j = 1, . . . , N ; w = 1, . . . , Jmin

(10)

4.4 Repairing trial individuals

Some individuals may exist, which may not contain a
permutative schedule. The jump individuals Yw (w =
1, 2, . . . , Jmin), are constructed in such a way, that each
infeasible element yw, j is indexed by 0.

Taking each jump individual Yw iteratively from H, the
following set of procedures can be applied recursively.

Take A and B, where A is initialised to the permutative
schedule A = {1, 2, . . . , N } and B is the complement of
individual Yw relative to A as given in (11).

B = A\Yw (11)

If after the complement operation, B is an empty set with-
out any elements; B = {}, then the individual is correct with a
proper permutative schedule and does not require any repair-
ment.

However, if B contains values, then these values are the
missing elements in individual Yw . The repairment procedure
is now outlined. The first process is to randomise the positions
of the elements in set B. Then, iterating through the elements
yw, j (j = 1, . . . , N) in the individual Yw, each position,
where the element yw, j = 0 is replaced by the value in B.
Assigning Bsize as the total number of elements present in B
(and hence missing from the individual Yw), the repairment
procedure can be given as in (12).

yw, j =
{

Bh if yw, j = 0
yw, j otherwise

h = 1, . . . , Bsize; j = 1, . . . , N (12)

After each individual is repaired in H, it is then evaluated
for its fitness value as in (13) and stored in γ , the fitness array
of size Jmin .

γw = �(Yw), w = 1, . . . , Jmin (13)

The pseudocode for repairing trial individuals is given in
Fig. 10.

4.5 Population update

2 Opt local search is applied to the best individual Ybest

obtained with the minimum fitness value (min(γw)). After the
local search routine, the new individual is compared with the
fitness of the incumbent individual Xt−1

i , and if it improves
on the fitness, then the new individual is accepted in the pop-
ulation (14).

123

Utilising chaos-induced DSOMA to solve lot-streaming flowshop with setup time 675

Fig. 10 Pseudocode for repairing trial individuals

Xt
i =

{
Ybest if �(Ybest) < Ct−1

i

X t−1
i otherwise

(14)

If this individual improves on the overall best individual
in the population, it then replaces the best individual in the
population (15).

Xt
best =

{
Ybest if �(Ybest) < Ct

best

X t−1
best otherwise

(15)

4.6 Iteration

Sequentially, incrementing i, the population counter by 1,
another individual Xt−1

i+1 is selected from the population, and

it begins its own sampling towards the designated leader Xt−1
L

from Sects. 4.2, 4.3, 4.4 and 4.5. It should be noted that the
leader does not change during the evaluation of one migra-
tion.

4.7 Migrations

Once all the individuals have executed their sampling towards
the designated leader, the migration counter t is incremented
by 1. The individual iterator i is reset to 1 (the beginning of
the population) and the loop in Sects. 4.2, 4.3, 4.4, 4.5 and
4.6 is re-initiated.

4.8 2 Opt local search

The local search utilised in DSOMA is the 2 Opt local search
algorithm. The reason as to why the 2 Opt local search was
chosen, is that it is the simplest in the k-opt class of rou-
tines. As the DSOMA sampling occurs between two indi-
viduals in k-dimension, the local search refines the indi-
vidual. This, in turn, provides a better probability to find
a new leader after each jump sequence. The placement of
the local search was refined heuristically during experimen-
tation.

The complexity of this local search is O(n2). As local
search makes up the majority of the complexity time of
DSOMA, the overall computational complexity of DSOMA
for a single migration is O(n3).

A schematic of the DSOMA routine is given in Fig. 11,
which graphically outlines the procedure for creating jump
sequence between two individuals, and constructing trial
individuals.

5 Lot-streaming problem

The lot-steaming problem considered in this paper is a sub-
set of the generic flowshop scheduling problem. Whereas, in
the permutative flowshop problem, each job n is processed
by a single machine m, in a lot-streaming variant, each
job is divided into smaller tasks called lots (l) (Pan et
al. 2011). Once the processing of a sub-lot on its pre-
ceding machine is completed, it can be transferred to the
downstream machine immediately. However, all l(j) sub-
lots of job j should be processed continuously as no inter-
mingling or exchanging is allowed. A separable sequence-
dependent setup time is necessary for the first sub-lot of
each job j before it can be processed on any machine k
(Pan and Ruiz 2012).

Two different cases of the problem are considered; the
idling and the non-idling case. The idling case is a sim-
pler variant of the problem, where only the schedule of
the lots are taken into consideration. A non-idling case,
on the other hand, is more practical. A non-idle case
arise when the machine is not allowed to be idle. This
is beneficial, especially in the case where a number of
machines are in operation, and resources such as electric-
ity are wasted. Another practical situation is when expensive
machinery is employed. Idling on such expensive equip-
ment is often not desired. Other examples come from sec-
tors where less expensive machinery is used but where
machines cannot be easily stopped and restarted (Yavuz
2010).

A detailed description of the lot-streaming problem is
given in Potts and Baker (1989), Chang et al. (2007) and
Sarin and Jaiprakash (2007).

123

676 D. Davendra et al.

Fig. 11 DSOMA schematic

123

Utilising chaos-induced DSOMA to solve lot-streaming flowshop with setup time 677

0 5 10 15 20 25 30 35 40 45 50 55

1 1 2 2 3 4 41

2

3

1 1 2 2 3 4 4

1 1 2 2 3 4 4

m
ac

h
in

e

time

Fig. 12 Idling case of the lot streaming problem

5.1 Idling case

The constraint in this case is that at any given time a machine
can process only one sub-lot, and each sub-lot can only be
assessed individually. Let the processing time of each sub-lot
of job on machine m be P(m, j), and the setup time of job
j on machine m, after having processed job j is s(m, j, j),
which can also represent the setup time of job j if it is the first
job to be proceeded in the machine. The objective is to find
a sequence with the optimal sub-lot starting and completion
times to minimise the makespan.

The permissible job permutation can be presented as π =
{π1, π2, . . . , πn}, and the earliest start and completion time
as S(m, j, r) and C(m, j, r), where r represents the specific
sub-lot on job j being processed on machine m.

Initially, the first and third directive of (16) are used to
calculate the earliest start time of the first sub-lot of the first
job (π1). The second and fourth directives calculate the com-
pletion times, making sure that preemption of jobs is not
allowed. Equation (17) controls the earliest start time and
the earliest completion time for the successive sub-lots of job
π1, which ensure that sub-lots of the same job are processed
continuously.

Equation sets (18) and (20) are used for the calculations
for the sub-lots of the following jobs in the π . When calcu-
lating the start time for the first sub-lot of a job in (18), the
completion time of the previous job on the current machine
must be considered with the completion time of the sub-lot
on the previous machine, and the setup time of the job on the
current machine.

The makespan can be calculated using (20), which is
essentially the completion time of the last sub-lot of the last
job πn on the last machine m (Pan and Ruiz 2012).

A schematic of the makespan for the idling case is given
in Fig. 12.

S(1, π1, 1) = s(1, π1, π1)

C(1, π1, 1) = S(1, π1, 1) + P(1, π1);
S(w, π1, 1) = max{C(w − 1, π1, 1), s(w, π1, π1)}, (16)

C(w, π1, 1) = S(w, π1, 1) + +P(w, π1),

w = 2, 3, . . . , m

S(1, π1, r) = C(1, π1, r − 1),

C(1, π1, r) = S(1, π1, r) + P(1, π1),

r = 2, 3, . . . , l(π1); (17)

S(w, π1, r) = max {C(w − 1, π1, r), C(, π1, r − 1)} ,

C(w, π1, r) = S(w, π1, r) + P(w, π1),

r = 2, 3, . . . , l(π1), w = 2, 3, . . . , m

S(1, π1, 1) = C(1, πi−1, l(πi−1)) + s(1, πi−1, πi),

C(1, π1, 1) = S(1, π1, 1) + P(1, π1), i = 2, 3, . . . , n;

S(w, π1, 1) = max

⎧
⎨

⎩

C(w − 1, π1, r),

C(w, πi−1, l(πi−1))

+s(w, πi−1, πi)

⎫
⎬

⎭
, (18)

C(w, π1, 1) = S(w, π1, 1) + P(w, πi),

i = 2, 3, . . . , n, w = 2, 3, . . . , m

S(1, π1, r) = C(1, πi , r − 1),

C(1, π1, r) = S(1, π1, r) + P(1, π1) (19)

i = 2, 3, . . . , n, r = 2, 3, . . . , l(πi);
S(w, π1, r) = max{C(w − 1, π1, r), C(w, πi−1, r − 1)},
C(w, π1, r) = S(w, π1, r) + P(w, πi),

i = 2, 3, . . . , n, r = 2, 3, . . . , l(πi), w = 2, 3, . . . , m

Cmax(π) = CT (m, πn, l(πn)) (20)

5.2 Non-idling case

For the non-idling case, the earliest start time for the first sub-
lot is given in (21) and (23), where the start time is the maxi-
mum of the setup time of the job in the current machine, the
completion time of the first sub-lot on the previous machine,
and the difference between the completion time of the whole
job on the previous machine and the total processing time
of the whole job on the preceding machine except the last
sub-lot. This ensures that there is no idling time between two
adjacent sub-lots. The last two directives of these equations
calculate the completion time for the first job.

The subsequent processing time of the next job sequence
is given in (23) and (24).

A schematic of the makespan for the non-idling case is
given in Fig. 13.

S(1, π1, 1) = s(1, πi , πi)

C(1, π1, l(π1)) = S(1, π1, 1) + l(π1) × P(1, π1) (21)

S(w, π1, 1) = max

⎧
⎪⎪⎨

⎪⎪⎩

s(w, π1, π1), S(w − 1, π1, 1)

+p(w − 1, π1),

C(k − 1, π1, l(π1))

−(l(π1) − 1) × P(1, π1)

⎫
⎪⎪⎬

⎪⎪⎭

, (22)

C(w, π1, l(π1)) = S(w, π1, 1) + l(π1) × P(w, πi),

123

678 D. Davendra et al.

0 5 10 15 20 25 30 35 40 45 50 55

1 1 2 2 3 4 41

2

3

1 1 2 2 3 4 4

1 1 2 2 3 4 4

time

m
ac

h
in

e

Fig. 13 Non-idling case of the lot streaming problem

w = 2, 3, . . . , m

S(1, π1, 1) = C(1, πi−1, l(πi−1)) + s(1, πi−1, πi),

C(1, π1, l(π1)) = S(1, π1, 1) + l(π1) × P(1, π1), (23)

i = 2, 3, . . . , n

S(w, π1, 1) = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S(w − 1, πi , 1) + P(w − 1, π1),

C(w − 1, π1, l(π1)) − (l(π1) − 1)

×P(1, π1),

C(w − 1, πi−1, l(πi−1))

+s(1, πi−1, πi)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

i = 2, 3, . . . , n, w = 2, 3, . . . , m

C(w, π1, l(π1)) = S(w, π1, 1) + l(π1) × P(w, πi),

i = 2, 3, . . . , n, w = 2, 3, . . . , m (24)

The makespan for the non-idling case can be then calculated
as (25).

Cmax(π) = CT (m, πn, l(πn)) (25)

The objective of the lot-streaming flow shop scheduling
problem with makespan criterion is to find a permutation π∗
in the set of all permutations

∏
which can be given as in (26)

(Pan and Ruiz 2012).

Cmax(π
∗) ≤ Cmax(π), ∀π ∈ � (26)

6 Data sets generation

In keeping with the theme of utilising the chaotic maps in
lieu of PRNG, the data sets have been generated using two
unique chaotic maps; the Lozi and the Delayed Logistic map.
Five unique sizes of data sets have been generated. They are
from 10 job × 5 machine, 20 job × 10 machine, 50 job × 25
machine, 75 job × 30 machine and 100 job× 50 machine.
There are five instances for each data set, therefore, in total 25
data set instances for each of the Lozi and Delayed Logistic
data sets.

In order to have unique data sets, each instance was ini-
tialised from a unique start position of the respective chaotic
system. Additionally, the map was not allowed to be reini-
tialised. Two different maps were used in order to have more
versatility in the data sets and to remove any particular bias.

The data sets are available at Davendra (2012) for down-
load.

7 Experimentation and analysis

The main emphasis of this work is to show the improve-
ment of applying the chaotic map to DSOMA. Therefore,
the experimentation compares the generic and chaos induced
DSOMA (DSOMAc) algorithms on the same problem sets,
using the identical parameter settings.

The parameter settings for DSOMA and DSOMAc are
given in Table 2. The experiments were conducted on a
MacBook Pro, Sandy Bridge 2.3 GHz Intel Core i7, 8 GB
1,333 MHz DDR3 RAM.

7.1 Lozi generated data sets results

The results of the Lozi generated data sets are given in Table
3 for the idling case and Table 4 for the non-idling case.
A total of five experiments have been performed on each
data set, and the results are presented as the summation of
the five experiments for the different problem instance sizes.
Four different statistical analysis have been performed on
the results. The minimum, maximum, average and execution
time computation are presented. Additionally, the t test for
the different data sets for the two different problems was
conducted and is given in Tables 5 and 6. For the idling case in
Table 3, DSOMAc obtains better average minimum (8,684)
and average (8,919.84) value compared to 8,899 and 9,248.48
for DSOMA. Furthermore, it obtains more minimum (5) and
average values (5) for the individual data sets. In terms of the
t test, DSOMAc is significantly better than DSOMA on three
data sets of 20 × 10, 50 × 25 and 75 × 30 in the idling case,
and both algorithms are significantly equal on the remaining
two data sets.

For the non-idling case given in Table 4, the DSOMA
and DSOMAc algorithms performs equally. DSOMA man-
ages to obtain better average minimum (9,863) and aver-
age (10,173.24) values compared to 9,878 and 10,179.32 for
DSOMAc. In terms of individual instances, DSOMA and
DSOMAc have almost identical performances; average (2)
and minimum (3) for DSOMA compared to average (3) and

Table 2 Parameter settings

Parameters Value

Population 40

Migration 20

Jmin 20

Local search 2 opt

123

Utilising chaos-induced DSOMA to solve lot-streaming flowshop with setup time 679

Table 3 Lozi idling results
Instance DSOMA DSOMAc

Average Min Max Time (s) Average Min Max Time (s)

10 × 5 429.8 383 464 1.87 429.8 383 464 2.32

20 × 10 1,778 1,680 1,885 45.03 1,727.8 1,644 1,822 39.96

50 × 25 24,872.2 24,170 25,404 504.7 24,111.0 23,361 24,569 642.76

75 × 30 7,584.6 7,355 7,714 1,023.7 7,279.0 7,145 7,324 1,065.32

100 × 50 11,577.8 10,907 11,362 2,953.21 11,051.6 10,887 11,216 2,855.6

Average 9,248.48 8,899 9,365.8 905.7 8,919.84 8,684 9,079 921.19

Table 4 Lozi non-idling results
Instance DSOMA DSOMAc

Average Min Max Time (s) Average Min Max Time (s)

10 × 5 513 431 557 2.22 511.2 425 552 2.46

20 × 10 2,107.6 1,979 2,210 39.43 2,108.0 1,979 2,210 42.86

50 × 25 27,852.4 27,164 28,558 528.32 27,889.6 27,100 28,407 536.45

75 × 30 8,067.6 7,819 8,230 821.40 8,063.4 7,832 8,259 846.43

100 × 50 12,325.6 11,922 12,951 3,688.20 12,324.4 12,054 12,954 3,865.30

Average 10,173.2 9,863 10,501.2 1,015.91 10,179.3 9,878 10,476.4 1,058.70

Table 5 Paired t test for the Lozi idling results

Data set t value p value p < 0.05 Result

10 × 5 − – – –

20 × 10 8.28 0.001 Yes DSOMAc

50 × 25 14.32 0.0001 Yes DSOMAc

75 × 30 10.15 0.0005 Yes DSOMAc

100 × 50 2.22 0.089 No Same

Table 6 Paired t test for the Lozi non-idling results

Data set t value p value p < 0.05 Result

10 × 5 1.15 0.313 No Same

20 × 10 0.196 0.854 No Same

50 × 25 0.518 0.613 No Same

75 × 30 0.188 0.859 No Same

100 × 50 0.026 0.98 No Same

minimum (3) for DSOMAc. The t test results for all the data
instances show that the two algorithms are significantly not
different.

7.2 Delayed Logistic generated data sets results

For the Delayed Logistic problem sets, the results are given
in Table 7 for the idling case and Table 8 for the non-idling
case. The t test results for the different data sets are given
in Tables 9 and 10. For the idling case, DSOMAc is better

performing on all problem instances having the better average
(10,173.24) and minimum (12,176) values. Analysing the t
test results, DSOMAc is significantly better than DSOMA
on the two instances of 50 × 25 and 100 × 50.

The non-idling case also affirms better performance of
the DSOMAc algorithm. Following the trend in the previ-
ous experiment, the chaos based DSOMA has better aver-
age minimum (13,379.8) and average (13,963.16) values and
individual minimum (5) and average (4) values. From the t
test results DSOMAc is significantly better than DSOMA on
four instances.

8 Conclusion

This research is based on ascertaining the effectiveness of
applying the Lozi map to the DSOMA algorithm in order
to solve the lot-streaming flowshop scheduling problem. In
total, 50 data sets were generated using the Lozi and Delayed
Logistic maps, which were solved for both the idling and non-
idling case. In total, five experimentations for each data set
were conducted, therefore a total of 500 individual experi-
ments were conducted to validate the finding in this paper.

From the summarised results in Table 11, it is obvious
that the DSOMAc algorithm is better performing than the
generic DSOMA algorithm. Of all the valid compared para-
meters, DSOMAc obtained more minimum values, 18 com-
pared to 5 and better average values, 17 compared to 4 for
the DSOMA algorithm. This shows that DSOMAc is more
robust and has better probability of finding a better solu-

123

680 D. Davendra et al.

Table 7 Delayed Logistic
idling results Instance DSOMA DSOMAc

Average Min Max Time (s) Average Min Max Time (s)

10 × 5 630.6 568 699 2.65 626.2 566 693 2.34

20 × 10 2,049.8 1,869 2,279 39.54 2,040.6 1,859 2,264 40.32

50 × 25 13,095.0 11,633 14,392 612.32 12,789.8 11,390 14,018 623.43

75 × 30 19,256.2 18,789 19,740 967.43 18,998.8 18,493 19,260 976.32

100 × 50 29,868.8 28,884 31,163 3,145.32 29,516.8 28,572 30,824 3,212.22

Average 12,980.1 12,348.6 13,654.6 953.45 12,794.4 12,176 13,411.8 970.93

Table 8 Delayed Logistic
non-idling results Instance DSOMA DSOMAc

Average Min Max Time (s) Average Min Max Time (s)

10 × 5 700.6 613 762 2.01 701.2 613 762 1.97

20 × 10 2,274.8 2,146 2,461 36.32 2,234.2 2,120 2,416 37.24

50 × 25 14,524.0 12,897 15,705 540.32 14,207.0 12,816 15,455 544.23

75 × 30 21,115.0 20,855 21,398 877.43 20,535.8 20,244 20,903 892.43

100 × 50 32,752.0 31,742 33,622 3,302.32 32,137.6 31,106 33,539 3,331.4

Average 14,273.3 13,650.6 14,789.6 951.68 13,963.2 13,379.8 14,615 961.45

Table 9 Paired t test for the Delayed Logistic idling results

Data set t value p value p < 0.05 Result

10 × 5 1.53 0.2 No Same

20 × 10 1.23 0.283 No Same

50 × 25 5.42 0.005 Yes DSOMAc

75 × 30 1.49 0.209 No Same

100 × 50 6.04 0.003 Yes DSOMAc

Table 10 Paired t test for the Delayed Logistic non-idling results

Data set t value p value p < 0.05 Result

10 × 5 1 0.37 No Same

20 × 10 6.38 0.003 Yes DSOMAc
50 × 25 4.125 0.014 Yes DSOMAc
75 × 30 7.96 0.0013 Yes DSOMAc
100 × 50 0.73 0.018 Yes DSOMAc

tion. In terms of t test, DSOMAc is significantly better than
DSOMA on nine data sets and equal in the remaining 11
data sets. This hypothesis raises the main issue regarding
the importance of PRNG in stochastic algorithms. Whereas,
the defining argument during the past decades has been the
application of better crossover and mutation routines, the
generator for selection and mutation, PRNG now gains more
prominence.

The downside of the experiment invariably has been the
execution time, where there was a slight increase for the chaos

Table 11 Summarised results

Instance DSOMA DSOMAc

Min Average Min Average

10 × 5 2 2 4 3

20 × 10 1 1 4 3

50 × 25 0 1 4 3

75 × 30 1 0 3 4

100 × 50 1 0 3 4

Total 5 4 18 17

version. However, this can be improved significantly through
utilising the GPU for computing. This will be directed as a
further aspect of this research, alongside the application of
different chaotic maps as generators. The implementation of
different chaos maps is important in the deduction aspect of
which maps are compatible for the different problem classes.

Acknowledgments Donald Davendra was supported by the Technol-
ogy Agency of the Czech Republic under the Project TE01020197 and
Michal Pluhacek was supported by the Internal Grant Agency of Tomas
Bata University under the project No. IGA/FAI/2013/012.

References

Alatas B, Akin E, Ozer A (2009) Chaos embedded particle swarm opti-
mization algorithms. Chaos Solitons Fractals 40(4):1715–1734

123

Utilising chaos-induced DSOMA to solve lot-streaming flowshop with setup time 681

Caponetto R, Fortuna L, Fazzino S, Xibilia M (2003) Chaotic sequences
to improve the performance of evolutionary algorithms. IEEE Trans
Evol Comput 7(3):289–304

Chang JL, Gong DW, Ma XP (2007) A heuristic genetic algorithm for
no-wait flowshop scheduling problem. J China Univ Min Technol
17(4):582–586

Davendra D (2009) Chaotic attributes and permutative optimization.
Ph.D. thesis, Tomas Bata University in Zlin, Zlin

Davendra D (2012) Flowshop lot-streaming problem data sets. http://
mrl.cs.vsb.cz/people/davendra/research.html

Davendra D, Bialic-Davendra M (2013) Scheduling flow shops with
blocking using a discrete self-organising migrating algorithm. Int J
Prod Res 51(8):2200–2218. doi:10.1080/00207543.2012.711968

Davendra D, Zelinka I, Senkerik R, Bialic-Davendra M (2010) Chaos
driven evolutionary algorithm for the traveling salesman problem.
In: Davendra D (ed) Traveling salesman problem, theory and appli-
cations. InTech Publishing, Croatia, pp 55–70

Davendra D, Zelinka I, Bialic-Davendra M, Senkerik R, Jasek R (2013)
Discrete self-organising migrating algorithm for flow-shop schedul-
ing with no-wait makespan. Math Comput Model 57(12):100–110.
doi:10.1016/j.mcm.2011.05.029

Davendra D, Zelinka I, Senkerik R (2010) Chaos driven evolution-
ary algorithms for the task of pid control. Comput Math Appl
60(4):1088–1104

Hennon M (1979) A two-dimensional mapping with a strange attractor.
Commun Math Phys 50:69–77

Herring C, Julian P (1989) Random number generators are chaotic.
ACM SIGPLAN 11:1–4

Hilborn R (2000) Chaos and nonlinear dynamics: an introduction for
scientists and engineers. OUP, Oxford

Lehmer D (1951) Mathematical methods in large-scale computing units.
Ann Comput Lab (Harvard University) 26:141–146

Lozi R (2008) New enhanced chaotic number generators. Indian J Ind
Appl Math 1(1):1–23

Lozi R (2009) Chaotic pseudo random number generators via ultra weak
coupling of chaotic maps and double threshold sampling sequences.
In: ICCSA 2009 the 3rd international conference on complex systems
and applications. University of Le Havre, France, pp 1–5

Lu Y, Zhou J, Qin H, Wang Y, Zhang Y (2011) Chaotic differential
evolution methods for dynamic economic dispatch with valve-point
effects. Eng Appl Artif Intell 24(2):378–387

Matsumoto M (2012) Mersenne twister webpage. http://www.math.sci.
hiroshima-u.ac.jp/m-mat/MT/ARTICLES/earticles.html

Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-
dimensionally equidistributed uniform pseudorandom number gen-
erator. ACM Trans Model Comput Simul 8(1):3–30

Ozer A (2010) Cide: chaotically initialized differential evolution. Expert
Syst Appl 37(6):4632–4641

Palmore J, McCauley J (1987) Shadowing by computable chaotic orbits.
Phys Lett A 121:399

Pan QK, Fatih Tasgetiren M, Suganthan PN, Chua TJ (2011) A dis-
crete artificial bee colony algorithm for the lot-streaming flow shop
scheduling problem. Inf Sci 181(12):2455–2468. doi:10.1016/j.ins.
2009.12.025

Pan QK, Ruiz R (2012) An estimation of distribution algorithm for lot-
streaming flow shop problems with setup times. Omega 40(2):166–
180

Potts CN, Baker KR (1989) Flow shop scheduling with lot streaming.
Oper Res Lett 8(6):297–303

Price K (1999) An introduction to differential evolution. In: Corne D,
Dorigo M, Glover F (eds) New ideas in optimisation. McGraw Hill
International, UK

Sarin SC, Jaiprakash P (2007) Flow shop lot streaming. Springer, Berlin
Stojanovski T, Kocarev L (2001) Chaos-based random number genera-

tors part I: analysis. IEEE Trans Circuits Syst I Fundam Theory Appl
48(3):281–288

Yavuz M (2010) Fuzzy lead time management. In: Kahraman C,
Yavuz M (eds) Production engineering and management under fuzzi-
ness, studies in fuzziness and soft computing, vol 252. Springer,
Berlin/Heidelberg, pp 77–94

Yuan X, Cao B, Yang B, Yuan Y (2008) Hydrothermal scheduling
using chaotic hybrid differential evolution. Energy Convers Manag
49(12):3627–3633

Zelinka I (2004) Soma—self organizing migrating algorithm. In:
Onwubolu G, Babu B (eds) New optimization techniques in engi-
neering. Springer-Verlag, Germany

Zuo X, Fan Y (2006) A chaos search immune algorithm with its appli-
cation to neuro-fuzzy controller design. Chaos Solitons Fractals
30(1):94–109

123

http://mrl.cs.vsb.cz/people/davendra/research.html
http://mrl.cs.vsb.cz/people/davendra/research.html
http://dx.doi.org/10.1080/00207543.2012.711968
http://dx.doi.org/10.1016/j.mcm.2011.05.029
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/ARTICLES/earticles.html
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/ARTICLES/earticles.html
http://dx.doi.org/10.1016/j.ins.2009.12.025
http://dx.doi.org/10.1016/j.ins.2009.12.025

	Utilising the chaos-induced discrete self organising migrating algorithm to solve the lot-streaming flowshop scheduling problem with setup time
	Abstract
	1 Introduction
	2 Lozi map
	3 Delayed logistic map
	4 Discrete self-organising migrating algorithm
	4.1 Initialisation
	4.2 Creating jump sequences
	4.3 Constructing trial individuals
	4.4 Repairing trial individuals
	4.5 Population update
	4.6 Iteration
	4.7 Migrations
	4.8 2 Opt local search

	5 Lot-streaming problem
	5.1 Idling case
	5.2 Non-idling case

	6 Data sets generation
	7 Experimentation and analysis
	7.1 Lozi generated data sets results
	7.2 Delayed Logistic generated data sets results

	8 Conclusion
	Acknowledgments
	References

