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Abstract In recent decades, artificial neural networks
(ANNs) have been extensively applied in different areas such
as engineering, medicine, business, education, manufactur-
ing and so on. Nowadays, ANNs are as a hot research in medi-
cine especially in the fields of medical disease diagnosis. To
have a high efficiency in ANN, selection of an appropriate
architecture and learning algorithm is very important. ANN
learning is a complex task and an efficient learning algo-
rithm has a significant role to enhance ANN performance. In
this paper, a new meta-heuristic algorithm, centripetal accel-
erated particle swarm optimization (CAPSO), is applied to
evolve the ANN learning and accuracy. The algorithm is
based on an improved scheme of particle swarm algorithm
and Newton’s laws of motion. The hybrid learning of CAPSO
and multi-layer perceptron (MLP) network, CAPSO-MLP, is
used to classify the data of nine standard medical datasets of
Hepatitis, Heart Disease, Pima Indian Diabetes, Wisconsin
Prognostic Breast Cancer, Parkinson’s disease, Echocardio-
gram, Liver Disorders, Laryngeal 1 and Acute Inflamma-
tions. The performance of CAPSO-MLP is compared with
those of PSO, gravitational search algorithm and imperialist

Communicated by D. Liu.

Z. Beheshti (B) · S. M. Hj. Shamsuddin · S. S. Yuhaniz
Soft Computing Research Group, Faculty of Computing,
Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
e-mail: bzahra2@live.utm.my

S. M. Hj. Shamsuddin
e-mail: mariyam@utm.my

S. S. Yuhaniz
e-mail: sophia@utm.my

E. Beheshti
Software Research Group, Nowpardaz Engineering Company,
Isfahan, Iran
e-mail: beheshty@gmail.com

competitive algorithm on MLP. The efficiency of methods are
evaluated based on mean square error, accuracy, sensitivity,
specificity, area under the receiver operating characteristics
curve and statistical tests of t-test and Wilcoxon’s signed
ranks test. The results indicate that CAPSO-MLP provides
more effective performance than the others for medical dis-
ease diagnosis especially in term of unseen data (testing data)
and datasets with high missing data values.

Keywords Artificial neural networks · Multi-layer
perceptron network · Hybrid learning · Particle swarm
optimization · Centripetal accelerated particle swarm
optimization

1 Introduction

Artificial neural networks (ANNs) (Fausett 1994; Gur-
ney 1997) are nonlinear sophisticated modeling techniques
inspired by biological nervous systems. ANNs are one of
the powerful tools effectively employed in various fields
(Anderson 2006) such as time series prediction, classifica-
tion, pattern recognition, system identification and control,
function approximation, signal processing and so on. The
performance of ANNs depends on selecting proper architec-
ture and learning algorithm.

During the recent decades, there have been many studies
for solving the problem of ANN learning and architecture
optimization. The Back-Propagation (BP) algorithm (Rumel-
hart and McClelland 1986) was introduced and applied
widely to train multilayer networks. However, algorithms
based on gradient-descent methods like BP easily trap into
local minimum (Brent 1991; Gori and Tesi 1992). Also, the
proposed traditional learning algorithms suffer from some
shortcomings such as slow convergence rate and long learn-
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ing time. Hence, many researchers have employed meta-
heuristic algorithms for ANN learning to overcome the men-
tioned limitations. They have been used both in training and
obtaining appropriate ANN architecture. The main advan-
tages of using these algorithms over the traditional ones are
their ability of escaping from local minima and adapting with
their environment.

Genetic algorithm (GA) (Tang et al. 1996), artificial
immune system (AIS) (Farmer et al. 1986), ant colony opti-
mization (ACO) (Dorigo et al. 1996), particle swarm opti-
mization (PSO) (Kennedy and Eberhart 1995; Shi and Eber-
hart 1998), artificial bee colony (ABC) (Karaboga 2005),
imperialist competitive algorithm (ICA) (Atashpaz-Gargari
and Lucas 2007) and gravitational search algorithm (GSA)
(Rashedi et al. 2009) are in the class of meta-heuristic algo-
rithms. The study in (Yao 1999) offers a general framework
of the algorithms for ANN learning.

Samanta et al. (2003) compared the performance of bear-
ing fault detection using two different classifiers of ANN and
support vector machine (SMV) where the classifier para-
meters were optimized by GA. In the method, the time-
domain vibration signals of a rotating machine with normal
and defective bearings were processed for feature extraction.
The extracted features from original and preprocessed signals
were applied as inputs to the classifiers for two-class (normal
or fault) recognition. In another research, GA and ANN were
developed for loading pattern optimization of advanced gas-
cooled reactors (AGR) (Ziver et al. 2004). Oreski et al. (2012)
proposed a hybrid system of GA and ANN for retail credit
risk assessment. The method provided a feature selection
technique for finding an optimum feature subset to improve
the accuracy of ANN classification.

Yao et al. (2000) applied the hybrid learning of PSO and
feed-forward neural network (FFNN) to classify two prob-
lems in medical domain. The result showed that the method
has better accuracy in classified data compared to other algo-
rithms (Bennett and Mangasarian 1992; Setiono and Hui
1995; Prechelt 1995). Also, an adapted particle swarm opti-
mization (PSO) model was offered to train MLP for pre-
dicting the outcome of construction claims in Hong Kong
(Chau 2007). The successful prediction rate was up to 80 %
and the method had more accurate results than its coun-
terparts of a benchmarking BP. In other study, Huang et
al. (2010) proposed an ANN classifier with entropy based
feature selection for Breast Cancer diagnosis. Levenberg–
Marquardt (LM) was used for training and PSO algo-
rithm was applied for obtaining the proper weights of
ANN.

Further, a hybrid approach based on ACO and ANN
(Socha and Blum 2007) was presented for feature selection
of several medical datasets. The proposed method had better
performance than BP and GA for ANN. In another study,
a hybrid version of continuous ACO with classical gradient

techniques was applied to train ANN for medical pattern
classification (Sivagaminathan and Ramakrishnan 2007).

Moreover, a comparative study was conducted on chronic
obstructive pulmonary and pneumonia diseases diagnosis
using the hybrid of AIS and different ANN classification
models (Er et al. 2009). The results of the study were com-
pared with those of the pervious similar studies reported
focusing on the diseases diagnosis (Ashizawa et al. 1999;
Heckerling et al. 2004; Coppini et al. 2007). It was concluded
that AIS and ANN could be successfully used to diagnose
chronic obstructive pulmonary and pneumonia diseases. A
hybrid learning of MLP and AIS also was presented to pre-
dict the output from a grid-connected photovoltaic system
(Sulaiman et al. 2012). In the proposed method, AIS was
selected as the optimizer for the training process of MLP to
optimize ANN architecture.

Besides, Ozkan et al. (2011) designed an ANN for mod-
eling daily reference evapotranspiration (ET0) using ABC
algorithm. The accuracy of proposed model was compared
with those of the ANN models trained with LM, standard
BP algorithms and some existing empirical models (Kisi and
Ozturk 2007). The proposed model had better performance
in estimation of ET0.

Ahmadi et al. (2013) offered a model based on MLP
to predict permeability of the reservoir and used ICA to
decide the initial weights of the network. The performance
and the generalization capability of proposed method were
compared with those of models developed with the com-
mon technique of BP. The results showed that the method
outperformed the gradient descent-based neural network.
Also, Tayefeh-Mahmoudi et al. (2013) proposed a method
to evolve ANN architecture using grammar encoding and
ICA. The hybrid method was evaluated on four known
regression problems and compared against the state of the
art methods: GA, resilient BP, Minimum Finder (Min-
Finder), Broyden–Fletcher–Goldfarb–Shanno (BFGS), and
neural network construction (NNC) as optimization meth-
ods (Tsoulos et al. 2008). The experimental results showed
that the proposed grammar encoding method using ICA out-
performed the other methods.

Although many meta-heuristics have been extensively
applied in ANN learning, none of them has shown a good
performance for all applications. Also, the existing meta-
heuristics have several disadvantages (Leung et al. 1997;
Hrstka and Kučerová 2004; Liang et al. 2006; Gao et al. 2012;
Moslemipour et al. 2012) such as slow convergence speed,
trapping into local minima, long computational time, tun-
ing many parameters and difficult encoding scheme. Hence,
the performance enhancement of previous meta-heuristics
or proposing new ones would seem necessary to increase the
efficiency of ANN learning in different domains.

In this paper, the CAPSO algorithm (Beheshti and Sham-
suddin 2013a) is used to improve ANN learning. Several
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medical datasets (Kuncheva 2005; Bache and Lichman 2013)
are selected in order to evaluate the proposed method. The
performance metrics of mean square error (MSE), correct
classification rate or accuracy (ACC), sensitivity, specificity
and area under the receiver operating characteristics curve
(AUC) are employed to compare the results of proposed algo-
rithm with PSO, GSA and ICA on MLP learning.

The structure of this paper is organized as follows. Sec-
tion 2 briefly describes a background of MLP and blending
some meta-heuristic algorithms used in this study for MLP
learning. The details of proposed approach are elucidated in
Sect. 3. Section 4 demonstrates the experimental results of
neural network classification on medical datasets using the
algorithms. Finally, a conclusion is given in Sect. 5.

2 Background materials

The basic background materials required for a deep under-
standing of the proposed method are elucidated in this sec-
tion. At first, MLP as a FFNN is described after that the
algorithms of PSO, GSA and ICA are explained in order to
compare their results with the proposed algorithm for MLP
learning in the classification problems. Later, the classifica-
tion problem is briefly explained.

2.1 MLP network

FFNN is one of the most common ANNs and maintains a
high level of research interest because of its ability to map
any function to an arbitrary degree of accuracy. This kind
of network has been used for both MLP network (Hornik
et al. 1989) and radial basis function (RBF) network (Park
and Sandberg 1991). Due to their similarity in functional
mapping ability, MLP and RBF networks share the same
problem domains.

Multi-layer perceptron has been utilized in a broad range
of science such as finance, medicine, engineering, geology,
physics and biology. In medicine, it has been extensively
employed in medical diagnosis, detection and evaluation of
medical conditions and treatment cost estimation (Handels
et al. 1999; Folland et al. 2004; Karabatak and Ince 2009; Ari
and Saha 2009; Jerez et al. 2010; Abbod et al. 2011). Also,
it has been used in replacing conventional pattern recogni-
tion methods for the disease diagnosis systems (Kayaer and
Yildirim 2003; Delen et al. 2005; Temurtas 2007; Elveren
and Yumuşak 2011). As Fig. 1 demonstrates, MLP contains
one input layer which receives external inputs, one or more
hidden layers, and one output layer which shows the results.
All layers except the input layer are made of processing nodes
and activation function. Data presented at the input layer and
the network nodes carry out calculations in the sequential
layers until an output value is acquired at each output node.

…

…

…

Output Class

Input Pattern

Input Layer

Hidden Layer

Output Layer

Connection Weights

Fig. 1 Architecture of MLP network
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Fig. 2 An artificial neuron of MLP

Neurons are the processing units of MLP. An artificial neu-
ron has been simulated in Fig. 2. As shown, each neuron or
node computes the sum of the inputs weighted at the presence
of a bias, and passes this sum through an activation function
(like sigmoid function) so that the output is obtained. This
process can be expressed as Eq. (1).

U j =
n∑

i=1

w j i x j + θ j ,

O j = f j (U j ) (1)

where w j i is the weight connected between node i and j, U j

is the linear combination of inputs, O j and θ j are the output
and bias of node j respectively and f (.) is an activation
function.

f j (.) is usually considered as a sigmoid function and O j

is represented by:

O j = f j (U j ) = 1

(1 + e−U j )
. (2)

Proper design of MLP architecture is very complex because
many elements affect the performance of MLP such as the
number of nodes in input, hidden and output layer, distrib-
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ution of layers, interconnection between neurons and layers
(weights), error function and activation function.

Also, selecting a proper learning algorithm is another
problem of using MLP. In the following sections, some meta-
heuristic algorithms applied in MLP learning are explained
and finally their performances are compared together.

2.2 Particle swarm optimization

Particle swarm optimization is a population based meta-
heuristic algorithm inspired by social behavior of bird flock-
ing or fish schooling. In the algorithm, each solution is called
particle and particles can be presented by a group of vectors
as ( �Xi , �Vi , �Pi ) in a d-dimensional search space, where �Xi , �Vi

and �Pi are the position, velocity and the personal best posi-
tion of the i th particle respectively. The vectors are defined
as follows:

�Xi = (xi1, xi2, . . . , xid) for i = 1, 2, . . . , N , (3)
�Vi = (vi1, vi2, . . . , vid) for i = 1, 2, . . . , N , (4)
�Pi = (pi1, pi2, . . . , pid) for i = 1, 2, . . . , N , (5)

where N is the number of particles.
The velocity and position of particles are randomly ini-

tialized and the next velocity and position of every particle
are computed as Eqs. (6) and (7):

vid(t+1) = w(t)× vid(t)+C1 × rand × (pid(t)−xid(t))

+C2 × rand × (pgd(t) − xid(t)), (6)

xid(t + 1) = xid(t) + vid(t + 1) (7)

where vid(t) and xid(t) are the current velocity and posi-
tion of ith particle respectively. w(t) is inertia weight,
C1 and C2 are acceleration coefficients. rand is uniformly
random number in the interval of [0, 1]. In addition,
vid(t) ∈ [−vmax, vmax] and vmax is set to a constant
based on the bounds of the solution space by users. In
Eq. (6), the second and the third terms are called cog-
nition and social term respectively. pgd is the best posi-
tion achieved by the entire swarm so far in the dth
dimension. For the population, this position is defined as
follows:

→
Pg = (pg1, pg2, . . . , pgd). (8)

Although PSO is easy to implement, it has several disadvan-
tages due to its poor exploration, such as facing the slow con-
vergence rate, selecting parameters and getting easily trapped
in a local optimum (Leung et al. 1997; Hrstka and Kučerová
2004; Liang et al. 2006; Gao et al. 2012; Moslemipour et al.
2012).

2.3 Gravitational search algorithm

GSA is a meta-heuristic algorithm inspired by the New-
tonian gravity and motion laws. According to the gravity
law (Schutz 2003), all particles in the universe attract each
other by a gravity force. This force is directly proportional
to the product of their masses and inversely proportional to
the square of the distance between them. Therefore, GSA
defines a system with N agents (masses) based on the law
in a d-dimensional search space and at the beginning, agent
positions are initialized randomly. The position of the i th
agent is illustrated as follows:

�Xi = (xi1, xi2, . . . , xid) for i = 1, 2, . . . , N , (9)

where xid is the position of the ith agent in the dth dimension.
Each mass presents a solution and the heaviest mass shows

an optimum solution in the search space. By lapse of time,
masses are attracted by the heaviest mass. The gravitational
force of mass j on mass i at a specific time t is computed as
follows:

Fi j,d(t) = G(t)
Mi (t) × M j (t)

Ri j (t) + ε
(x jd(t) − xid(t)), (10)

where Mi and M j are the masses of agent i and agent j
respectively. ε is a small constant. G(t) is gravitational con-
stant at time t initialized at the beginning and decreased by
time t to control the search accuracy. Ri j (t) is the Euclidean
distance between probe i and j at time t :

Ri j (t) = ∥∥xi (t), x j (t)
∥∥

2. (11)

Mi in Eq. (10) is calculated as follows:

mi (t) = fiti (t) − worst(t)

best(t) − worst(t)
, (12)

Mi (t) = mi (t)∑N
j=1 m j (t)

, (13)

where fiti (t) is the fitness value of the agent i , best(t) and
worst(t) are the best and the worst values of fitness functions
at time t .

Also, the total force acting on agent i at time t in the dth
dimension is computed by Eq. (14):

Fid(t) =
N∑

j∈kbest, j �=i

rand j × Fi j,d(t), (14)

where rand j is a random number in the range of [0, 1]. Kbest
is a function of time, with the initial value K0 at the beginning
and it is linearly decreased step by step. In fact, Kbest is the
set of first K agents with the best fitness value and the biggest
mass.
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The force accelerates the agent i as Eq. (15) and the agent
moves from current position to new position:

aid(t) = Fid(t)

Mi (t)
, (15)

vid(t + 1) = vid(t) + randi× aid(t), (16)

x(t + 1) = xid(t) + vid(t + 1), (17)

where aid(t) represents the acceleration of the i th agent,
vid(t) and xid(t) are the current velocity and position of the
i th agent. Also, vid(t + 1) and xid(t + 1) show the next
velocity and position of the agent i in dimension d at time t
respectively.

Similar to other meta-heuristic algorithms, GSA also has
some weaknesses such as using complex operators and taking
long time to run (Beheshti and Shamsuddin 2013a, b).

2.4 Imperialist competitive algorithm

ICA is a global search optimization algorithm inspired by
imperialistic competition. The algorithm is population-based
including countries and imperialists. Each individual of the
population is called a country. Some of the best countries
with the best cost are chosen as imperialist states and others
named colonies are divided among the imperialists according
to their costs. Empires are formed by imperialist states and
their colonies. After forming the empires, imperialistic com-
petition is started among them to collapse weak empires and
to remain the most powerful empire. To divide the colonies
among the imperialists, the cost and power of each imperi-
alist are normalized and initial colonies are allocated to the
empires as Eqs. (18)–(20):

Cn = cn − max
i

{ci }, (18)

pn =
∣∣∣∣∣

Cn
∑Nimp

i=1 Ci

∣∣∣∣∣ , (19)

N · Cn = round {pn .Ncol}, (20)

where cn is the cost of the nth imperialist and Cn and pn are
the normalized cost and power of the imperialist respectively.
Also, N .Cn is the initial number of colonies related to the nth
empire and Ncol is the total number of initial colonies.

To form the nth empire, the N .Cn of the colonies are ran-
domly selected and allocated to the nth imperialist. In real
world, the imperialist states try to make their colonies as a part
of themselves. This process called assimilation is modelled
by moving all of the colonies toward the imperialist as illus-
trated in the Fig. 3. In this figure, θ and x are random angle
and number with uniform distribution respectively, also; d is
the distance between the imperialist and colony.

Fig. 3 Movement of colonies toward their relevant imperialist

Fig. 4 Imperialistic competition

x ∼ U (0, β × d), (21)

θ ∼ U (−γ, γ ), (22)

where β, γ are parameters which cause colonies to move
their relevant imperialist in a randomly deviated direction.

While a colony moves toward an imperialist, it might
achieve a better position than the imperialist. In this case, the
colony and the imperialist change their positions with each
other. Also, it is possible that a revolution takes place among
colonies which changes the power or organizational struc-
tures of the empire. This revelation is based on a revolution
rate which shows the percentage of colonies that randomly
change their position.

Finally, empires compete together in order to possess and
control other empires’ colonies as shown in Fig. 4. A colony
of the weakest empire is selected and the possession prob-
ability of each empire, Pp, is computed as Eq. (24). The
normalized total cost of an empire, N .T .Cn , is acquired by
Eq. (23) and used to obtain the empire possession probability.

N .T .Cn = T .Cn − max
i

{T .Ci } . (23)

ppn =
∣∣∣∣∣

N .T .Cn
∑Nimp

i=1 N .T .Ci

∣∣∣∣∣ . (24)
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Vector P is formed in order to divide the mentioned
colonies among empires:

P =
[

pp1 , pp2 , pp3 , . . . , ppNimp

]
. (25)

Vector R with the same size as P whose elements are uni-
formly distributed random numbers is created:

R = [
r1, r2, r3, . . . , rNimp

]

r1, r2, r3, . . . , rNimp ∈ U (0, 1).
(26)

Vector D is formed so that the mentioned colony (colonies) is
given to an empire whose relevant index in D is maximized.

D = P − R = [
D1, D2, D3, . . . , DNimp

]
. (27)

According to vector D, the process of choosing an empire is
similar to the roulette wheel in GA. However, this method is
faster because the selection is based on probabilities values.

The competition affects the power of empires and an
empire power will be weaker or stronger. Therefore, all
colonies of the weak empire are owned by more powerful
empires and the weaker one is eliminated. The total power
(cost) of an empire is modelled by adding the power of impe-
rialist country (cost) and a percentage of mean power of its
colonies (colonies costs) as:

T .Cn = Cost(imprialistn)

+ ξ mean
{
Cost(colonies of empiren)

}
, (28)

where T .Cn is the total cost of the nth empire and ξ is a
positive small number.

The competition will go on until remaining one empire or
reaching determined maximum iteration. ICA also has some
drawbacks such as using complex operators, tuning several
parameters and taking long time for running (Beheshti and
Shamsuddin 2013a, b). These limitations do not allow that
ICA is easily used in different problems.

The described algorithms are applied for MLP learning
to classify some medical datasets. In the next section, clas-
sification concept is explained to utilize in medical diseases
diagnosis.

2.5 Classification

Classification is used to understand the existing data and to
predict how new instances will behave. In other words, the
objective of data classification is to classify data in different
classes. Classification techniques include neural networks
(Bishop 1995), decision tree induction (Breiman et al. 1984;
Quinlan 1993) and support vector machines (Cristianini and
Shawe-Taylor 2000). Researchers have employed the meth-
ods to classify different problems (Chen et al. 2007; Mitra
and Wang 2008; Reynolds and Iglesia 2009; Saxena and Saad
2007; Qasem and Shamsuddin 2011; Awad and Motai 2008;
García et al. 2009; Fana et al. 2011; Ekici 2012).

The correct classification is defined by the number of
true positives (TP) and the number of true negatives (TN),
whereas the misclassification is defined by the number of
false positives (FP) and the number of false negatives (FN).
Also, the accuracy of predicting events is measured by Sen-
sitivity computed as TP/total actual positive and Specificity
is a measure of accuracy for predicting nonevents based
on TN/total actual negative of a classifier for a range of
cutoffs. Receiver operating characteristic (ROC) curve is
another concept to analyze the performance of algorithms in
classification problem. ROC is a graphical plot to demon-
strate the quality of classifiers. In other words, the curve
shows the true positive rate (sensitivity) and false positive rate
(1-specificity). AUC is the area under the curve (ROC). Since,
the AUC is a portion of the area of the unit square, its value is
between 0.0 and 1.0. Analyses of sensitivity and specificity
of algorithms are carried out using the following equations
(Fawcett 2006):

Sensitivity = TP

TP + FN
(%), (29)

Specificity = TN

TN + FP
(%), (30)

where TP + FN is the number of positive patterns and TN +
FP is the number of negative patterns in a dataset.

According to the concept, Accuracy can be defined as fol-
lows:

Accuracy = TN + TP

TN + TP + FN + FP
(%) (31)

In the next section, a new meta-heuristic algorithm is intro-
duced to enhance the ANN learning and used to train MLP
for classification problems.

3 Methods

This section introduces CAPSO as a new global optimiza-
tion algorithm to improve the ANN accuracy and follows by
proposing the hybrid learning of CAPSO and MLP (CAPSO-
MLP).

3.1 CAPSO algorithm

The CAPSO algorithm is an efficient optimization algorithm
utilizing mechanics motion laws and PSO algorithm. Accord-
ing to the law, if an object with initial velocity v1 moves from
position x1to position x2 and its velocity modifies to v2during
the time step of �t , the object will be accelerated. Therefore,
the new velocity and position are obtained as follows:

v2 = v1 + a × �t, (32)

x2 = x1 + 1
2 × a × �t2 + v1 × �t, (33)

where a is the object acceleration.
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Regarding the concept, each solution candidate, called a
particle, in CAPSO algorithm has four specifications: posi-
tion, velocity, acceleration and centripetal acceleration. If a
d-dimensional search space with N particles is considered,
the position and velocity of the i th particle are as follows:

→
Xi = (xi1, xi2, . . . , xid) for i = 1, 2, . . . , N . (34)
→
Vi = (vi1, vi2, . . . , vid) for i = 1, 2, . . . , N . (35)

Also, the personal best position of the ith particle,
→
Pi , and the

best position explored by population so far,
→
Pg, are illustrated

using Eqs. (36) and (37):

→
Pi = (pi1, pi2, . . . , pid) for i = 1, 2, . . . , N . (36)
→
Pg = (pg1, pg2, . . . , pgd). (37)

Every particle updates its velocity based on current velocity,
acceleration and centripetal acceleration:

vid(t + 1) = vid(t) + aid(t) + Aid(t), (38)

where vid(t + 1) and vid(t) are the next and current velocity
respectively.

Additionally, aid(t) and Aid(t) represent the acceleration
and centripetal acceleration as follows:

aid(t) = rand × (pid(t)−xid(t))+rand

×(pgd(t)−xid(t)), (39)

Aid(t) = Ei (t) × rand × (pid(t) − pmd(t) − xid(t)),

(40)

where rand is a random number with uniform distribution
in the interval of [0, 1]. xid(t) is the current position, pid(t)
shows the personal best position of the i th particle and pgd(t)
is the global best position explored in the dth dimension.
Also, pmd(t) is the current median position of the swarm in
dimension d and Ei (t) is acceleration coefficient computed
by Eq. (42). Moreover, according to Eq. (33) the next position
of the i th particle is acquired by Eq. (43) as follows:

ei (t) = fiti (t) − GWfit(t), (41)

Ei (t) = ei (t)∑N
j=1 e j (t)

, (42)

xid(t + 1) = xid(t) + 1
2×aid(t) + vid(t + 1) (43)

where fiti (t)represents the fitness value of particle i and
GWfit(t) is the worst fitness value explored so far by the
swarm.

3.2 Analysis and design of the proposed algorithm

In CAPSO algorithm, two terms of acceleration, �ai , and
centripetal acceleration, �Ai , play a key role to increase
the convergence rate. As shown in Fig. 5, if a particle

(a)

(b) P
i

Pg

Xi

Pi-Xi

Vi

Pg-Xi

rand × (Pi –Xi)

rand × (Pg –Xi)+

a i

Ai

Pi

Pg

Xi
Pm

Pi - Pm

-Pm
-Xi

Pi- Pm- Xi
X

Y

Z

Fig. 5 Graphical representation of a �Ai and b �ai

is far from the solutions obtained so far by the swarm
( �Pg, �Pi , �Pm), these terms help to move the particle toward
the solutions. Also, �Ai helps to escape the algorithm from
local optima. Fig. 5a demonstrates the term of �Ai com-
puted based on Eq. (40) and in Fig. 5b, the graphi-
cal representation of �ai has been illustrated according to
Eq. (39).

Figure 6 demonstrates the flowchart of proposed method
and the CAPSO pseudo code has been illustrated in Fig. 7.
As shown in these figures, the velocities and positions of par-
ticles are randomly initialized and each particle is evaluated

based on its fitness value.
→
Pi is computed for each particle

and the best position explored by the swarm is chosen as
→
Pg. The next particles velocity and position will be acquired
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Yes

Return best 
solution

No

Update the next particles velocities

Update the next particles positions

Meeting end of criterion?

Start

Randomly initialize velocities and positions of population

Evaluate fitness of particles for i=1,2,…,N

Calculate ai, Ei and Ai

for i =1, 2, . . ., N

Update pi if fitness i is better than fitness pi
for i=1,2,…,N

Update pg if fitness i is better than fitness pg
for i=1,2,…,N

Fig. 6 Flowchart of CAPSO

Step 1: Starts.

Step 2: Initialize the velocities and positions of population randomly.

Step 3: Evaluate fitness values of particles.

Step 4: Update Pi if particle fitness value i is better than particle best fitness 
value i, for i = 1, 2, . . ., N.

Step 5: Update Pg if particle fitness value i is better than global best fitness 
value, for i = 1, 2, . . ., N.

Step 6: Calculate ai, Ei and Ai for i = 1, 2, . . ., N.

Step 7: Update the next velocities of particles.

Step 8: Update the next positions of particles.

Step 9: Repeat steps 3 to 8 until the stop criterion is reached.

Step 10: Return the best solution.

Fig. 7 CAPSO pseudo code

based on Eqs. (38)–(43). These steps will go on until stop-
ping criterion is met and the best solution is returned by the
algorithm.

3.3 Hybrid learning of CAPSO and MLP network

In this section, CAPSO is used for MLP learning. The
approach is the hybrid learning of CAPSO and MLP net-
work (CAPSO-MLP) to enhance the ability of the network
in term of accuracy. The algorithm will simultaneously deter-
mine the set of weights and its corresponding accuracy
by training the network. The MLP network can be repre-
sented as a vector with dimension D containing the net-
work weights. The vector for MLP is defined as Eq. (44).
To optimize the MLP weights using CAPSO algorithms,
the dimension of each particle is considered as the vector
D:

D = (Input × Hidden) + (Hidden × Output)

+ Hiddenbias + Outputbias, (44)

where Input, Hidden and Output are referred the number of
input, hidden and output neurons of MLP network respec-
tively. Also, Hiddenbias and Outputbias are the number of
biases in hidden and output layers.

Figure 8 shows the flowchart of hybrid leaning of CAPSO
and MLP (CAPSO-MLP). The CAPSO-MLP is started by
collecting, normalizing and reading a dataset. This is fol-
lowed by setting the desired number of input, output and
hidden neurons to determine the dimension of the particles
as Eq. (44). The population is initialized and after MLP train-
ing, the training error is calculated as an objective function.
According to training error, every particle updates its velocity
and position. The new positions are the new weights of MLP
network which should minimize the objective function. The

Yes Return best 
solution

Meet stopping condition?

Start

Data collection and Data processing

Set the number of inputs, output and 
hidden neurons

Set overall best error as Pg and each 
particle best error as Pi for i=1,2,…,N

Read Datasets names

Determine particle dimension

Initialize population

Train neural network

Evaluate learning error

No

Fig. 8 Flowchart of hybrid learning of CAPSO and MLP network
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Table 1 Description of datasets
Dataset Attribute Class Sample Missing data Input Hidden Output

Hepatitis 19 2 155 Yes 19 39 1

Heart Disease 13 2 270 No 13 27 1

Pima Diabetes 8 2 768 Yes 8 17 1

Breast Cancer 32 2 198 Yes 32 65 1

Parkinson’s Disease 22 2 197 No 22 45 1

Echocardiogram 12 2 132 Yes 12 25 1

Liver Disorders 6 2 345 No 6 13 1

Laryngeal 1 16 2 213 No 16 33 1

Acute Inflammations 6 2 120 No 6 13 1

Table 2 MSE of CAPSO-MLP,
PSO-MLP, GSA-MLP and
ICA-MLP for all datasets

MSE CAPSO-MLP PSO-MLP GSA-MLP ICA-MLP

Dataset Train Test Train Test Train Test Train Test

Hepatitis

Mean 0.101 0.197 0.120 0.242 0.149 0.238 0.130 0.210

Min 0.084 0.153 0.118 0.234 0.145 0.217 0.129 0.209

Max 0.122 0.252 0.121 0.246 0.160 0.254 0.131 0.214

Heart Disease

Mean 0.134 0.141 0.167 0.186 0.244 0.244 0.191 0.204

Min 0.123 0.119 0.160 0.176 0.237 0.237 0.189 0.200

Max 0.153 0.168 0.175 0.196 0.252 0.251 0.193 0.205

Diabetes

Mean 0.156 0.200 0.157 0.202 0.217 0.254 0.174 0.217

Min 0.154 0.193 0.156 0.200 0.207 0.240 0.172 0.211

Max 0.159 0.204 0.159 0.205 0.221 0.267 0.176 0.222

Breast Cancer

Mean 0.145 0.170 0.148 0.173 0.179 0.167 0.154 0.177

Min 0.140 0.167 0.146 0.170 0.172 0.160 0.153 0.173

Max 0.148 0.175 0.149 0.179 0.187 0.190 0.155 0.180

Parkinson’s Disease

Mean 0.135 0.076 0.136 0.078 0.198 0.162 0.149 0.080

Min 0.123 0.058 0.134 0.076 0.188 0.134 0.148 0.079

Max 0.138 0.081 0.138 0.080 0.221 0.208 0.150 0.082

Echocardiogram

Mean 0.066 0.089 0.076 0.089 0.178 0.192 0.110 0.111

Min 0.060 0.083 0.073 0.085 0.159 0.162 0.109 0.109

Max 0.069 0.108 0.078 0.093 0.194 0.217 0.111 0.112

Liver Disorders

Mean 0.190 0.193 0.187 0.197 0.251 0.250 0.218 0.216

Min 0.179 0.175 0.177 0.187 0.242 0.240 0.216 0.213

Max 0.200 0.211 0.192 0.205 0.283 0.293 0.219 0.218

Laryngeal 1

Mean 0.105 0.159 0.109 0.171 0.225 0.254 0.139 0.173

Min 0.099 0.148 0.107 0.163 0.208 0.222 0.135 0.168

Max 0.111 0.172 0.112 0.182 0.235 0.275 0.144 0.175
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Table 2 continued
MSE CAPSO-MLP PSO-MLP GSA-MLP ICA-MLP

Dataset Train Test Train Test Train Test Train Test

Acute Inflammations

Mean 0.029 0.017 0.027 0.017 0.253 0.259 0.190 0.177

Min 0.026 0.014 0.025 0.015 0.250 0.244 0.188 0.173

Max 0.034 0.020 0.030 0.019 0.258 0.272 0.192 0.181

Training rank 1 2 4 3

Testing rank 1 2 4 3

Table 3 Comparison of datasets
in term of accuracy (%) ACC (%) CAPSO-MLP PSO-MLP GSA-MLP ICA-MLP

Dataset Train Test Train Test Train Test Train Test

Hepatitis

Mean 87.02 71.29 85.00 68.71 82.18 67.74 82.74 64.52

Min 83.06 67.74 83.87 67.74 81.45 67.74 82.26 64.52

Max 90.32 77.42 85.48 70.97 82.26 67.74 83.06 64.52

Heart Disease

Mean 82.22 81.85 75.65 71.11 55.83 56.67 72.82 66.67

Min 78.24 72.22 74.07 66.67 48.61 51.85 71.30 62.96

Max 84.72 87.04 77.78 74.07 62.96 61.11 73.61 68.52

Diabetes

Mean 78.06 72.99 78.09 72.40 67.36 56.43 73.57 64.61

Min 77.69 71.43 77.20 70.78 67.26 55.84 72.64 63.64

Max 78.83 74.68 78.83 74.03 68.08 56.49 74.76 66.23

Breast Cancer

Mean 79.49 80.25 78.54 78.25 75.51 79.25 78.16 78.25

Min 78.48 77.50 77.85 77.50 74.05 72.50 77.22 77.50

Max 80.38 82.50 79.75 80.00 77.22 80.00 78.48 80.00

Parkinson’s Disease

Mean 83.97 92.56 83.91 92.56 73.65 82.05 82.63 92.31

Min 82.69 89.74 83.33 92.31 73.08 82.05 81.41 92.31

Max 85.90 94.87 84.62 94.87 73.72 82.05 83.33 92.31

Echocardiogram

Mean 92.45 88.46 89.62 84.62 71.32 65.38 89.06 84.62

Min 92.45 88.46 88.68 84.62 67.92 61.54 87.74 84.62

Max 92.45 88.46 90.57 84.62 86.79 84.62 89.62 84.62

Liver Disorders

Mean 72.75 72.32 73.70 72.17 53.19 55.65 70.29 67.68

Min 70.29 69.57 71.38 68.12 42.75 39.13 68.48 65.22

Max 75.00 75.36 76.81 73.91 57.61 62.32 72.46 71.01

Laryngeal 1

Mean 84.18 81.63 85.00 78.37 65.29 56.05 83.47 74.88

Min 83.53 76.74 82.94 76.74 64.12 53.49 80.59 74.42

Max 85.88 86.05 86.47 79.07 67.65 65.12 84.71 76.74

Acute Inflammations

Mean 100.00 100.00 100.00 100.00 50.42 45.00 84.17 94.17

Min 100.00 100.00 100.00 100.00 48.96 41.67 82.29 87.50
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Table 3 continued
ACC (%) CAPSO-MLP PSO-MLP GSA-MLP ICA-MLP

Dataset Train Test Train Test Train Test Train Test

Max 100.00 100.00 100.00 100.00 51.04 58.33 87.50 95.83

Training rank 1 2 4 3

Testing rank 1 2 4 3

Table 4 Comparison of datasets
in term of sensitivity (%) Sensitivity CAPSO-MLP PSO-MLP GSA-MLP ICA-MLP

Dataset Train Test Train Test Train Test Train Test

Hepatitis

Mean 87.47 72.82 85.64 72.32 82.24 67.74 82.66 66.67

Min 84.62 71.43 84.75 72.00 82.11 67.74 82.26 66.67

Max 89.47 75.00 86.21 73.08 82.26 67.74 82.93 66.67

Heart Disease

Mean 80.59 74.63 75.74 68.24 29.15 46.33 71.99 64.82

Min 75.79 65.52 73.26 63.64 0.00 0.00 70.24 60.00

Max 84.62 77.42 80.00 70.83 85.71 100.00 74.07 68.42

Diabetes

Mean 71.14 85.14 71.62 83.25 22.18 4.00 76.92 89.41

Min 70.19 81.58 68.71 78.95 0.00 0.00 72.41 83.33

Max 72.90 91.18 73.83 86.49 64.71 40.00 80.26 94.12

Breast Cancer

Mean 78.06 52.33 69.45 43.00 34.38 7.86 70.00 43.00

Min 72.73 40.00 66.67 40.00 0.00 0.00 63.64 40.00

Max 81.82 66.67 75.00 50.00 100.00 50.00 72.73 50.00

Parkinson’s Disease

Mean 83.34 93.96 82.69 93.96 73.76 82.05 82.29 93.94

Min 82.84 93.75 82.01 93.94 73.55 82.05 81.62 93.94

Max 85.50 94.12 83.46 94.12 74.34 82.05 82.48 93.94

Echocardiogram

Mean 100.00 88.89 88.88 80.00 16.94 26.00 82.79 80.00

Min 100.00 88.89 86.67 80.00 0.00 0.00 80.00 80.00

Max 100.00 88.89 90.00 80.00 94.44 100.00 84.85 80.00

Liver Disorders

Mean 72.31 76.57 73.27 76.27 55.66 49.17 69.52 71.75

Min 70.43 74.42 71.58 73.81 0.00 0.00 67.84 70.45

Max 74.59 77.78 76.40 78.05 100.00 67.50 71.13 75.00

Laryngeal 1

Mean 86.38 82.30 86.41 78.22 65.29 55.02 83.64 73.28

Min 85.22 76.00 85.47 76.00 64.12 53.49 80.65 73.08

Max 88.07 86.96 87.61 79.17 69.57 61.11 84.75 74.07

Acute Inflammations

Mean 100.00 100.00 100.00 100.00 40.73 33.26 98.63 99.00

Min 100.00 100.00 100.00 100.00 0.00 0.00 92.11 90.00

Max 100.00 100.00 100.00 100.00 51.04 41.67 100.00 100.00

Training rank 1 2 4 3

Testing rank 1 2 4 3
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Table 5 Comparison of datasets
in term of specificity (%) Specificity CAPSO-MLP PSO-MLP GSA-MLP ICA-MLP

Dataset Train Test Train Test Train Test Train Test

Hepatitis

Mean 80.68 65.33 74.40 53.00 0.00 0.00 60.00 0.00

Min 57.14 50.00 66.67 50.00 0.00 0.00 0.00 0.00

Max 100.00 100.00 83.33 60.00 0.00 0.00 100.00 0.00

Heart Disease

Mean 83.55 90.21 75.61 73.34 57.29 57.12 73.40 67.78

Min 80.17 80.00 74.62 68.75 52.60 54.17 71.97 64.71

Max 85.00 100.00 77.10 77.78 73.81 63.64 75.20 69.70

Diabetes

Mean 80.44 69.27 80.28 69.00 67.39 56.48 73.14 61.77

Min 80.13 68.07 79.57 68.07 67.26 56.38 72.31 61.15

Max 80.84 70.00 80.70 70.09 68.17 56.49 73.98 62.77

Breast Cancer

Mean 79.62 83.38 79.37 83.00 75.77 80.34 78.80 83.00

Min 78.91 82.86 78.77 82.86 75.32 80.00 78.23 82.86

Max 80.56 83.78 80.42 83.33 77.46 81.82 78.91 83.33

Parkinson’s Disease

Mean 88.28 85.48 93.32 85.00 5.00 0.00 84.95 83.33

Min 81.82 71.43 82.61 83.33 0.00 0.00 80.00 83.33

Max 94.74 100.00 100.00 100.00 50.00 0.00 89.47 83.33

Echocardiogram

Mean 90.00 88.24 89.93 87.50 71.80 65.37 92.07 87.50

Min 90.00 88.24 89.47 87.50 67.92 61.54 90.54 87.50

Max 90.00 88.24 90.79 87.50 93.94 87.50 92.96 87.50

Liver Disorders

Mean 73.75 65.49 74.64 65.33 34.79 18.65 72.17 59.96

Min 69.57 60.00 70.59 59.26 0.00 0.00 70.13 56.00

Max 77.78 70.83 78.82 69.57 52.94 60.00 75.61 64.00

Laryngeal 1

Mean 79.97 80.97 82.20 78.60 48.10 58.57 83.09 77.43

Min 77.05 77.78 76.67 77.78 0.00 0.00 80.43 76.47

Max 86.27 85.00 86.54 78.95 100.00 100.00 85.71 81.25

Acute Inflammations

Mean 100.00 100.00 100.00 100.00 12.29 16.67 76.02 91.60

Min 100.00 100.00 100.00 100.00 0.00 0.00 73.44 82.35

Max 100.00 100.00 100.00 100.00 48.96 58.33 79.66 93.33

Training rank 1 2 4 3

Testing rank 1 2 4 3

function is computed based on mean square error (MSE) as
Eq. (45). These steps will go on until meeting stop conditions.

MSE = 1

P

P∑

j=1

(t j − O j )
2, (45)

where t j and O j are the desired output and the network output
respectively, and P is the number of patterns.

4 Experimental studies

To evaluate the performance of CAPSO-MLP, nine med-
ical datasets (Kuncheva 2005; Bache and Lichman 2013)
are selected as detailed in Table 1. As shown in this table,
the selected datasets of Hepatitis, Heart Disease, Pima Indian
Diabetes, Wisconsin Prognostic Breast Cancer, Parkinson’s
disease and Echocardiogram (Heart attack), Liver Disorders,
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Table 6 Comparison of datasets
in term of AUC AUC CAPSO-MLP PSO-MLP GSA-MLP ICA-MLP

Dataset Train Test Train Test Train Test Train Test

Hepatitis 0.834 0.837 0.753 0.821 0.496 0.441 0.748 0.792

Heart Disease 0.897 0.876 0.841 0.791 0.624 0.621 0.785 0.738

Diabetes 0.837 0.808 0.834 0.806 0.642 0.628 0.812 0.787

Breast Cancer 0.810 0.630 0.794 0.605 0.667 0.551 0.769 0.567

Parkinson’s Disease 0.804 0.912 0.775 0.898 0.562 0.596 0.720 0.865

Echocardiogram 0.960 0.902 0.913 0.857 0.464 0.477 0.894 0.858

Liver Disorders 0.733 0.710 0.740 0.708 0.452 0.386 0.709 0.659

Laryngeal 1 0.931 0.870 0.925 0.860 0.607 0.606 0.904 0.847

Acute Inflammations 1.00 1.00 1.00 1.00 0.325 0.310 0.873 0.953

Laryngeal 1 and Acute Inflammations are in the class of
binary classification problems. Each dataset will be repre-
sented as input patterns and outputs in hybrid learning of
MLP network. Therefore, the effectiveness and performance
of MLP network learning have been verified using different
datasets. CAPSO, PSO, GSA and ICA algorithms are used
for MLP learning on these datasets to assess the ability of
proposed approach. In this context, the hybrids of the algo-
rithms and MLP network are called PSO-MLP, GSA-MLP
and ICA-MLP respectively.

4.1 Datasets design

The Hepatitis dataset problem is a complex and noisy
data and has a large number of missing data (167 miss-
ing values in total dataset). The classification should predict
whether a patient with hepatitis will live or die. There are 19
attributes/inputs and the output classes’ distribution is live:
123 and die: 32.

The absence or presence of heart disease is predicted
by Statlog (Heart Disease) dataset. This dataset contains
13 attributes/inputs and the output classes’ distribution is
absence: 150 and presence: 120.

The Pima Indian Diabetes dataset diagnoses a person
based on personal data and medical examination has Diabetes
or not. There are 8 attributes/inputs and the output class distri-
bution is Diabetes positive: 268 and Diabetes negative: 500.

The aim of the Wisconsin Prognostic Breast Cancer
(WPBC) dataset is to predict whether a tumor is recurrence
or non-recurrence. Each record represents a follow-up data
for one breast cancer case. There are 33 attributes/inputs
and the output class distribution is recurrence: 47 and non-
recurrence: 151.

The objective of Parkinson’s disease dataset is to discrimi-
nate healthy people from those with Parkinson’s disease. This
dataset is composed of a range of biomedical voice measure-
ments with 22 attributes/inputs and the output class distrib-
ution is health status: 147 and Parkinson’s disease: 48.

In the dataset of Echocardiogram, all patients have suf-
fered from heart attacks at some points in the past. Some of
them are still alive and some are not. The dataset has 132 sam-
ples and 12 attributes/inputs. The number of missing values
in total dataset is 132 and the distribution of output attribute
is alive: 43, dead: 88 and missing value: 1.

The main aim of the Liver Disorders dataset is to diag-
nose a patient as healthy (normal) or abnormal. It has six
attributes/inputs and two output classes (abnormal or nor-
mal). The first five variables are all blood tests which are
thought to be sensitive to liver disorders that might arise
from excessive alcohol consumption. This dataset contains
345 examples in, where 200 are negative examples (normal)
and 145 are positive examples (abnormal). Each line in the
Liver Disorders dataset constitutes the record of a single male
individual.

The Laryngeal 1 dataset is applied to diagnose the laryn-
geal pathology as normal and pathological voices. The num-
ber of attributes/inputs is 16 (all continuous-valued). The
total instances is 213 and the distribution of output attribute
is 81 Normal and 132 Pathological voices.

The idea of Acute Inflammations dataset is to diagnose two
diseases of urinary system: Inflammation of urinary bladder
and Nephritis of renal pelvis origin. The basis for rules detec-
tion is Rough Sets Theory. The dataset has 120 samples and 6
attributes/inputs. In this paper, the algorithms are evaluated to
classify the Inflammation of urinary bladder output. The dis-
tribution of output attribute is Positive: 59 and Negative: 61.

The datasets are processed for better generalization of
error and accuracy. Normally, real world data are noisy
because they are incomplete and inconsistent. The datasets
are normalized and missing data values are separately
replaced by the mean of attributes values.

4.2 Experimental setup

The mentioned datasets are partitioned into two as training
and testing sets. The training set is used to train the net-
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Fig. 9 Training errors (MSE) of CAPSO-MLP, PSO-MLP, GSA-MLP
and ICA-MLP for a Hepatitis, b Heart Disease and c Breast Cancer
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Fig. 10 ROC curve of a training data for Heart Disease and b testing
data for Heart Disease

work in order to achieve the optimal weights. The testing set
is applied on unseen data to test the generalization perfor-
mance of meta-heuristic algorithms on MLP network. For
each dataset, 80 % of data are employed for the training set
and the rest 20 % for the testing set.

The number of input and output neurons in MLP net-
work is problem-dependent and the number of hidden nodes
is computed as Kolmogorov theorem (Hecht-Nielsen 1987)
based on input neurons:

Hidden = 2 × Input + 1. (46)
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The number of iterations is set to 500 for all datasets.
The population size is considered 40 in CAPSO, PSO and
GSA; also, the number of countries and imperialist are 160
and 8 in ICA respectively. In PSO, w is set to 0.7 and lin-
early decreased to 0.4 and Vmax is set to 0.5. The accelera-
tion coefficients C1 and C2 are equal to 2. In ICA, revolu-
tion rate = 0.5, β = 2, γ = 0.5 and ξ = 0.02 (Tayefeh-
Mahmoudi et al. 2013) are considered. Besides, G in GSA
is computed as Eq. (47):

G(t) = G0e
−αt

T (47)

where G0 and α are set to 100 and 20 respectively; also, T is
set to the maximum iteration. At the beginning, Kbest in Eq.
(14) is initialized with 40 (population size) and then linearly
decreased to 1.

4.3 Results and discussion

This section presents the results of CAPSO, PSO, GSA and
ICA adapted on MLP network. The experiments are con-
ducted using the nine medical datasets. In this study, all
datasets have been partitioned into two sets: training set
and testing set. The training set is used to train the network
in order to achieve the optimal weights. The testing set is
applied on unseen data to test the generalization performance
of meta-heuristic algorithms on MLP network.

The algorithms are independently run 10 times and the
results are shown in Tables 2, 3, 4, 5 and 6. In these tables,
the Mean, Min and Max indicate the average, minimum and
maximum value respectively. Also, the algorithms are ranked
based on the mean solution in each row of tables and the rank
of algorithms is calculated in the each column of table.

Table 2 demonstrates the training and testing error (MSE)
of MLP network based on the mentioned algorithms on
Hepatitis, Heart Disease, Diabetes, Breast Cancer, Parkin-
son’s disease, Echocardiogram, Liver Disorders, Laryngeal
1 and Acute Inflammations datasets. In the table, the training
and testing ranks signify that CAPSO-MLP has better con-
vergence rate in comparison with other algorithms. In con-
trast, GSA-MLP shows the worst convergence rate among the
algorithms. Also, Fig. 9 illustrates the training error (MSE)
of CAPSO-MLP, PSO-MLP, GSA-MLP and ICA-MLP on
the Hepatitis, Heart Disease and Breast Cancer datasets. As
observed, CAPSO-MLP provides the lower error training for
all datasets in contrast; GSA-MLP shows the worst MSE
among the algorithms.

Table 3 presents the classification accuracy of CAPSO-
MLP, PSO-MLP, GSA-MLP and ICA-MLP over ten inde-
pendent runs on the datasets. The accuracy refers to the per-
centage of correct classification on training and testing data
respectively. As depicted in this table, CAPSO-MLP pro-
vides the best performance on unseen data (testing data):

Hepatitis with 71.29 %, Heart Disease with 81.85 %, Dia-
betes with 72.99 %, Wisconsin Prognostic Breast Cancer
with 80.25 %, Parkinson’s disease with 92.56 %, Echocar-
diogram (Heart attack) with 88.46 %, Liver Disorders with
72.32 %, Laryngeal 1 with 81.63 % and Acute Inflamma-
tions with 100 %. Also, it is noticeable that the proposed
method has the highest classification accuracy for Hepati-
tis and Echocardiogram datasets, containing missing data,
compared to the other algorithms. Also, GSA-MLP shows a
lower accuracy among them.

In addition, to evaluate the classification abilities of
CAPSO-MLP, PSO-MLP, GSA-MLP and ICA-MLP, a com-
parison of the algorithms in the terms of Sensitivity, Speci-
ficity and AUC has been performed as shown in Tables 4, 5
and 6.

In terms of Sensitivity and Specificity, the proposed
method has offered better results than the others algorithms.
In other words, CAPSO-MLP presents better Sensitivity and
Specificity on testing data (unseen data).

As shown in Table 6, the proposed method provides the
best AUC both in training and testing sets, except in Liver
Disorders dataset. Among the algorithms, GSA-MLP has the
lowest AUC, both in training and testing data. The better
results of CAPSO-MLP are also observable in Fig. 10. As the
ROC of training and testing Heart Disease illustrate, CAPSO-
MLP has yielded the best AUC on the dataset.

Further, in order to determine whether the results achieved
by the algorithms are statistically different from each other,
t-test (Box et al. 2005) and Wilcoxon’s signed ranks test
(Wilcoxon 1945) are conducted between the results obtained
by the proposed algorithm, CAPSO-MLP, with PSO-MLP,
GSA-MLP and ICA-MLP. The tests are performed on
datasets for training and testing accuracy. In these tests, a
p-value is computed and as shown in Table 7, if p-value is
greater than the significance level of α = 0.05, there are no
significant differences between algorithms; otherwise, there
are significant differences. In the table, the symbols ‘>’ and
‘=’ mean the algorithm on the left side is significantly and
no significantly better than the algorithm on the right side
respectively. As illustrated, there are significant differences
between CAPSO-MLP and the other algorithms.

5 Conclusions

In this paper, an improved scheme of particle swarm algo-
rithm (PSO) and Newtonian’s motion laws, called centripetal
accelerated particle swarm optimization (CAPSO) has been
proposed to accelerate the learning and convergence proce-
dure of classifiers. CAPSO has been adapted on MLP net-
work to optimize the accuracy and the weights of the net-
work. The obtained results of nine medical disease diagnosis
benchmarks indicate that the proposed method provides bet-
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ter results than PSO-MLP, GSA-MLP and ICA-MLP in terms
of good convergence rate and classification accuracy. The
superiority of CAPSO-MLP against other methods is con-
siderable especially in unseen data (testing data) and datasets
with high missing data values.

The main advantages of CAPSO for neural network learn-
ing are the simple concept, the ease of implementation and
the needless to tune to any algorithm-specific parameters.
The algorithm requires only common controlling parameters
such as the number of generation and population size. There-
fore, it can be concluded that the proposed method is a viable
tool to evolve the neural network learning and accuracy.
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Elveren E, Yumuşak N (2011) Tuberculosis disease diagnosis using
artificial neural network trained with genetic algorithm. J Med Syst
35:329–332

Er O, Sertkaya C, Temurtas F, Tanrikulu AC (2009) A comparative study
on chronic obstructive pulmonary and pneumonia diseases diagnosis
using neural networks and artificial immune system. J Med Syst
33:485–492

Fana CY, Changb PC, Linb JJ, Hsiehb JC (2011) A hybrid model com-
bining case-based reasoning and fuzzy decision tree for medical data
classification. Appl Soft Comput 11:632–644

Farmer JD, Packard NH, Perelson AS (1986) The immune system, adap-
tation and machine learning. Phys D 2:187–204

Fausett LV (1994) Fundamentals of neural networks: architectures,
algorithms, and applications. Prentice-Hall, New Jersey

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit
Lett 27:861–874

Folland R, Hines E, Dutta R, Boilot P, Morgan D (2004) Comparison of
neural network predictors in the classification of tracheal-bronchial
breath sounds by respiratory auscultation. Artif Intell Med 31:211–
220

Gao WF, Liu SY, Huang LL (2012) Particle swarm optimization with
chaotic opposition based population initialization and stochastic
search technique. Commun Nonlinear Sci Numer Simul 17:4316–
4327

García S, Fernández A, Herrera F (2009) Enhancing the effectiveness
and interpretability of decision tree and rule induction classifiers with
evolutionary training set selection over imbalanced problems. Appl
Soft Comput 9:1304–1314

Gori M, Tesi A (1992) On the problem of local minima in backpropa-
gation. IEEE Trans Pattern Anal Mach Intell 14:76–85

Gurney KN (1997) An introduction to neural networks. Routledge
Handels H, Roß TH, Kreusch J, Wolff HH, Poppl SJ (1999) Feature

selection for optimized skin tumor recognition using genetic algo-
rithms. Artif Intell Med 16:283–297

Hecht-Nielsen R (1987) Kolmogorov’s mapping neural network exis-
tence theorem. In: Proceedings of IEEE international conference on
neural networks, pp 11–14

Heckerling PS, Gerber BS, Tape TG, Wigton RS (2004) Use of genetic
algorithms for neural networks to predict community-acquired pneu-
monia. Artif Intell Med 30:71–84

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward
networks are universal approximators. Neural Netw 2:359–366
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