
Soft Comput (2014) 18:2201–2207
DOI 10.1007/s00500-013-1194-4

METHODOLOGIES AND APPLICATION

Uncertain minimum cost flow problem

Sibo Ding

Published online: 5 December 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract The aim of this paper is to give an uncertainty dis-
tribution of the least cost of shipment of a commodity through
a network with uncertain capacities. Uncertainty theory is
used to deal with uncertain capacities, and an α-minimum
cost flow problem model is proposed. After defining the α-
minimum cost flow, the properties of the model are analyzed,
and then an algorithm for uncertain minimum cost flow prob-
lem is developed. The algorithm can be considered as a gen-
eral solution to the uncertain minimum cost flow problem.
To demonstrate the efficiency of the proposed algorithm, a
numerical example is illustrated.

Keywords Minimum cost flow problem · Uncertainty
theory · Uncertain programming · Network simplex
algorithm

1 Introduction

The minimum cost flow problem is the central issue of net-
work flow theory. Many other problems, such as transporta-
tion problem, assignment problem, the shortest path and max-
imum flow problems are special cases of the problem. There
are several efficient algorithms for the minimum cost flow
problem. Jewell (1958), Iri (1960), Busacker and Gowen
(1960) independently developed the initial form of succes-
sive shortest path algorithm. The successive shortest path
algorithm maintains optimal solution at every step and tries
to attain a feasible flow. Yakovleva (1959), Minty (1960), and
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Fulkerson (1961) studied the special structure of the mini-
mum cost network flow and designed out-of-kilter algorithm
for adjusting arcs that fail to satisfy the optimality properties.
After that, Ford and Fulkerson (1962) described the primal-
dual algorithm for solving the minimum cost flow problem. In
addition, Klein (1967) studied how to maintain feasible flow
at every step and strive to achieve optimal solution, and then
proposed the cycle canceling algorithm. Moreover, in order
to design efficient solution algorithm, some researchers used
scaling approach to design polynomial time algorithms for
the minimum cost flow problem. Edmonds and Karp (1972)
introduced a capacity scaling technique to reduce the number
of iterations. Röck (1980) was the first to propose cost scaling
algorithm for solving the minimum cost flow problem. Other
scholars used ideas from lagrangian relaxation to design new
algorithms. Bertsekas (1986) proposed ε-relaxation method
for the classical minimum cost flow problem. After that, Bert-
sekas and Castañon (1993) introduced auction algorithm to
improve the efficiency of the ε-relaxation method. The auc-
tion algorithm can change two node prices per iteration while
ε-relaxation method only change one node price. Further-
more, Ciurea and Ciupalâ (2004) presented sequential and
parallel algorithms for minimum flows by modifying pre-
flow algorithms for maximum flow. Paparrizos et al. (2009)
introduced an exterior simplex type algorithm for the mini-
mum cost flow problem.

In classical minimum cost flow problem, each arc has
a known capacity and cost. In practice, unfortunately, the
situation is complicated by the fact that arc capacities or
costs may change in some probabilistic fashions. Williams
(1963) considered the demand for the commodity is a ran-
dom variable. Following Williams, Connors and Zangwill
(1971) studied multistage minimum cost network flow prob-
lem. They assumed the node requirements are discrete ran-
dom variables with known conditional probability distribu-
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tions. In order to study stochastic minimum cost multicom-
modity transport network, Wollmer (1980) created a stochas-
tic generalized multicommodity network. The stochastic net-
work performance depends on random variables. Some other
researchers studied the probability of the existence of a fea-
sible flow. Prékopa and Boros (1991) proposed a method to
find sharp lower and upper bounds for the probability that
a feasible flow exists in a stochastic transportation network.
Moreover, Boyles and Waller (2010) analyzed a minimum
cost flow problem in which only the mean and variance of
arc cost are assumed to be known.

However, in reality, the capacities of network may not
be accurately measured according to probability theory. For
instance, indeterminacy factors, such as storm or traffic con-
gestions, will influence arc capacities. In fact, we may do
not get probability distribution of arc capacities due to lack
of information. In order to treat non-random phenomena,
Zadeh (1965) defined the concept of fuzzy set. Moreover,
Zadeh (1978) gave the concept of possibility measure to
describe fuzzy events. But Zadeh’s fuzzy theory has been
challenged by many researchers. The center of controversy
lies that the measure of union of events does not necessar-
ily equal the maximum of measures of individual events.
When we do not have enough samples to estimate a proba-
bility distribution of arc capacities, we have to invite experts
to give the belief degree of arc capacities. It depends on
the personal knowledge about the capacities. In this situa-
tion, if we insist on using both probability theory and fuzzy
set theory to deal with belief degree, counterintuitive results
may occur (Liu 2012). To model the nature of human uncer-
tainty, Liu (2007, 2009a) founded uncertainty theory based
on normality axiom, duality axiom, subadditivity axiom and
product axiom. Since then, researchers have actively studied
uncertainty theory and its applications. Liu (2007) introduced
uncertain variable and uncertainty distribution to describe
quantities with uncertainty. After that, a sufficient and nec-
essary condition for uncertainty distribution was given by
Peng and Iwamura (2010). In addition, Liu (2010) proved a
measure inversion theorem. Moreover, in order to calculate
the uncertainty distribution of monotone function of indepen-
dent uncertain variables, Liu (2010) proposed the operational
law. Expected value is the average value of uncertain variable
in the sense of uncertain measure. Liu and Ha (2010) proved
a formula for calculating the expected values of monotone
functions of uncertain variables. Uncertain programming is
a type of mathematical programming involving uncertain
variables. Liu (2009b) founded uncertain programming the-
ory. On the basis of uncertain programming theory, Liu and
Yao (2012) presented an uncertain multilevel programming
for modeling uncertain decentralized decision systems. Fol-
lowing that, Liu and Chen (2013) developed an uncertain
multiobjective programming and an uncertain goal program-
ming. Wang et al. (2013) proposed a new price discrimina-

tion model in labor market, where employee’s capability is
assumed to be an uncertain variable. In addition, Chen and
Gao (2013) valued zero-coupon bond under framework of
uncertainty theory.

Uncertain network and uncertain graph can be conve-
niently used to represent many the real-world systems. Liu
(2010) first exploited uncertain network theory for model-
ing project scheduling problem. Han and Peng (2010) used
numerical method to solve the uncertain maximum flow
problem. Gao (2011) derived the uncertainty distribution of
the shortest path length under the framework of uncertainty
theory. In addition, Gao (2012) applied uncertainty theory to
solve uncertain facility location problem. In order to study the
influence of indeterminacy factors on the graph, Gao and Gao
(2013) proposed uncertain graph. In addition, Gao (2013)
provided the concepts of cycle index of uncertain graph.

In this paper, we extend previous work to uncertain mini-
mum cost flow problem, where capacities are uncertain vari-
ables. The rest of this paper is arranged as follows: In Sect.
2, we first give a brief introduction of uncertainty theory. In
Sect. 3, α-minimum cost flow model is proposed and proper-
ties of the model are analyzed. In Sect. 4, solution algorithm
is developed. In Sect. 5, a numerical example is illustrated.
Finally, a brief summary is provided in Sect. 6.

2 Preliminary

This section will present basic concepts, useful definitions
and theorems of uncertainty theory.

Let � be a nonempty set, and L a σ -algebra over �. Each
element � ∈ M is called an event. Let (�, L) be measurable
space. A set function M from L to [0, 1] is called an uncer-
tain measure if it satisfies normality axiom, duality axiom,
subadditivity axiom and product axiom (Liu 2007, 2009a).

Definition 1 (Liu 2007) An uncertain variable is a function
from an uncertainty space (�, L, M) to the set of real num-
bers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ �|ξ(γ ) ∈ B}
is an event.

Definition 2 (Liu 2007) The uncertain variables ξ1, ξ2,
. . . , ξn are said to be independent if

M

{
n⋂

i=1

{ξi ∈ Bi }
}

=
n∧

i=1

M{ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Definition 3 (Liu 2007) The uncertainty distribution Φ of
an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x}
for any real number x .
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The zigzag uncertainty distribution ξ ∼ Z(a, b, c) has an
uncertainty distribution

Φ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i f x ≤ a

(x − a)/2(b − a), a ≤ x ≤ b

(x + c − 2b)/2(c − b), b ≤ x ≤ c

1, i f x ≥ c.

The expected value of an uncertain variable is defined as
follows.

Definition 4 (Liu 2007) Let ξ be an uncertain variable. Then
the expected value of ξ is defined by

E[ξ ] =
+∞∫
0

M{ξ ≥ r}dr −
0∫

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

Definition 5 (Liu 2010) An uncertainty distribution Φ(x) is
said to be regular if it is a continuous and strictly increasing
function with respect to x at which 0 < M(x) < 1, and

lim
x→−∞ Φ(x) = 0, lim

x→+∞ Φ(x) = 1.

Zigzag uncertain variable has a regular uncertainty dis-
tribution. In reality, we usually assume that all uncertainty
distributions are regular. Otherwise, we can impose a small
perturbation to get a regular one.

A real-valued function f (x1, x2, . . . , xn) is said to be
strictly increasing if

f (x1, x2, . . . , xn) ≤ f (y1, y2, . . . , yn)

whenever xi ≤ yi for i = 1, 2, . . . , n, and

f (x1, x2, . . . , xn) < f (y1, y2, . . . , yn)

whenever xi < yi for i = 1, 2, . . . , n.
If f (x1, x2, . . . , xn) is a strictly increasing function, then

− f (x1, x2, . . . , xn) is a strictly decreasing function.

Theorem 1 (Liu 2010) Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
Φ1, Φ2, . . . , Φn, respectively. If the function f (x1, x2, . . . ,

xn) is strictly increasing with respect to x1, x2, . . . , xm and
strictly decreasing with respect to xm+1, xm+2, . . . , xn, then

ξ = f (x1, x2, . . . , xn)

is an uncertain variable with inverse uncertainty distribution


−1(α) = f (Φ−1
1 (α),Φ−1

2 (α), . . . , Φ−1
m (α),

Φ−1
m+1(1 − α), . . . , Φ−1

n (1 − α)).

3 Mathematical formulation

This paper considers uncertain minimum cost flow problem.
The optimization problem is to determine the minimum cost
plan for sending flow through the network to satisfy supply
and demand requirements. The arc flows must be nonnega-
tive and be no greater than uncertain arc capacities with a
predetermined confidence level. The arc flows must satisfy
conservation of flow at all nodes.

Generally, a deterministic directed network is denoted as
G = (N , A), where N is a finite set of nodes with |N | = n
and A = {(i, j)|i, j ∈ N } is the set of arcs with |A| = m.
Each arc (i, j) ∈ A has a cost ci j that denotes unit cost of
flow through arc (i, j), and a capacity ui, j that denotes the
maximum amount that can flow through the arc (i, j). We
also associate with each node i ∈ N a number b(i) indicating
its demand or supply (Since total supply must equal to total
demand,

∑n
i=1 b(i) = 0). (1) If b(i) > 0, node i is a supply

node; (2) If b(i) < 0, node i is a demand node; (3) If b(i) = 0,
node i is a transshipment node. Because computers store
capacities as rational numbers and rational numbers can be
converted to integer numbers by multiplying a proper large
number (Ahuja et al. 1993), in this paper all these data are
assumed to be rational numbers.

Denote x = {xi j |(i, j) ∈ A} as the set of flow through arc
(i, j). Then, the linear programming of the classical mini-
mum cost flow problem can be formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
∑

(i, j)∈A ci j xi j

subject to :∑
j :(i, j)∈A xi j − ∑

j :( j,i)∈A x ji = b(i),∀i ∈ N (A1)

xi j ≤ ui j ,∀(i, j) ∈ A (A2)

xi j ≥ 0,∀(i, j) ∈ A, (A3)

(1)

where
∑n

i=1 b(i) = 0.
The objective is to minimize the arc costs over all arcs

in the network. Constraints (A1) stipulate that the net flow
out of node i must equal b(i), ∀i ∈ N . Constraints (A2)

and constraints (A3) ensure that the flow through each arc
satisfies the arc capacity restrictions.

In classical deterministic minimum cost flow problem, the
capacity of each arc requires a nonnegative crisp value. How-
ever, in practice, capacities usually are not fixed. If we have
enough data, we may create probability distributions of arc
capacities. Unfortunately, sometimes we cannot obtain prob-
ability distributions of arc capacities due to influence of inde-
terminacy factors (congestion, accidents and weather condi-
tions). But experts can give belief degree to describe distrib-
utions of arc capacities. In this paper, we employ uncertainty
theory to deal with belief degree. Define a set of uncertain
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capacities ξ = {ξi j |(i, j) ∈ A}. Then, we denote uncertain
network as G̃ = (N , A, ξ).

Uncertain programming is a commonly used method for
practical decision making problems. When the decision-
makers wish that the flow satisfies some chance constraints,
the α-minimum cost flow model is formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
∑

(i, j)∈A ci j xi j

subject to :∑
j :(i, j)∈A xi j − ∑

j :( j,i)∈A x ji = b(i),∀i ∈ N (B1)

M{xi j ≤ ξi j } ≥ α, ∀(i, j) ∈ A (B2)

xi j ≥ 0, ∀(i, j) ∈ A (B3)

(2)

where
∑n

i=1 b(i) = 0.
Constraints (B2) are chance constraints, which mean that

the flow need satisfy flow bound constraints with a given
confidence level α.

A flow is feasible if it satisfies mass balance constraints
(B1) and capacity constraints (B2) and (B3). A feasible flow
x∗ is the optimal cost flow of model (2), if for any feasible
flow x , we can obtain

∑
(i, j)∈A

ci j x∗
i j ≤

∑
(i, j)∈A

ci j xi j .

The feasible flow x∗ is called as the α-minimum cost flow.
The reason that the classical deterministic problem can be

solved so efficiently is that it can be formulated as a linear pro-
gramming problem, and a number of algorithmic approaches
for solving this problem have been developed. It implies that
if we can transform α-minimum cost flow model into its crisp
equivalent, and then the model can be solved by classic algo-
rithms. Therefore, we need to convert the chance constraints
(B2) into their crisp equivalents.

Theorem 2 Let ξi j be independent uncertain variables with
regular uncertainty distributions Φ(x) for all arc (i, j) ∈ A,
respectively. Then model (2) is equivalent to the following
deterministic programming problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
∑

(i, j)∈A ci j xi j

subject to :
xi j ≤ Φ−1

i j (1 − α), ∀(i, j) ∈ A

Constraints (B1) and (B3).

(3)

Proof Since constraints (B2) of model (2) are M{xi j ≤
ξi j } ≥ α, ∀(i, j) ∈ A and ξi j are regular uncertain variables.

We have

M{xi j ≤ ξi j } = 1 − M{ξi j ≤ xi j } ≥ α, ∀(i, j) ∈ A.

Thus, we obtain

M{ξi j ≤ xi j } ≤ 1 − α, ∀(i, j) ∈ A.

Then, according to Theorem 1, constraints (B2) are equiv-
alent to the following form,

xi j ≤ Φ−1
i j (1 − α), ∀(i, j) ∈ A.

Thus, the α-minimum cost flow of model (2) is equivalent to a
deterministic minimum cost flow of model (3) with capacities
Φ−1

i j (1 − α) for all arc (i, j) ∈ A.
The proof is completed. 
�
Theorem 2 shows that given α, we may obtain the mini-

mum cost over all arcs by using effective classic algorithms
such as network simplex algorithm. Thus, choosing different
α and solving the model (3), we can obtain the uncertainty
distribution of the minimum cost.

Next, we further analyze the properties of model (3).

Theorem 3 Assume that ξi j are independent uncertain vari-
ables with regular uncertainty distributions Φ(x) for all arc
(i, j) ∈ A, respectively. The model (3) subject to constraints
(B2) is nondecreasing with respect to confidence level α.

Proof Let S(α) denote the feasible set of constraints (B2)

with respect to confidence level α. Assume that α1 ≤ α2.
Then, it is easy to obtain

Φ−1
i j (1 − α1) ≥ Φ−1

i j (1 − α2).

Thus, according to Theorem 2, S(α1) ⊇ S(α2), which means
that feasible set of model (3) with respect to α1 is more
extended than that with respect to α2. Thus, the optimal value
with respect to α2 is greater than or equal to the optimal value
with respect to α1.

The proof is completed. 
�
Corollary 1 If the feasible set provided by constraints (B2)
is empty for α1, the feasible set of constraints (B2) remains
empty for any α > α1.

Proof It follows from Theorem 3 immediately.
Corollary 1 permits us to select the bisection method to

find the greatest confidential level α that yields a feasible
flow. 
�

4 Solution algorithm

Simulation method was usually used to obtain an optimal
solution to uncertain programming problem. But it may
impossible to quantify how close to an optimal solution.
However, Theorem 2, Theorem 3 and Corollary 1 provide a
better way to get the optimal solution. Because simplex algo-
rithm and network simplex algorithm are widely considered
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to be some of the fastest algorithms in practice, we just only
need to use bisection method and Big M method to obtain
initial feasible solution, and then employ network simplex
algorithm for solving model (3). Hence, we can design the
following optimal solution algorithm for uncertain minimum
cost flow problem (UMCFP).

UMCFP Algorithm:

Step 1. Set a = 0, a = 1 and ε = 10−3 (error tolerance).
Step 2. If a − a > ε, set α = (a + a)/2, construct the

corresponding deterministic network G = (N , A), set the
capacity of each arc ui j equal to Φ−1

i j (1 −α), and go to Step
3. Otherwise go to Step 4.

Step 3. Employ Big M method to obtain initial feasible
solution. If cannot find feasible solution, set α = a, go to
Step 2. Otherwise set α = a, go to Step 2.

Step 4. Set α = a, construct the deterministic network
G = (N , A), and set the capacity of each arc ui j equal to
Φ−1

i j (1 − α).
Step 5. Employ network simplex algorithm to obtain the

minimum total cost and α-minimum cost flow in network G.
In next section, we give an example to illustrate the algo-

rithm.

5 Numerical example

The network G̃ = (N , A, ξ) is shown in Fig. 1. Capacity and
cost of each arc (i, j) are listed in Table 1. We can obtain the
following:

1. the α-minimum cost flow and the minimum total cost when
α = 0.4;

2. the uncertainty distribution of the minimum total cost.

If ξi j is a constant, we stipulate Φ−1(α) = c for any
α ∈ (0, 1). When α = 0.4, we calculate Φ−1

i j (1 − 0.4) for
each ξi j . The values are listed in Table 1.

Fig. 1 Network G̃ for example

Table 1 List of capacities, costs and Φ−1
i j (1 − 0.4)

arc (i, j) ξi j ci j Φ−1
i j (1 − 0.4)

(1, 2) Z(1, 3, 10) 12 4.4

(1, 3) Z(2, 6, 8) 1 6.4

(2, 3) 5 1 5

(2, 4) Z(1, 2, 4) 8 2.4

(3, 4) Z(2, 4, 8) 3 4.8

Fig. 2 Network G̃ when α = 0.4

Fig. 3 0.4-minimum cost flow

Using the data in Table 1, we create a deterministic net-
work G = (N , A) shown in Fig. 2. The capacity of arc
(i, j) ∈ A is Φ−1

i j (1 − 0.4).

We employ the network simplex algorithm to obtain the
optimal solution. Figure 3 shows the 0.4-minimum cost flow.
The minimum total cost = 12 · 0 + 1 · 5 + 1 · 4.8 + 8 · 0.2
+ 3 · 4.8 = 25.8.

Selecting different α, we obtain Table 2. Repeating this
process, we can obtain the uncertainty distribution of the
minimum total cost shown in Fig. 4.

It is worth pointing out that according to UMCFP algo-
rithm, we can find the minimum α = 0.666(1 − α = 0.334)

is the greatest confidential level that yields a feasible flow
with the error tolerance ε = 10−3. If we want to increase
accuracy, we only need to decrease the value of ε.
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Table 2 List of α-minimum
cost flows and the minimum
total costs

α x12 x13 x23 x24 x34
∑

(i, j)∈A
ci j xi j

0.666 0.328 4.672 3.664 1.664 3.336 35.592

0.566 0 5 3.736 1.264 3.736 30.056

0.466 0 5 4.272 0.728 4.272 27.912

0.4 0 5 4.8 0.2 4.8 25.8

0.366 0 5 5 0 5 25

0.266 0 5 5 0 5 25

0.166 0 5 5 0 5 25

0.066 0 5 5 0 5 25

0 0 5 5 0 5 25

25 26 27 28 29 30 31 32 33 34 35 36
0

0.066

0.166

0.266

0.366
0.4

0.466

0.566

0.666

Fig. 4 Uncertainty distribution of the minimum total cost

6 Conclusion

This paper extends the classical minimum cost flow prob-
lem to uncertain minimum cost flow problem. The general
form of minimum cost flow model with uncertain capaci-
ties is investigated. To deal with uncertain capacities, we use
uncertainty theory to handle indeterminacy factors on capac-
ities. Prosperity investigation is carried out to reveal charac-
teristics of the proposed model, and the UMCFP algorithm
for the model is developed. The algorithm can easily trans-
form the uncertain minimum cost problem into a classical
deterministic problem, and then solve it efficiently. At last,
a numerical example is presented to illustrate the algorithm.
These results may have many applications in uncertain net-
work optimization.
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