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Abstract In this paper, the fuzzy variational iteration
method is proposed to solve the nonlinear fuzzy differ-
ential equation (NFDE). The convergence and the maxi-
mum absolute truncation error of the proposed method are
proved in details. Some examples are investigated to ver-
ify convergence results and to illustrate the efficiently of the
method.
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1 Introduction

As we know the fuzzy differential equations are one of the
important part of the fuzzy analysis theory that play major
role in numerical analysis. For example, population models
(Guo et al. 2003), the golden mean (Datta 2003), quantum
optics and gravity (El Naschie 2005), control chaotic systems
(Feng and Chen 2005; Jiang et al. 2005), medicine (Abbod
et al. 2001; Barro and Marin 2002). Recently, some mathe-
maticians have studied F DE (Abbasbandy and Allahviran-
loo 2002; Abbasbandy et al. 2004, 2005; Allahviranloo et
al. 2007; Bede 2008; Bede and Gal 2005; Bede et al. 2007;
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Buckley and Feuring 2000; Buckley et al. 2002; Buckley and
Jowers 2006; Chalco-Cano and Romn-Flores 2006; Chalco-
Cano et al. 2007; Chen and Ho 1999; Cho and Lan 2007;
Congxin and Shiji 1993; Diamond 1999, 2002; Ding et al.
1997; Dubois and Prade 1982; Fard et al. 2009, 2010; Fard
2009a, b; Fard and Kamyad 2011; Fei 2007; Jang et al. 2000;
Jowers et al. 2007; Kaleva 1987, 1990, 2006; Lopez 2008;
Ma et al. 1999; Mizukoshi et al. 2007; Oberguggenberger
and Pittschmann 1999; Papaschinopoulos et al. 2007; Puri
and Ralescu 1983; Seikkala 1987; Song et al. 2000; Solay-
mani Fard and Ghal-Eh 2011). In this work, we present the
fuzzy variational iteration method to solve the NFDE as fol-
lows:

Lũ(t)+ Nũ(t)�g g̃(t) =˜0, t > 0, (1)

where the linear operator L is defined as L = dm

dtm , N is a
nonlinear operator and g̃(t) is a known fuzzy function.

With fuzzy initial condition:

u(k)(0) = c̃k, k = 0, 1, . . . , m − 1, (2)

where c̃k are fuzzy constant values.
The structure of this paper is organized as follows: In

Sect. 2, some basic notations and definitions in fuzzy cal-
culus are brought. In Sect. 3, are solved Eqs. (1, 2) with
FVIM. The existence and uniqueness of the solution and
convergence of the proposed method are proved in Sect. 4
respectively. Finally, in Sect. 5, are illustrated the accuracy
of method by solving some numerical examples, and a brief
conclusion is given in Sect. 6.

2 Basic concepts

Here basic definitions of a fuzzy number are given as follows,
Kauffman and Gupta (1991), Zadeh (1965), Zimmermann
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2192 T. Allahviranloo et al.

(1991), Dubois and Prade (1980), Allahviramloo (2005),
Nguyen (1978).

Definition 2.1 An arbitrary fuzzy number ũ in the paramet-
ric form is represented by an ordered pair of functions (u, u)

which satisfy the following requirements:

(i) u : r → u−r ∈ R is a bounded left-continuous non-
decreasing function over [0, 1],

(ii) u : r → u+r ∈ R is a bounded left-continuous non-
increasing function over [0, 1],

(iii) u ≤ u, 0 ≤ r ≤ 1.

Definition 2.2 For arbitrary fuzzy numbers ũ, ṽ ∈ E1, we
use the distance (Hausdorff metric) (Goetschel 1986)

D(u(r), v(r))=max

{

sup
r∈[0,1]

|u(r)−v(r)|, sup |u(r)−v(r)|
}

,

and it is shown (Puri and Ralescu 1986) that (E1, D) is a
complete metric space and the following properties are well
known:

D(̃u + w̃, ṽ + w̃) = D(̃u, ṽ),∀ ũ, ṽ ∈ E1,

D(kũ, kṽ) = | k | D(̃u, ṽ),∀ k ∈ R, ũ, ṽ ∈ E1,

D(̃u + ṽ, w̃ + ẽ) ≤ D(̃u, w̃)+ D(̃v, ẽ),∀ ũ, ṽ, w̃, ẽ ∈ E1.

Definition 2.3 A fuzzy number Ã is of L R-type if there
exist shape functions L(for left), R(for right) and scalar
α ≥ 0, β ≥ 0 with

μ̃A(x) =
{

L( a−x
α

) x ≤ a
R( x−b

β
) x ≥ a

(3)

the mean value of Ã, a is a real number, and α, β are called the
left and right spreads, respectively. Ã is denoted by (a, α, β).

Definition 2.4 Let M̃ = (m, α, β)L R and Ñ = (n, γ, δ)L R

and λ ∈ R
+. Then,

(1) λM̃ = (λm, λα, λβ)L R

(2) −λM̃ = (−λm, λβ, λα)L R

(3) M̃ ⊕ Ñ = (m + n, α + γ, β + δ)L R
(4)

M̃ 	 Ñ 

⎧

⎨

⎩

(mn, mγ + nα, mδ + nβ)L R M̃, Ñ > 0
(mn, nα − mδ, nβ − mγ )L R M̃ > 0, Ñ < 0
(mn,−nβ − mδ,−nα − mγ )L R M̃, Ñ < 0

(4)

Definition 2.5 Consider x, y ∈ E . If there exists z ∈ E such
that x = y + z then z is called the H -difference of x and y,
and is denoted by x � y (Bede and Gal 2005).

Proposition 1 If f : (a, b) → E is a continuous fuzzy-
valued function then g(x) = ∫ x

a f (t) dt is differentiable,
with derivative g′(x) = f (x) (Bede and Gal 2005).

Definition 2.6 (see Bede and Gal 2005) Let f : (a, b)→ E
and x0 ∈ (a, b). We say that f is generalized differentiable
at x0 (Bede–Gal differentiability), if there exists an element
f ′(x0) ∈ E , such that:

(i) for all h > 0 sufficiently small, ∃ f (x0 + h) � f (x0),

∃ f (x0)� f (x0 − h) and the following limits hold:

lim
h→0

f (x0 + h)� f (x0)

h
= lim

h→0

f (x0)� f (x0 − h)

h
= f ′(x0)

or
(ii) for all h > 0 sufficiently small, ∃ f (x0) � f (x0 +

h), ∃ f (x0 − h)� f (x0) and the following limits hold:

lim
h→0

f (x0)� f (x0 + h)

−h
= lim

h→0

f (x0 − h)� f (x0)

−h
= f ′(x0)

or
(iii) for all h > 0 sufficiently small, ∃ f (x0 + h) � f (x0),

∃ f (x0 − h)� f (x0) and the following limits hold:

lim
h→0

f (x0 + h)� f (x0)

h
= lim

h→0

f (x0 − h)� f (x0)

−h
= f ′(x0)

or
(iv) for all h > 0 sufficiently small, ∃ f (x0) � f (x0 +

h), ∃ f (x0)� f (x0 − h) and the following limits hold:

lim
h→0

f (x0)� f (x0 + h)

−h
= lim

h→0

f (x0)� f (x0 − h)

h
= f ′(x0)

Definition 2.7 Let f : (a, b) → E . We say f is (i)-
differentiable on (a, b) if f is differentiable in the sense (i)
of Definition (2.7) and similarly for (ii), (iii) and (iv) differ-
entiability.

Definition 2.8 A triangular fuzzy number is defined as a
fuzzy set in E1, that is specified by an ordered triple u =
(a, b, c) ∈ R3 with a ≤ b ≤ c such that [u]r = [ur−, ur+]
are the endpoints of r -level sets for all r ∈ [0, 1], where
ur− = a + (b − a)r and ur+ = c − (c − b)r . Here,
u0− = a, u0+ = c, u1− = u1+ = b, which is denoted by
u1. The set of triangular fuzzy numbers will be denoted
by E1.

Definition 2.9 (see Chalco-Cano and Romn-Flores 2006)
The mapping f : T → En for some interval T is called
a fuzzy process. Therefore, its r -level set can be written as
follows:
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Solving nonlinear fuzzy differential equations 2193

[ f (t)]r = [ f r−(t), f r+(t)], t ∈ T, r ∈ [0, 1].
Definition 2.10 (see Chalco-Cano and Romn-Flores 2006)
Let f : T → En be Hukuhara differentiable and denote
[ f (t)]r = [ f r−, f r+]. Then, the boundary function f r− and f r+
are differentiable (or Seikkala differentiable) and

[ f ′(t)]r = [( f r−)′(t), ( f r+)′(t)], t ∈ T, r ∈ [0, 1].
Definition 2.11 (see Chalco-Cano et al. 2011) The gener-
alized Hukuhara difference of two intervals, A and B, (gh-
difference) is defined as follows

A �g B = C ⇔
{

(a), A = B + C
or (b), B = A + (−1)C.

This difference has many interesting new properties, for
example A�g A = (0). Also, the gh-difference of two inter-
vals A = [a, b] and B = [c, d] always exists and it is equal
to

A �gh B = [min{a − c, b − d}, max{a − c, b − d}].

3 Description of the FVIM

We consider the following nonlinear fuzzy differential equa-
tion:

Lũ(t)+ Nũ(t)�g g̃(t) =˜0, t > 0, (5)

where the linear operator L is defined as L = dm

dtm , N is a
nonlinear operator, g̃(t) is a known fuzzy function and ˜0 is
singleton fuzzy zero with membership function as follows:

μ
˜0(x) =

{

1 x = 0,

0 x �= 0.

With fuzzy initial condition:

u(k)(0) = c̃k, k = 0, 1, . . . , m − 1, (6)

where c̃k are fuzzy constant values.
In this case, a correction functional can be constructed as

follows:

ũn+1(t) = ũn(t)+
t

∫

a

λ(τ){L (̃un(τ ))

+ N (̃un(τ ))�g g̃(τ )} dτ, n ≥ 0, (7)

where λ is a general Lagrange multiplier which can be identi-
fied optimally via variational theory. Here the function ũn(τ )

is a restricted variations which means δũn = 0. Therefore,
we first determine the Lagrange multiplier λ that will be
identified optimally via integration by parts. The successive
approximations ũn(t), n ≥ 0 of the solution ũ(t) will be read-
ily obtained upon using the obtained Lagrange multiplier and
by using any selective function ũ0. The zeroth approxima-
tions ũ0 may be selected any function that just satisfies at

least the initial and boundary conditions. With λ determined,
then several approximation ũn(t), n ≥ 1 follow immediately.
Consequently, the exact solution may be obtained by

ũ(t) = lim
n→∞ ũn(t). (8)

Case (1): ũ(i)(t) is (1)-differentiable for any i (1 < i ≤
m), in this case we have,

ũk+1(t)= ũk(t)+
t

∫

0

[λ(τ)(Lũk(τ )+Nũk(τ )�g g̃(τ )] dτ.

(9)

δũk+1(t) = δũk(t)+ δ

t
∫

0

[λ(τ)(Lũk(τ )

+ Nũk(τ )�g g̃(τ )] dτ. (10)

We apply restricted variations to nonlinear term Nũ (δNũ =
˜0, so, we can write Eq. (10) as follows:

δũk+1(t) = δũk(t)+ δ

t
∫

0

[λ(τ)(Lũk(τ )�g g̃(τ )] dτ. (11)

We can write,

δuk+1 = δuk +
t

∫

0

λu(m)
k (τ ) dτ,

δuk+1 = δuk +
t

∫

0

λu(m)
k (τ ) dτ.

δuk+1 = δuk+1 = 0.

t
∫

0

λu(m)
k (τ ) dτ = λu(m−1)

k −
t

∫

0

λ′u(m−1)
k (τ ) dτ

= λu(m−1)
k −

⎛

⎝λ′u(m−2)
k −

t
∫

0

λ′′ u(m−2)
k (τ ) dτ

⎞

⎠

= λu(m−1)
k − λ′u(m−2)

k +
t

∫

0

λ′′u(m−2)
k (τ ) dτ.

t
∫

0

λu(m)
k (τ ) dτ = λu(m−1)

k −
t

∫

0

λ′u(m−1)
k (τ ) dτ

= λu(m−1)
k −

⎛

⎝λ′u(m−2)
k −

t
∫

0

λ′′u(m−2)
k (τ ) dτ

⎞

⎠

= λu(m−1)
k − λ′u(m−2)

k +
t

∫

0

λ′′u(m−2)
k (τ ) dτ.
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2194 T. Allahviranloo et al.

Finally, we can write

0 = δuk+1 = δuk +
(

λδu(m−1)
k + λ′δu(m−2)

k

+ · · · + λ(m−1)δuk

)

+
t

∫

0

λ(m)δuk(τ ) dτ.

0 = δuk+1 = δuk +
(

λδu(m−1)
k + λ′δu(m−2)

k

+ · · · + λ(m−1)δuk

)

+
t

∫

0

λ(m)δuk(τ ) dτ.

So, we have

⎧

⎨

⎩

1+ λ(m−1) = 0,

λ(m) = 0,

λ = λ′ = · · · = λ(m−1) = 0.

Finally, we obtain λ as follows

λ = (−1)m

(m − 1)! (τ − t)m−1, 0 < t < τ < T . (12)

For example if m = 1 then λ = −1 and if m = 2 then
λ = τ − t .

Therefore, substituting (12) into functional (9), we obtain
the following iteration formula,

ũk+1(t) = ũk(t)+
t

∫

0

[

(−1)m

(m − 1)! (τ − t)m−1(Lũk(τ )

+ Nũk(τ )�g g̃(τ )

]

dτ. (13)

Now, define the operator A[̃u] as,

A[̃u] =
t

∫

0

[

(−1)m

(m − 1)! (τ − t)m−1(Lũk(τ )

+ Nũk(τ )�g g̃(τ )

]

dτ,

and define the components ṽk , k = 0, 1, 2, . . . as,

ṽ0 = ũo,

ṽ1 = A[̃v0],
...

ṽk+1 = A[̃v0 + ṽ1 + · · · + ṽk].

We have ũ(t) = limk→∞ ũk(t) =∑∞
k=0 ṽk(t), therefore, we

can write recursive relations as follows:

ṽ0(t) = c̃0 +
m

∑

k=1

c̃k tk

k! ,

ṽk+1(t)=
t

∫

0

[

(−1)m

(m − 1)! (τ − t)m−1
(

dm

dτm
[̃v0 + · · · + ṽk](τ )

+ N [̃v0 + · · · + ṽk](τ )�g g̃(τ )

)]

dτ. (14)

Case (2): ũ(i)(t) is (2)-differentiable for any i (1 < i ≤
m), in this case we have,

δuk+1 = δuk +
t

∫

0

λu(m)
k (τ ) dτ,

δuk+1 = δuk +
t

∫

0

λu(m)
k (τ ) dτ.

δuk+1 = δuk+1 = 0.

t
∫

0

λu(m)
k (τ ) dτ = λu(m−1)

k −
t

∫

0

λ′ u(m−1)
k (τ ) dτ

= λu(m−1)
k −

⎛

⎝λ′u(m−2)
k −

t
∫

0

λ′′ u(m−2)
k (τ ) dτ

⎞

⎠

= λu(m−1)
k − λ′u(m−2)

k +
t

∫

0

λ′′u(m−2)
k (τ ) dτ.

t
∫

0

λu(m)
k (τ ) dτ = λu(m−1)

k −
t

∫

0

λ′ u(m−1)
k (τ ) dτ

= λu(m−1)
k −

⎛

⎝λ′u(m−2)
k −

t
∫

0

λ′′ u(m−2)
k (τ ) dτ

⎞

⎠

= λu(m−1)
k − λ′u(m−2)

k +
t

∫

0

λ′′u(m−2)
k (τ ) dτ.

Finally, we can write

0 = δuk+1 = δuk + (λδu(m−1)
k + λ′δu(m−2)

k

+ · · · + λ(m−1)δuk)+
t

∫

0

λ(m)δuk(τ ) dτ.

0 = δuk+1 = δuk + (λδu(m−1)
k + λ′δu(m−2)

k

+ · · · + λ(m−1)δuk)+
t

∫

0

λ(m)δuk(τ ) dτ.
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So, we have
⎧

⎨

⎩

1+ λ(m−1) = 0,

λ(m) = 0,

λ = λ′ = · · · = λ(m−1) = 0.

Finally, we obtain λ as follows

λ = (−1)m

(m − 1)! (τ − t)m−1, 0 < t < τ < T . (15)

Therefore, we can write recursive relations as follows:

ṽ0(t) = c̃0 � (−1)

m
∑

k=1

c̃k tk

k! ,

ṽk+1(t) =
t

∫

0

[

(−1)m

(m − 1)! (τ − t)m−1
(

dm

dτm
[̃v0 + · · · + ṽk](τ )

+ N [̃v0 + · · · + ṽk](τ )�g g̃(τ )

)]

dτ. (16)

Case (3): ũ(i)(t) is (1)-differentiable for some i , (1 ≤ i ≤
m) and for another is (2)-differentiable. In this case let:

P = {1 ≤ i ≤ m | ũ(i)(t) is (1)-differentiable},
P ′ = {1 ≤ i ≤ m | ũ(i)(t) is (2)-differentiable}.
λ in this case is similar to the previous cases.

λ = (−1)m

(m − 1)! (τ − t)m−1, 0 < t < τ < T . (17)

If u(i)(t) ∈ P then s̃i = c̃i t i

i ! and if u(i)(t) ∈ P ′ then s̃i =
�(−1)

c̃i t i

i ! .
Therefore, we can write recursive relations as follows:

ṽ0(t) = c̃0 + s̃1 + s̃2 + · · · + s̃m−1,

ṽk+1(t) =
t

∫

0

[

(−1)m

(m − 1)! (τ − t)m−1
(

dm

dτm
[̃v0 + · · · + ṽk](τ )

+ N [̃v0 + · · · + ṽk](τ )�g g̃(τ )

)]

dτ. (18)

Remark 1 Consider the following system of nonlinear fuzzy
differential equations,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dũm
1

dtm + N1(̃u1, ũ2, . . . , ũn)�g g̃1(t) =˜0,

dũm
2

dtm + N2(̃u1, ũ2, . . . , ũn)�g g̃2(t) =˜0
...

dũm
n

dtm + Nn (̃u1, ũ2, . . . , ũn)�g g̃n(t) =˜0.

(19)

where n, m ∈ N , N1, N2, . . . , Nn are nonlinear operators
and g̃1(t), g̃2(t), . . . , g̃n(t) are known fuzzy functions, sub-

ject to the initial conditions
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ũ(k)
1 (0) = c̃1,k,

ũ(k)
2 (0) = c̃2,k, k = 0, 1, . . . , m − 1,

...

ũ(k)
n (0) = c̃n,k .

(20)

We can write recursive relations as follows:

Case (1):

ṽi,0 = c̃i,0 +
m−1
∑

k=1

c̃i,k

k! tk ,

ṽi,k+1 =
t

∫

0

[

(−1)m

(m − 1)! (τ − t)m−1
(

dm

dτm
[̃vi,0 + · · · + ṽi,k ](τ )

+Ni [(̃v1,0 + · · · + ṽ1,k), (̃v2,0 + · · · + ṽ2,k), . . . ,

(̃vn,0 + · · · + ṽn,k)](τ )�g g̃i (τ )

)]

dτ. (21)

Case (2):

ṽi,0 = c̃i,0 � (−1)

m−1
∑

k=1

c̃i,k

k! tk ,

ṽi,k+1 =
t

∫

0

[

(−1)m

(m − 1)! (τ − t)m−1
(

dm

dτm
[̃vi,0 + · · · + ṽi,k ](τ )

+Ni [(̃v1,0 + · · · + ṽ1,k), (̃v2,0 + · · · + ṽ2,k), . . . ,

(̃vn,0 + · · · + ṽn,k)](τ )�g g̃i (τ )

)]

dτ. (22)

Case (3):

If u(i)
k (t) ∈ P then s̃i,k = c̃i,k t i

i ! and if u(i)
k (t) ∈ P ′ then

s̃i,k = �(−1)
c̃i,k t i

i ! .

ṽi,0 = c̃i,0 + s1,0 + · · · + sm−1,0,

ṽi,k+1 =
t

∫

0

[

(−1)m

(m − 1)! (τ − t)m−1
(

dm

dτm
[̃vi,0 + · · · + ṽi,k ](τ )

+Ni [(̃v1,0 + · · · + ṽ1,k), (̃v2,0 + · · · + ṽ2,k), . . . ,

(̃vn,0 + · · · + ṽn,k)](τ )�g g̃i (τ )

)]

dτ. (23)

4 Existence and convergence analysis

In this section we are going to prove the convergence and the
maximum absolute truncation error of the proposed method.

Theorem 4.1 The series solution ũ(t)=∑∞
k=0 ṽk(t) obtai-

ned from the relation (14) using FVIM converges to the exact
solution of the problems (1, 2) if ∃0 < γ < 1 such that
D(̃vk+1,˜0) ≤ γ D(̃vk,˜0).
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2196 T. Allahviranloo et al.

Proof Define the sequence {̃sn}∞n=0 as,

s̃0 = ṽ0,

s̃1 = ṽ0 + ṽ1,
...

s̃n = ṽ0 + ṽ1 + · · · + ṽn,

and we show that {̃sn}∞n=0 is a Cauchy sequence in the Banach
space. According to the property (1) from Hausdorff metric
we can write,

D(̃sn+1, s̃n) = D(̃vn+1,˜0) ≤ γ D(̃vn,˜0) ≤ γ 2 D(̃vn−1,˜0)

≤ · · · ≤ γ n+1 D(̃v0,˜0).

For every n, J ∈ N , n ≥ j , we have,

D(̃sn, s̃ j ) ≤ D(̃sn, s̃n−1)+ D(̃sn−1, s̃n−2)

+ · · · + D(̃s j+1, s̃ j )

≤ γ n D(̃v0,˜0)+ γ n−1 D(̃v0,˜0)

+ · · · + γ j+1 D(̃v0,˜0)

= 1− γ n− j

1− γ
γ j+1 D(̃v0,˜0),

and since 0 < γ < 1, we get,

lim
n, j→∞ D(̃sn, s̃ j ) = 0.

Therefore, {̃sn}∞n=0 is a Cauchy sequence in the Banach space.
��

Theorem 4.2 The maximum absolute truncation error of the
series solution ũ(t) =∑∞

k=0 ṽk(t) to problems (1, 2) by using
FVIM is estimated to be

E j (t) = D(̃u(t), ũ j (t)) ≤ 1

1− γ
γ j+1 D(̃v0,˜0).

Proof We have,

D(̃sn, s̃ j ) ≤ D(̃sn, s̃n−1)+ D(̃sn−1, s̃n−2)

+ · · · + D(̃s j+1, s̃ j )

≤ γ n D(̃v0,˜0)+ γ n−1 D(̃v0,˜0)

+ · · · + γ j+1 D(̃v0,˜0)

= 1− γ n− j

1− γ
γ j+1 D(̃v0,˜0),

for n ≥ j , then limn→in f t y s̃n = ũ(t). So,

D

⎛

⎝ũ(t),
j

∑

k=0

ṽk

⎞

⎠ ≤ 1− γ n−1

1− γ
γ j+1 D(̃v0,˜0).

Also, since 0 < γ < 1 we have (1− γ n− j ) < 1. Therefore
the above inequality becomes,

D

⎛

⎝ũ(t),
j

∑

k=0

ṽk

⎞

⎠ ≤ 1

1− γ
γ j+1 D(̃v0,˜0).

��

Table 1 Numerical results for Example 5.1

v n = 17

t r = 0 r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9 r = 1

0.1 0.2234561 0.2478652 0.2788435 0.2908766 0.32472841 0.34012978 0.3701324 0.3907581 0.4078695 0.4276405 0.4401785

0.2 0.2644012 0.2831405 0.3098662 0.3245372 0.3506574 0.3714885 0.3988621 0.4278453 0.4456621 0.4622614 0.4768903

0.3 0.3267895 0.3577893 0.3714485 0.3965231 0.4258109 0.4507024 0.4802788 0.5066983 0.5317995 0.5478907 0.5612685

0.4 0.3855608 0.4013674 0.4317439 0.4601235 0.4988026 0.5123558 0.5463189 0.5647256 0.5780956 0.5867548 0.5968496

0.5 0.4233897 0.4489975 0.4603174 0.4812765 0.5194122 0.5378436 0.5522465 0.5850871 0.6033762 0.6240423 0.6503073

0.6 0.4654138 0.4823178 0.5043655 0.5234614 0.5518709 0.5766204 0.6064382 0.6189728 0.6257848 0.6465792 0.6578698

Table 2 Numerical results for Example 5.1

v n = 17

t r = 1 r = 0.9 r = 0.8 r = 0.7 r = 0.6 r = 0.5 r = 0.4 r = 0.3 r = 0.2 r = 0.1 r = 0

0.1 0.2537862 0.2744567 0.3012783 0.32653784 0.3589705 0.3743105 0.4065482 0.41995715 0.4297863 0.4413554 0.4568249

0.2 0.3077845 0.3246347 0.3588703 0.3703512 0.3944358 0.4230412 0.4456285 0.4703058 0.4870423 0.4968359 0.5156483

0.3 0.3566259 0.3702483 0.3933185 0.4277358 0.4446204 0.4689021 0.4945289 0.5216503 0.5419703 0.5601326 0.5852781

0.4 0.4105523 0.4416578 0.4765427 0.4955831 0.5120753 0.5322089 0.5567842 0.5718057 0.5867504 0.5987616 0.6134679

0.5 0.4689571 0.4877642 0.5167792 0.5478905 0.5622451 0.5942759 0.6134265 0.6289607 0.6407164 0.6589652 0.6689652

0.6 0.4954126 0.5133528 0.5346704 0.5505179 0.5766809 0.6014057 0.6217685 0.6345732 0.6503415 0.6704285 0.6877493
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Table 3 Numerical results for Example 5.1

v n = 22

t r = 0 r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9 r = 1

0.1 0.2576802 0.2630675 0.2801534 0.2968415 0.3065441 0.3166302 0.3256742 0.3356478 0.3488609 0.3566208 0.3627803

0.2 0.2744236 0.2977564 0.3056803 0.3234821 0.3376589 0.3456407 0.3519607 0.3698574 0.3748305 0.3814707 0.3976845

0.3 0.3011547 0.3188907 0.3299755 0.3356702 0.3512436 0.3616945 0.3865307 0.4066739 0.4156743 0.4335786 0.4568321

0.4 0.3288605 0.3426739 0.3603272 0.379184 0.3925476 0.4128557 0.4374528 0.4528652 0.4748372 0.4918635 0.5138469

0.5 0.3508726 0.3668952 0.3804435 0.4175209 0.4355739 0.4539781 0.4719505 0.5039883 0.5235886 0.5419728 0.5638795

0.6 0.3755608 0.3914537 0.4211317 0.4435589 0.4616542 0.4817325 0.5223467 0.5417602 0.5624839 0.5866359 0.6044789

Table 4 Numerical results for Example 5.1

v n = 22

t r = 1 r = 0.9 r = 0.8 r = 0.7 r = 0.6 r = 0.5 r = 0.4 r = 0.3 r = 0.2 r = 0.1 r = 0

0.1 0.2688704 0.2744826 0.2936057 0.3026854 0.3144968 0.3240879 0.3384259 0.3426897 0.3588609 0.3638975 0.3755309

0.2 0.2876403 0.3067501 0.3258307 0.3345816 0.3465793 0.3546308 0.3688904 0.3720415 0.3856312 0.3968503 0.4011746

0.3 0.3102385 0.3354203 0.3439858 0.3519406 0.3688406 0.3765402 0.3961428 0.4183264 0.4363552 0.4428619 0.4529873

0.4 0.3389692 0.3566804 0.3710503 0.3955196 0.4119815 0.4329808 0.4512773 0.4759825 0.4988126 0.5127805 0.5350612

0.5 0.3650514 0.3730972 0.4067421 0.4368794 0.4537902 0.4765431 0.4955406 0.5212758 0.5468952 0.5665724 0.5877309

0.6 0.3903215 0.4229805 0.4317655 0.4612408 0.4911605 0.5230768 0.553081 0.5766308 0.5945503 0.6133258 0.6343258

Table 5 Numerical results for Example 5.1

r (v, n = 20, t = 0.6) (v, n = 20, t = 0.6)

0.0 0.3725667 0.6823409

0.1 0.3855794 0.6944202

0.2 0.3933572 0.6870843

0.3 0.4119982 0.6637559

0.4 0.4380251 0.6523187

0.5 0.4498431 0.6373561

0.6 0.4668436 0.6123817

0.7 0.4766382 0.6088303

0.8 0.5060981 0.5817429

0.9 0.5222504 0.568605

1.0 0.5388901 0.547409

5 Numerical examples

In this section, we solve NFDE by using the FVIM. The
program has been provided with Mathematica 6 according
to the following algorithm where ε is a given positive value.
Algorithm:

Step 1. Set n← 0.
Step 2. Calculate the recursive relations (14) or (16) or
(18).
Step 3. If D(̃vn+1, ṽn) < ε then go to step 4,
else n← n + 1 and go to step 2.
Step 4. Print

∑∞
i=0 ṽi (t) as the approximate of the exact

solution.

Fig. 1 The results of Example 5.1 (Case (3)) for (v(0.1, r), v(0.1, r))

Example 5.1 Consider the FDE as follows:

ũ′′(t)+ ũ(t) =˜0, 0 < t ≤ 0.6. (24)

With initial conditions:

ũ(0) = (0, 0, 0),

ũ′(0) = (0.02, 0.03, 0.04). (25)

ε = 10−4.

Case (1): Tables 1 and 2 show that, the approximation
solution of the FDE is convergent with 17 iterations by using
the FVIM when ũ′′ and ũ′ are (1)-differentiable.
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Fig. 2 The results of Example 5.2 (Case (3)) for (v(0.1, r), v(0.1, r))

Table 6 Numerical results for Example 5.2

r (v, n = 29, t = 0.6) (v, n = 29, t = 0.6)

0.0 0.2056403 0.5425742

0.1 0.2128721 0.5255016

0.2 0.2245319 0.5172813

0.3 0.2433864 0.4907523

0.4 0.2566112 0.4857613

0.5 0.2739551 0.4673809

0.6 0.2822814 0.4581443

0.7 0.3037861 0.4355014

0.8 0.3167574 0.4244813

0.9 0.3308615 0.4077926

1.0 0.3468768 0.3867426

Case (2): Tables 3 and 4 show that, the approximation
solution of the FDE is convergent with 22 iterations by using
the FVIM when ũ′′ and ũ′ are (2)-differentiable.

Case (3): Table 5 shows that, the approximation solution of
the FDE is convergent with 20 iterations by using the FVIM

when ũ′ is (1)-differentiable and ũ′′ is (2)-differentiable
(Figs. 1, 2).

Example 5.2 Consider the NFDE as follows:

ũ′′(t)+ ũ3(t)�g g̃(t) =˜0. (26)

where,

g̃(t) = (t2, t2 + 1, t2 + 2).

With initial conditions:

ũ(0) = (0.01, 0.03, 0.05),

ũ′(0) = (0.02, 0.04, 0.06). (27)

ε = 10−5.

Case (1): Table 6 shows that, the approximation solution
of the NFDE is convergent with 29 iterations by using the
FVIM when ũ′′ and ũ′ are (1)-differentiable.

Case (2): Tables 7 and 8 show that, the approximation
solution of the NFDE is convergent with 27 iterations by
using the FVIM when ũ′′ and ũ′ are (2)-differentiable.

Case (3): Table 9 shows that, the approximation solution of
the NFDE is convergent with 32 iterations by using the FVIM
when ũ′ is (1)-differentiable and ũ′′ is (2)-differentiable.

6 Conclusion

The VIM gives several successive approximations through
using the iteration of the correction functional without any
transformation and hence the procedure is direct and straight-
forward. The VIM proved to be easy to use and provides
an efficient method for handling nonlinear problems. In this
work, we presented the fuzzy variational iteration method.
This method has been successfully employed to obtain
the approximate solution of the NFDE under generalized
H -differentiability. We can use this method to solve another
nonlinear fuzzy problems, for example fuzzy partial differ-
ential equations, fuzzy integral equations and fuzzy integro-
differential equations.

Table 7 Numerical results for Example 5.2

v n = 27

t r = 0 r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5 r = 0.6 r = 0.7 r = 0.8 r = 0.9 r = 1

0.1 0.12675303 0.1419205 0.1768107 0.1923908 0.2273445 0.2431654 0.2735124 0.2908576 0.3067743 0.3225307 0.3404553

0.2 0.1634607 0.1851885 0.2074428 0.2237103 0.2508914 0.2704913 0.2965125 0.3284316 0.3455966 0.3602684 0.3732215

0.3 0.2284611 0.2563843 0.2725725 0.2935418 0.32481325 0.3528307 0.3803398 0.4036742 0.4327672 0.4465312 0.5632964

0.4 0.2845217 0.3016433 0.3325318 0.3604272 0.3978314 0.4143606 0.4452286 0.4643655 0.4768988 0.4863509 0.4983521

0.5 0.3223709 0.3484355 0.3606467 0.3832869 0.4184315 0.4357732 0.45524648 0.4840237 0.5023413 0.5261913 0.5533044

0.6 0.3656858 0.3803725 0.4072954 0.4223308 0.4528635 0.4786009 0.5056639 0.5184711 0.5264205 0.5468537 0.6541281
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Table 8 Numerical results for Example 5.2

v n = 27

t r = 1 r = 0.9 r = 0.8 r = 0.7 r = 0.6 r = 0.5 r = 0.4 r = 0.3 r = 0.2 r = 0.1 r = 0

0.1 0.1527514 0.1735663 0.20323845 0.2268712 0.2569635 0.2752807 0.3073903 0.3184522 0.3258415 0.3423603 0.3567114

0.2 0.2057675 0.22373902 0.2557883 0.2715573 0.2934066 0.3229726 0.3442639 0.3724563 0.3881954 0.3965069 0.4137315

0.3 0.2546935 0.2714643 0.2909238 0.3259324 0.3455216 0.3609311 0.3965551 0.4254729 0.4428775 0.4632447 0.4853688

0.4 0.3111646 0.3420738 0.3763449 0.3928127 0.4133812 0.4343069 0.4569529 0.4766186 0.4885963 0.4988791 0.5134679

0.5 0.3677495 0.3883728 0.4154259 0.4473535 0.4628365 0.4942759 0.5144074 0.5280771 0.5414224 0.5568705 0.5658531

0.6 0.3966117 0.4137469 0.4307355 0.4521564 0.4775443 0.5023742 0.5238519 0.5367273 0.5515629 0.5708526 0.5872834

Table 9 Numerical results for Example 5.2

r (v, n = 32, t = 0.6) (v, n = 32, t = 0.6)

0.0 0.2734517 0.6017654

0.1 0.2835413 0.5964302

0.2 0.2968295 0.5862542

0.3 0.3122348 0.5625338

0.4 0.3376642 0.5577267

0.5 0.3458445 0.5354218

0.6 0.3667309 0.5157625

0.7 0.3746558 0.5046268

0.8 0.4063229 0.4835326

0.9 0.42264319 0.4666518

1.0 0.4384637 0.4489275
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