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Abstract Analyzing data with the use of Formal Concept
Analysis (FCA) enables complex insights into hidden rela-
tionships between objects and features in a studied system.
Several improvements in this research area, such as Fuzzy
FCA or L-Fuzzy Concepts, bring the possibility to analyze
data with a certain rate of indeterminacy. However, the usage
of FCA on larger complex data brings several problems
relating to the time-complexities of FCA algorithms and the
size of generated concept lattices. The fuzzyfication of FCA
emphasizes the mentioned problems. This article describes
significant improvements of a selected FCA algorithm. The
primary focus was given on the system of an effective data
storage. The binary data was stored with the use of finite
automata that leads to the lower memory consumption. More-
over, the better querying performance was achieved. Next, we
focused on the inner process of the computation of all formal
concepts. All improvements were integrated into a new FCA
algorithm that can be used to analyze more complex data sets.
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1 Introduction

The usage of Formal Concept Analysis (FCA) over large data
collections, also large incidence matrices, brings a range of
specific problems. The first of them is connected with con-
cept computation. The time complexity grows very fast with
the size of input set of objects and attributes. A problem with
the storage of computed concepts is associated with it. Other
problems came up in the case of lattice visualization. Usually,
humans are not able to read complex graph structures that
contain tens or hundreds of vertices. There are two possible
ways to solve this problem. First, the visualization methods
can be improved, e.g., by using colored graphs, zooming, tra-
versing the graph structure, etc. The second way is to reduce
the input data at the cost of some acceptable noise. Such an
approach is well known in information retrieval; e.g. Boolean
Factor Analysis by Attractor Neural Network (Frolov et al.
2007), Formal Concept Analysis Constrained by Attribute-
Dependency Formulas (Bělohlávek and Sklenář 2005), or
Ordinal Factor Analysis (Ganter and Glodeanu 2012). Nev-
ertheless, both ways require a fast approach in the computa-
tion phase to ensure acceptable computation times in the case
of analyzing complex data. We developed a new algorithm
to be able to use FCA to analyze the data with a certain rate
of indeterminacy, dynamic or fuzzy data.

After a brief introduction to FCA, the existing FCA algo-
rithms are introduced and a selected Valtchev’s algorithm
is described in more detail. Then there are mentioned the
proposed improvements. Firstly, the data storage based on
finite automata and fast querying into the incidence matri-
ces are described. The effective data storage decreases the
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memory consumption as well. Next, we focused on the inner
process of the computation of all formal concepts. The new
proposed algorithm efficiently utilizes a tree structure and a
tree traversing mechanism. Several experiments illustrate the
achieved result.

2 Formal concept analysis

Formal concept analysis (FCA) is a data analysis technique
that describes the world in terms of objects and the attributes
possessed by those objects. The philosophical starting point
for FCA was represented by the understanding that a con-
cept can be described by its extension and intension. The
mathematical foundations were laid by Birkhoff (1967) who
demonstrated the correspondence between partial orders and
lattices. Birkhoff showed that a lattice can be constructed for
every binary relation between a set of objects and a set of
attributes with the resulting lattice providing insight into the
structure of the original relation.

Formal concept analysis arose during the early 1980s from
Rudolf Wille’s (2009) pioneer work. It identifies conceptual
structures among data sets based on the primary philosoph-
ical understanding of a “concept” as a unit of thought com-
prising its extension and intension as a way of modelling a
domain (Wille 2009; Ganter and Wille 1999). The extension
of a concept is formed by all objects to which the concept
applies and the intension consists of all attributes possessed
by those objects. These generate a conceptual hierarchy of a
domain by finding all possible formal concepts which reflect
a certain relationship between attributes and objects.

The FCA method has been successfully applied to a wide
range of applications in medicine (Cole and Eklund 1996),
psychology (Spangenberg et al. 1999), ecology (Brügge-
mann et al. 1997), software engineering (Snelting 2000)
or information science (Eklund et al. 2000). A variety of
methods for data analysis and knowledge discovery in data-
bases have also been proposed based on the FCA techniques
(Stumme and Wille 1998; Wille 2001). Information Retrieval
is also a typical application area of FCA (Godin et al. 1993;
Priss 2000; Kaytoue et al. 2011; Galitsky and de la Rosa
2011; Li et al. 2012). Some researches focused on the alge-
braic approach and tried to improve the theoretical back-
ground behind FCA, (e.g. Wang et al. 2010; Medina and
Ojeda-Aciego 2010).

2.1 The most important definitions from formal concept
analysis

As mentioned above, FCA is a way of describing the world in
terms of objects and the attributes possessed by those objects.
This section introduces the FCA notation and conven-
tions used throughout this article. All definitions written by

Fig. 1 An example of the incidence matrix showing existing relation-
ships between objects {1,2,3,4,5,6} and their attributes {a,b,c,d,e,f}

Ganter and Wille (1999) are assumed and cited in this sec-
tion. In other cases, all definitions are labeled according to
the reference.

Definition 1 A formal context K := (G, M, I ) consists of
two sets G and M and a relation I between G and M. Elements
of G are called objects and elements of M are called attributes
of the context1. In order to express that an object g is in a
relation I with an attribute m, we write (gI m) or (g, m) ∈ I
and read “the object g has the attribute m”.

The relation I is also called the incidence relation of the
context. All relations between objects and attributes could
be written in a table, also called an incidence matrix that is
illustrated in Fig. 1.

A set of common attributes and a set of common objects
have to be defined before the definition of a formal concept.

Definition 2 For a set A ⊂ G of objects we define

A′ = {m ∈ M | gI m for all g ∈ A} (1)

-the set of attributes common to the objects in A. Similarly,
for a set B ⊂ M of attributes we define

B ′{g ∈ G | gI m for all m ∈ B} (2)

-the set of objects which have all attributes in B.

Definition 3 A Formal concept of the context K := (G,

M, I ) (or L := (G, M, I )) is a pair (A, B) with A ⊆ G,
B ⊆ M , A′ = B and B ′ = A. We call A the extent and B
the intent of the concept (A, B). The set of all concepts of a
context K is denoted B(G, M, I ).

A particular concept is represented as a disconnected rec-
tangle in the incidence matrix. Figure 2 shows some concepts.

The whole theory is very extensive, that is why we refer to
the work of Ganter and Wille (1999) for a detailed descrip-
tion of the FCA terms. We also refer to Ganter and Wille
(1999) for the basic definition of ordered sets. The Defini-
tion 4 connects the Theory of Ordered Sets with the algebraic
structure.

1 More precisely, formal objects a formal attributes of the context.
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Fig. 2 This figure shows two concepts of a context

Definition 4 An ordered set V := (V,≤) is a lattice, if for
any two elements’ set {x,y}, where x ∈ V , y ∈ V , the
supremum x ∨ y and the infimum x ∧ y always exist. V
is called a complete lattice, if the supremum

∨
X and the

infimum
∧

X exist for any subset X of V.

Theorem 1 The concept lattice B(G, M, I ) is a complete
lattice in which infimum and supremum are given by:

∧

t∈T

(At , Bt ) =
(

⋂

t∈T

At ,

(
⋃

t∈T

Bt

)′′)

∨

t∈T

(At , Bt ) =
((

⋃

t∈T

At

)′′
,
⋂

t∈T

Bt

)

,

where T is an index set and, for every t ∈ T , At ⊆ G and
Bt ⊆ M.

The concept lattice represents the relations between for-
mal concepts and is it used as a basis for the further visualiza-
tion. Usually, all practical usages of formal concept analysis
need some kind of visual representation, because it is more
readable than a simple list or table. The concept lattice can
be represented by a Hasse diagram as in Example 1(b).

Example 1 Context, concept and lattice. This example refers
to Fig. 1. There is the incidence matrix that defines six objects
and their features. A computed list of all possible concepts is
shown in Fig. 3(a) as well as related concept lattice visualized
by the Hasse diagram (b).

3 FCA algorithms—the state of the art

The following sections bring to the reader some information
on known approaches of concepts computation. The algo-
rithm classes are described in more detail. The improvement
of a selected algorithm and related experiments are presented
in a separate section.

(a)

(b)

Fig. 3 See the Incidence matrix of an illustrative example (Fig. 1). This
figure shows a computed list of all concepts (a) and a related concept
lattice (b). The concept lattice B(G, M, I ) is given by the set of objects
G = {1, 2, 3, 4, 5, 6}, the set of features M = {a, b, c, d, e, f } and
I ⊂ [G, M] is the relation illustrated in the Fig. 1

Computing a concept lattice is an important issue and
has been widely studied in order to develop more efficient
algorithms. As a consequence, a number of batch algorithms
(Chain 1969; Ganter 1984; Bordat 1986; Ganter and Reuter
1991; Kuznetsov 1993; Lindig 1999) and incremental algo-
rithms (Norris 1978; Downling 1993; Godin et al. 1995;
Carpineto and Romano 1996; Ganter and Kuznetzov 1998;
Nourine and Raynaud 1999; Stumme 2000; Valtchev and
Missaoui 2001; Krajca et al. 2010; Andrews 2011) are men-
tioned. Batch algorithms build formal concepts and a con-
cept lattice from the whole context in a bottom–up approach
(from the maximal extent or intent to the minimal one) or
a top–down approach (from the minimal extent or intent to
the maximal one). Incremental algorithms gradually refor-
mulate the concept lattice starting from a single object with
its attribute set.
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Table 1 The list of most important algorithms

Author (year) Time complexity

Norris (1978) O(|G|2 |M | |L|)
Ganter (1984) O(|G|2 |M | |L|)
Bordat (1986) O(|G| |M |2 |L|)
Downling (1993) O(|G|2 |M | |L|)
Kuznetsov (1993) O(|G|2 |M | |L|)
Godin et al. (1995) O(22μ |G|)
Carpineto and Romano (1996) O(22μ |G|)
Pasquier at al. (1998) N/A

Lindig (1999) O(|G|2 |M | |L|)
Nourine and Raynaud (1999) O((|G| + |M |) |G| |L|)
Stumme at al. (2000) O(|G|2 |M | |L|)
Valtchev (2001) O((|G| + |M |) |G| |L|)
Merwe (2002) O(max{{g}′ | g ∈

(G, M, I )}n2 |L|)
Lévy and Baklouti (2004) N/A

Krajca et al. (2008) N/A

Baixeries et al. (2009) O(|G| |M |2 w(G))

Andrews (2011) N/A

Table 1 shows a summary of time complexities of algo-
rithms2. |G| denotes the number of objects, |M | the num-
ber of attributes and |L| the size of the concept lattice. In
Godin’s (1995) algorithm, μ designates an upper bound on
| f (x)| where the set of objects associated with the attribute
x is denoted by f (x). When there is a fixed upper bound
μ, the time complexity of this algorithm is O(|G|). The
Nourine algorithm Nourine and Raynaud (1999) is half-
incremental. It incrementally constructs the concept set, but
formulates the lattice graph in a batch. There is a max
function in Merwe’s algorithm. It returns a number of ele-
ments in the largest intent of concepts, which extents consist
of {g}.

Most of the mentioned algorithms were used in different
application areas. We refer to Yevtushenko (2004), Carpineto
and Romano (1996), Lindig (1995), Siff and Reps (1997),
Snelting (2000), Vogt and Wille (1995), Goethals (2002) for
more information on this.

The main issues for computing all the formal concepts of
a context are related to the way all the concepts of a context
without the repetitive generation of the same concept can
be generated. Kuznetsov and Ob’edkov (2001) noted that
an empirical comparison of algorithms is not an easy task
for a number of reasons. First of all, algorithms described
by authors are often unclear, leading to misinterpretations.
Secondly, the data structures of the algorithms and their real-
isations are often not specified. Another issue is related to

2 Note that not all of the algorithms are indicated in the table.

the setting up of consensus data sets to use as test beds. The
context parameters such as an average attribute set associ-
ated with an object and vice versa, or the size and density of
contexts should be considered. The test environments such
as programming languages, implementation techniques and
platforms are also crucial factors which influence the perfor-
mance of algorithms.

3.1 Selected algorithm

The Valtchev algorithm extended the Godin et al. (1995)
algorithm based on two scenarios. In the first scenario,
the algorithm updates the initial lattice by considering new
objects one at a time. In the second one, it builds the partial
lattice over the new object set first and then merges it with the
initial lattice. The first algorithm showed an improvement of
the Godin et al. algorithm and was recommended for small
sets of objects. On the other hand, the second was recom-
mended as the right choice for medium size sets. Selected
incremental algorithm seems to be very effective in compu-
tation over small or medium data sets.

In our work we try to extend all the good features
of these algorithms in order to be able to use them for
the computation of larger incidence matrices. An accurate
description of the algorithm Valtchev and Missaoui (2001)
brought an idea of using a tree structure in the algorithm
to avoid the continuous passing of a concept lattice. This
will save a lot of time in the case of large data collec-
tions, and also a large and dense incidence matrix. The
second improvement relates to effective data storage. We
applied the common research of the Amphora Research
Group ARG (2012) in the area of finite automata. A sparse
binary matrix based on finite automaton was developed and
we used it to store the incidence matrix and computed con-
cepts. It allows us to read columns or rows of incidence matri-
ces more quickly in comparison with other types of matrix
storage.

3.2 What does “incremental” mean in the context of FCA
algorithms

There are several dimensions, along which existing algo-
rithms can be characterised, e.g. computation complexity,
mechanism of checking of a new concept, the way of per-
forming a calculation (i.e., batch or incremental data mining),
etc. An incremental algorithm produces a concept lattice for
the first i objects on the i-th execution step. The new set of
concepts is obtained as a result of an update of the previous
one. When a new object is added to a context, the follow-
ing steps should be performed in order to obtain the concept
lattice of the updated context:
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A new FCA algorithm 687

1. Generation of new concepts in the case when the new
object is meet-irreducible 3.

2. Update of concepts already existing in the previous lat-
tice. Only the concepts, the intents of which are included
into the new object attribute set, are updated. The new
object is added to their extents.

3. Update of links between neighbour concepts in the case
when the Hasse diagram of the lattice is required.

Listing 1 The simplified scheme of an incremental algorithm for the
construction of the concept set

1. Procedure IncrementalConceptSetCalculation
Input: A context (G, M, I )
Output: A list of all concepts of context

Concepts := ∅
Concepts := Concepts ∪ {(empty set, M)}
for each g in G

AddObject(g)

2. Procedure AddObject
Input: g

for each Concept in Concepts
if (Concept.Intent ⊆ {g}’)

Concept.Extent := Concept.Extent ∪ {g}

if ( ({g},{g}’) /∈ Concepts)
Concept.Add({g},{g}’)
GenerateNewConcepts({g}’ || Concept.Intent)

The typical scheme of the incremental algorithm is pre-
sented in listing 1. The procedure IncrementalConceptSet-
Calculation demonstrates a general scheme of the work of
incremental algorithms, i.e., the generation of the concept
lattice on an object per object basis.

The generalization of this algorithm known as Valtchev’s
algorithm (proposed in Valtchev and Missaoui 2001) became
a general pattern for the design of concept lattices. It is gen-
erally supposed that the computational complexity of this
algorithm is equal to the computational complexity of the
Nourine–Raynaud algorithm. However, the description of
this algorithm does not include any tree structure to improve
searching in a concept list. In our work, a tree structure that
stored the concept list in an automaton matrix was used within
Valtchev’s algorithm. Experimental results show an interest-
ing improvement.

3.3 Valtchev’s algorithm

A problem common to all FCA algorithms consists in the size
of an incidence matrix and the density of input data. Usually,

3 An element that has only one direct upper neighbour is called join-
irreducible and an element that has only one direct lower neighbour is
called meet-irreducible.

not the whole concept lattice is computed because it is time-
consuming. We decided to use a new alternative approach to
data storage and a tree structure to improve Valtchev’s algo-
rithm. It enables us to use this algorithm on incidence matri-
ces that are much larger (thousands of objects and attributes).
Finally, we are able to use this modified algorithm for exam-
ple in document retrieval.

The following points summarize the reasons, why we
decided to pay attention to Valtchev’s algorithm and its pos-
sible improvement:

– It is an incremental algorithm and we want to work
with dynamic data sets (e.g. the number of documents is
increasing).

– It is very difficult to obtain a good specification of
each algorithm, because the sources are not usually well
defined. Valtchev’s algorithm is well described.

– The time complexity of this algorithm is better than the
complexity of the other incremental algorithms.

– The tree structure is not implemented. One needs to pass
through the whole existing concept lattice to insert a new
concept and update lattice structure.

– The algorithm is based on cyclic reusing of the data stored
in previous executive steps. Therefore, an effective data
structure should be applied.

3.4 The description of Valtchev’s algorithm

First, the main idea of Valtchev’s approach will be intro-
duced. Listings 2 represents a pivotal procedure called
ADD_OBJECT. It could be divided into two parts. The
first part (lines 1–11) is in charge of any specific treatment
required by the presence of some attributes in the descrip-
tion of oi which are not in Ai = ⋃

j<i {o j }′. The second part
consists of a top-down traversal of lattice Li−1 with a recog-
nition of the current concept’s category (lines 12–28). As
for the updates, modified concepts merely receive oi in their
extent, whereas the detection of a generator c leads to the
creation of the new concept c with its intent being the inter-
section of the generator’s intent with {oi }′ and update the
generator’s extent augmented by oi (lines 19–25). The new
concept is then inserted into the (partially) completed lattice
Li , a task which requires the detection of all its upper covers.
Thus the algorithm FIND_UPPER_COVERS (see listing 3)
looks through a superset of the actual covers and picks up
the nodes for which the following holds: the candidate set is
made up of all concepts whose intents are strictly smaller in
size than I nt (c). A candidate qualifies only if it is a super-
concept of c, but none of its lower covers is a super-concept
of c on its own. An upper cover is physically linked to c, and
the obsolete links, i.e., those relating the generator c to an
upper cover, are removed. The integration of c is completed
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by a link to its generator (line 26) (Valtchev and Missaoui
2001).

Listing 2 Valtchev’s algorithm Valtchev and Missaoui (2001) -
Add_Object

1. Procedure Add_Object
Input: L // a lattice

o // an object
Output: L+ // a lattice

2. Local: Classes, Classes_New : array [0..|A ∪ {o}′ |]
of concept set

3. if (L = ∅)
4. L+ := ({o}, {o}′

)

5. else
6. if {o}’ � Intent(⊥(L))
7. if Extent(⊥(L)) = ∅
8. Intent(⊥(L)) := Intent(⊥(L)) ∪ {o}’
9. else
10. c := (∅,Intent(⊥(L)) ∪ {o}’) ; NEW_LINK(c,⊥(L))
11. ADD(L, c) ; ⊥(L) := c

12. for i from 0 to |A ∪ {o}′ |
13. Classes := ∅
14. Classes_New := ∅

15. for each c in L
16. ADD(Classes[|Intent(c)|], c)

17. for i from 0 to |A ∪ {o}′ |
18. for each c in Classes[i]
19. if Intent(c) ⊆ {o}’
20. ADD(Extent(c), o)
21. else
22. I nt := Intent(c) ∩ {o}’
23. if not (int

′
, I nt) ∈ Classes_New[|I nt |]

24. c := (Extent(c) ∪ {o}, I nt)
25. ADD(Classes_New[|I nt |], c)
26. FIND_UPPER_COVERS(c,c) ; NEW_LINK(c, c)
27. ADD(Classes_New[i], c)

28. L+ := ⋃|A∪{o}′ |
i=0 Classes_New[i]

Listing 3 Valtchev’s algorithm Valtchev and Missaoui (2001) -
Find_Upper_Covers

1. procedure FIND_UPPER_COVERS
Input: n // a new concept

gen // a concept generator
2. Int := Intent(new)
3. for j from 0 to |Int|−1
4. for each c̃ in Classes_New[j]
5. if Intent(c̃) ⊆ Int
6. Cover := true
7. for each ĉ in Cov’(c̃)
8. if Intent(ĉ) ⊆ Int
9. Cover := false
10. break

11. if Cover = true
12. if gen ∈ Cov’(c̃) then
13. DROP_LINK(gen, c̃)
15. NEW_LINK(new, c̃)

4 Proposed improvements

4.1 Data storage and fast querying into an incidence matrix

A quick look at Valtchev’s algorithm reveals that we should
pay attention to the for-cycles (lines 12, 15, 17, 18 in listing
2 and lines 3, 4, 7 in listing 3). Especially, line 15 (see listing
2) seems to be very time-consuming in the case of a large
concept lattice L. Moreover, Valtchev’s algorithm works with
an already generated concept lattice and that is why the data
should be stored very effectively because of a great number
of concepts in the case of a large and dense incidence matrix.
The improvement is based on the binary automaton matrix
that has been used for data storing and serves as a basis of
the implemented tree structure. The binary automaton matrix
is a result of common research conducted by the Amphora
Research Group (ARG 2012). For details on the description
of the effective data storage of binary matrices see Martinovič
et al. (2005). This approach was extended among others by
the implementation of meet and join operators.

The concept lattice and tree structure are created in paral-
lel. The tree structure speeds up traversing the concept lattice
and concept searching. The tree structure is stored as well as
the set of already generated concepts are stored in an automa-
ton matrix. The extents and intents of all concepts are stored
separately to save space and memory.

Large sparse binary matrices play an important role
in Computer Science (indexing of class hierarchy Dencker
et al. 1984), and in many modern information retrieval meth-
ods. These methods, such as clustering, web graph compu-
tations, web link analysis, binary factor analysis, perform
a huge number of computations with matrices. Therefore,
all matrices should be carefully designed (e.g. sparse matrix
multiplication Yuster and Zwick 2005). Therefore, several
storage techniques were developed to fit particular algo-
rithms’ requirements, such as Yale Sparse Matrix Format
(Bank and Douglas 2012), compressed Row Storage (CRS),
Compressed Column Storage (CCS). However, we focused
on a storage system based on the Automata Theory in our
work. We refer to Eilenberg (1974), Kozen (1997) for more
details on this theory.

We consider a square matrix M of order 2n×2n to facilitate
the application of finite automata. Each element of such a
matrix is represented by an address ε of the length n over
the alphabet � = {0, 1, 2, 3}. Each element of the matrix
corresponds to a subsquare of size 2−n of the unit square.

The main matrix is split recursively into four quadrants
(submatrices). The depth of such recursion is n. Each quad-
rant is signed by one letter of � alphabet that represents its
current address ω. One letter of the alphabet is added to the
quadrants’ addresses after the next step of recursion is exe-
cuted.

123



A new FCA algorithm 689

Fig. 4 Addressing in a 4 × 4 matrix

Example 2 Addressing in a square matrix. Figure 4 shows
the level-2 addresses based on the quadrants of a 4 × 4
matrix. The related table shows the addresses (w) of all matrix
elements.

In order to specify the values of a matrix of dimension
2n ×2n , a mapping �n → R has to be defined, or alternately,
it can be specified just by a set of non-zero values, i.e., by a
language L ⊆ �n and a mapping fM : L → R.

This kind of storage system allows direct access into the
stored matrix. Each element can be accessed independently
of the others and the whole process of getting an element
from a matrix has a constant time complexity. Let M be a
matrix of order 2n × 2n . Then the time complexity of the
access is bound by O(log2 n). For detailed information see
Snášel et al. (2002).

This approach to data storage makes it possible to imple-
ment the GET_ROW or GET_COLUMN methods that are
equally time-consuming. This aspect is very important in the
case of computation within all FCA algorithms.

4.1.1 Binary matrices and finite automata

Let M be a binary matrix of dimension n1 × n2, where
n1, n2 ∈ N. Let n = max(n1, n2) and si ze = 2�log2 n�.
Finite automaton which is represented by matrix M is defined
as:

A = (Q;�; δ; q0; F),

where:

– Q is the finite set of states;
– � = {0, 1, 2, 3} is the input alphabet;

– δ : Q × � → Q is the transition function;
– q0 is the initial state;
– F = {q f } is the set of (one) finite state.

The language L which is accepted by automaton A is
defined:

L = {
w ∈ �∗ | ∃x, y ∈ N, 1 ≤ x, y ≤ n; then i f

Mx,y = 1, then w = l(x, y, si ze)

where l : N × N × N → �∗:

l(x, y, val)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε for val = 0
3l(x − val, y − val, val/2) for x ≥ val ∧ y ≥ val
2l(x − val, y, val/2) for x ≥ val ∧ y < val
1l(x, y − val, val/2) for x < val ∧ y ≥ val
0l(x, y, val/2) for x < val ∧ y < val

4.1.2 Reconstruction of the matrix

For each element of the matrix Mx,y holds

Mx,y =
{

1 automaton A accepts l(x, y, si ze)
0 otherwise.

4.1.3 Construction of the automaton

Finite automaton for a given binary matrix can be constructed
in several ways, e.g. by the usage of regular expression
(Dvorský 2004) or as a composition of elementary automa-
tons (Rozenberg and Salomaa 1997). All these methods
of construction have a common disadvantage—the whole
matrix, i.e., a complete language has to be known in advance.
Better choice consists of an incremental construction of the
automaton.

The incremental construction method starts with an empty
automaton (with the exception of a global initial and final
state) and step by step updating of the automata. As soon as
a new element is inserted into the matrix the corresponding
word is added to the automaton and the automaton is trans-
formed into a new one. The whole algorithm is well described
in Martinovič et al. (2005).

Usually, a high space complexity is the main disadvantage
of such algorithms. The number of states of the automaton
is increased after a new word w ∈ L is inserted. There-
fore, the so called minimization of the automata is performed
after a given number of insertions. Theorems and proofs of
one minimization approach are described in Martinovič et al.
(2005).
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Fig. 5 Non-minimized automaton A6

Example 3 Automaton matrix. Let M be a matrix of size
4 × 6

M =

⎡

⎢
⎢
⎣

1 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 1

⎤

⎥
⎥
⎦

The matrix is described by the language L M = {000, 013,

020, 100, 123, 022}. Initial automaton A0 does not accept
any language, i.e., L0 = ∅. Automaton A1 is constructed
from A0 and accepts language L1 = {000}. Automaton A2

is an extension of automaton A1 and accepts language L2 =
L1 ∪ {013} = {000, 013}. In this way automaton A6 accepts
the whole language L M (see Fig. 5). This is an expanded,
non-minimized form of automaton. Now, automaton A6 can
be minimized. The whole minimization process starts in the
final state q f and goes to the initial state of the automaton.
The minimizing process takes the two following steps:

1. There are two transitions between q2 and q f and q6 and
q f , respectively. The transition symbol is 0 in both cases.
These two transitions can be joined together and state q6

is deleted (see Fig. 6).
2. There are also two transitions between q3 and q7 as initial

states and q f as the final state. Transitions are labelled
by symbol 3. As well as in the first step, transitions are
unified and state q7 is deleted (see Fig. 7).

The minimization process plays an important role with
respect to the usage of the automaton matrix. The data struc-
ture based on a binary matrix automaton is a hidden element
of the suggested algorithm, however, it represents an essen-
tial part of the improvement of Valtchev’s algorithm. The
parallel tree structure as well as the incidence matrix or the
list of computed concepts are stored in such a data structure,
which saves a lot of time and storage space in the case of
large data sets.

Fig. 6 Automaton A6, the state q6 will be deleted

Fig. 7 Minimized automaton A6, the state q7 will be deleted

4.2 Algorithm improvements

Listings 4 represents the procedure that creates a new con-
cept list (CREATE_CONCEPT_LIST ). A list of objects that
should be added and a concept lattice (if it exists) are the
inputs of this procedure. The procedure can be divided into
two parts. The first one is called the initialization phase
(lines 2–7). There is a decision point that either creates a
new concept lattice and a related tree structure, or loads a
concept lattice and a tree structure of already existing con-
cepts. The tree structure is represented by a square adjacency
automaton matrix n × n, where n represents the number
of all existing concepts plus the number of concepts that
will be added. The tree structure is dynamic. We refer to
Martinovič et al. (2005) to see more details of the process of
adding a new element into an automaton matrix. It is done
incrementally. That is why the tree structure can dynamically
grow with the size of the concept lattice. The method CRE-
ATE_TREE is responsible for the creation of a new matrix
|L+| × |L+|, whereas the method LOAD_TREE loads the
existing tree and enlarges its matrix upon |L| × |L|. The
second part called the updating phase, starts with a loop
(line 8) over all new objects. The most important method
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with respect to lattice updating is INSERT_CONCEPT (see
listing 5). The method TRY_ALL_CHILDREN (see list-
ing 6) is responsible for the updating of the tree struc-
ture and will be described in more detail together with the
INSERT_CONCEPT method. However, there is one more
method used within the CREATE_CONCEPT_LIST proce-
dure. It is called GET_NODE_CHILDREN and its input is the
index of a selected node of the tree structure. This method
returns a vector that consists of the nodes’ indexes of all
children of the selected node in the tree structure.

Listing 4 Create_Concept_List - Improved algorithm based on the tree
structure and binary automaton matrix

1. Procedure CREATE_CONCEPT_LIST
Input: L% //a lattice

o% //a list of object
oldT ree% //a tree of existing concepts

Output: L+% //a lattice

2. Local: chIndex% //child concept index
pIndex = 0% //parent concept index
objectsDone% //the number of added objects
oldConceptCounter% //#computed concepts
tmpChildren : List% //temporary variable

3. if (L = ∅)
4. L+ := ({∅}, {∅}′

) 5. CREATE_TREE(|o|)
6. else
7. LOAD_TREE(oldTree) ; L+ := L
8. for (chIndex = objectsDone; chIndex < |o|; chIndex++)
9. if (INSERT_CONCEPT(0, {o[chIndex]}’))
10. oldConceptCounter = |L+| − 1;
11. tmpChildren := GET_NODE_CHILDREN(0)
12. for (pIndex=0; pIndex<|tmpChildren|; pIndex++)
13. if (tmpChildren[pIndex] != oldConceptCounter)
14. if (INSERT_CONCEPT(tmpChildren[pIndex],

L+[oldConceptCounter].Intent ∩
L+[tmpChildren[pIndex]].Intent))

15. TRY_ALL_CHILDREN(tmpChildren[pIndex],
|L+| − 1)

This procedure (see listing 5) updates not only the list
of concepts but also the tree structure. The inner method
GET_CONCEPT returns an index of the concept with the
specified intent in case it exists in the concept list (line
3). The method returns NULL in case such a concept does
not exist; then the ADD_CONCEPT method is called. This
method computes whole concepts (

′
operator, the list of com-

mon objects is returned) and adds them into the concept list.
After that, the method ADD_TREE_NODE updates the tree
structure and a new link between the “parent” concept and
the new concept is created. An index of the new concept is
|L+|. If the GET_CONCEPT method returns an index, then
it means that the concept c already exists with a given intent
and the list of objects is inserted into the c.Extent (line 9).
The INSERT_CONCEPT procedure returns TRUE if a new
concept has been added, otherwise FALSE.

Listing 5 Insert_Concept procedure used in Create_Concept_List

1. Procedure INSERT_CONCEPT
Input: pIndex //parent concept index

i //an intent vector
Output: TRUE if a new concept was added, otherwise FALSE

2. Local: c //a concept

3. c := GET_CONCEPT(i, L+) //it returns a concept
//with a given intent,
//otherwise NULL

4. if (c = NULL)
5. ADD_CONCEPT(L+, ({i}’,i))
6. ADD_TREE_NODE(pIndex, |L+|)
7. return TRUE
8. else
9. ADD_EXTENT(c, {i}’)
10. return FALSE

This procedure (see listing 6) represents a recursive part
of the update phase. If a new object has been inserted into
some concept, it is necessary to update all the other concepts
linked to this one in the tree structure. So the tree structure is
updated. We leave the description of the following procedure
in the recursive form, because it is more vivid and it better
elucidates the meanings of the updating process. Of course,
it is easy to transform it into the non-recursive form which
has smaller memory demands.

Listing 6 Try_All_Children procedure used in Create_Concept_List

1. Procedure TRY_ALL_CHILDREN
Input: pIndex // the node in the tree

lastAddedConcept //last added node index

2. Local: tmpChildren : List // list of children

3. tmpChildren := GET_NODE_CHILDREN(pIndex)
4. if (|tmpChildren| = 0)
5. return
6. for ( i=0; i<|tmpChildren|; i++)
7. if (tmpChildren[i] != lastAddedConcept)
8. if (INSERT_CONCEPT(tmpChildren[i],

L+[lastAddedConcept].Intent ∩
L+[tmpChildren[i]].Intent))

9. TRY_ALL_CHILDREN(tmpChildren[i], |L+| − 1)

5 Comparison and experiments

The new improved FCA algorithm was described in the pre-
vious section. The following text is focused on experiments
and comparison with the original Valtchev’s algorithm. All
tested algorithms and their variants were implemented in the
same programming language, by the same person, and with
an emphasis on maximum performance and code optimiza-
tion. Here is a short legend for all the tables in this section:

– i—the index of computation (test)
– |G|—represents the number of objects in the incidence

matrix
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– |M|—represents the number of attributes in the incidence
matrix

– d—is a density of an incidence matrix, i.e., the per-
centage of non-zero elements. The density of a context
K := (G, M, I ) is given by the following formula:

d = |I |
|G| · |M | ∗ 100

An incidence matrix is usually said to be dense if d > 25,
however, the property of being dense is rather vague, and
there is no rigorous criterion for it.

– |L|—is a size of concept lattice.
– Gajdos—computation time of the improved algorithm.

The incidence matrix has been stored by using a binary
automaton matrix. The used tree structure is also based on
an automaton matrix as well as the output storage space
for all computed concepts.

– Valtchev—computation time of the original algorithm by
Petko Valtchev. The incidence matrix is stored here by the
usage of CRS method. The system of storing all concepts
depends on the size and density of the incidence matrix.

– ValtchevA—computation time of the original algorithm
again, however the incidence matrix has been stored using
the automaton matrix. The system of storing of all concepts
depends on the size and density of the incidence matrix.

All experiments were performed on the following hard-
ware platform: Intel Core2 CPU, 2.4 GHz, 8GB RAM, Win-
dows 7 64-bit.

5.1 An experiment with a fix matrix size and increasing
density

In this experiment (see Table 2), three algorithms were used.
We want to show that a simple usage of the automaton matrix

Table 2 Variable matrix density, |G| = 100, |M | = 100

i d |L| Gajdos Valtchev ValtchevA

1 5 262 0.71 0.05 0.53

2 10 1,203 0.78 0.09 3.31

3 15 4,054 1.12 0.48 25.93

4 20 11,150 2.43 3.51 193.44

5 25 29,987 5.38 20.23 1,438.36

6 30 84,502 19.32 158.62 11,900.32

7 35 249,577 96.56 1,316.03 109,791.24

8 40 787,574 235.13 14,653.83 >1M

9 45 2,319,430 934.61 177,641.38 >1M

10 50 8,434,673 3,671.33 >1M >1M

(time in s)
Bold values indicate the best achieved results (computation time in s)

Table 3 Variable number of attributes, |G| = 1, 000, d = 5 %

i |M | |L| Gajdos Valtchev

1 100 4,251 1.79 2.63

2 200 17,053 9.19 32.68

3 300 41,680 29.81 159.77

4 400 77,853 67.41 510.12

5 500 125,393 133.57 1,253.79

6 600 182, 066 234.01 2,545.75

7 700 246,514 376.78 4,770.51

8 800 319,135 568.68 8,312.39

9 900 397,605 816.64 13,307.96

10 1,000 480,567 1,176.44 20,377.15

(time in s)
Bold values indicate the best achieved results (computation time in s)

(see ValtchevA in the table) does not yield any improve-
ment. On the contrary, such an algorithm is even more time
consuming, because no tree structure is used and a sparse
automaton is created. It is evident, that the usage of the Gaj-
dos algorithm is more effective in the case of dense incidence
matrices. Table 2 shows the results up to a density of 50 %.
The higher density leads to a dual problem solution where
zeros and ones are swapped. Some computation times were
too large to have importance for real applications (see >1M
values in Table 2).

5.2 An experiment with an increasing number of attributes
in the incidence matrix

We did not use the ValtchevA algorithm in this experiment
(see Table 3). The previous experiment has shown that such
an algorithm is not effective. Particular incidence matrices
consist of 1,000 objects and the density has been always set
to 5 % of the respective matrix.

5.3 An experiment with an increasing number of objects
in the incidence matrix

At the beginning, the incidence matrix consists of 1,000
objects (|G|) and 100 attributes (|M |). The density d has
always been 5%. The number of attributes and the density
were fixed. Table 4 shows the total times of computations
(in seconds) for the specific size of incidence matrix. The
ValtchevA algorithm has not been tested any more due to its
obvious ineffectivity.

It is evident, that the improved algorithm is more effec-
tive again. The incremental time, that we need to insert 1,000
objects into the existing concept lattice, grows quite slowly
in comparison with Valtchev’s algorithm (compare two con-
secutive computation times in the appropriate table column).
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Table 4 Variable number of objects, |M | = 100, d = 5 %

i |G| |L| Gajdos Valtchev

1 1,000 4,029 1.45 1.65

2 2,000 8,515 2.39 10.25

3 3,000 13,159 4.45 30.51

4 4,000 17,484 6.29 65.38

5 5,000 21,313 9.11 114.89

6 6,000 24,486 11.38 174.05

7 7, 000 27, 468 13.61 246.43

8 8,000 29,904 15.57 323.58

9 9,000 32,396 18.84 418.11

10 10,000 34,653 21.22 532.58

(time in s)
Bold values indicate the best achieved results (computation time in s)

The incidence matrix is not very important for the whole
computation because a new object is compared with concepts
in the concept lattice L. In this case, the automaton matrix
and a related tree structure play an important role within the
improved algorithm.

6 Conclusion and future work

The practical approach to all of the complex problems usu-
ally leads to particular problems concerning large data sets,
needs of the simplification and acceleration of computation
phases. In this article, we described several aspects and prob-
lems related to Formal Concept Analysis and its usage in
the area of information retrieval. The algorithmic aspects
were described in more detail and a new algorithm based on
Valthev’s algorithm was introduced. The reasons for choos-
ing this algorithm were presented as well as several improve-
ments based on the usage of the automaton matrix and tree
structures. Finally, a set of experiments demonstrated signif-
icant improvements. The proposed algorithm can be applied
to larger data sets.

Current research in this area and the near future work will
consist of the utilization of modern hardware, e.g. graphics
processor units (GPUs) to improve performance. Of course,
not every part of the proposed algorithm could be done in a
parallel way. On the other hand, designed data structures can
easily be implemented so that they can be represented in a
suitable form for GPUs, e.g. dynamic textures, etc.
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