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Abstract In this paper a novel computing paradigm aimed
at solving non linear systems of equations and finding feasi-
ble solutions and local optima to scalar and multi objective
optimizations problems is conceptualized. The underlying
principle is to formulate a generic programming problem by
a proper set of ordinary differential equations, whose equi-
librium points correspond to the problem solutions. Starting
from the Lyapunov theory, we will demonstrate that this arti-
ficial dynamic system could be designed to be stable with an
exponential asymptotic convergence to equilibrium points.
This important feature allows the analyst to overcome some
of the inherent limitations of the traditional iterative solution
algorithms that can fail to converge due to the highly nonlin-
earities of the first-order conditions. Besides we will demon-
strate as the proposed paradigm could be applied to solve
non linear equations systems, scalar and multi-objective opti-
mization problems. Extensive numerical studies aimed at
assessing the effectiveness of the proposed computing para-
digm are presented and discussed.
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1 Introduction

Mathematical programming deals with the strategic allo-
cation of limited resources among competing activities, in
the presence of a set of constraints imposed by the prob-
lem domain being analyzed. The problem constraints could
derive by financial, technological, social or many other con-
siderations.

Mathematical programming problems can be formalized
by systems of nonlinear equations, scalar and multi-objective
optimization problems that are solved by different and spe-
cific solution strategies depending of the nature of the prob-
lem and the application domain.

In particular, many Newton-type algorithms have been
proposed in the literature for solving systems of non-
linear equations (Malick and Roupin 2013). The insight
is to approximate the non-linear equations by linearized
Jacobian-matrix equations and solve them by means of
numerical iteration algorithms. In addressing this issue
the adoption of sparse triangular factorization techniques
aimed at improving the algorithm performance is fre-
quently adopted (Tinney and Walker 1967). More sophis-
ticated solution approaches include the trust-region method
(Conn et al. 2000), the Broyden (1965) method, the secant
method (Denis and Wolkowicz 1993) and the Halley method
(Ortega and Rheinboldt 1970).

Despite their stability and their powerful convergence
properties, these solution approaches could be unexception-
ally restricted by a non-singular Jacobian matrix (namely the
matrix of all first-order partial derivatives of the system of
equations). In particular they could become instable or even
completely fail when the attraction region of the initial solu-
tion guess is far away from the problem solution. These issues
are not infrequent in real world applications since the prob-
lem is nondeterministic polynomial-time hard, and it could
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be characterized by very high computational complexity due
to many numerical issues (Grosan and Abraham 2008).

As far as the scalar optimization problems are concerned,
they consist of maximizing/minimizing a scalar function
(a.k.a. the objective function) and satisfying a number of
constraints or limitations. A feasible solution that mini-
mizes/maximizes the objective function is called an optimal
solution. Generally, unless both the objective function and the
feasible region are convex, there may be several local min-
ima/maxima.1 Scalar optimization problems can be solved
by different solution techniques as far as nonlinear program-
ming (Zeshui et al. 2011), quadratic programming (Del-
bos and Gilbert 2005), and linear programming (Martinez
1994) are concerned. Some algorithms formalize the prob-
lem’s Karush–Kuhn–Tucker optimality conditions which are
a set of nonlinear equations that can be solved by using iter-
ative Newton-based algorithms. These methods can handle
both equality and inequality constraints. The latter can be
added as quadratic penalty terms to the objective function and
multiplied by proper penalty multipliers (Li and Gen 1996).
Another useful paradigm for inequality constraints handling
is based on the Interior Point method (a.k.a. barrier method)
(Astfalk et al. 1992). The insight is to convert the inequality
constraints into equalities by the introduction of nonnegative
slack variables. A self-concordant barrier function of these
slack variables2 is then added to the objective function and
multiplied by a barrier parameter (which is gradually reduced
to zero during the solution process).

These programming algorithms represent a useful tool for
solving scalar optimization problems but, as evidenced by
the many discussions reported in the literature (Michalewicz
1995), they could reveal some shortcomings principally aris-
ing from the limited capability to solve real-world large-scale
problems, the weakness in handling qualitative constraints
(namely constraints defined by information granules), the
poor convergence in computing global optimums, the diffi-
culties in addressing ill conditioned problems.

All these scalar optimization algorithms are in principle
not suitable for addressing constrained optimization prob-
lems involving more than one objective function to be opti-
mized simultaneously (a.k.a. multiobjective programming
problems). The main difficulties derive by the multiplicity of

1 A local minimum/maxima x∗ is defined as a point satisfying the fol-
lowing condition:

∃δ > 0′ ‖x − x∗‖ < δ ⇒
{

f (x∗) ≤ f (x) Local Minima
f (x∗) ≥ f (x) Local Maxima

.

2 An example of barrier function is the so called logarithmic barrier
function defined as:

B(x, μ) = f (x) − μ

m∑
i=1

ln(ci (x))

where f (x) is the objective function, μ is the slack variable and ci (x)

is the i-th the inequality constraint function.

the problem objectives conflicting across a high-dimension
search space. To address this problem proper optimality cri-
teria should be defined. To this aim many solution tech-
niques refer to the concept of Pareto optimality which aims at
identifying proper trade-offs between the problem objectives
(Narula et al. 1994). In details, a solution is called Pareto opti-
mal (a.k.a. non-dominated solution) if none of the objective
functions can be improved in value without degrading some
of the other objective values. Without an additional external
preference criteria, all Pareto optimal solutions (namely the
Pareto front) could be considered equally acceptable by the
analyst. Consequently solving a multi-objective optimiza-
tion problem asks for computing all or a representative set
of Pareto optimal solutions. Anyway, these solutions cannot
be computed efficiently in many cases since they are often of
exponential size and NP-hard to compute. As a consequence,
approximation methods are frequently used.

The simpler algorithm aimed at approximating the Pareto
front is the so called weighting strategy (a.k.a. scalariza-
tion method) (Park 2004). This approach aims at combin-
ing the multiple problem objectives into one single-objective
scalar function. To this aim a positively weighted con-
vex sum of the objectives is typically adopted. By varying
these weights it is possible to obtained Pareto optimal solu-
tions but only for problems characterized by convex Pareto
fronts.

To overcome these limitations, more sophisticated algo-
rithms could be adopted. They include ε-constraints Method
(Chinchuluun and Pardalos 2007), Goal Programming (Ng
1987), Multi-level Programming (Okabe et al. 2003).

These methods allow an effective exploration of the solu-
tion space but they require an a priori knowledge of the prob-
lem being analyzed and they could be sensitive to the shape
of the Pareto front (Marler and Arora 2004).

A promising research direction aimed at overcoming some
of these limitations is to rely on Metaheuristic algorithms [i.e.
Genetic Algorithms (Fonseca and Fleming 1998), Evolution-
ary Programming (Rodriguez-Vazquez et al. 2004), Particle
Swarm Optimization (Agrawal et al. 2008)]. A review of
the wide literature on the role of bio-inspired and population
based methods for multi-objective optimization is presented
in Coello et al. (2007). As outlined in these papers, meta-
heuristic algorithms allow the analyst to effectively handle
qualitative constraints, to improve the solution space explo-
ration and to reduce the probability to converge on local min-
ima. Despite these benefits, mathematical analysis of these
algorithms lacks behind. In particular, convergence analysis
still remains almost unsolved, while computation burden is
equally challenging (Yang 2011).

From the analysis of these papers, a number of impor-
tant scientific and technical points comes out, stimulating the
conceptualization of alternative computing paradigms for the
effective solution of mathematical programming problems.
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In details, it is worth observing as the discussed solu-
tion techniques: (1) can be effectively addressed to solve
a specific programming problem; (2) could fail to converge
in the presence of singularities of the Jacobian matrix; (3)
could become instable when the attraction region of the ini-
tial solution guess is far away from the problem solution. To
overcome these limitations in this paper a novel computing
paradigm is conceptualized.

The proposed solution is based on a challenging idea, orig-
inated from papers Xie et al. (2013), Torelli et al. (2013)
and based on the dynamic systems theory. The idea is to
formulate a generic mathematical programming problem by
a set of ordinary differential equations, whose equilibrium
points represent the problem solutions. Staring form the Lya-
punov theory, we will demonstrate that this artificial dynam-
ical model is asymptotically stable and it is quite insensitive
to many factors which can cause numerical instabilities to the
traditional solution algorithms. This important feature allows
the analyst to overcome the inherent limitations of iterative
algorithms that can fail to converge due to the highly nonlin-
earities of the first-order conditions.

This paper intends to bring the following contributions to
the literature:

1. First of all we conceptualize a generalized computational
paradigm aims at solving non linear systems of equations,
scalar and multi objective optimizations problems;

2. We theoretically characterize its convergence proprieties;
3. We demonstrate as the proposed paradigm converges to a

root of a system of equations (when applied to non linear
systems solution), to a feasible solution which locally
minimizes the objective function (when applied to scalar
optimization problems) or to a feasible Pareto solution
(when applied to multi objective optimization problems);

Detailed numerical experimental results obtained by apply-
ing the proposed paradigm on several benchmarks will be
presented and discussed in order to prove its effectiveness in
managing complex and real world problems.

2 Theoretical foundation

2.1 Non linear equations systems

The mathematical kernel of the proposed computing para-
digm is based on the solution of the following nonlinear sys-
tem of equations:⎧⎪⎪⎨
⎪⎪⎩

g1(x) = 0
g2(x) = 0
...

gN (x) = 0

(1)

where gi : Rn → R, i = 1, 2, . . . N are continuously differ-
entiable functions on gRn .

The most common approach aimed at solving the problem
(1) minimizes the sum of the squared residuals. This allow
us to formalize the problem (1) as follow:

{
min

x
w(x)

w(x) = 1
2

∑N
i=1 gi (x)2 = 1

2 g(x)T g(x)
(2)

where g(x)T = [g1(x), . . . , gN (x)] and T is the transposition
operator.

To solve the problem (2) the traditional solution approac-
hes try to solve the first-order derivative condition:

dw(x)

dx
=
(

dg(x)

dx

)T

g(x) = 0 (3)

The solution of this problem can be impracticable due
to the nonlinear nature of the resulting set of equations, so
numerical methods are traditionally employed in order to
obtain a solution that is within an acceptable tolerance.

In this paper we propose an alternative computing para-
digm aimed at solving the problem (2). The underlying prin-
ciple is to design a stable artificial dynamic system whose
equilibrium points represent the solutions of the problem (1).
In particular, we assume that the components of the vector x
evolve according to proper time functions x(t).3 Under this
assumption, the scalar positive-semidefinite objective func-
tion w(x) can be considered as a Lyapunov function. Conse-
quently if we let the time derivative of w(x) negative-definite
or negative-semidefinite along the trajectory x(t), then the
Lyapunov theorem would assure the existence of an asymp-
totically stable equilibrium point which minimizes w(x) and
solves the problem (1).

In order to prove this statement, let’s compute the time
derivative of w(x) by applying the chain rule:

dw(x(t))

dt
= ẇ(x(t)) = g(x(t))T dg(x(t))

dt
= g(x(t))T ġ(x(t))

(4)

And since:

ġ(x(t)) = dg(x(t))
dx

dx(t)
dt = dg(x(t))

dx ẋ(t) (5)

we obtain:

ẇ(x(t)) = g(x(t))T dg(x(t))

dx
ẋ(t) (6)

3 It is worth noting as the variable “t” is an artificial parameter and
we are only interested in the final equilibrium points reached by the
dynamic system and the transient nature of the trajectories.
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Consequently if we let ẋ(t) change according to the gradient
of w(x):

ẋ(t) = −k

(
dw(x)

dx

)T

= −k

(
dg(x)

dx

)T

g(x) (7)

where the gradient is a row vector and k is a positive constant,
we obtain:

ẇ(x(t)) = −k

[
g(x(t))T dg(x(t))

dx

(
dg(x(t))

dx

)T

g(x(t))

]

(8)

This is a quadratic form which is certainly negative-
semidefinite.

This important result allows us to conclude that if the
vector x(t) evolves according to (7), then the following Lya-
punov conditions are satisfied:

1. w(x), is positive-semidefinite and equals to zero at the
equilibrium points;

2. the time derivative of w(x) is negative-semidefinite;

Consequently x(t) converges to an equilibrium point x∗
which is asymptotically stable4

Moreover, by substituting the (7) into (5) we obtain:

ġ(x(t)) = −k dg(x(t))
dx

(
dg(x)

dx

)T
g(x) (9)

By observing that the matrix

(
dg(x)

dx

(
dg(x)

dx

)T
)

is symmetric

and positive-definite and its eigenvalues are real and positive,
we can conclude that g(x(t))T = [g1(x(t)), . . . , gN (x(t))]
exponentially converges to the equilibrium point g(x∗) = 0.

This important result allows us to solve the problem
(1) by the time simulation of the artificial dynamic system
(7) without requiring any matrix inversion and/or factoriza-
tion and overcoming the main difficulties arising by the ill-
conditioning of the Jacobian matrix.

2.2 Scalar optimization problems

In this section we will show as the previously described
dynamic paradigm can be effectively deployed to solve the
following constrained nonlinear programming problem:⎧⎪⎨
⎪⎩

min
x

f (x)

s.t. g(x) = 0
hmin ≤ h(x) ≤ hmax

(10)

4 Since the system of differential equations (7) is nonlinear, the corre-
sponding equilibrium point depends of the initial condition. This implies
that the dynamic model could have different equilibrium points for dif-
ferent initial conditions. Further studies aiming at characterizing the
dimension of the regions of attraction is currently under investigation
by the authors.

where x is the vector of the control/decision variables,
g(x) is the n-dimensional equality constraint vector and
h(x) is the m-dimensional vector describing the inequality
constraints.

To solve this problem by the proposed computing para-
digm it is worth observing as:

1. the minimization of the objective function f (x) is equiv-
alent to find the zeros of the following function:

F1(x, q) = f (x) − q (11)

where q is an additional slack variable that allows us to
satisfy the conditions imposed by the Lyapunov theo-
rem on points different from the zeros of the objective
function.

2. the satisfaction of the equality constraints requires the
roots finding of the following functions:

F2(x) = g(x) (12)

3. the inequality constraints can be converted into equality
constraints by the introduction of nonnegative slack vari-
ables according to the Interior Point theory (Astfalk et al.
1992; Boggs et al. 1996). Consequently their satisfaction
asks for finding the zeros of the following functions:

{
F3(x, s) = h(x) + s − hmax

F4(x, t) = h(x) − t − hmin
(13)

where s and t are two additional unknown vectors repre-
senting nonnegative slack variables.

Thanks to these statements the scalar optimisation prob-
lem formalised in (10) can be addressed by solving the fol-
lowing nonlinear system of equations:
⎧⎪⎪⎨
⎪⎪⎩

F1(x, q) = 0
F2(x) = 0
F3(x, s) = 0
F4(x, t) = 0

(14)

Consequently, our goal is to compute the value of the vec-
tor z = [x, q, s, t] that simultaneously makes equal to zero
each component of the vector F(z) = [

F1(x, q), F2(x),

F3(x, s), F4(x, t)
]
.

The solution of this problem by the proposed comput-
ing paradigm requires the time simulation of the following
dynamic system:

ż = −k

(
dF(z)

dz

)T

F(z) (15)
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which can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −kx

[(
d f (x)

dx

)T
( f (x) − q) +

(
dg(x)

dx

)T
g(x)

+
(

dh(x)
dx

)T
(h(x)+s−hmax)+

(
dh(x)

dx

)T
(h(x)−t−hmin)

]

ṡ = −ksI(h(x) + s − hmax)

ṫ = kt I(h(x) − t − hmin)

q̇ = kq( f (x) − q) (16)

where kx , ks , kt and kq are proper gain factors.
As we shown in the previous section, the dynamic evolu-

tion of the vector F(z) is governed by the following equation:

Ḟ(z(t)) = −k
dF(z)

dz

(
dF(z)

dz

)T

F(z) (17)

and, due to the structure of the matrix dF(z)
dz

(
dF(z)

dz

)T
, we can

conclude that F(z) asymptotically converges to the equilib-
rium point F(z∗) = 0.

Therefore, at the equilibrium point, it results:

F(z∗)T F(z∗) = 0 (18)

which can be expanded as follow:

( f (x∗) − q∗)2 +
n∑

j=1

(g j (x∗))2

+
m∑

k=1

(
hk(x∗, s∗) + si − hk. max

)2

+
m∑

k=1

(
hk(x∗, t∗) − ti − hk. min

)2 = 0 (19)

Since all the terms of this summation are quadratic, we
can conclude that x∗ is certainly a feasible solution for the
problem (10) (since all the equality and inequality constraints
are satisfied).

Now let’s analyze the value assumed by the slack variable
q at the equilibrium point (namely q∗).

When the dynamic system (16) reaches the equilibrium, it
results ż = 0 (namely ẋ = q̇ = ṡ = ṫ = 0) and the following
set of equations must be satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
d f (x)

dx

∣∣∣
x=x∗

)T
( f (x∗) − q∗) = 0

f (x∗) − q∗ = 0(
dh(x∗)

dx

)T
(h(x∗) + s∗ − hmax) = 0

h(x∗) + s∗ − hmax = 0(
dh(x∗)

dx

)T
(h(x∗) − t∗ − hmin) = 0

h(x∗) − t∗ − hmin = 0(
dg(x∗)

dx

)T
g(x∗) = 0

g(x∗) = 0

(20)

From the first equation it follows that:
(

d f (x)

dx

∣∣∣∣
x=x∗

)T

= 0 (21)

This is the first order condition for a minimum of f (x) in the
equilibrium point x∗.

Besides, from the second of (20) it follows that q(t) con-
verge to the value assumed by f (x) in its minimum.

To better clarify this concept let’s observe that:

1. the dynamic of f (x(t)) is independent from q(t) [as it
can be inferred by (17)];

2. the variable q(t) is forced to track the “input signal”
f (x(t)) with an exponential convergence governed by
the constant kq [as it can be inferred by (16)].

Consequently, if we let q(t) to vary slower compared to
f (x(t)) (i.e. by reducing kq) then we expect that equation
(21) is satisfied since x(t) reaches the equilibrium point x∗
quickly compared to q(t).5

Therefore, thanks to the introduction and the proper man-
agement of the slack variables, the proposed computing par-
adigm can be adopted to solve scalar constrained optimiza-
tion problems. In this case, in addition to the previously
described benefits, the application of the dynamic paradigm
allows us to effectively manage the inequality constraints
on the slack and the control/decision variables (namely
si ≥ 0, ti ≥ 0 i = 1, . . . , m , and xmin,i ≤ xi ≤ xmax,i i =
1, . . . , nx ) by considering proper block saturations without
the need for integrating these constraints in equations (14).
This feature could be very useful in solving large scale prob-
lems.

2.3 Multi-objective programming problems

Let’s now consider the following constrained multiobjective
programming problem:⎧⎪⎨
⎪⎩

min
x

f(x)

s.t. g(x) = 0
hmin ≤ h(x) ≤ hmax

(22)

where f(x) = [ f1(x), .., f p(x)
]T is the p-dimensional objec-

tive function vector.
By following the same approach described in Sect. 3.2,

it easy to show as the solution of the problem (22) can be
addressed by solving the following nonlinear system of equa-
tions:

5 During this evolution it results q(t) ≈ q(0) �= f (x∗). Successively,
when q(t) reaches the equilibrium point it results q∗ = f (x∗) and we
can conclude that q(t) converges to the value assumed by f (x) in its
minimum.
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⎧⎪⎪⎨
⎪⎪⎩

F1(x, q) = f(x) − q = 0
F2(x) = 0
F3(x, s) = 0
F4(x, t) = 0

(23)

where q is the vector of the p slack variables qi .
The solution of this problem by the proposed comput-

ing paradigm requires the time simulation of the following
dynamic system:

ż = −k

(
dF(z)

dz

)T

F(z) (24)

where z = [x, q, s, t
]

and F(z) = [F1(x, q), F2(x), F3(x, s),
F4(x, t)

]
.

Equation (24) can be expanded as follow:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −kx

[∑p
i=1

(
d fi (x)

dx

)T
( fi (x) − qi ) +

(
dg(x)

dx

)T
g(x)

+
(

dh(x)
dx

)T
(h(x)+s+hmax)+

(
dh(x)

dx

)T
(h(x)−t−hmin)

]

ṡ = −kI(h(x) + s − hmax)

ṫ = +kI(h(x) − t − hmin)

q̇ = kq( f (x) − q) (25)

As we have shown in the previous section, at the equilib-
rium point, it results:

F(z∗)T F(z∗) = 0 (26)

Or equivalently:

p∑
i=1

(
fi (x∗) − q∗

i

)2 +
n∑

j=1

(g j (x∗))2 +
m∑

k=1

(hk(x∗, s∗)

+si − hk. max)
2 +

m∑
k=1

(hk(x∗, t∗) − ti − hk. min)
2 = 0

(27)

From this equation it is worth observing as x∗ is certainly a
feasible solution of the problem (22).

Now let’s analyze the important role played by the vari-
ables qi .

When the dynamic system (25) reaches the equilibrium it
results ż = 0 (namely ẋ = q̇ = ṡ = ṫ = 0) and the following
set of equations must be satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
df(x∗)

dx

)T
(f(x∗) − q∗) = 0

f(x∗) − q∗ = 0(
dh(x∗)

dx

)T
(h(x∗) + s∗ − hmax) = 0

h(x∗) + s∗ − hmax = 0(
dh(x∗)

dx

)T
(h(x∗) − t∗ − hmin) = 0

h(x∗) − t∗ − hmin = 0(
dg(x∗)

dx

)T
g(x∗) = 0

g(x∗) = 0

(28)

The first of (28) implies that:

⎧⎪⎪⎨
⎪⎪⎩

[∑p
i=1

d fi (x)
dx1

∣∣∣
x=x∗ ( fi (x∗) − q∗

i
)
]

= 0

...[∑p
i=1

d fi (x)
dxn

∣∣∣
x=x∗ ( fi (x∗) − q∗

i
)
]

= 0

(29)

These equations represent the necessary conditions for the
local minimization of the squared sum of the objective func-
tions.

This statement could be confirmed by observing that:

– the dynamic of each objective function fi (x(t)) is not
influenced by the dynamic of the corresponding slack
variable qi (t);

– each slack variable qi (t) is forced to track the “input
signal” fi (x(t)) by an exponential convergence governed
by the constant kq ;

Then if we let qi (t) to vary slower compared to fi (x(t))
(i.e. by reducing kq) and if we assume qi (0) = 0 then we
expect that x(t) reaches an equilibrium point which locally
minimize

∑p
i=1 f 2

i (x).6

Moreover, from the second of (28) it follows that each
qi (t) converges to the value assumed by the i-th objective
function at this equilibrium point.

This important result allows us to conclude that the pro-
posed computing paradigm implements a quadratic scalariza-
tion technique for constrained multiobjective minimization
problems solution.7

3 Experimental results

This section discusses the application of the proposed com-
puting paradigm in the task of solving several benchmark
problems. In details, we consider non linear systems of equa-
tions, scalar and multi-objective optimization problems. In all
the experiments discussed in this section we assumed random
initial conditions for the dynamical models.8 The obtained
results are detailed presented in the next subsections.

6 Under these hypothesis when x(t) converges to x∗ it results qi (t) ≈
qi (0) = 0 �= fi (x∗).
7 Intensive research activities aiming at formally defining the connec-
tions between the proposed dynamic paradigm, the gradient descent
algorithm and the Pareto theory is currently under investigation by the
authors.
8 We expect that a more accurate selection of the initial states (i.e.
by considering a feasible solution generated by a traditional algorithm)
could sensibly improve the algorithm convergence especially in solving
non convex optimization problems.
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3.1 Solving non linear systems of equations

To assess the effectiveness of the proposed computing par-
adigm in solving non linear systems of equations, we con-
sidered the two benchmarks defined in Grosan and Abraham
(2008).

The first problem asks for the solution of the following
equations:
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Fig. 1 Solution of the non linear equations system (30): a Time evo-
lution of x1(t) and x2(t). b Time evolution of g1(x1(t), x2(t)) and
g2(x1(t), x2(t))

{
g1(x1, x2)=cos(2x1) − cos(2x2) − 0.4=0

g2(x1, x2)=2(x2 − x1) + sin(2x2) − 2 sin(x1) − 1.2=0

(30)

To solve this problem the application of the proposed com-
puting paradigm requires the time simulation of the following
dynamic system:

⎧⎨
⎩

ẋ1 = −k
(

dg1(x1,x2)
dx1

g1(x1, x2) + dg2(x1,x2)
dx1

g2(x1, x2)
)

ẋ2 = −k
(

dg1(x1,x2)
dx2

g1(x1, x2) + dg2(x1,x2)
dx2

g2(x1, x2)
) (31)

The obtained trajectories are depicted in Fig. 1. Analysing
this figure it is worth noting as the system converges to the
following state (which represents the problem solution):
{

x∗
1 = 0.1552

x∗
2 = 0.4929

(32)

In order to assess the benefits deriving by the application
of the proposed approach, in Table 1 the solutions obtained
by applying other settled solution strategies are summarized
(Grosan and Abraham 2008).

By analysing these data it is possible to appreciate the good
degree of accuracy characterising the solution identified by
the proposed paradigm.

The second problem considered in our studies asks for
solving the following equations:
{

g1(x1, x2) = ex1 + x1x2 − 1 = 0
g2(x1, x2) = sin(x1x2) + x1 + x2 − 1 = 0

(33)

By applying the dynamic paradigm we obtained the trajecto-
ries depicted in Fig. 2 which converge to the following state:
{

x∗
1 = 0.0004

x∗
2 = 0.9991

(34)

This solution has been compared with those obtained by
applying other settled solution strategies. The correspond-
ing results are summarized in Table 2.

The analysis of these data confirms the effectiveness of the
dynamic paradigm in the task of solving non linear systems
of equations.

Table 1 Solving non linear
systems of equations: results for
the first example

Method Solution Function values

Newton’s method (0.15, 0.49) (−0.00168, 0.01497)

Secant method (0.15, 0.49) (−0.00168, 0.01497)

Broyden’s method (0.15, 0.49) (−0.00168, 0.01497)

Effati’s method (0.1575, 0.4970) (0.005455, 0.00739)

Evolutionary approach (0.15772, 0.49458) (0.001264, 0.000969)

Proposed method (0.1552, 0.4929) (−0.6172E−5, −0.3621E−5)
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Fig. 2 Solution of the non linear equations system (34): a Time evo-
lution of x1(t) and x2(t). b Time evolution of g1(x1(t), x2(t)) and
g2(x1(t), x2(t))

3.2 Scalar optimization

As stated in Sect. 2.2, the dynamic paradigm can be easily
reconfigured in order to address scalar optimization prob-
lems. To clarify this concept let’s consider the following
example:
⎧⎪⎪⎨
⎪⎪⎩

min
x1,x2

f (x1, x2) =
(

6x1
2+x2

1+x2
2

)

−5 ≤ x1 ≤ 5
−5 ≤ x2 ≤ 5

(35)

This function has a minimum in (x1, x2) = (−√
2, 0) and

the value of this minimum is f (x1, x2) = −2.1213.
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Fig. 3 State variables trajectories—example of scalar minimization.
a Time evolution of x1(t), x2(t), q1(t) and f (x1(t), x2(t)) − q1(t). b
Trajectory (x1(t), x2(t)) and contour plot of f (x1, x2)

To solve the problem (36), the application of the proposed
computing paradigm requires the time simulation of the fol-
lowing dynamic system:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −kx

[(
6

2+x2
1+x2

2
− 12x2

1
(2+x2

1+x2
2 )2

)(
6x1

2+x2
1+x2

2
− q1

)]

ẋ2 = −kx

[
− 12x1x2

(2+x2
1+x2

2 )2

(
6x1

2+x2
1+x2

2
− q1

)]

q̇1 = kq

(
6x1

2+x2
1+x2

2
− q1

)
(36)

Two block saturations aimed at satisfying the inequality con-
straints on x1 and x2 have been integrated in the simulation
process.

The obtained trajectories are depicted in Figs. 3, 4.
Analysing these figures it is worth noting as the system con-

Table 2 Solving non linear
systems of equations: results for
the second example

Method Solution Function values

Effati’s method (0.0096, 0.9976) (0.019223, 0.016776)

Evolutionary approach (−0.00138, 1.0027) (−0.00276, −6.37 E −5)

Proposed method (0.0004, 0.9991) (0.4966E−5, 0.0001E−6)
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Fig. 4 Trajectory (x1(t), x2(t), q1(t)) and 3D plot of f (x1, x2) (as
expected q1(t) converge to the function minimum)

verges to the following state:⎧⎪⎪⎨
⎪⎪⎩

x∗
1 = −√

2

x∗
2 = 0

q∗
1 = 2.1213

(37)

and, as expected, x1(t) and x2(t)converge to the problem
solution while q1(t) converges to the function minimum.

3.3 Multi-objective optimization

The introduction of proper slack variables allows the dynamic
paradigm to effectively solve Multi-objective optimization
problems. To clarify this concept let’s consider the following
example:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x1,x2

( f1(x1, x2), f2(x1, x2))

=
(

10x1+2
2+x2

1+x2
2
, 1

3 log
( 1

4 x4
1 + x2

2 + 4x2
1 + 4

)+ 2

)

−5 ≤ x1 ≤ 5
−5 ≤ x2 ≤ 5

(38)

The solution of this problem by the proposed comput-
ing paradigm asks for the time simulation of the following
dynamic system:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = −kx

[(
∂ f1
∂x1

)
( f1 − q1) +

(
∂ f2
∂x1

)
( f2 − q2)

]

ẋ2 = −kx

[(
∂ f1
∂x2

) (
f1 − q1) + (

∂ f2
∂x2

)
( f2 − q2)

]
q̇1 = kq( f1 − q1)

q̇2 = kq( f2 − q2)

(39)

Two block saturations aimed at satisfying the inequality con-
straints on x1 and x2 have been integrated in the simulation
process.

The obtained results are summarized in Table 3 and in Fig.
5, 6. In particular, by analysing Fig. 5 it is possible to observe
as (x1(t), x2(t)) converge to the minimum of the scalar func-
tion f 2

1 (x1, x2) + f 2
2 (x1, x2). Moreover by analysing Fig. 6,

Table 3 Solution to problem (38)

x∗
1 x∗

2 q∗
1 = f1(x∗

1 , x∗
2 ) q∗

2 = f2(x∗
1 , x∗

2 )

−0.1530 0.2459 0.2257 2.4747
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Fig. 5 State variables trajectories—example of multi-objective opti-
mization. a Time evolution of x1(t), x2(t), q1(t) and q2(t). b Trajectory
(x1(t), x2(t)) and contour plot of f 2
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Table 4 Solution to the
multi-objective problems
(40)–(44)

x∗ q∗ = ( f1(x∗), f2(x∗)) s∗ = hmax − h(x∗) t∗ = h(x∗) − hmin

Problem (40) (0.6667, 0) (0.6667, 1.4999) (0.0005, 5.0005)

Problem (41) (1.3444, 1.5024) (16.2592, 25.5962) 9.3794 56.8687

Problem (42) (–0.1744, 3.2752) (11.9047, 3.6065) 214.2427 0

Problem (43) (–3.1416, 0.5912) (2.2926, 2.5518)

Problem (44) (0.000, 0.000, 0.000) (0.6321, 0.6321)

it is possible to note as the trajectory of q2
1 (t) + q2

2 (t) con-
verges to the value assumed by f 2

1 (x1, x2) + f 2
2 (x1, x2) in

its minimum.
Finally, in order to assess the effectiveness of the dynamic

computing paradigm in identifying efficient solutions, the
following benchmarks have been solved and the obtained
solutions have been compared to the corresponding Pareto
optimal fronts. The latter have been generated by applying an
evolutionary based multi-objective optimization algorithm
Zitzler and Thiele (1998).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x1,x2)

(
f1 = x1

f2 = 1+x2
x1

)

s.t.
x2 + 9x1 ≥ 6
−x2 + 9x1 ≥ 1
0.1 ≤ x1 ≤ 1
0 ≤ x2 ≤ 5

(40)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x1,x2)

(
f1 = 4x2

1 + 4x2
2

f2 = (x1 − 5)2 + (x2 − 5)2

)

s.t.
(x1 − 5)2 + x2

2 ≤ 25
(x1 − 8)2 + (x2 + 3)2 ≥ 7.7
0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 3

(41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x1,x2)

(
f1 = (x1 − 2)2 + (x2 − 1)2 + 2
f2 = (9x1 + (x2 − 1)2

)

s.t.
x2

1 + x2
2 ≤ 225

−x1 + 3x2 ≥ 10
−20 ≤ x1 ≤ 20
−20 ≤ x2 ≤ 20

(42)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x1,x2)

⎛
⎜⎜⎜⎜⎜⎝

f1 = 1 + (k1 − 0.5 sin(x1) − 2 cos(x1)

+ sin(x2) − 1.5 cos(x2))
2

+(k2−1.5 sin(x1)−cos(x1)

+2 sin(x2) − 0.5 cos(x2))
2

f2 = (x1 + 3)2 + (x2 + 1)2

⎞
⎟⎟⎟⎟⎟⎠

s.t.
−π ≤ x1 ≤ π

−π ≤ x2 ≤ π

(43)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x1,x2,x3)

⎛
⎜⎝ f1 = 1 − e

−∑3
i=1

(
xi − 1√

3

)2

f2 = 1 − e
−∑3

i=1

(
xi + 1√

3

)2

⎞
⎟⎠

s.t.
−4 ≤ x1 ≤ 4
−4 ≤ x2 ≤ 4
−4 ≤ x3 ≤ 4

(44)

The obtained results have been summarized in Table 4 and
in Fig. 7.

Analyzing these data it is worth observing as in all cases
the dynamic paradigm identifies an efficient solution in the
Pareto sense.

4 Toward a reconfigurable hardware architecture

The future direction of our research will be oriented in
deploying the proposed computing paradigm according to the
reconfigurable hardware architecture schematically depicted
in Fig. 8. The insight is to implement the stable artificial
model by a proper combination of discrete electronic devices
(i.e. operational amplifiers). In this case the variable t is no
longer an artificial parameter but it represents the real com-
puting time.

An important feature characterising this architecture is
the intrinsic data filtering capability derived by the integral
action of the computational process. This make the proposed
approach particularly useful in solving programming prob-
lems in the presence of uncertainty or noisy data.

Finally, we expect that the hardware deployment of the
proposed paradigm will sensibly reduce the convergence
times making it an ideal candidate for solving complex and
large scale programming problems in near real time.

5 Conclusions

In this paper a unified computing paradigm aimed at solv-
ing mathematical programming problems has been proposed.
In particular we demonstrated that a generic programming
problem can be formalized by a proper set of ordinary differ-
ential equations, whose equilibrium points correspond to the
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Fig. 7 Solutions to standard multi-objective programming problems: a Problem (40). b Problem (41). c Problem (42). d Problem (43). e Problem
(44)

problem solutions. Besides we rigorously demonstrated that
this artificial dynamic system could be explicitly designed to
be stable with an exponential asymptotic convergence to an
equilibrium point. This equilibrium point represents a root
of a system of equations (when applied to non linear sys-
tems solution), a feasible solution which locally minimizes
the objective function (when applied to scalar optimization
problems) or a feasible Pareto solution (when applied to multi
objective optimization problems). Thanks to these important

features the generic programming problem can be solved by
the time simulation of a stable dynamic system without the
need for any kind of matrixes inversion/manipulation.

Extensive numerical results obtained on several bench-
marks confirm the intrinsic benefits deriving by the appli-
cation of the proposed computing paradigm. In particular
we observed as it effectively solved systems of non linear
equations and converged to feasible local optima and Pareto
optimal solutions when applied in solving scalar and multi
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Fig. 8 Schematic diagram of
the computational process

objective optimization problems respectively. Besides, in all
these numerical experiments we observed as the artificial
dynamic system exponentially converged to a stable equi-
librium point as rigorously demonstrated by the theoretical
analysis presented in Sect. 2.

Finally we would like to outline that the application of
the dynamic computing paradigm for large scale problems
could poses some computational difficulties. In address-
ing this flaw, it is possible to exploit the intrinsic paral-
lelism characterizing the proposed algorithm. In this con-
nection the authors developed and tested a powerful paral-
lelization algorithm aimed at effectively deploying the pro-
posed dynamic architecture on a distributed computing envi-
ronment. Besides the authors are improving the theoretical
framework presented in this paper in order to address integer
and mixed integer programming problems.

Due to space limitation, the theoretical background and the
obtained experimental results will be presented in a separate
paper.
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