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Abstract Evolutionary algorithms have been widely used
to solve dynamic optimization problems. Memory-based
evolutionary algorithms are often used when the dynamics
of the environment follow some repeated behavior. Over the
last few years, the use of prediction mechanisms combined
with memory has been explored. These prediction techniques
are used to avoid the decrease of the algorithm’s performance
when a change occurs. This paper investigates the use of pre-
diction methods in memory-based evolutionary algorithms
for two distinct situations: to predict when the next change
will happen and how the environment will change. For the
first predictor two techniques are explored, one based on lin-
ear regression and another supported by nonlinear regres-
sion. For the second, a technique based on Markov chains is
explored. Several experiments were carried out using differ-
ent types of dynamics in two benchmark problems. Exper-
imental results show that the incorporation of the proposed
prediction techniques efficiently improves the performance
of evolutionary algorithms in dynamic optimization prob-
lems.
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1 Introduction

Evolutionary algorithms (EAs) have been successfully used
in a wide area of applications. Traditionally, EAs are well
suited to solve problems where the environment is static.
For dynamic optimization problems, an effective EA must
be able to detect changes and rapidly deal with that changes
when they occur. Classical EAs are not suited for these kinds
of problems, since they have the tendency to prematurely
converge to a solution. Therefore, when the conditions of the
environment change, the algorithm needs some time for this
converged population to readapt and move towards the new
optimum.

To deal with these limitations, some improvements have
been proposed as extensions of the classical EA. These
improvements include maintaining diversity, e.g. Cobb and
Grefenstette (1993), Grefenstette (1992), using memory
schemes, e.g. Karaman et al. (2005), Yang (2007), Simões
and Costa (2007b), Barlow and Smith (2008), using multi-
populations, e.g. Ursem (2000), Younes et al. (2006), Li and
Yang (2012) or anticipating the changes in the environment,
e.g. Bosman and La Poutré (2007), Simões and Costa (2008,
2009b), Richter and Yang (2009).

If the environment changes cyclically and past situations
reappear later, the use of memory is beneficial, since that
the memorized solutions can be used to help the EA when
a change in the environment happens and a previous situa-
tion reappears. In general, memory-based approaches dealing
with dynamic environments use the memory after a change is
detected. As a consequence, the EA’s performance decreases
after the change and then, when the memory is used, it starts
increasing. In order to minimize the effects of the environ-
mental changes on the EA’s performance, anticipation mech-
anisms have been explored by different authors. The goal of
these approaches is to use past data to forecast future situ-
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ations and use it to help the EA to deal with the new envi-
ronment. The next section describes the most relevant works
concerning these issues. The majority of these methods use
prediction to estimate where the optimum will move, giving
the algorithm the moment of the next change. Nevertheless,
in real situations, the time when the next change will hap-
pen is also unknown. In our previous work, we proposed the
use of a new prediction techniques in memory-based EAs
in order to estimate both the time of the next change and
the next environmental transition, with promising results.
Simões and Costa (2008) mechanisms using linear regres-
sion and Markov chains, are used to estimate the genera-
tion when a change in the environment will occur, and also
to predict to which state (or states) the environment may
change, respectively. Simões and Costa (2009a), we investi-
gate different methods to dynamically adjust the linear pre-
dictor in order to achieve higher adaptability and robustness.
Simões and Costa (2009b) a new approach based a nonlin-
ear regression predictor is proposed to estimate when the
next change will occur. In this paper we unify and further
extend the use of these techniques in memory-based EAs.
The previously proposed approaches presented several limi-
tations and failed in specific situations. In particular, the lin-
ear regression predictor used all available data to make the
next prediction. Consequently, as time passed, the computa-
tional effort was bigger and if the dynamics of the change
period was altered the performance of the EA was compro-
mised. To overcome this problem in this paper we introduce
the concept of time window that greatly enhances the lin-
ear predictor module, making it more efficient, robust and
applicable to a wider set of situations. This new mechanism
significantly reduces the computational effort of the previ-
ous versions and presents the best performance in the stud-
ied benchmark problems. Moreover, we enlarge the exper-
imental setup with new test functions dealing with differ-
ent and more challenging scenarios. Finally, we present an
unified and complete description of the framework, that
includes our memory-based evolutionary algorithm, the pre-
diction module (linear and nonlinear) and the anticipation
module.

The rest of the paper is outlined as follows. The next
section briefly reviews relevant work concerning predic-
tion in dynamic environments. Section 3 gives an overview
about different categorizations of dynamic environments,
introducing a new one that is used in this work. Section 4
presents the memory-based EA used in this study. The pre-
diction methods introduced in Simões and Costa (2008,
2009a,b) and the new improvements are described in Sect. 5.
The used benchmarks, the experimental settings and the
performance measures are detailed in Sect. 6. The results
obtained are analyzed in Sect. 7. Finally, the relevant con-
clusions and directions for future work are discussed in
Sect. 8.

2 Related work

This section describes related work proposed in the litera-
ture concerning anticipation in changing environments using
EAs.

Stroud (2001) used a Kalman-extended genetic algorithm
(KGA) in which a Kalman filter is applied to the fitness val-
ues associated with the population individuals. The goal of
this Kalman filter is to determine when to generate a new
individual, when to re-evaluate an existing individual, and
which one to re-evaluate. This KGA is applied to the prob-
lem of maintaining a network configuration with minimized
message loss in which the nodes are mobile and the transmis-
sion over a link is stochastic. As the nodes move, the optimal
network changes, but the information contained within the
population of solutions allows efficient discovery of better-
adapted solutions.

Van Hemert et al. van Hemert et al. (2001) introduced an
EA with a meta-learner to estimate, at time t , how the envi-
ronment will be at time t + δ. This approach uses two pop-
ulations, one that searches the current optimum and another
that uses the best individuals in the past to predict the future
best value. The prediction is made based on observations
from the past, using two types of predictors: a perfect pre-
dictor and a noisy predictor. Individuals from the latter are
occasionally sent to the former. The prediction module is not
implemented, but instead it is assumed a perfect predictor
or a noisy predictor. The idea is tested with two benchmark
problems: the knapsack problem and Ǒsmera’s function.

An integrated system combining prediction, optimiza-
tion and adaptation techniques is proposed in Schmidt et
al. (2005) and applied to a real world application used to
find the best distribution of cars of a particular model across
the nation. The problem is complex and the implemented
model addresses the issues of transportation, volume sensi-
tivity effect, price depreciation, recent history, current inven-
tory, risk factors and dynamic market changes. The system
has three main modules: optimization, prediction and adap-
tation. The prediction module uses information from the past
to give prediction about the sale prices. Schmidt et al. (2005),
no information was given about which techniques are used
to provide the predictions. The other two modules use the
information provided by the prediction module and provide
an answer to the actual problem. Finally, the adaptation mod-
ule receives new information about the problem and adapts
the parameters of the prediction module in order to decrease
the prediction error. Later, in Michalewicz et al. (2007), this
model was used in three different case studies.

Bosman and La Poutré (2006, 2007) proposed several
approaches focused on the importance of using learning and
anticipation in online dynamic optimization. These works
analyzed the influence of time-linkage present in problems
such as scheduling and vehicle routing. The presence of time-
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linkage in this kind of problem can influence the overall per-
formance of the system: if a decision is made just to optimize
the score at a specific moment, it can negatively influence
the results obtained in the future. Bosman’s works proposed
an algorithmic framework integrating evolutionary computa-
tion with machine learning and statistical learning techniques
to estimate future situations. Predictions are made based on
information collected from the past. The used predictor is a
learning algorithm that approximates either the optimization
function or several parameters.

Hatzakis and Wallace (2001) uses prediction techniques
to forecast the location of the Pareto front in multiobjective
problems. This approach stores the location of previous solu-
tions and uses autoregressive models to predict the position of
the new optimal solution in the next time step. The changes in
the environment are known à priori in order to decide when to
make the next prediction. A similar technique for multiobjec-
tive optimization was investigated by Zhou et al. (2007). This
approach explores prediction techniques to re-initialize the
population of an EA. The proposed method uses information
from the past to guide future search. Each individual in the
population is tracked and its history is modeled through a time
series model. Predictions about each individual’s position at
the next time step are made using a linear model. These pre-
dictions are used to re-initialize the population after a change
is detected. Two strategies for population re-initialization are
investigated. The first, predicts the new location of individ-
uals from the location changes that had occurred in the past.
Then, the current population is updated using new individu-
als generated based on that prediction. The second strategy
consists of perturbing the current population with Gaussian
noise, whose variance is estimated according to the previous
changes.

Rossi et al. (2008) compared different techniques to
improve the search for tracking a moving optimum using
the information provided by a predictor mechanism based on
Kalman filters. The used predictor assumes that the changes
in the environment are not random and could be learned,
helping the EA to keep track of the current optimum.

The prediction methods investigated in the foregoing cited
papers are used to estimate the likelihood of particular future
situations and to decide what the algorithm must do in the
present situation. Since information about the future typi-
cally is not available, it is attained through learning from
past situations. The mentioned works are mainly focused on
the estimation of where the optimum will move. The moment
when the change happens is given to the algorithm or detected
after its occurrence. Simões and Costa (2008, 2009b) intro-
duced different methods to estimate the movement of the
change and also the moment of the next change. With the
correct use of the two predictors the EA starts preparing
the change before it happens, by introducing useful informa-
tion into the population. The proposed methods are based on

Markov chains, linear and nonlinear regression techniques.
The results obtained proves the efficacy of the proposed
approaches, which will be further investigated in this article.

3 Dynamic environments

Dynamic environments can be classified in different ways.
For example, Branke (2002) categorizes the environments
using certain parameters of the problem: the frequency of
change, the severity of change, the predictability of change
and the periodicity of the change (i.e. the cycle length). A
different categorization, suggested by De Jong (2006), uses
a direct description of the problems, classifying them in (1)
alternating problems, (2) problems with changing morphol-
ogy, (3) drifting landscapes and (4) abrupt and discontinu-
ous problems. Weicker (2003) proposes a classification of
the dynamic environments aiming to establish a mapping
between different types of dynamic optimization problems,
techniques and performance measures. In order to achieve
this, Weicker compares and classifies the dynamic prob-
lems using a mathematical framework. Moreover, Yang and
Yao (2008b) proposes a classification that uses cyclic, cyclic
with noise, and random environments constructed using the
XOR Dynamic Optimization Problem generator. Since we
are interested in assessing the effectiveness of two differ-
ent predictors, in this paper we suggest an alternate way of
classifying the dynamic environments. Therefore, we clas-
sify the changes into two main groups depending on when
the environment changes and how the environment changes.
In each group we only discuss the types of environments that
are studied in this paper.

3.1 When does the environment change?

The time when the changes occur is defined by the change
period, which consists of the number of function evaluations
between two consecutive changes. Knowing the character-
istics of the change period, different decisions can be made
concerning the design of the EA. The change period has three
main aspects to be considered: (1) the type, (2) the frequency
and (3) the predictability.

(1) Types of change period: the change period can be clas-
sified as (a) periodic or linear: the changes are observed
at fixed intervals; (b) patterned: the interval between the
changes is not constant, but instead follows a repeated
pattern (c) nonlinear: the moments where the changes
are observed follow a nonlinear function; and (d) ran-
dom: the changes happen at random points without any
pattern or periodicity.

(2) Frequency of the change: determines how often the envi-
ronment changes. Changes can occur every generation
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or at larger intervals. Environments that change faster are
typically harder to deal with. This is an important issue,
since in most approaches using EAs, the algorithm only
reacts after the change is detected and the frequency of
change can determine if the EA is able to quickly readapt
to the new environmental conditions.

(3) Predictability of the change: this aspect is directly
related with the type of change period. If the change
period follows a linear or a repeated trend, we can say
that the moment of the next change can be predicted.
However, if the change period is completely random, no
prediction is possible. We introduce this aspect since we
are interested in designing EAs that can react before the
change happens.

3.2 How does the environment change?

Knowing how the environment changes is important in decid-
ing if the incorporation of a memory component will be useful
to the EA or if the application of other methods can be more
effective.

(1) Types of environmental changes: The environmental
changes can be (a) cyclic, where situations from the past
reappear in the future in a cyclic manner. In this type
of environment the number of different environments
can determine the difficulty of the problem; (b) cyclic
with noise, where environments from past reappear but
with small differences introduced by a noise factor; (c)
probabilistic, when the transitions between a fixed num-
ber of environments are governed by some probability;
and (d) random, where the environments change from a
state to another completely different state without any
correlation with the past.

(2) Severity of change: the severity of change measures the
strength of the modifications in the environment. The
environment can change to a completely different state
or to a similar one.

(3) Predictability of the new environment: this is directly
related with the type of environmental change. If the
transitions between the environments are cyclic or fol-
low a trend that can be captured by the algorithm, it is
possible to predict which modifications will be observed
at the next change. All of the previously mentioned types
of environments, except the random ones, present some
predicability.

4 Memory-based EAs

In dynamic problems, memory is used to store successful past
solutions with the assumption that the optimum may return to

its former value. When certain aspects of the problem exhibit
some kind of periodic behavior, old solutions might be used
to bias the search in their vicinity and reduce the time needed
to recover. The use of memory is beneficial on those types of
environments.

Memory-based approaches can be divided in two cate-
gories: implicit memory and explicit memory. Implicit mem-
ory is characterized by the use of redundant representa-
tions. By using diploid or multiploid chromosomes, the
best individual of the population is implicitly memorized.
A dominance scheme controls which genes are expressed
in the phenotype (Goldberg and Smith 1987; Ng and Wong
1995; Uyar and Harmanci 2002, 2005; Yang 2006b). The
approaches using explicit memory need an extra space to
explicitly store information about the individuals or the envi-
ronments. In these methods, one population performs the
search for the optimum and the other population, called
memory, stores useful information that is reused later (Yang
2006a; Simões and Costa 2007b, 2012; Barlow and Smith
2008).

This work uses an explicit memory-based EA proposed
in Yang (2005) and called memory-enhanced genetic algo-
rithm (MEGA). This algorithm is enhanced by adding two
prediction modules (see Sect. 5). In MEGA, the popula-
tion and the memory are initialized at random. The time
to update memory (tm) is decided using a random integer
generator producing an integer between 5 and 10. If the
memory is updated at generation t , the next update will
occur at generation tm = t + rand(5, 10). In order to
store the most relevant information to an environment in
the memory, each time an environmental change is detected,
the memory is also updated. If the memory update is due
to t = tm , then the current best individual of the popu-
lation is stored in the memory; if the memory update is
because of a change detection, the elite from the previ-
ous population is stored. To store a new individual into
the memory, another must be replaced: if there are random
individuals in the memory, one of them is selected to be
replaced; otherwise, the memory point closest to the indi-
vidual being stored is selected for replacement, if it is a
better solution. When an environmental change is detected,
a new set of individuals is formed by merging the mem-
ory and the search population. Then, these individuals are
evaluated in the context of the new environment, and the
best p (population size) individuals are selected to become
the new search population, which evolves through selection,
crossover and mutation. Through this process, the memory
remains unchanged. The best individual from the previous
population is preserved and transferred to the next popula-
tion replacing the worst individual (elitism of size 1). More
details about this algorithm can be found in Yang (2005,
2008a).

123



Prediction in evolutionary algorithms for dynamic environments 1475

5 Prediction

In this work, the previously described EA is empowered with
two prediction modules. For the first predictor, to estimate
when the next change will take place, two different methods
are studied, one using linear regression, another using non-
linear regression. The second predictor is based on Markov
chains and is used to estimate how the next environment will
change. The combined and correct application of these two
predictors allows to effectively anticipate the change and pre-
pare the EA to the future environmental conditions. Knowing
the time when the next change will happen and how the envi-
ronment will change, it is possible to retrieve useful infor-
mation from the memory and introduce it into the population
before the occurrence of the environmental changes.

5.1 Predicting when

Usually, memory-based EAs for dynamic environments
detect the changes when they occur. After the change is
detected the information is retrieved from the memory and
inserted into the population (Karaman et al. 2005; Simões
and Costa 2007b; Yang 2007). Nevertheless, in certain types
of dynamic environments some repeated behavior can be
observed and it is possible to make predictions about when
the next change will happen. For instance, if the environ-
ment changes periodically after a fixed number of genera-
tions, the generation when the next change will occur can
be correctly predicted. Even in non-periodic environments,
if some repeated pattern is present, prediction methods can
be successfully applied. Two different methods were pre-
viously explored: a linear regression predictor (Simões and
Costa 2008) and a nonlinear regression predictor (Simões
and Costa 2009b). Those methods, which aim to estimate the
time of the next change, are described next. We also describe
a novel approach based on the concept of time-window that
greatly improved the efficiency of the prediction module.

5.1.1 Linear regression predictor

Simple linear regression analyzes the relationship between
a response variable y and a single explanatory variable x .
This statistical method assumes that for each value of x , the
observed values of y are normally distributed around a mean
that depends on x . These means are usually denoted by μy .
In general the means μy can change according to any sort of
pattern as x changes. In simple linear regression it is assumed
that they all lie on a line when plotted against x . Linear regres-
sion allows inferences not only for samples for which the data
is known, but also for those corresponding to x’s not present
in the data.

In this work we propose the use of a linear regression
predictor to estimate when the next change will happen. If

the environment changes periodically at fixed time steps, the
generation when the next change will occur can be success-
fully predicted by linear regression. In this case the explana-
tory variable x is the number of the change (1, 2, 3,. . .) and
the response variable y is the generation where that change
occurred (10, 20, 30, . . ., for periodic change periods chang-
ing every 10 generations). To predict when the next change
will occur using linear regression we proceed as follows:
(1) the first two changes of the environment are memorized
after they happen (no prediction could be made yet); (2) the
k th changes, k > 2, can be predicted using the equation
of the regression line. The first two changes in the environ-
ment cannot be predicted since they are needed to calculate
the slope and the intercept of the regression line. After the
first two changes, and using the values where those changes
occurred, an approximation of the regression line is built and
predictions about the next possible moment of change are
provided. Then, each time a change occurs, new values for
the slope and the intercept are computed and the regression
line is updated.

In previous work, this predictor used all available data to
calculate the slope and the intercept of the regression line
and to provide the estimation for the next change. Therefore,
as time passed, the predictor became slower. Another limita-
tion of using all available observations was that, if the type
of the change period was other than periodic, the prediction
accuracy was seriously affected. In this paper we introduce
the idea of time-window, which consists of the number of
observations that is used to estimate the next value. There-
fore, instead of using all available data, the linear predictor
uses only a fraction of the available information to give the
future prediction. Using the appropriate time-window value,
the linear regression predictor is faster and also more robust,
as the experimental results show.

5.1.2 Nonlinear regression predictor

The linear regression method is not suitable to fit data that fol-
lows a nonlinear pattern. For theses cases, nonlinear regres-
sion is often used because it allows to model a wide range
of situations. The basic idea of nonlinear regression is the
same as that of linear regression, namely to relate a response
y to a vector of predictor variables x (McCabe and Moore
2003). Nonlinear regression is characterized by the fact
that the prediction equation depends nonlinearly on one or
more unknown parameters θ . Nevertheless, this method has
a major limitation: the nonlinear function must be known.
Moreover, an additional task is needed: the estimation of the
nonlinear equation parameters. The task of parameter esti-
mation for nonlinear regression is not straightforward. Usu-
ally, statistical software using numerical algorithms is used
to analyze the data and produce the best parameter’s choice
for that data (McCabe and Moore 2003). A nonlinear para-
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meter estimation problem is an optimization problem whose
goal is to minimize the sum of squared errors given by Eq. 1.

Sumei =
n∑

i=1

(yi − f (xi , θi ))
2 (1)

Rather than minimizing the sum of squared errors, other
techniques minimize the sum of absolute deviations. Several
function minimization methods are used in parameter estima-
tion, for instance, weighted least squares, maximum likeli-
hood, Quasi-Newton method, Simplex procedure or Hooke–
Jeeves pattern moves (McCabe and Moore 2003; Nash and
Walker-Smith 1987). In general, these methods are not easily
controllable and require much auxiliary information to work
correctly. Another option, more general and easy to apply,
is to use a genetic algorithm to evolve a population of indi-
viduals that minimize an objective function. This approach
was introduced and successfully tested by Pan et al. (1995)
and is used in this paper to estimate the parameters vector
θi , i = 1, 2, . . . , n (n is the number of parameters). The
GA uses a population of binary strings which corresponds
to different values of θ . The required number of genes is
determined using the desired precision and the domain size
for each parameter. The fitness function used to evaluate the
population is the function given by Eq. 1. Because individu-
als with a higher fitness are selected more often, after some
generations the best individual represents the optimal solu-
tion for θ . The initial population is generated at random and is
evolved using tournament selection, uniform crossover and
flip mutation. The best individual of the previous popula-
tion is transferred to the next population to preserve the best
solution found. The desired precision and the parameters’
domains are initialized at the beginning, and when the GA
is running, in order to provide faster and correct estimations
using the known data, an alteration can be made on these
initial domains. This task is controlled by two parameters
td and sd . The value of td is randomly chosen and can have
four different values: 1 for a left translation of the domain, 2
for a right translation of the domain, 3 for an increase of the
domain and 4 for a decrease of the initial domain. The size of
the translation, increase or decrease is given by the parame-
ter sd (sd ∈ [0.0, 1.0]). These two parameters are changed
during the run, and applied to the best individual of the pop-
ulation. If the individual’s fitness is improved using the new
domain size, the domains’ size is adjusted for all individuals
of the next generation.

A predictor based on nonlinear regression is tested to esti-
mate when the next change will happen. While the linear
predictor can provide predictions by calculating the slope
and the intercept, the nonlinear predictor needs at least one
function, in order to give future estimations. Four different
functions are incorporated in the nonlinear predictor. The
four functions are defined by the Eqs. 2 through 5.

f1 = θ1 + θ2x + θ3x2 (2)

f2 = θ1x

θ2 + θ3x
(3)

f3 = θ1

1 + e(θ2−θ3x)
(4)

f4 = (θ1x)θ4 + θ2θ3

θ3 + xθ4
(5)

Each one of these functions, using different values for the
vector θ can model a wide set of data. For example, function
f1 creates a rapid change period, i.e, with few generations
between two changes. Using f2 the change period is slower;
with function f3 the change period initially changes very
quickly but slows down as time proceeds. Function f4 is
used to create a very rapid change period, becoming slower
at the end. In the proposed nonlinear regression predictor, a
set of n functions f1, f2, . . . , fn , can be used to give predic-
tions. At time t , only one function is active, selected using
Eq. 1. As we said, the vector parameter θ is estimated using a
standard GA. Every time a change occurs in the environment
and additional information is available, the GA is executed
to find the vector θ that better fits the data. Thus, the vec-
tor θ is estimated using only the known data. Using these
estimated parameters and the selected function, the predic-
tor indicates when the next change will occur. After the k th
change has occurred, the prediction error is computed. The
prediction error is the difference between the predicted value
and the generation when the change actually occurred. If
this error is greater than an established threshold αp, the
module analyzes all available functions to assess if another
function can provide better results. In this step all functions
are re-evaluated using Eq. 1 with the data obtained since the
(k − 1) th change. The function which minimizes the sum
of squared errors is selected to provide the next predictions.
If more than one function have equal errors, this choice is
made at random. Figure 1 shows how the proposed module
works.

Simões and Costa (2009a,b), this predictor was tested
using cyclic, patterned and nonlinear change periods. The
provided predictions were accurate for all types of change
periods. However, the nonlinear change periods for testing
this module were created using the functions incorporated in
the module. Therefore, the prediction accuracy depended on
the quality of the parameters’ estimation made by the GA.
In this paper we intend to test the accuracy of this module
using different nonlinear change periods obtained by other
functions, than the four ones incorporated in the predictor.
The goal is to see how the predictor chooses the function to
approximate the known data and to measure the quality of
the predictions provided by it. We also use a change period
obtained by a combination of four different nonlinear func-
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Fig. 1 The nonlinear regression predictor (adapted from Simões and
Costa 2009b)

tions, known and unknown to the module. Section 6 details
this information.

5.2 Predicting how

The prediction of how the environment will be modified in
the next change, combined with the prediction about the gen-
eration where that change will happen, makes possible the
preparation of the population before the change. If we know
how the next environment will look we can introduce the
appropriate individuals into the population. This way, when
the change effectively happens, the EA will be prepared to
face the new environmental conditions.

To gather information about the characteristics of the
known environments we use a Markov chain. The informa-
tion stored in the Markov chain is also used to estimate which
environment(s) can appear in the next change.

5.2.1 Markov chain predictor

A Markov chain can be defined as a sequence of random
variables X1, X2, X3, … that do not keep memory of the
whole past (Norris 1997). In fact, Markov chains are mem-
oryless, meaning that the present state is enough to predict
future states, i.e.: Pr(Xn+1 = x |Xn = xn, . . . , X1 = x1) =
Pr(Xn+1 = x |Xn = xn).

A discrete Markov chain model can be defined by the tuple
(S, P, λ). S is the state space, a finite or countable infinite set
of possible values for a sequence of random variables X1, X2,
X3, . . . ., P is a matrix representing transition probabilities
between states. In the matrix P , the element pi j is the proba-
bility of going from state Xi to state X j . λ is the initial prob-
ability distribution for all the states in S. λ = p0, p1, p2, . . .

with pi , the probability of starting at state Xi .

Markov chains are often described by a directed graph,
where the nodes are the states and the edges are labeled by
the probabilities of going from one state to another state.

The proposed approach uses two Markov chains. One is
called system Markov chain (SMC) and another is called
Algorithm Markov chain (AMC). The SMC is created at the
beginning with all the possible states and probabilities transi-
tions. This component is used to decide how the environment
changes, but all the information contained in it is unknown
to the evolutionary algorithm. There is no restriction to the
maximum number of states, since this parameter is not related
to the memory size: one individual in memory can be con-
nected to more than one state. The AMC is created empty
at the beginning, and is updated on-line as new information
is gathered from the evolutionary process. If a new environ-
ment appears, a new state is added to the AMC and the cor-
responding matrix P is updated. The prediction about which
environment(s) may appear in the future is given according to
the information contained in the AMC. In a perfect scenario,
at the end of the run, the AMC is equal to the SMC.

Example
The following example shows how the AMC evolves for a
maximum number of states equal to 5 using the following
SMC defined a priori: λ = 1.0, 0.0, 0.0, 0.0, 0.0 and the
transition matrix:

PSMC =

⎛

⎜⎜⎜⎜⎝

0.00 0.50 0.00 0.50 0.00
0.00 0.00 0.50 0.25 0.75
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.25 0.00 0.75
1.00 0.00 0.00 0.00 0.00

⎞

⎟⎟⎟⎟⎠

Again, all this information is unknown to the EA and is used
to decide how the environment will change.

The AMC starts without any information (t = 0).

t = 0

PAMC =

⎛

⎜⎜⎜⎜⎝

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

⎞

⎟⎟⎟⎟⎠

The first state is chosen using λ, in this example is state 1.
Using PSMC the next states can be states 2 or 4. Assuming
that the state 2 is chosen at random, the AMC transition matrix
is updated (t = 1).

t = 1

PAMC =

⎛

⎜⎜⎜⎜⎝

0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

⎞

⎟⎟⎟⎟⎠
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At this point no predictions are performed, since at least two
environmental changes are required to provide predictions.
The next state is randomly chosen from the three possibilities
(states 3, 4 or 5). Once more, assuming that state 5 is chosen,
the AMC transition matrix is updated (t = 2). From state 5,
PSMC indicates that the next state will be state 1, so at t = 3
the AMC transition matrix is updated.

Since state 1 is already present in PAMC , the Markov
model can make a prediction (state 2). Using the PSMC , the
next states can be states 2 or 4. If the state 4 is chosen at
random, the prediction fails, but this new transition is used
to update the AMC transition matrix (t = 4). Assuming that
from state 4, a transition to state 5 is randomly chosen, the
PAMC is updated (t = 5).

t = 2

PAMC =

⎛

⎜⎜⎜⎜⎝

0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

⎞

⎟⎟⎟⎟⎠

t = 3

PAMC =

⎛

⎜⎜⎜⎜⎝

0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00

⎞

⎟⎟⎟⎟⎠

t = 4

PAMC =

⎛

⎜⎜⎜⎜⎝

0.00 0.50 0.00 0.50 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00

⎞

⎟⎟⎟⎟⎠

t = 5

PAMC =

⎛

⎜⎜⎜⎜⎝

0.00 0.50 0.00 0.50 0.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 0.00

⎞

⎟⎟⎟⎟⎠

State 5 is already present in AMC, so the module gives
state 1 as prediction. This state is in fact the state that will
be chosen at t = 6, where PAMC is updated (no changes
are made). From state 1, AMC gives as predictions states 2
or 4, that are the two real possibilities, and, once more, at
t = 7 no changes are made to PAMC . At t = 6 and t = 7 the
predictions given by the Markov model are 100 % precise.

End of example
The use of a Markov model assumes that the environmen-

tal information can be measured and stored in a specific state
of the chain. In this work the Markov model, each state has
an integer index and explicitly stores information about the

fitness function. This means that each state s (s = 1, 2, . . .)
of the SMC corresponds to a different instance of the prob-
lem to be optimized (capacity of the knapsack, binary tem-
plate, system variables, etc). When a transition occurs, the
AMC doesn’t know when it occurred (it is detected by the
algorithm), but after being detected, the new environment
is automatically identified by the AMC by observing which
instance of the problem is now being optimized, for instance
retrieving the new capacity of the knapsack in the new envi-
ronment.

5.3 Anticipation

The efficacy of the two predictors described before is
achieved if they are used at the right moment. In order to
prepare the population before the changes happen, an antic-
ipation mechanism must be robust and capable of dealing
with erroneous predictions. Moreover, the prediction errors
should be used to improve the next predictions’ values.

The “right moment” to start preparing the population is
decided using the values predicted either by the linear pre-
dictor or by the nonlinear predictor. Both methods estimate
the generation when the next change will be observed. Know-
ing this value, the system starts the preparation for the change
some generations before. If the prediction mechanisms are
accurate and the correct information is introduced into the
main population before the change, the EA’s performance is
not affected by the changes in the environment. When the pre-
diction mechanisms fail and no anticipation is made, when a
change occurs, the EA’s performance suffers from a sudden
decrease and the EA takes some time to readapt to the new
environment.

A parameter called � is used to decide how many gen-
erations before the predicted moment of change the antici-
pation starts. The prediction error at time t (et ) is given by
et = g − g′, where g is the predicted generation for the
occurrence of next change and g′ is the generation where the
change actually happens. Those prediction errors can be pos-
itive or negative. A negative error indicates that the predicted
value for the next change (g) is smaller than the real value
(g′), i.e, g < g′ and thus the anticipation of the change is
successfully made. A positive error means the opposite. In
this situation, if the value of � is greater than this error, the
anticipation is made before the change; otherwise, the change
is detected only when it occurs and no effective anticipation
is executed.

The value of � must be chosen in order to cover the pre-
diction error and to guarantee that the preparation for the next
change is made before it happens. More explicitly, if the next
change is estimated to happen at generation g, at generation
g − �, the Markov model is used to predict the set of pos-
sible future environments. At that time, individuals from the
memory are retrieved and introduced into the population,
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replacing the worst ones. In order to be effective, the Markov
model must act before the change. Therefore, if the change
is observed at generation g′, the value of � must assure that
the condition � > |g − g′| is observed. In addition, smaller
values of � are better in the sense that the anticipation starts
as close to the change as possible. If the environment changes
fast and � has a large value, the anticipation can be started
in the wrong moment and is ineffective. Thus, the choice
of the best value of � assumes soaring importance. Differ-
ent approaches to assign a value to � were tested in Simões
and Costa (2009a): � constant and � adjustable. The auto-
adjusting methods for � used the previous errors to decide
the new value. Different approaches to adjust the value of �

were tested:

• using the maximum prediction error
• using the average of the positive prediction errors
• using the average of all the prediction errors (absolute

value)
• using the maximum and the average of the positive pre-

diction errors

The results obtained showed that all the methods for adjusting
� were very effective. In this paper we use the method that
obtained the best results, which is the method that changes
the value of � using the maximum and the average of the
positive prediction errors (Simões and Costa 2009a). In this
method, the value of � is updated as follows: in the first two
changes � = 5, in the next k changes (k > 2) the highest
prediction error and the average of the positive errors are
used to update �:

�(k) =
{

5 if k = 1, 2

max
{

2,
�m (k)+�av(k)

2

}
if k > 2

(6)

�m(k) computes a value for � using the highest prediction
errors:

�m(k) =
{

5 if k = 1, 2
max{2, e1, e2, . . . , ek} if k > 2

(7)

and �av(k) is calculated using the average of the positive
prediction errors:

�av(k) =
{

5 if k = 1, 2

max{2,

∑k
i=1 ei
k } if k > 2 and ei > 0

(8)

where ei is the observed error at the i th change.

5.4 Putting it all together: prediction in the EA

The proposed computational model, consisting of MEGA
enhanced with two predictors and one anticipation modules,
is called PredEA (see Fig. 2). This algorithm is a tradi-
tional EA that evolves a population of individuals aiming

Fig. 2 Architecture of PredEA (adapted from Simões and Costa
2009a)

to optimize the current fitness function. A memory is used to
store useful information from the past that is used in future
changes. The first prediction module uses information about
when the previous changes occurred to estimate the gener-
ation when the next change will be observed. The predic-
tions are given by one of the techniques previously discussed,
based on linear or on nonlinear regression. The second mod-
ule uses a Markov chain to keep track of previous environ-
ments and provides predictions on how the environment will
look like in the next change step. The two predictor modules
are managed by a third component, the anticipation mod-
ule, that uses the information provided by the previous two
modules and prepares the EA for the next change.

Memory-based evolutionary algorithm
In this algorithm, a main population of individuals evolves
by means of selection, crossover and mutation and is used to
find the best solution for the current environment. Another
population is used as memory to store the best current indi-
vidual from time to time. It starts empty and has a limited
size (20 % of the global number of individuals). When a
change happens (or it is predicted) the information stored in
the memory is retrieved and used to help the EA readapt to
the new environment. When the memory is full, the replace-
ment of the memorized individuals is made using the gen-
erational replacing strategy proposed by Simões and Costa
(2007a). This method replaces a memory individual of the
same period by the best individual of the population, if it is a
better solution. If there are more different environments than
the capacity of the memory, the replacement is made using the
similar strategy, which replaces the most genetically similar
individual found in memory. Instead of updating memory in a
fixed time interval, we create a stochastic time pattern using a
random value between 5 and 10 (tm = t +rand(5, 10)). The
memory is also used to detect changes in the environment:
a change occurs when at least one individual in the memory
has its fitness changed. When the memory is updated, the best
individual of the population is stored and the current state of
the Markov model is added as a reference to that individual.
If the memory capacity is attained and a solution is replaced,
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the new solution keeps the links to the Markov model states
that the replaced individual had and a new link to a different
state can be added. So, a memory solution can be linked to
more than one state.

Predictor 1 module (P1)
This predictor uses information about when previous changes
were observed to estimate when the next change would occur.
Two methods are tested for this module: (1) a linear regres-
sion predictor which is tested using all available observations
to estimate the next change or using only a fraction of those
observations (time-window); (2) a nonlinear regression pre-
dictor is also investigated. This module is activated every
time a change is detected, i.e, at change k the module pro-
vides an estimation for the generation where the change k+1
may occur.

Predictor 2 module (P2)
This module keeps track of the different environments and
estimates which environments may appear in the next change.
Those predictions are made using only the information
known so far about the previous environmental changes.
Each state of the Markov chain corresponds to a different
environment. If two states are linked, it means that a change
happened from one state to the other. Associated to each
transition is a probability value which is updated every time
a change is detected. The initial state is randomly chosen
among the existing states. Again we stress that this informa-
tion is unknown to the algorithm and the model is updated
throughout time. The information that is stored about each
environment is problem dependent.

Anticipation module (A) This module receives the infor-
mation provided by the two predictors and decides when to
start the preparation of the EA for the next change. This acti-
vation must be done at the correct time in order to prepare
the population to the next environment(s) predicted by the
P2 module. The P1 module estimates the generation when
the next change will be observed and the A module starts
the anticipation some generations before. The � parameter
described previously is used by this module to decide how
many generations before the predicted moment of change
(g) the anticipation starts. The value of this parameter is also
used to cover the prediction errors associated with the P1’s
estimations. The anticipation process consists of retrieving
from memory individuals that were good solutions in the
environments that the P2 module indicates as the next to
appear. These individuals are inserted into the main popula-
tion at generation g−�, replacing the same number of worst
individuals, so the population size is kept constant. If the P2
module don’t provide any prediction, five random individu-
als from memory are inserted into the population, replacing
five randomly selected individuals. These retrieved individu-
als remain unchanged (i.e., they are not affected by crossover

Function Pred E A
tm : time to update memory
max : maximum number of states
markov : System Markov chain
ini tial_state : i n i t i a l state

1 t = 0
2 k = 0
3 tm = rand(5, 10)

4 P(t) = ini t ia l ize population randomly
5 M(t) = ini t ia l ize memory randomly
6 �(k) = 5
7 Ini t ia l ize the AMC information
8 repeat
9 evaluate memory M(t)

10 evaluate population P(t)
11 preserve best individual from P(t − 1)

12 i f a change k is detected
13 Store performance measures
14 Activate the P1 module:
15 ( i ) Update P1 information
16 ( i i ) Predict next change g
17 Update �(k)

18 k = k + 1
19 Update AMC
20 i f prediction fai ls
21 P ′(t) = Select best from P(t) + M(t)
22 else P ′(t) = P(t)
23 i f t = g − �(k)

24 Activate the P2 module:
25 ( i ) next_s = Predict next state (s )
26 ( i i ) i f number of next_s > 0
27 Activate the A module:
28 P ′(t) = Insert solutions from M(t)
29 else
30 P ′(t) = Insert 5 random inds .
31 else P ′(t) = P(t)
32 i f t = tm or change detected
33 Update memory
34 tm = t + rand(5, 10)

35 P ′′(t) = Selection(P ′(t))
36 Crossover(P ′′(t))
37 Mutation(P ′′(t))
38 P(t + 1) = P ′′(t)
39 t = t + 1
40 until stop_condition is 7r7e

Algorithm 1 Pseudocode of PredEA

or mutation) until the change happens. Algorithm 1 shows
the pseudo code of the PredEA algorithm.

6 Experiments

This section introduces the experiments that were performed
to study, compare and validate the proposed prediction mech-
anisms in different dynamic problems. It provides a descrip-
tion of the problems used as benchmarks, details the different
types of dynamic environments, specifies the parameter set-
tings used in the experiments and finally describes how the
evaluation and validation of the results was made.
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6.1 Problems

In this paper two benchmark problems are used to test the pro-
posed methods: the dynamic knapsack and the dynamic bit-
matching problems. Benchmark problems should have a set
of good characteristics like being simple to implement, ana-
lyze or evaluate, computational efficient, flexible and allow
conjectures about real-world problems (see Nguyen et al.
2012). The dynamic knapsack and the dynamic bit-matching
belong to this set of benchmarks that have these good charac-
teristics (see Cruz et al. 2011). For the purpose of this inves-
tigation, the use of these benchmarks is preferable to the use
of artificial general-purpose problems generators (see Rohlf-
shagen and Yao 2009, Ben-Romdhane et al. 2013). The knap-
sack problem is an NP-complete combinatorial optimization
problem often used as benchmark. It consists of selecting a
number of items to a knapsack with limited capacity. Each
item has a value and a weight and the objective is to choose
the items that maximize the total value, without exceeding
the capacity of the bag. In this paper, the knapsack uses 100
items, the initial weights are randomly created in the range [1,
50] and the values are obtained by adding the corresponding
weight to a random number obtained in the range [1, 5]. The
capacity of the knapsack is set to 60 % of the total weight
of all items. The fitness of an individual using binary rep-
resentation is equal to the sum of the values of the selected
items, if the weight limit is not reached. If too many items
are selected, then the fitness is set to the difference between
the total weight of all items and the weight of the selected
items, multiplied by 10−10, in order to ensure that invalid
individuals are distinguished from the valid ones. The prob-
lem becomes dynamic by changing the capacity of the knap-
sack.

The bit-matching problem is a unimodal problem whose
goal is to find a solution that matches a given template.
Changing the template from time to time turns this prob-
lem dynamic. The severity of the change is defined by the
number of bits that change in the template. The difficulty
of the problem can be increased using templates with larger
dimensions.

The maximum number of different environments (max) is
set to max = 3, 5, 10, 20 or 50. Depending on the problem,
max different capacities (for the dynamic knapsack problem)
or max different templates (for the dynamic bit-matching
problem) are created. The different capacities are generated
from the initial capacity of the knapsack and making vari-
ations of 20 % (severity of the change), following the next
equation (m is the number of items, wi is the weight of the
i th item, and C is the capacity of the knapsack):

C(t) =
⎧
⎨

⎩

0.6 × ∑m
i=1 wi ,if t = 0

C(t − 1) − 0.2 × C(t − 1),if t is odd
C(t − 1) + 0.2 × C(t − 1),if t is even

The different templates are created using an initial template
T (0) = {0}. The following templates are obtained by chang-
ing l

max % (severity of the change) of the bits from the pre-
vious template (l is the chromosome length). Both problems
use binary representation with chromosomes of length 100.

6.2 Dynamic environments

According to the classification provided in Sect. 3, three dif-
ferent types of change period are used: (1) periodic (or lin-
ear): every r generations, with r = 10, r = 50, r = 100
and r = 200; (2) patterned: the moments of change are
decided by repeating an established pattern. Four different
patterns are included in the study: 5-10-5, 10-20-10, 50-60-
70 and 100-150-100. The generations when the environment
changes are calculated using change(i) = change(i − 1) +
pattern(i −1 mod K ), where mod is a modula operation, K
is the total number of components in a pattern (in this paper
K = 3) and i is the change index (i = 1, 2, . . .). For the
first change (i = 1) we assume, change(i − 1) = 0; (3)
nonlinear: the change period is defined by a nonlinear func-
tion. In order to generate different nonlinear change peri-
ods, seven different types of nonlinear functions are used.
These functions are the four ones incorporated in the mod-
ule (Eqs. 2 through 5), and three additional ones, never used
before, defined by Eqs. 9 through 11. The goal is to see how
the nonlinear predictor approximates the data generated with
functions that are not included in the module and how the lin-
ear predictor performs for these cases. The three new func-
tions are defined by the following equations:

f5 = θ1x

1 + eθ2θ3x
(9)

f6 = θ1x2 + θ2x

eθ3x + θ4
(10)

f7 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f4,if 1 < x ≤ 100

f6,if 100 < x ≤ 200

f5,if 200 < x ≤ 300

f1,if 300 < x ≤ 500

(11)

For generating the seven nonlinear change periods, the para-
meter vector θ is used with the values of Table 1.

For each of the change period types, two different types of
environmental changes are defined (cyclic and probabilistic)
and the environments change between max different states.
For the probabilistic type, the probabilities associated to each
different state are set at the beginning of the run and corre-
spond to the system Markov model (SMC) transition matrix.
The probabilistic transitions are applied only in certain states,
chosen at random. So, for 50 states, only a fraction of them
have probabilistic transitions. The number of transitions is
also chosen at random, between 2 and 5. The severity of
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Table 1 Values for θi used in
the experiments

Function θ1 θ2 θ3 θ4 Change period

f1 60.00 2.00 0.10 – N L1

f2 62.67 0.627 0.047 – N L2

f3 15,000.00 5.00 0.05 – N L3

f4 10,000.00 100.00 100.00 1.50 N L4

f5 75.00 0.050 0.04 – N L5

f6 50.00 15,000.00 0.045 1,000.00 N L6

f7 f4 7,000.00 1.00 200.00 1.30 N L7

f6 950.00 500.00 0.01 2,000.00

f5 245.00 0.055 0.040 –

f1 20.00 50.00 0.112 –

the change is kept constant according to the description in
the previous section. If the Markov model provides accu-
rate predictions the severity of the change is not relevant for
the performance of the algorithm, since that the stored infor-
mation allows the reintroduction of the best individuals for
the next change. The severity of the change can affect the
performance of the algorithm if the prediction fails, but this
experimentation is not included in this study.

6.3 Settings

Four different versions of PredEA are compared with the
standard MEGA, that will be called noPredEA. PredEA is
tested with the linear regression predictor using all known
observations (PredEA-LR), using a time-window of size two
(PredEA-LR2) and using a time-window of size ten (PredEA-
LR10). Moreover, PredEA is also tested using the nonlinear
predictor (PredEA-NLR). A time-window of size 2 or 10
means that the next prediction is made using the 2 or the 10
previous observations, respectively. For the nonlinear regres-
sion predictor, the estimation of the parameters is done using
all available observations, except when a new function is
selected. In this case, at k th change, the predictor considers
only the observations measured after change (k − 1) th. All
those techniques are used combined with the Markov chain
predictor. In all the experiments, the information concerning
the type of change period, the type of environmental change,
the change period size, and the number of different states are
unknown to the EA. A total of 30 runs are performed with each
technique for each problem. Binary representation is used for
all the studied problems. The global number of individuals
(n) is set to 100. The memory size m is set to 20 % of n. The
EA is allowed to evolve for as many generations as necessary
so as to result in 500 environmental changes. The detection
of a change is made using the memory—a change occurs
when at least one individual in the memory has its fitness
changed. This method is not enough to detect changes for
the Knapsack problem, so an additional mechanism is incor-
porated: the expected knapsack capacities are compared with

the capacities generated by the algorithm. When a difference
is observed, a change in the environment is assumed. The
uniform crossover operator is applied with a probability of
70 % and flip mutation is used with 1 % rate. The initial
population and memory are randomly created and the selec-
tion of parents is made using the binary tournament selection
method. The next population is formed using the generated
offspring, through recombination and mutation, and the best
individual (the elite) of previous population is preserved. For
the P2 module, the threshold αp is set to 10.

The parameters of the GA used to find the best parame-
ters to the nonlinear regression predictor are the following:
population of size 50, uniform crossover rate of 75 % and
mutation rate of 1 %. The GA is stopped in one of three cases:
if no better solution is found for 10 generations, if the sum
of the squared errors is equal to zero, if a maximum of 1,000
generations is attained. The domain of the parameters, and
consequently the chromosome size, depends on the nonlin-
ear function as shown in Table 2. The precision used for each
parameter θ is six places after the decimal point. The initial
parameters’ domains are chosen in order to enclose a wide
set of nonlinear curves but can change as described in Sect. 5.

6.4 Evaluation and validation

To evaluate the different algorithms, the offline performance
measure (Branke 2002) is used, which is defined as follows:

offline(t) = 1

t

t∑

i=1

best ′t

where t is the actual generation and best ′t is the maximum
observed fitness since the last time step at which a change
in the environment occurred. This measure includes the re-
evaluation of the memory individual’s introduced after the
change is detected. The values presented in the next section
refer to the average of the offline performance obtained at
the end of the 30 runs. This work compares 6 different algo-
rithms, applied to 15 different types of change periods, using
2 different dynamics (cyclic and probabilistic) for 5 different
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Table 2 Upper and lower limits
for the parameters’ domain and
number of genes used to encode
each parameter

f θi Lower limit Upper limit Num of genes for θi Chromosome length

f1 θ1 −10 65 27 80

θ2 0 200 28

θ3 0 5 25

f2 θ1 0 65 26 65

θ2 0 1 20

θ3 0 0.5 19

f3 θ1 14,000 15,000 34 76

θ2 0 5 23

θ3 0 0.5 19

f4 θ1 9,000 10,000 30 103

θ2 50 100 26

θ3 50 100 26

θ4 0 2 21

settings of the maximum number of different states, in two
benchmark problems, resulting in a total of 1800 different
tested situations. All the results obtained are statistically val-
idated using the nonparametric Friedman test at a 0.01 level
of significance. After this test, if a significance is found, the
multiple pair wised comparisons are performed using the
Nemenyi procedure. For multiple comparisons, the p-value
(0.01) used in the Nemenyi test is adjusted using the Bon-
ferroni correction method. In the statistical tables presented
in the next section, each line compares a pair of algorithms
using the notation “++” or “−−”, when the first algorithm
is significantly better than, or significantly worse than the
second one, respectively. The use of “∼” indicates that there
is no statistical significance in the results obtained by the two
algorithms.

7 Results

This section presents the results of all the experiments. First,
the prediction accuracy of the proposed methods is analyzed
and second, the performance of the different algorithms is
compared.

7.1 Prediction accuracy

Prediction accuracy consists of the frequency of correct out-
comes reached by the proposed predictors. First we analyze
the accuracy for the Markov model predictor, and then for
the linear and nonlinear regression predictors.

7.1.1 Accuracy of the Markov model predictor

For the Markov model predictor, a predicted value is consid-
ered correct when the module provides the correct value for
the next environmental transition.

Table 3 Accuracy of the Markov model predictions

Number of different
environments

Type of dynamics Accuracy (%)

3 Cyclic 99.40

3 Probabilistic 98.80

5 Cyclic 99.00

5 Probabilistic 98.00

10 Cyclic 98.00

10 Probabilistic 96.20

20 Cyclic 96.00

20 Probabilistic 93.60

50 Cyclic 90.00

50 Probabilistic 87.00

Table 3 shows the prediction accuracy of the Markov
model based on 500 environmental changes, in each run. As
the number of different environments increases, the predic-
tion accuracy expectedly decreases, but the attained results
are still very good. Moreover, for probabilistic dynamics
the prediction accuracy is worse. This happens because the
Markov model uses data collected from previous transi-
tions to estimate the future. As the number of environments
increases or the transitions are probabilistic, the Markov
model needs more time to learn the entire behavior of the
environment. So, the proposed predictor based on a Markov
model provides excellent predictions, well above 90 %, in
almost all situations.

Figure 3 shows how the EA behaves over time using pre-
diction and without prediction. The example illustrates a
typical result for the first 50 environmental changes in the
dynamic bit matching problem with ten different states. We
can see that the EA using prediction goes through a learn-
ing phase—where the Markov model acquires the history
of possible environmental transitions—and an equilibrium
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Fig. 3 Best of generation for PredEA-LR and noPredEA, bit matching problem

Fig. 4 Examples of good and bad predictions for the Linear and non-
linear predictors

phase—where the Markov model provides the correct pre-
dictions. During the equilibrium phase no fitness decrease is
observed. On the other hand, the EA without prediction expe-
riences a decrease on its performance every time a change
happens. In this case, the recuperation is achieved only after
the change, when the information from memory is introduced
into the population.

7.1.2 Accuracy of the linear and nonlinear predictors

For the linear and nonlinear regression predictors a value is
considered accurate if, using the value of �, the anticipation
is made before the real change occurs. If a previous change
occurs at generation gbef ore and the predicted value for next
change is gnext , this value is considered accurate if gnext −
� < greal and gnext −� ≥ gbef ore (where greal corresponds
to the generation when the change effectively happens and
the accuracy of the predicted value is measured). Figure 4
shows different cases of good and bad predictions.

The results of Tables 4 and 5 show that the three linear pre-
diction techniques, in periodic change periods, obtain 100 %
accuracy. This is expected, since data follows a straight line,
correctly estimated by these methods. For PredEA-LR, when
the change period is patterned, the prediction accuracy is
always above 99 %, and the prediction errors are negative,

Table 4 Accuracy of PredEA-LR

PredEA-LR

Type of change
period

Change
period

Accuracy
%

Error �

Periodic r = 10 100.00 0.00 2.01

r = 50 100.00 0.00 2.02

r = 100 100.00 0.00 2.02

r = 200 100.00 0.00 2.03

Patterned 5-10-5 99.87 −0.32 3.01

10-20-10 99.73 −0.29 6.06

50-60-70 99.66 −0.29 8.06

100-150-100 99.66 −0.02 31.95

Nonlinear N L1 0.00 −1,885.52 5.00

N L2 0.25 778.56 592.53

N L3 7.07 −485.08 208.22

N L4 5.56 1,240.24 1,066.77

N L5 2.90 441.40 157.05

N L6 7.63 −651.28 221.87

N L7 6.24 % −1,125.53 780.00

indicating that the predicted values correspond to a genera-
tion before the real change. Nevertheless, the values of � are
able to cover those errors, leading to the high prediction accu-
racies presented in Table 4. Even when � presents larger val-
ues, for the 50-60-70 and the 100-150-100 patterned change
periods, the predictions are correct. These larger values are
due to the predictions errors used for adjusting the value
of �. For the situations where the change period follows a
nonlinear trend, the PredEA-LR technique fails. The predic-
tion accuracies for those cases are very weak. This happens
because the straight line obtained by the linear regression
method uses all the observations which do not fit the data
obtained by the nonlinear functions. The enormous predic-
tion errors confirm that evidence.

The linear regression is also tested using two different
sizes for the time-window (PredEA-LR2 and PredEA-LR10).
The results for these two methods are in Table 5 and show
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Table 5 Accuracy of
PredEA-LR2 and PredEA-LR10

Type of change period Change period PredEA-LR2 PredEA-LR10

Accuracy
(%)

Error � Accuracy
(%)

Error �

Periodic r = 10 100.00 0.00 2.00 100.00 0.00 2.00

r = 50 100.00 0.00 2.01 100.00 0.00 2.01

r = 100 100.00 0.00 2.01 100.00 0.00 2.01

r = 200 100.00 0.00 2.02 100.00 0.00 2.02

Patterned 5-10-5 99.87 0.01 4.9 99.87 0.01 2.01

10-20-10 99.73 0.03 9.94 99.73 0.03 4.03

50-60-70 99.66 −0.03 19.77 99.66 0.01 5.36

100-150-100 99.66 0.17 49.53 99.66 0.23 20.29

Nonlinear N L1 100.00 −0.20 2.01 99.83 −2.57 2.01

N L2 100.00 0.23 2.01 93.97 1.98 4.50

N L3 90.91 −0.01 2.43 68.18 −0.51 15.75

N L4 66.16 0.86 6.26 20.71 11.45 39.68

N L5 100.00 0.07 2.01 100.00 0.22 2.01

N L6 100.00 −0.10 2.01 100.00 −1.51 2.01

N L7 97.38 −0.22 3.79 93.36 −2.71 13.24

Table 6 Accuracy of
PredEA-NLR

PredEA-NLR

Type of change period Change period Accuracy (%) Error � Chosen function

Periodic r = 10 100.00 0.00 2.01 f1

r = 50 100.00 0.00 2.02 f2

r = 100 100.00 0.00 2.02 f1

r = 200 100.00 0.00 2.03 f2

Patterned 5-10-5 100.00 −0.36 2.02 f1

10-20-10 66.76 −0.30 3.03 f1

50-60-70 99.66 −0.28 5.12 f1

100-150-100 100.00 −0.27 27.77 f1

Nonlinear N L1 97.58 −0.85 5.00 f1

N L2 100.00 −0.39 2.07 f2

N L3 100.00 −1.56 2.02 f3

N L4 100.00 −0.72 2.02 f4

N L5 13.46 −8.66 25.98 f1

N L6 58.35 5.95 5.36 f1

N L7 62.98 −3.36 58.85 f1 and f4

that the chosen size for the time-window influences the
obtained prediction, especially in nonlinear change periods.
The PredEA-LR2 technique obtains high prediction accuracy
in all types of change periods. The lowest value (66.16 %)
is obtained in the N L4 change period. Although the value
of � is enough to cover the prediction errors, due to the
characteristics of N L4 curve, several erroneous anticipations
are performed. The PredEA-LR10 obtains similar results for
the periodic and patterned change periods but the prediction
accuracy is slightly worst for the nonlinear change periods.

The results shown on Table 6 refer to the prediction accu-
racy of PredEA-NLR. The last column of this table indicates
which function, incorporated in the module, is chosen to pro-
vide the predictions. The nonlinear predictor is 100 % accu-
rate in the periodic change periods and obtains near 100 %
of accuracy in the patterned change periods. An exception
occurs for the change period 10-20-10 (66.76 %). For peri-
odic and patterned change periods the functions f1 or f2 are
selected to estimate the time of the next change. The values
of the prediction error show that this selection is appropri-

123



1486 A. Simões, E. Costa

 50

 60

 70

 80

 90

 0  1000  2000  3000  4000  5000

O
ff

lin
e 

pe
rf

or
m

an
ce

Generations

PredEA vs noPredEA, 10-20-10, 50 states (C)

NoPredEA
PredEA-LR

PredEA-LR2
PredEA-NLR

 50

 60

 70

 80

 90

 0  1000  2000  3000  4000  5000

O
ff

lin
e 

pe
rf

or
m

an
ce

Generations

PredEA vs noPredEA, 10-20-10, 50 states (P)

NoPredEA
PredEA-LR

PredEA-LR2
PredEA-NLR

Fig. 5 Offline performance over time, 10-20-10, 50 states, cyclic (C) and probabilistic (P) transitions, bit matching problem
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Fig. 6 Offline performance over time, N L5, 50 states, cyclic (C) and probabilistic (P) transitions, bit matching problem

ate. For the nonlinear situations, PredEA-NLR has a higher
prediction accuracy for N L1 through N L4 change periods,
since those functions are incorporated in the module and are
correctly selected to provide the estimated values. For N L5
through N L7 the prediction is made using the functions f1

and f4 and the accuracy is lower. Despite the worst accuracy
obtained by PredEA-NLR, the prediction errors show that
the module is able to select the best function available. For
the change period N L7, the function f4 is selected firstly
and, at generation 102, the function f1 is activated and used
through the rest of the run.

The results obtained reveal some limitations of PredEA-
NLR, namely the need to have a ‘good’ function to provide
valid estimations. Moreover, for PredEA-LR, the use of all
available information, besides the computational cost, leads
to poor prediction accuracies in nonlinear change periods.
The use of a time-window in the linear regression predic-
tor (PredEA-LR2, PredEA-LR10) allows to obtain the best
prediction accuracies in all the studied situations. The size
of the time-window is an important choice that should be
further analyzed.

7.2 Algorithms’ performance

This section sets forth the performance obtained by the differ-
ent methods. The results refer to PredEA-LR, PredEA-LR2
and PredEA-NLR and are compared with noPredEA. The

results of PredEA-LR10, for lack of space, are not reported,
but are similar to PredEA-LR2’s results.

Figures 5 and 6 show the evolution of the algorithms’
performance over time. These two figures refer to the bit
matching problem, for the 10-20-10 and the N L5 change
periods, for 50 different states and are representative of the
remaining cases. Table 7 shows the results for the dynamic bit
matching problem, and Table 8 contains the scores concern-
ing the dynamic knapsack problem. The statistical results,
obtained using the statistical tests, are on Tables 9 and 10 for
the dynamic bit matching problem and the dynamic knapsack
problem, respectively. In all tables, adjacent to the number
of states is the type of environment: C for cyclic and P for
probabilistic.

From the analysis of the results it is evident that, in general,
all the prediction techniques allow the EA to preform signifi-
cantly better than the same algorithm without prediction. The
only situation where this observation is not so consistent is
for the PredEA-LR in the nonlinear change periods, because
of the poor accuracy of PredEA-LR on these cases (from 0.00
to 7.63 %—see Table 4). In fact, the results show that a rela-
tion between the prediction accuracy and the performance
obtained by the algorithms can be found. Since the prediction
accuracy for the Markov-based model is the same for all the
algorithms, the different performances are related to the per-
formance of the linear/nonlinear predictors. For the periodic
change periods, all the methods are very accurate (100 %) and
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Table 7 PredEA and noPredEA results: dynamic bit matching for periodic, patterned and nonlinear change periods and for cyclic (C) and
probabilistic (P) transitions between 3, 5, 10, 20 and 50 states

Bit matching Number of states

Period Algorithm 3 5 10 20 50

C P C P C P C P C P

r = 10 noPredEA 89.68 90.63 85.99 86.53 80.74 81.97 75.27 76.53 69.74 70.89

PredEA-LR 98.14 97.32 96.86 96.24 93.72 93.39 90.17 90.14 84.86 85.62

PredEA-LR2 98.75 97.93 97.53 96.83 94.91 94.09 91.23 90.68 85.32 85.83

PredEA-NLR 98.24 97.37 96.89 96.27 93.76 93.49 90.18 90.18 84.89 85.64

r = 50 noPredEA 99.01 99.01 98.92 98.92 98.68 98.72 97.26 97.65 89.11 90.74

PredEA-LR 99.86 99.85 99.79 99.80 99.64 99.58 99.27 99.22 98.20 98.03

PredEA-LR2 99.90 99.89 99.83 99.80 99.66 99.64 99.31 99.25 98.26 98.07

PredEA-NLR 99.91 99.89 99.83 99.81 99.66 99.63 99.32 99.25 98.26 98.05

r = 100 noPredEA 99.50 99.50 99.44 99.45 99.31 99.33 99.12 98.82 94.44 95.42

PredEA-LR 99.93 99.92 99.88 99.87 99.77 99.75 99.54 99.51 98.84 98.71

PredEA-LR2 99.94 99.93 99.89 99.88 99.78 99.76 99.55 99.52 98.87 98.75

PredEA-NLR 99.94 99.93 99.89 99.88 99.78 99.76 99.55 99.52 98.86 98.72

r = 200 noPredEA 99.73 99.73 99.70 99.70 99.60 99.61 99.46 99.31 97.17 97.49

PredEA-LR 99.94 99.94 99.91 99.90 99.82 99.81 99.65 99.63 99.13 99.06

PredEA-LR2 99.95 99.95 99.92 99.91 99.83 99.82 99.66 99.64 99.14 99.07

PredEA-NLR 99.95 99.95 99.92 99.91 99.83 99.82 99.66 99.64 99.14 99.07

5–10–5 noPredEA 85.56 89.94 85.59 86.53 80.97 81.48 74.05 75.73 67.99 69.04

PredEA-LR 96.57 96.45 94.74 94.02 90.52 90.34 86.88 87.10 84.23 81.53

PredEA-LR2 96.86 95.76 94.67 93.24 90.49 90.15 86.83 86.44 84.28 81.60

PredEA-NLR 96.89 96.76 94.90 94.04 90.58 90.45 86.89 87.26 84.59 81.85

10–20–10 noPredEA 91.43 94.68 92.42 92.47 87.69 88.42 81.00 82.87 73.40 75.00

PredEA-LR 97.79 98.31 97.67 96.40 95.14 94.22 92.80 92.32 87.22 86.52

PredEA-LR2 98.25 98.56 97.60 96.69 95.58 95.18 93.13 92.31 87.26 86.58

PredEA-NLR 95.51 96.42 94.56 93.28 93.92 92.27 91.16 90.83 85.36 84.62

50-60-70 noPredEA 99.15 99.15 99.06 99.07 98.83 98.86 98.15 97.88 90.78 92.34

PredEA-LR 99.89 99.86 99.80 99.79 99.62 99.60 99.23 99.18 98.07 97.86

PredEA-LR2 99.87 99.87 99.82 99.79 99.62 99.60 99.23 99.17 98.04 97.85

PredEA-NLR 99.89 99.87 99.82 99.80 99.63 99.61 99.25 99.19 98.09 97.89

100–150–100 noPredEA 99.57 99.57 99.52 99.52 99.41 99.42 99.25 98.98 95.22 96.17

PredEA-LR 99.92 99.92 99.91 99.90 99.81 99.80 99.62 99.58 99.02 98.91

PredEA-LR2 99.93 99.94 99.93 99.91 99.84 99.83 99.65 99.57 99.03 98.92

PredEA-NLR 99.94 99.94 99.92 99.91 99.83 99.82 99.64 99.59 99.05 98.92

N L1 noPredEA 98.95 98.94 98.73 98.77 98.38 98.49 97.02 97.41 91.60 92.83

PredEA-LR 98.94 98.67 99.00 98.67 98.40 98.58 97.12 97.75 91.76 93.46

PredEA-LR2 99.78 99.75 99.68 99.66 99.50 99.51 99.26 99.24 99.59 98.52

PredEA-NLR 99.74 99.68 99.64 99.61 99.48 99.48 99.25 99.22 99.58 98.53

N L2 noPredEA 98.11 98.14 97.96 97.97 97.58 97.35 97.01 94.40 84.08 85.36

PredEA-LR 98.12 98.15 97.96 97.97 97.57 97.35 97.01 94.38 84.10 85.43

PredEA-LR2 99.79 99.78 99.62 99.60 99.30 99.23 98.63 98.49 96.54 96.16

PredEA-NLR 99.80 99.79 99.67 99.65 99.33 99.26 98.66 98.53 96.55 96.19

N L3 noPredEA 99.06 99.07 98.84 98.88 98.48 98.55 97.12 97.47 93.42 94.05

PredEA-LR 99.34 99.03 99.29 99.17 99.11 99.01 98.51 98.42 94.01 94.65

PredEA-LR2 99.57 99.55 99.44 99.42 99.52 99.46 98.95 98.67 97.52 97.37

PredEA-NLR 99.98 99.92 99.85 99.83 99.60 99.57 99.13 99.07 97.71 97.58
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Table 7 continued

Bit matching Number of states

Period Algorithm 3 5 10 20 50

C P C P C P C P C P

N L4 noPredEA 99.02 99.06 98.87 98.88 98.52 98.52 97.90 97.44 92.92 93.48

PredEA-LR 99.07 99.09 98.90 98.91 98.53 98.53 97.91 97.41 92.94 93.57

PredEA-LR2 99.73 99.73 99.60 99.58 99.27 99.23 98.65 98.54 96.54 96.56

PredEA-NLR 99.96 99.94 99.83 99.80 99.49 99.45 98.83 98.73 96.73 96.72

N L5 noPredEA 97.58 97.68 97.43 97.41 96.94 96.89 91.43 91.42 80.31 81.69

PredEA-LR 97.73 97.84 97.53 97.73 96.77 96.96 92.78 92.35 81.08 82.57

PredEA-LR2 99.94 99.93 99.90 99.87 99.79 99.76 99.58 99.51 96.09 95.67

PredEA-NLR 98.22 98.22 98.11 98.06 97.75 97.62 94.32 94.38 82.97 83.32

N L6 noPredEA 98.54 98.56 98.12 98.14 97.68 97.74 94.22 96.00 87.21 88.58

PredEA-LR 99.18 99.17 98.89 98.70 98.05 98.03 95.29 96.12 88.92 90.15

PredEA-LR2 99.87 99.85 99.79 99.78 99.62 99.61 99.34 99.30 98.61 98.52

PredEA-NLR 99.54 99.36 99.28 99.24 99.15 99.10 98.94 98.23 97.72 97.41

N L7 noPredEA 99.53 99.55 99.51 99.52 99.43 99.46 99.16 98.94 95.14 95.79

PredEA-LR 99.77 99.75 99.75 99.74 99.65 99.64 99.45 99.27 96.71 96.86

PredEA-LR2 99.93 99.92 99.89 99.88 99.79 99.78 99.65 99.62 98.91 98.84

PredEA-NLR 99.91 99.90 99.88 99.86 99.75 99.74 99.63 99.59 98.62 98.77

Table 8 PredEA and noPredEA results: dynamic knapsack for periodic, patterned and nonlinear change periods and for cyclic (C) and probabilistic
(P) transitions between 3, 5, 10, 20 and 50 states

Knapsack Number of states

Period Algorithm 3 5 10 20 50

C P C P C P C P C P

r = 10 noPredEA 1,849.57 1,853.31 1,849.11 1,854.60 1,840.03 1,839.48 1,793.66 1,799.04 1,669.13 1,683.74

PredEA-LR 1,859.57 1,863.93 1,861.35 1,867.86 1,854.73 1,855.57 1,808.89 1,814.83 1,683.73 1,699.14

PredEA-LR2 1,860.81 1,864.91 1,861.65 1,868.83 1,855.56 1,855.96 1,809.42 1,815.18 1,685.07 1,699.16

PredEA-NLR 1,859.94 1,864.75 1,861.52 1,868.70 1,855.24 1,856.36 1,809.11 1,815.12 1,683.92 1,699.28

r = 50 noPredEA 1,860.59 1,865.40 1,860.78 1,867.73 1,851.61 1,851.68 1,804.76 1,817.04 1,680.30 1,687.44

PredEA-LR 1,864.37 1,870.19 1,865.64 1,873.56 1,858.86 1,860.07 1,813.40 1,825.64 1,688.24 1,695.47

PredEA-LR2 1,864.36 1,870.26 1,866.72 1,874.17 1,859.04 1,860.16 1,813.60 1,825.59 1,688.30 1,695.80

PredEA-NLR 1,864.77 1,870.24 1,866.22 1,873.78 1,858.98 1,860.35 1,813.61 1,825.76 1,688.29 1,695.52

r = 100 noPredEA 1,863.16 1,868.04 1,864.16 1,871.73 1,855.27 1,853.87 1,808.21 1,819.53 1,683.73 1,692.90

PredEA-LR 1,865.51 1,870.31 1,866.95 1,875.17 1,859.85 1,859.26 1,814.54 1,825.57 1,689.64 1,698.64

PredEA-LR2 1,865.98 1,869.74 1,866.95 1,875.19 1,860.13 1,859.42 1,814.67 1,825.55 1,689.71 1,698.99

PredEA-NLR 1,865.82 1,868.54 1,867.20 1,875.57 1,860.34 1,859.33 1,814.83 1,825.58 1,689.65 1,698.78

r = 200 noPredEA 1,864.06 1,867.03 1,866.00 1,873.43 1,858.00 1,859.45 1,811.18 1,825.43 1,686.79 1,700.56

PredEA-LR 1,865.57 1,868.47 1,867.84 1,875.88 1,860.81 1,862.25 1,815.27 1,828.88 1,690.74 1,704.27

PredEA-LR2 1,965.64 1,868.56 1,867.97 1,875.92 1,861.62 1,862.26 1,815.67 1,829.18 1,690.92 1,704.76

PredEA-NLR 1,865.58 1,868.54 1,867.95 1,875.91 1,861.08 1,862.26 1,815.48 1,829.28 1,690.80 1,704.55

5–10–5 noPredEA 1,833.57 1,846.72 1,846.18 1,850.01 1,836.80 1,838.11 1,790.34 1,796.52 1,665.79 1,681.70

PredEA-LR 1,844.16 1,859.65 1,859.60 1,864.39 1,852.41 1,853.08 1,806.60 1,812.45 1,681.49 1,697.05

PredEA-LR2 1,844.35 1,859.55 1,860.31 1,864.57 1,852.21 1,852.48 1,806.55 1,812.21 1,681.74 16,97.21

PredEA-NLR 1,844.55 1,860.40 1,860.87 1,865.03 1,852.55 1,853.74 1,806.86 1,813.29 1,681.72 1,697.84
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Table 8 continued

Knapsack Number of states

Period Algorithm 3 5 10 20 50

C P C P C P C P C P

10–20–10 noPredEA 1,837.92 1,853.56 1,850.43 1,855.41 1,840.53 1,841.94 1,794.42 1,808.12 1,664.74 1,679.17

PredEA-LR 1,844.89 1,862.31 1,859.08 1,866.10 1,852.67 1,853.58 1,806.49 1,819.42 1,674.35 1,689.53

PredEA-LR2 1,845.15 1,862.06 1,859.41 1,866.65 1,853.39 1,853.36 1,806.11 1,819.69 1,674.78 1,689.96

PredEA-NLR 1,842.43 1,860.58 1,856.80 1,864.02 1,851.36 1,851.43 1,803.08 1,815.19 1,670.41 1,685.16

50–60–70 noPredEA 1,871.61 1,865.02 1,861.30 1,870.12 1,851.74 1,850.70 1,805.38 1,815.17 1,681.20 1,688.86

PredEA-LR 1,874.44 1,868.35 1,865.55 1,875.33 1,858.45 1,858.15 1,812.47 1,822.49 1,687.39 1,695.53

PredEA-LR2 1,874.50 1,868.63 1,865.82 1,875.58 1,858.65 1,858.24 1,812.26 1,822.54 1,687.90 1,695.57

PredEA-NLR 1,874.54 1,868.74 1,865.65 1,875.55 1,858.94 1,858.21 1,812.74 1,822.91 1,687.65 1,695.86

100–150–100 noPredEA 1,856.57 1,867.50 1,863.97 1,871.71 1,856.16 1,855.20 1,809.02 1,819.75 1,684.55 1,693.54

PredEA-LR 1,858.19 1,870.10 1,867.29 1,875.43 1,860.85 1,860.09 1,815.30 1,826.1,8 1,690.59 1,699.55

PredEA-LR2 1,858.50 1,870.51 1,867.64 1,875.87 1,860.62 1,860.38 1,815.68 1,826.50 1,690.97 1,699.92

PredEA-NLR 1,858.72 1,870.99 1,867.42 1,875.66 1,861.61 1,860.16 1,815.97 1,826.94 1,690.90 1,699.73

N L1 noPredEA 1,861.10 1,862.12 1,860.54 1,865.47 1,851.44 1,851.85 1,804.82 1,808.31 1,678.06 1,697.48

PredEA-LR 1,861.74 1,862.58 1,861.04 1,865.50 1,852.61 1,852.20 1,805.95 1,809.62 1,679.88 1,699.66

PredEA-LR2 1,866.16 1,868.09 1,867.90 1,874.67 1,861.64 1,862.74 1,816.58 1,819.01 1,687.57 1,707.09

PredEA-NLR 1,866.05 1,867.93 1,867.68 1,874.38 1,861.57 1,862.84 1,816.24 1,819.65 1,687.50 1,707.01

N L2 noPredEA 1,857.70 1,861.36 1,858.66 1,863.41 1,850.50 1,850.46 1,801.34 1,815.55 1,670.50 1,696.64

PredEA-LR 1,857.87 1,860.98 1,858.50 1,864.31 1,849.87 1,850.46 1,801.46 1,815.90 1,670.05 1,696.36

PredEA-LR2 1,860.92 1,864.72 1,863.48 1,867.86 1,855.92 1,856.15 1,808.52 1,822.83 1,677.09 1,702.83

PredEA-NLR 1,860.73 1,864.76 1,862.58 1,867.70 1,855.77 1,856.32 1,808.55 1,822.80 1,677.07 1,702.87

N L3 noPredEA 1,859.73 1,863.16 1,858.37 1,867.64 1,851.47 1,855.39 1,803.53 1,826.09 1,680.72 1,702.13

PredEA-LR 1,859.44 1,863.93 1,858.61 1,869.44 1,853.03 1,857.05 1,806.57 1,830.53 1,682.81 1,704.85

PredEA-LR2 1,862.21 1,866.43 1,862.95 1,872.96 1,856.30 1,861.04 1,808.05 1,832.12 1,684.35 1,706.25

PredEA-NLR 1,863.31 1,867.82 1,863.68 1,873.22 1,857.80 1,861.93 1,809.82 1,832.89 1,684.44 1,706.71

N L4 noPredEA 1,861.56 1,861.67 1,858.09 1,864.67 1,856.50 1,850.37 1,799.61 1,816.59 1,650.37 1,708.75

PredEA-LR 1,863.19 1,861.97 1,857.97 1,864.39 1,856.52 1,850.23 1,799.81 1,816.22 1,650.39 1,708.48

PredEA-LR2 1,863.24 1,862.47 1,859.80 1,865.36 1,858.44 1,851.78 1,801.79 1,81,8.76 1,652.73 1,710.81

PredEA-NLR 1,863.91 1,863.17 1,859.98 1,866.44 1,859.02 1,852.23 1,802.30 1,819.31 1,652.66 1,711.08

N L5 noPredEA 1,856.16 1,859.92 1,855.88 1,863.15 1,847.14 1,848.65 1,800.23 1,811.92 1,672.76 1,687.04

PredEA-LR 1,855.89 1,859.95 1,855.20 1,864.30 1,847.89 1,847.56 1,799.90 1,811.13 1,672.64 1,687.24

PredEA-LR2 1,861.02 1,873.78 1,865.08 1,876.06 1,856.13 1,858.54 1,817.39 1,823.36 1,688.68 1,696.88

PredEA-NLR 1,857.13 1,860.34 1,856.21 1,865.81 1,849.07 1,850.22 1,800.92 1,812.13 1,673.35 1,688.92

N L6 noPredEA 1,858.68 1,863.10 1,857.65 1,864.21 1,849.06 1,848.64 1,801.98 1,808.94 1,678.03 1,688.56

PredEA-LR 1,860.78 1,864.75 1,858.63 1,865.45 1,850.98 1,850.60 1,802.92 1,809.52 1,679.42 1,690.53

PredEA-LR2 1,869.93 1,877.82 1,868.01 1,880.88 1,858.1,8 1,868.47 1,813.60 1,825.99 1,696.40 1,706.31

PredEA-NLR 1,866.17 1,875.93 1,866.74 1,874.77 1,856.64 1,862.97 1,810.11 1,816.94 1,694.75 1,699.61

N L R7 noPredEA 1,865.08 1,868.65 1,865.01 1,872.72 1,856.64 1,855.36 1,808.31 1,812.43 1,684.40 1,695.10

PredEA-LR 1,866.85 1,869.22 1,866.22 1,872.90 1,857.31 1,855.51 1,809.29 1,813.12 1,687.98 1,698.20

PredEA-LR2 1,872.34 1,875.99 1,874.92 1,883.51 1,870.18 1,869.39 1,822.96 1,821.89 1,699.14 1,706.90

PredEA-NLR 1,870.21 1,871.29 1,872.23 1,880.89 1,867.73 1,867.47 1,819.59 1,820.55 1,695.20 1,704.94

the performances obtained are, in the majority of the cases,
equivalent. Tables 9 and 10 show that, in periodic change
periods, the comparisons of the performances obtained by the

three versions of PredEA are, in general, statistically equiv-
alent. For the patterned change periods, the three proposed
methods obtain similar performances, except for the 10-20-
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Table 9 Statistical results: dynamic knapsack for periodic, patterned and nonlinear change periods and for cyclic (C) and probabilistic (P) transitions
between 3, 5, 10, 20 and 50 states

Bit matching Number of states

Period Pair of algorithms 3 5 10 20 50

C P C P C P C P C P

r = 10 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

r = 50 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ −− −− ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

r = 100 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ++ ∼ ∼ ∼ ∼ +

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

r = 200 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ++ ∼ ∼ ++ ∼ ∼ ∼ ∼ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ −− ∼ ∼ ∼ ∼ ∼

5–10–5 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ∼ ++ ∼ ∼ ∼ ∼ ∼ ∼ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ++ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

10–20–10 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR −− −− −− −− −− −− −− −− −− −−
PredEA-NLR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
PredEA-LR – PredEA-LR2 −− ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

50–60–70 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
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Table 9 continued

Bit matching Number of states

Period Pair of algorithms 3 5 10 20 50

C P C P C P C P C P

100–150–100 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ∼ ∼ ++ ∼ ∼ ++ ∼ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

N L1 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ++ ∼ ∼ ∼ ∼ ∼
PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L2 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ++ ∼ ++ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L3 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L4 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ∼ ++ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 ∼ ++ ∼ ++ ++ ∼ ++ ++ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ −− −− −− −− −− −− −− −− −−

N L5 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L6 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ∼ ∼ ∼ ∼ ++ ∼ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
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Table 9 continued

Bit matching Number of states

Period Pair of algorithms 3 5 10 20 50

C P C P C P C P C P

N L7 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ∼ ∼ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

Table 10 Statistical results: dynamic bit matching for periodic, patterned and nonlinear change periods and for cyclic (C) and probabilistic (P)
transitions between 3, 5, 10, 20 and 50 states

Bit matching Number of states

Period Pair of Algorithms 3 5 10 20 50

C P C P C P C P C P

r = 10 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

r = 50 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ∼ ∼ ++ ++ ++ ++ ++ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

r = 100 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

r = 200 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

5–10–5 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ∼ ∼ ++ ∼ ∼ ++ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ++ ∼ ∼ ++ ∼ ++ ∼ ∼
PredEA-LR – PredEA-LR2 −− ∼ ∼ ++ ∼ ∼ ∼ ∼ ∼ ∼
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Table 10 continued

Bit matching Number of states

Period Pair of Algorithms 3 5 10 20 50

C P C P C P C P C P

10–20–10 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR −− −− −− −− −− −− −− −− −− −−
PredEA-NLR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

50–60–70 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ++

PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
100–150–100 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

N L1 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 ∼ −− ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L2 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L3 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ++ ∼ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L4 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ++ ∼ ∼ ∼ ∼ ∼ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
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Table 10 continued

Bit matching Number of states

Period Pair of Algorithms 3 5 10 20 50

C P C P C P C P C P

N L5 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ∼ ∼ ++ ++ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ∼ ∼ ++ ∼ ++ ++ ∼ ∼
PredEA-NLR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L6 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ++ ++ ∼ ∼ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−

N L7 PredEA-NLR – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-LR – noPredEA ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ++ ++

PredEA-LR2 – noPredEA ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

PredEA-NLR – PredEA-LR2 −− −− −− −− −− −− −− −− −− −−
PredEA-LR – PredEA-LR2 −− −− −− −− −− −− ∼ −− −− −−

10 change period. In this case, PredEA-NLR obtains the low-
est prediction accuracy (66.76 %) when compared with the
other two approaches (99.73 %). Consequently, as the results
show, PredEA-NLR achieves significantly worse fitness than
PredEA-LR and PredEA-LR2. Figure 5 shows the offline
performance measured over time. While the performance of
noPredEA remains nearly constant during the entire process,
the other algorithms improve their fitness as time passes.
Furthermore, PredEA-LR2 is more effective at the begin-
ning of the process than the other algorithms. Figure 5 also
shows that PredEA-NLR performs worse than PredEA-LR
and PredEA-LR2. For the remaining patterned change peri-
ods, the three methods obtain similar prediction accuracies
(above 99 %) and the performances obtained are, in gen-
eral, equivalent. Finally, for the nonlinear change periods, as
stated before, the fitness obtained by PredEA-LR is statisti-
cally comparable to the scores achieved by noPredEA. The
reason for this is the weak prediction accuracy obtained by the
linear predictor in the nonlinear change periods. The use of
all information in the linear regression method is unsuitable
to fit the data generated by the nonlinear functions. The per-
formances obtained by PredEA-NLR are always statistically
better than PredEA-LR’s results. Although PredEA-LR fails
in the nonlinear change periods, PredEA-LR2 obtains the
best performances among all the techniques. The update of
the regression line using only the two previous observations is

enough to continuously fit the points of the nonlinear curves.
This method performs evenly to PredEA-NLR for the N L1
through N L4 change periods, and is significantly superior
in the remaining nonlinear change periods. Notice that the
N L1 through N L4 change periods are generated using the
nonlinear functions incorporated in the nonlinear regression
predictor, benefiting PredEA-NLR. Figure 6 shows the evolu-
tion of the offline performance over time for the N L5 change
period. It is obvious the superiority of PredEA-LR2 over the
remaining methods. While PredEA-LR and PredEA-NLR
are not able to evolve, PredEA-LR2 continuously improves
its performance. Analyzing the plot, we can see that, around
generation 2000, the offline measure of PredEA-LR2 for the
cyclic case strongly increases. This happens because near
generation 2000 the Markov model completes the learn of
the dynamics of the environment, which is associated to the
high prediction accuracy of PredEA-LR2 and leads to these
superior results. For the cyclic case, the Markov model takes
more time to learn the entire dynamics of the environment, so
the performance increases slightly slower. For the nonlinear
change periods, not only PredEA-LR2 obtains the highest
results, but also provides a significantly faster performance
of the EA. Since the predictions are provided using only two
observations, the computational effort is considerably less
than PredEA-LR that uses all the observations. Concerning
the computational times PredEA-NLR is the most expen-
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sive method since the parameter’s estimation made by the
GA is time consuming and is made in every environmental
change.

As global conclusions we stress that the proposed predic-
tion techniques significantly improve the performance of the
EA in the studied dynamic environments. In fact, when the
appropriate information is retrieved from the memory and
inserted into the population before the change, the perfor-
mance of the EA is significantly increased. Furthermore, the
use of an appropriate time-window in the linear regression
predictor resulted as the most robust and the most efficient
method with the lowest computational effort.

8 Conclusions

When in the presence of environments that change follow-
ing a repeated behavior, the use of prediction mechanisms
is highly beneficial to the performance of memory-based
EAs. Unlike other methods investigated so far, the proposed
approaches are able to predict both when the next change will
happen and how the environment will look like. By using past
data, accurate predictions can be made and the algorithm can
anticipate the change by introducing useful information into
the population before such change takes place. Two differ-
ent predictors were used to estimate when the next change
would occur: one using linear regression, and another using
nonlinear regression. The linear predictor was tested using
all collected data and using only a part of the observations,
enclosed by a time-window. All the proposed methods per-
formed better than the algorithm without prediction. More-
over, the linear regression predictor using all the collected
data, performed well for cyclic and patterned change peri-
ods, but failed in the presence of nonlinear change periods.
On the other hand, the nonlinear predictor provided accurate
predictions in all types of environments analyzed, except for
the nonlinear change periods obtained by functions unknown
to the module. The use of a time-window in the linear predic-
tor was the most robust and efficient method: it allows the EA
to obtain the best performances in all types of change peri-
ods, with the minimum computational cost. For the linear and
patterned change periods, PredEA-LR2 performed equiv-
alently to PredEA-LR and PredEA-LR10. For the nonlin-
ear change periods, PredEA-LR2 outperformed the remain-
ing techniques. The most relevant results of this method
were obtained for the nonlinear change periods. While the
other linear regression techniques failed and the nonlinear
method found some difficulties, the use of a small time-
window allowed to divide the nonlinear change period in
small sets, which were correctly fitted by the linear regression
method.

The second predictor was implemented using a Markov
chain and estimated how the environment would change. The
Markov chain stored information about the environments and
the transitions among them. After that, this information was
used to predict which possible environment(s) would appear
in the next change. This predictor performed very well in the
situations analyzed: it started by learning the dynamics of the
environmental changes and, after that phase, the predictions
provided were, for the most part, correct. When the number of
different environments increased, the predictor needed more
time to acquire all the necessary information in order to make
valid predictions.

The investigated methods are advantageous for those
problems where a repeated behavior can be found. In these
cases, the investigated prediction techniques can improve the
performance of the problem solver. In other type of prob-
lems the proposed approach can be used as a complement
to the problem solver, working in the background, trying to
identify possible patterns. So, even if a certain problem is
mainly non-periodic, if in a certain moment some trend is
observed, it will be detected and the benefits of the presented
methods can be used. The fact that the new individuals cho-
sen from the memory to be inserted into the population do
not participate in the evolutionary process until the change
effectively occurs, make them harmless if things go differ-
ently than predicted. Moreover, the prediction techniques are
not yet studied for problems that have a stochastic nature or
present time-linkage dependences. Examples of real world
problems that present a repeated behavior and where our
model could be tested, are the class of dynamic shortest path
routing problems, e.g., in mobile ad hoc networks or dealing
with traffic jams in cities.

The proposed methods, although conferring superior per-
formances to the EA for the studied situations, present sev-
eral limitations and need to be improved and further tested.
So, as future work, it is crucial to improve the Markov
chain module, removing the problem dependence. We are
exploring different approaches to measure the environment
and store the appropriate information in the Markov model.
This information will be used to implicitly identify an envi-
ronment as a new one or as a known one. Other required
improvement concerns the choice for the size of the time-
window. In fact, PredEA-LR2 and PredEA-LR10 worked
well for the selected functions, but it is not certain that these
time-windows are the best choices if different functions are
used to generate the change periods. If these two issues are
improved the proposed method can be used and tested in
different problems, using different representations, such as
real-valued. Moreover, the proposed techniques will be used
in other types of algorithms besides memory-based, such as
multi-population approaches and will be tested in a real word
application.
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