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Abstract This paper proposes re-sampled inheritance
search (RIS), a novel algorithm for solving continuous opti-
mization problems. The proposed method, belonging to the
class of Memetic Computing, is very simple and low demand-
ing in terms of memory employment and computational
overhead. The RIS algorithm is composed of a stochastic
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sample mechanism and a deterministic local search. The
first operator randomly generates a solution and then recom-
bines it with the best solution detected so far (inheritance)
while the second operator searches in an exploitative way
within the neighbourhood indicated by the stochastic oper-
ator. This extremely simple scheme is shown to display a
very good performance on various problems, including hard
to solve multi-modal, highly-conditioned, large scale prob-
lems. Experimental results show that the proposed RIS is a
robust scheme that competitively performs with respect to
recent complex algorithms representing the-state-of-the-art
in modern continuous optimization. In order to further prove
its applicability in real-world cases, RIS has been used to
perform the control system tuning for yaw operations on
a helicopter robot. Experimental results on this real-world
problem confirm the value of the proposed approach.

Keywords Memetic computing · Ockham’s Razor ·
Computational intelligence optimization · Large scale
optimization · Control system design · Autonomous
helicopter

1 Introduction

Memetic Computing (MC) is a subject in computational sci-
ence that studies algorithmic structures composed of hetero-
geneous operators, (Neri et al. 2011b). On an abstract level,
every set of multiple operators coordinated within a certain
structure for solving a given problem can be seen as a MC
approach. Although this definition may appear excessively
broad (Ong et al. 2010; Neri and Cotta 2012), in our view the
description of algorithms as structured collections of opera-
tors (memes) has both conceptual and practical implications.

The concept of MC originates with the definition of
Memetic Algorithm (MA), (see Moscato and Norman 1989;
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Moscato 1989). The first MAs were simple Genetic Algo-
rithms (GAs) hybridized with a local search component for
tackling the Travelling Salesman Problem (TSP). Although
the idea of hybridizing algorithms was not totally new, (see
e.g. Goldberg 1989), the visionary representation of the
transmission of knowledge amongst subcomponents of an
algorithm inspired a long-lasting discussion in the computer
science community. An ex-post formalization of the defin-
ition of MA was given in Hart et al. (2004) where a MA
is stated to be an algorithm composed of an evolutionary
framework and one (or more) local search components acti-
vated within the generation cycle of the external framework.
Several MAs (according to this definition) have been suc-
cessfully used in various fields of applied science and engi-
neering.

For example, in Joshi and Sanderson (1999) an ad-hoc
MA based on a Differential Evolution (DE) framework has
been proposed for solving the multi-sensor fusion problem
while in Rogalsky and Derksen (2000) another DE based
MA is designed to tackle an aerodynamic design problem.
In Zamuda et al. (2011) a DE scheme for plant model
reconstruction is proposed. A memetic solution for studying
a material structure is given in Fan et al. (2007). In Caponio
et al. (2007), Neri and Mininno (2010) domain-specific MAs
are proposed for solving a control engineering problem with
reference to electric motors and robotics. In Ong and Keane
(2004) an aerodynamic design problem is considered. Bio-
logical and medical problems are addressed by means of MC
approaches are also very popular, (see e.g. Abbass 2002; Neri
et al. 2007a,b). MAs for scheduling and planning problems
have been proposed (in e.g. Hasan et al. 2009; Lim et al.
2008; Tan et al. 2007).

During the latest years, MAs have become very popu-
lar in multiple contexts. As highlighted in Neri and Cotta
(2012), one important reason behind the MA success is the
diffusion of the No Free Lunch Theorems (NFLTs) (Wolpert
and Macready 1997). These theorems prove that the average
performance of any pair of algorithms A and B across all
possible problems is identical. Strictly speaking, the proof
of NFLTs (Auger and Teytaud 2007) are made for discrete
problems and under the hypothesis that both the algorithms
A and B are non-revisiting, i.e. the algorithms do not per-
form the fitness evaluation of the same candidate solution
more often than once during the optimization run. Although
a rigorous verification of these hypotheses is often not real-
istic, computer scientists accepted the idea that there is no
universal optimizer because if an algorithm performs well
on a certain class of problems, then it necessarily pays for
that with degraded performance on the set of all remaining
problems. As a trivial consequence, each problem should be
analysed and a proper algorithm that addresses the specific
features of that problem should be designed. Considering the
non-specificity of the general structure of a MA, practitioners

soon realized that proper hybridizations aiming at address-
ing specific problem features (such as noise, multi-modality
etc.) would have helped them to solve problems that appeared
hard for traditional paradigms.

Memetic Computing (MC) extends the concept of MA
taking into account algorithms that are not population-based,
(see e.g. Neri et al. 2011a), or that employ external support
operators such as machine learning components, (see e.g.
Handoko et al. 2010). In other words MC is an umbrella
name which includes many modern algorithms composed of
multiple operators and would not fit within the MA definition
given in Hart et al. (2004). From a philosophical viewpoint,
however, the real breakthrough of MC is the view of algo-
rithms as structures whose bricks composing them are opera-
tors: this idea opens, for example, the exciting perspective of
automatic algorithm generation, (see Neri et al. 2011b; Ong
et al. 2010; Meuth et al. 2009).

The presence of multiple components and coordination
schemes usually makes MC approaches rather complex and
demanding in terms of computational overhead. For exam-
ple, paper (Molina et al. 2010a) proposes a MA that, although
very efficient, requires the usage of multiple covariance
matrices, thus resulting into a very high computational over-
head and memory employment, especially in high dimen-
sions. In Montes de Oca et al. (2009) a Particle Swarm
Optimization (PSO) that includes multiple enhancing mech-
anisms collected by other variants in literature is proposed.
In Vrugt et al. (2009); Peng et al. (2010) optimization algo-
rithms composed of multiple popular meta-heuristics are
proposed. The coordinated employment of multiple algo-
rithms, and more generally multiple strategies, is encom-
passed within the idea of ensemble (Mallipeddi et al. 2010,
2011), where different strategies concur, by means of a self-
adaptive or randomized mechanism, to the optimization of
the same fitness function. A similar approach is proposed in
Zamuda and Brest (2012) where multiple strategies are com-
bined with a population size reduction to in order to tackle
industrial problems. In Nguyen et al. (2009a), yet multiple
algorithms are considered, while their coordination is per-
formed by means of a success probability criterion (by fol-
lowing a principle similar to the meta-Lamarckian learning
(Ong and Keane 2004). In Nguyen et al. (2009b) multiple
algorithmic components are coordinated by means of the
structural mapping of the population.

Although in some cases, complex algorithmic implemen-
tations can lead to successful results, unnecessary complex-
ity during the design phase should be strictly avoided for the
following four major reasons.

(1) Algorithms composed of multiple parts and containing
many parameters could be hard to control. The setting of
many parameters whose values heavily affects the per-
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formance (for a given problem) is often a complicated
issue since the optimal setting of each parameter is likely
to depend on the setting of the other parameters, (see
Eiben and Smit 2011).

(2) Complex algorithms can be hard to understand in
terms of functioning. More specifically, some algorithms
despite their performance on some problems are so com-
plex that it is nearly impossible to interpret their func-
tioning and understand the reasons behind their suc-
cess. If there is no proper understanding of the work-
ing principles of an algorithm, the scheme risks to be
highly specialized and unexpectedly fail when the prob-
lem changes. While the specialization is not necessarily
a drawback of an algorithm, the lack of understanding
of the algorithmic working principles and thus the dif-
ficulty of taking efficient countermeasures to adapt an
algorithm to a new situation (e.g. a new dimensionality
value) is definitely a limitation of complex schemes.

(3) Some complex algorithms include computationally
expensive components. This may result into a high com-
putational overhead which may super-linearly depend
on the problem dimensionality. For example, those algo-
rithms that make use of covariance or distance matri-
ces are characterized by a computational overhead that
grows quadratically with the dimensionality of the prob-
lem. These algorithms may be unacceptably expensive
in large scale optimization problems.

(4) In other cases, modern algorithms require machine learn-
ing structures, archives, and learning components for the
supervision of the operators. In such cases, the algorithm
can be expensive in terms of memory consumption, thus
being impractical for those problems that are charac-
terized by a limited hardware, such as micro-controllers
and embedded systems. Obviously, some algorithms can
present both, a high computational overhead and high
memory requirement.

Motivated by these reasons, paper (Iacca et al. 2012a)
introduces the concept of Ockham’s Razor in MC, stating
that unnecessary complex structures should be avoided as
properly designed, simple algorithms can perform as well
as complex ones. In addition, in Iacca et al. (2012a) an
implementation of a novel algorithm, namely Three Stage
Optimal Memetic Exploration (3SOME), is proposed. The
3SOME algorithm is a fairly simple scheme that makes use
of three operators to progressively perturb a single solution.
Despite its simplicity, 3SOME displays a competitive per-
formance with respect to other MC approaches, and modern
population-based algorithms. This successful implementa-
tion has been further studied and improved. Paper (Neri et al.
2012) compares the simplistic meme coordination scheme of
3SOME with the meta-Lamarckian learning (Ong and Keane
2004) and concludes that the simplistic 3SOME coordination

is not worse than the adaptive leaning. Papers (Poikolainen
et al. 2012a; Caraffini et al. 2012a) propose the integration of
components for handling non-separability within a 3SOME
framework. A marginally improved version of the original
3SOME is presented in Poikolainen et al. (2012b), where a
modified operator enhances the exploitation features of the
algorithm. Finally, paper (Caraffini et al. 2012b) studies the
3SOME algorithmic structure by comparing 3SOME vari-
ants holding the same structure but encompassing different
operators. As a result, algorithms with the same structure
but different operators appeared to display an overall similar
performance over various problems.

It is worth mentioning that a way before the formulation of
the Ockham’s Razor in algorithmic contexts and the diffusion
of the MC terminology, simple structures perturbing single
solutions by means of diverse operators have been proposed
in the literature. For example, in Yao et al. (1999) a modified
Evolutionary Programming (EP) scheme that cooperatively-
competitively makes use of both Gaussian and Cauchy distri-
butions in order to generate a new trial individuals. An evo-
lution of this approach is presented in Lee and Yao (2004)
where the EP is empowered by the Lévy distribution within
the mutation operator.

The present paper, by following the Ockham’s Razor
principle presented in Iacca et al. (2012a) and the con-
siderations of the importance of the algorithmic structures
reported in Caraffini et al. (2012b), proposes a novel algo-
rithmic implementation that further attempts to be a simple
and efficient alternative to modern complex algorithms. The
proposed algorithm, namely re-sampled inheritance search
(RIS), makes use of only two operators that progressively
perturb a single solution, combined in a simplified structure
with respect to that studied in Caraffini et al. (2012b). One of
these operators is a modified version of one local search com-
ponent used in Tseng and Chen (2008) while the second is a
re-sampling mechanism flowed by an exponential crossover
implemented in the fashion of DE (Price et al. 2005).

In addition, this paper applies the proposed algorithm to
the control problem of a helicopter robot. In this case, a real-
world application, the autonomous nature of the hardware
would impose an on-board implementation of the optimiza-
tion algorithm. The system would benefit from a simple algo-
rithm that is characterized by a modest memory requirement
and computational overhead. This real-world example high-
lights how the proposed algorithm is a simple scheme yet
capable to display a performance competitive with modern
complex algorithms.

The remainder of this article is organized in the follow-
ing way. Section 2 introduces the RIS components, their
coordination, and explains the motivation behind the design
choices. Section 3 presents, on a diverse set of test problems
belonging to four popular benchmarks, the RIS performance
with respect to that of modern algorithm. Section 4 describes
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the application of the proposed algorithm to a real-world
engineering problem in the field of mobile robotics. Finally,
Sect. 5 gives the conclusions of this study.

2 Re-sampling inheritance search

Without loss of generality, in the following we refer to the
minimization problem of an objective function f (x), where
the candidate solution x is a vector of n design variables
(or genes) in a hyper-box decision space D = [a, b], with
a and b respectively lower and upper bound vectors. Let
us indicate with x[i] the i th element of the vector x. At an
abstract level, an optimization algorithm can be seen as a
mathematical procedure that progressively perturbs one or
more candidate solutions in order to detect the optimum of
the objective function. Let us indicate with xe (where e stands
for “elite”) the best solution (or population of best solutions)
detected at a given moment of the search, and with xt the
trial solution(s), i.e. the candidate solution perturbed by an
operator (or a set of operators).

The proposed Re-sampling Inheritance Search (RIS) is
an extremely simple algorithm that makes use of two oper-
ators to perturb a single solution. The proposed algorithm
randomly samples an initial solution xe within the decision
space D. The two operators proposed in the following two
sub-sections are applied in order to perturb xe.

2.1 Re-sampling with inheritance

This operator, at first, randomly generates a solution xt within
the decision space D. Then, a perturbation of xe is performed
by means of the exponential crossover in the fashion of Dif-
ferential Evolution (Neri and Tirronen 2010; Zaharie 2009).
More specifically, one gene from xe is randomly selected.
This gene replaces the corresponding gene within the trial
solution xt . Then, a set of random numbers between 0 and
1 are generated. As long as rand (0, 1) ≤ Cr , where the
crossover rate Cr is a parameter affecting the number of
transferred genes (see below), the design variables from the
elite xe are copied into the corresponding positions of the
trial solution xt , starting from the initial gene. As soon as
rand (0, 1) > Cr , the copy process is interrupted. Thus,
all the remaining design variables of the offspring are those
initially sampled (belonging to the original xt ). The individ-
ual is handled as a cyclic buffer, i.e. when the nth variable
is reached during the copy process the next to be copied is
the first one. When the trial solution xt has been generated,
its fitness is compared with that of xe. If the newly gen-
erated solution outperforms the elite, an elite replacement
occurs. The pseudo-code displaying the working principles
of re-sampling with inheritance is shown in Fig. 1.

Fig. 1 Pseudo-code of re-sampling with inheritance

As shown in Neri et al. (2011a), it can easily be observed
that for a given value of Cr , the effect of the exponen-
tial crossover changes with the dimensionality of the prob-
lem. For low-dimensional problems, the trial solution would
inherit most of the genes from the elite, while for higher
dimensionalities only a small portion of xe would be copied
into xt . In order to avoid this problem and make the crossover
action independent on the dimensionality of the problem, the
following quantity, namely inheritance factor, is fixed:

αe ≈ ne

n
(1)

where ne is the number of genes we expect to copy from xe

into xt in addition to the first gene, which is deterministically
copied. The probability that ne genes are copied is Crne =
Crnαe . In order to control the approximate amount of copied
genes and to achieve that about ne genes are copied into the
offspring with probability 0.5, we impose that:

Crnαe = 0.5. (2)

It can easily be seen that, for a chosen αe, the crossover rate
can be set on the basis of the dimensionality as follows:

Cr = 1
nαe
√

2
. (3)

By means of formula (3), the expected quantity of informa-
tion to be inherited from xe to xt is thus controlled.

2.2 Exploitative local search

This operator is a local search algorithm which perturbs
a single solution along its n axes, i.e. separately perturbs
each design variable. Other search operators that separately
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perturb each variable have been extensively proposed in the
literature. Some examples that, unlike in the present paper,
make use of a randomization are given in Zhou et al. (2008),
Ji and Klinowski (2006). The meme here proposed can be
seen as a modification of a classical hill-descend algorithm
and employs the perturbation logic proposed in Tseng and
Chen (2008).

The implementation of this operator requires an additional
solution, which will be here referred to as xs . The trial solu-
tion xt generated by the first operator is perturbed by com-
puting, for each variable i :

xs[i] = xt [i] − ρ[i], (4)

where ρ is an n-dimensional exploratory radius vector. The
elements of ρ are reinitialized to a predetermined initial value
whenever the local search is activated. Subsequently, if xs

outperforms xt , the trial solution xt is updated (the values of
xs are copied into it), otherwise a half step in the opposite
direction is performed:

xs[i] = xt [i] + ρ[i]
2

. (5)

Again, xs replaces xt if it outperforms it. After all the vari-
ables have been perturbed, the elite xe is replaced by xt if
it is outperformed by it. If the elite is not updated, i.e. the
exploration was unsuccessful, the radius ρ is halved for all
variables. The exploration is then repeated again for all the
design variables, until a precision criterion is met. In partic-
ular, the operator is stopped when the 2-norm of ρ, normal-
ized per each element by the corresponding search interval,
is smaller than a fixed threshold, as follows:
√
√
√
√

n
∑

i=1

(
ρ[i]

b[i] − a[i]
)2

< ε (6)

where (b[i] − a[i]) is the width of the decision space D along
the i th dimension and ε is the pre-arranged constant. For the
sake of clarity, Fig. 2 displays, in a pseudo-code, the working
principles of the exploitative local search.

As a further remark, RIS applies a toroidal management
of the bounds. This means that if, along the dimension i , the
design variable x[i] exceeds the bounds of a value ζ , it is
reinserted from the other end of the interval at a distance ζ

from the edge, i.e. given an interval [a, b], if x[i] = b + ζ it
takes the value of a + ζ .

2.3 Algorithmic structure and philosophy

The combination of the two memes composing the RIS is
arranged straightforwardly. More specifically, a solution is
firstly processed by the re-sampling with inheritance and
then the outcoming solution xt is processed by the exploita-
tive local search. The elite solution xe, which is possibly

Fig. 2 Pseudo-code of the exploitative local search

Fig. 3 Graphical representation of the RIS structure

Fig. 4 Pseudo-code the RIS

the solution xt processed by the exploitative local search
is then given back to the re-sampling inheritance for fur-
ther improvement. A pseudo-code description of the RIS
algorithmic structure is reported in Fig. 4 and graphically
depicted in Fig. 3. The re-sampling mechanism is supposed
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Fig. 5 Graphical representation of the RIS functioning

to generate a solution which is far away from the current
elite while the local search exploits the area of the decision
space suggested by the re-sampling operator. In this sense,
the proposed RIS is nothing else but a simple multi-start local
search. However, the proposed scheme is thought as a global
optimization algorithm in the fashion of MC. The inheritance
mechanism assures that a part of the genotype of the most
promising candidate solution is used to enhance upon its per-
formance, (see Iacca et al. 2012a). Although the re-sampling
is an operation that is performed only occasionally and thus
has a limited budget devoted to it (with respect to that allot-
ted to the local search), the transmission of some variables
from a promising solution to a newly sampled point appears
to have a certain impact to the global performance of the
algorithm, see results in Sect. 3.1 and Table 13. For a large
experimental setup, it has been observed that the RIS ver-
sion with inheritance is always at least as good as the version
without inheritance.

Figure 5 shows the search mechanism of the RIS in a
bi-dimensional case. Dashed lines show the search moves
performed by the re-sampling mechanism with inheritance,
while solid lines represent the search logic of the exploita-
tive local search. The re-sampling mechanism in general
performs diagonal moves. The movement along the axes
are due to the fact that the representation is bi-dimensional
and thus only one variable is perturbed into the trial solu-
tion. Obviously, in multi-dimensional cases a portion of
the elite is inherited by xt while the moves are performed
diagonally. As a fundamental remark, the proposed RIS
has been designed by following a bottom-up strategy, (see
Iacca et al. 2012a), i.e. building up the algorithmic struc-
ture from scratch and adding one operator at the time until
a good performance is achieved. The resulting algorithm is
indeed extremely simple and appears to be in line with the
Ockham’s Razor principle for MC structures formulated in
Iacca et al. (2012a).

3 Numerical results

The proposed RIS algorithm has been run with the follow-
ing parameter setting. The inheritance factor αe, Eq. (1), has
been set equal to 0.5. Regarding the local searcher, the ini-
tial search radius ρ[i], see Eqs. (4) and (5), as in Tseng and
Chen (2008) has been set equal to 0.4 × (b[i] − a[i]), i.e.
40 % of the domain width along each variable i , while the
stop-threshold ε has been set equal to 10−6. This configura-
tion of the parameters ensures significant performances over
a considerable variety of test problems. In particular, all the
algorithms under study have been run over:

– The CEC2005 benchmark described in Suganthan et al.
(2005) in 30 dimensions (25 test problems)

– The BBOB2010 benchmark described in Hansen et al.
(2010) in 100 dimensions (24 test problems)

– The CEC2008 benchmark described in Tang et al. (2007)
in 1000 dimensions (7 test problems)

– The CEC2010 benchmark described in Tang et al. (2010)
in 1000 dimensions (20 test problems)

Thus, 76 test problems have been considered in this study.
For each algorithm in this paper (see following subsections)
100 runs have been performed. Each run has been continued
for 5000 × n fitness evaluations, where n is the dimensional-
ity of the problem. For each test problem and each algorithm,
the average final fitness value ± standard deviation over the
100 available runs has been computed. In order to strengthen
the statistical significance of the results, for each test prob-
lem the Wilcoxon Rank-Sum test (Wilcoxon 1945) has been
also applied, with a confidence level of 0.95.

The following algorithms with respective parameter set-
ting have been considered for comparison against RIS.

– Three Stage Optimal Memetic Exploration (3SOME)
proposed in Iacca et al. (2012a) with inheritance factor
αe = 0.05, middle distance exploration hyper-cube size
δ equal to 20 % of the total decision space width, coeffi-
cient of generated points at each activation of the middle
distance exploration k = 4, short distance exploration
radius ρ = 0.4 and local budget fixed to 150 iterations.

– Comprehensive Learning Particle Swarm Optimizer
(CLP SO) proposed in Liang et al. (2006) with popu-
lation size equal to 60 individuals.

– Adaptive Differential Evolution (JADE) proposed in
Zhang and Sanderson (2009) with population size equal
to 60 individuals, group size factor p = 0.05 and para-
meters adaptation rate factor c = 0.1.

– Cooperatively Coevolving Particle Swarms Optimizer
(CCPSO2) proposed in Li and Yao (2012) with pop-
ulation size equal to 30 individuals, Cauchy/Gaussian-
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sampling selection probability p = 0.5 and set of poten-
tial group sizes S = {2, 5, 10}, S = {2, 5, 10, 50, 100},
S = {2, 5, 10, 50, 100, 250} for experiments in 30, 100
and 1000 dimensions, respectively.

– Memetic Algorithm with CMA-ES Chains (MA-CMA-
Chains) proposed in Molina et al. (2010a) with popula-
tion size equal to 60 individuals, probability of updating
a chromosome by mutation equal to 0.125, local/global
search ratio r L

G
= 0.5, BLX-α crossover with α = 0.5,

nass parameter for Negative Assortative Mating set to 3,
LS intensity stretch Istr = 500 and threshold δmin

L S =
10−8.

– Modified Differential Evolution with p-Best Crossover
(MDE-pBX) proposed in Islam et al. (2012) with pop-
ulation size equal to 100 individuals and group size q
equal to 15 % of the population size.

– Parallel Memetic Structure (PMS) proposed in Caraffini
et al. (2013) with inheritance factor αe set equal to 0.95,
initial search radius ρ equal to 0.4 and computational
budget for the first local searcher set to 150 iterations.
Regarding the second local searcher h is initialised as a
vector of 0.1, α = 2, β = 0.5, while ε has been set equal
to 10−5.

– compact Differential Evolution (cDE) proposed in
Mininno et al. (2011) with rand/1 mutation and exponen-
tial crossover, cDE/rand/1/exp, virtual population size
equal to 300, scale factor F = 0.5, and proportion of
genes undergoing exponential crossover, (see Neri et al.
2011a, αm = 0.25).

It must be remarked that the MA-CMA-Chains employs mul-
tiple covariance matrices, (see Hansen et al. 2003). Thus, its
memory requirement and computational overhead dramati-
cally grow with the problem dimensionality. In order to tackle
large scale problems, (Lozano et al. 2011) suggested a tai-
lored version which uses an efficient local search for high
dimensional domains, namely:

– Memetic Algorithm with Subgrouping Solis Wets Chains
(MA-SSW-Chains), originally proposed in Molina et al.
(2010b), with population size equal to 100 individuals,
probability of updating a chromosome by mutation equal
to 0.125, local/global search ratio r L

G
= 0.5, BLX-α

crossover with α = 0.5, nass parameter for Negative
Assortative Mating set to 3, LS intensity stretch Istr =
500 and threshold δmin

L S = 0.

Thus for the experiments in 1000 dimensions, MA-SSW-
Chains has been used instead of MA-CMA-Chains.

The parameter setting for all the algorithms in this subsec-
tion has been carried out by using the parameters suggested
in the respective original articles. As for CLPSO and JADE,

the population size was set in the original papers depending
on the problem dimensionality (without a general rule). In
this study, a tuning of the population size values has been
performed, resulting in a size of 60 individuals which turned
out to be the most suitable compromise in terms of overall
performance. This value is in accordance with the study of
Lozano et al. (2011) for setting the Differential Evolution
population size.

Experimental results have been divided into groups.
Tables 1, 2, 3, and 4 show the comparison against 3SOME,
CLPSO, and JADE for the four benchmarks under consid-
eration. Tables 5, 6, 7, and 8 show the comparison against
CCPSO2, MA-CMA-Chains (MA-SSW-Chains), and MDE-
pBX. Tables 9, 10, 11, and 12 show the comparison against
cDE and PMS. The tables in this study display the average
final fitness value over the 100 available runs and the corre-
sponding standard deviation. The results of the Wilcoxon test
are also reported in terms of pair-wise comparisons. The sym-
bols “=” and “+” (“−”) indicate, respectively, a statistically
equivalent performance and a better (worse) performance of
RIS compared with the algorithm in the column label. The
best results are highlighted in bold.

Despite its simple structure, the RIS algorithm outper-
forms both the popular meta-heuristics (CLPSO and JADE)
under consideration. In particular, RIS overtakes CLPSO and
JADE in 30 and 100 dimensions, while in 1000 dimensions
CLPSO is competitive over the testbed in Tang et al. (2010).
With reference to Table 1, it can be seen that for the testbed
in Suganthan et al. (2005) the RIS algorithm is outperformed
by all the other algorithms only in function f4 which, being
subjected to a Gaussian noise (N (0, 1)), is more suited for
a population-based algorithm (Arnold and Beyer 2003). It
can also be observe that RIS achieves the best performance
in 9 cases, 3SOME also in 9 cases, JADE in 8 case while
CLPSO in only one case. Nonetheless, regarding problems
f1, f2, f9, f18, f19, and f20, despite the fact that 3SOME
is possibly slightly more robust, RIS and 3SOME detect
very similar solutions. On the contratry, in most of the cases
where the RIS algorithm appears to be promising against the
3SOME scheme, there is an important margin of difference
in terms of final fitness value. Equally relevant results are
displayed in Table 2, for the testbed in Hansen et al. (2010)
in 100 dimensions, and in Table 3 for the testbed in Tang et
al. (2007) in 1000 dimensions. In particular, Table 3 high-
lights an extremely good behavior of the proposed algorithm
over large-scale separable problems. In fact, RIS widely out-
performs JADE on a regular basis and is significantly out-
performed by CLPSO in only one case (see function f4).
With respect to the 3SOME algorithm, RIS appears to detect
better solutions in most of the analysed cases. It should be
remarked that RIS makes use of two of the operators con-
tained in the 3SOME framework but combines them accord-
ing to a slightly different logic/structure. In this sense, RIS
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Table 1 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against its predecessor 3SOME and popular meta-heuristics
on CEC2005 (Suganthan et al. 2005) in 30 dimensions

RIS 3SOME CLPSO JADE

f1 −4.50e + 02 ± 1.31e − 13 −4.50e + 02 ± 7.59e − 14 − −4.50e + 02 ± 6.12e − 05 + −3.51e + 02 ± 1.99e + 02 +
f2 −4.50e + 02 ± 1.23e − 10 −4.50e + 02 ± 2.23e − 12 − 6.44e + 03 ± 9.22e + 02 + 3.08e + 02 ± 7.32e + 02 +
f3 2.03e + 05 ± 1.25e + 05 2.80e + 05 ± 1.70e + 05 + 2.55e + 07 ± 6.25e + 06 + 3.71e + 06 ± 1.77e + 06 +
f4 1.88e + 04 ± 5.57e + 03 2.27e + 04 ± 1.13e + 04 + 1.43e + 04 ± 1.70e + 03 − 2.27e + 03 ± 1.68e + 03 −
f5 3.48e + 03 ± 7.70e + 02 1.08e + 04 ± 3.27e + 03 + 7.14e + 03 ± 5.68e + 02 + 3.91e + 03 ± 9.18e + 02 +
f6 6.91e + 02 ± 4.39e + 02 5.43e + 02 ± 2.64e + 02 − 6.08e + 02 ± 4.97e + 01 − 5.07e + 06 ± 1.53e + 07 +
f7 −1.80e + 02 ± 3.38e − 03 −1.80e + 02 ± 1.13e − 02 + 1.41e + 11 ± 7.45e + 10 + 1.69e + 13 ± 1.78e + 13 +
f8 −1.20e + 02 ± 4.05e − 04 −1.20e + 02 ± 7.40e − 04 + −1.19e + 02 ± 5.05e − 02 + −1.19e + 02 ± 5.75e − 02 +
f9 −1.18e + 02 ± 1.63e − 05 −1.18e + 02 ± 7.73e − 14 − −1.15e + 02 ± 8.97e − 01 + −1.17e + 02 ± 1.22e + 00 +
f10 2.14e + 02 ± 1.52e + 01 2.87e + 02 ± 2.99e + 01 + 2.73e + 02 ± 1.22e + 01 + 2.02e + 02 ± 2.20e + 01 −
f11 1.09e + 02 ± 1.90e + 00 1.22e + 02 ± 4.59e + 00 + 1.19e + 02 ± 1.69e + 00 + 1.16e + 02 ± 4.48e + 00 +
f12 1.90e + 02 ± 1.41e + 03 1.27e + 03 ± 3.33e + 03 + 4.46e + 04 ± 9.39e + 03 + 1.72e + 04 ± 1.54e + 04 +
f13 −1.21e + 02 ± 1.92e + 00 −1.25e + 02 ± 1.19e + 00 − −1.20e + 02 ± 8.21e − 01 + −1.26e + 02 ± 9.64e − 01 −
f14 −2.86e + 02 ± 2.79e − 01 −2.86e + 02 ± 3.31e − 01 − −2.87e + 02 ± 1.65e − 01 − −2.87e + 02 ± 2.02e − 01 −
f15 1.44e + 03 ± 3.89e − 01 1.44e + 03 ± 8.77e − 01 = 1.46e + 03 ± 2.18e + 00 + 1.45e + 03 ± 3.45e + 00 +
f16 1.55e + 03 ± 7.51e + 00 1.62e + 03 ± 2.78e + 01 + 1.61e + 03 ± 4.94e + 00 + 1.56e + 03 ± 6.50e + 00 +
f17 1.66e + 03 ± 1.54e + 01 1.67e + 03 ± 1.88e + 01 + 1.67e + 03 ± 6.15e + 00 + 1.59e + 03 ± 7.53e + 00 −
f18 9.10e + 02 ± 4.58e − 10 9.10e + 02 ± 5.90e − 12 − 9.10e + 02 ± 3.54e − 05 + 9.10e + 02 ± 2.62e − 01 +
f19 9.10e + 02 ± 4.52e − 10 9.10e + 02 ± 5.17e − 12 − 9.10e + 02 ± 3.06e − 05 + 9.10e + 02 ± 1.31e − 01 +
f20 9.10e + 02 ± 4.29e − 10 9.10e + 02 ± 4.76e − 12 − 9.10e + 02 ± 3.09e − 05 + 9.10e + 02 ± 1.40e − 01 +
f21 1.69e + 03 ± 4.33e + 00 1.73e + 03 ± 1.27e + 01 + 1.72e + 03 ± 3.69e + 00 + 1.69e + 03 ± 4.32e + 00 =
f22 2.42e + 03 ± 2.92e + 01 2.66e + 03 ± 8.39e + 01 + 2.55e + 03 ± 1.91e + 01 + 2.29e + 03 ± 3.44e + 01 −
f23 1.72e + 03 ± 6.16e + 00 1.72e + 03 ± 9.82e + 00 = 1.77e + 03 ± 5.94e + 00 + 1.70e + 03 ± 4.48e + 00 −
f24 1.68e + 03 ± 6.83e + 00 1.72e + 03 ± 1.13e + 01 + 1.70e + 03 ± 6.21e + 00 + 1.66e + 03 ± 1.40e + 01 −
f25 1.43e + 03 ± 3.74e + 02 1.66e + 03 ± 3.97e + 02 + 1.89e + 03 ± 8.46e + 01 + 1.86e + 03 ± 4.65e + 01 +

can be seen as simpler algorithm with respect to its predeces-
sor, thus further confirming the concept of Ockham’s Razor
in MC. The comparison against MDE-pBX shows that RIS
displays a better performance for all the groups of dimension-
ality values considered in this article. Regarding the compar-
ison against CCPSO2, RIS tends to outperform it at 30 and
100 dimension. For large scale problems, CCPSO2 displays
a good performance and slightly outperforms the proposed
RIS. A reversed situation occurs for the MA-CMA-Chains
algorithm. The latter algorithm is very efficient in 30 and
100 dimensions where it clearly outperforms RIS. On the
other hand, this trend is not confirmed in high dimensions,
since RIS statistically outperforms MA-SSW-Chains for all
the problems in 1000 dimensions.

Numerical results reported in Tables 9, 10, 11, and 12
show that RIS outperforms on most of the problems under
analysis cDE. On the other hand, PMS appears to be a chal-
lenging competitor. The RIS and PMS algorithms are both
based on a memetic philosophy and both employ the Ock-
ham’s Razor principle as a bottom line for the design. How-
ever, while RIS is extremely simple as it samples a new point

and exploit the outcoming search direction by means of a
local search, PMS is more powerful and sophisticated since
it makes use of of two complementary search strategies, (see
Caraffini et al. 2013). Although PMS is an excellent frame-
work, it pays off the very good performance with a higher
computational complexity and memory requirement with
respect to RIS, see Sect. 3.3.

3.1 The effect of the inheritance

As mentioned above, the inheritance mechanism within the
re-sampling appears to beneficially affect the performance
of the algorithm. A direct comparison between RIS and its
variant which is identical to it except that it does not employ
the inheritance (the re-sampling occurs by simply generating
another point within D) has been performed. The RIS vari-
ant without inheritance is called Re-sampling Search (RS).
In order to illustrate the advantages of the inheritance, Table
13 displays the results of RIS and RS for the CEC2005
benchmark proposed in Suganthan et al. (2005). It can be
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Table 2 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against its predecessor 3SOME and popular meta-heuristics
on BBOB2010 (Hansen et al. 2010) in 100 dimensions

RIS 3SOME CLPSO JADE

f1 7.95e + 01 ± 1.59e − 12 7.95e + 01 ± 3.29e − 14 − 7.95e + 01 ± 4.12e − 10 + 8.77e + 01 ± 7.64e + 00 +
f2 −2.10e + 02 ± 7.48e − 08 −2.10e + 02 ± 5.69e − 14 − −2.10e + 02 ± 9.39e − 07 + 5.73e + 04 ± 8.69e + 04 +
f3 −3.35e + 02 ± 2.15e + 01 −4.39e + 02 ± 7.28e + 00 − −4.62e + 02 ± 4.45e − 01 − −3.11e + 02 ± 4.95e + 01 +
f4 −2.85e + 02 ± 3.40e + 01 −4.27e + 02 ± 8.70e + 00 − −4.55e + 02 ± 1.50e + 00 − −1.43e + 02 ± 9.83e + 01 +
f5 −9.21e + 00 ± 1.83e − 05 7.40e + 00 ± 1.65e + 02 + 2.58e + 02 ± 1.17e + 01 + 1.24e + 02 ± 5.08e + 01 +
f6 3.59e + 01 ± 3.75e − 07 3.59e + 01 ± 8.86e − 08 − 4.25e + 02 ± 2.65e + 01 + 3.92e + 02 ± 1.18e + 02 +
f7 2.09e + 02 ± 1.93e + 01 5.97e + 02 ± 2.83e + 02 + 2.25e + 02 ± 1.07e + 01 + 3.08e + 02 ± 6.50e + 01 +
f8 2.30e + 02 ± 4.51e + 01 1.83e + 02 ± 3.31e + 01 − 2.82e + 02 ± 3.53e + 01 + 7.24e + 03 ± 6.15e + 03 +
f9 1.77e + 02 ± 2.64e + 01 1.76e + 02 ± 1.36e + 01 − 2.21e + 02 ± 5.45e − 01 + 1.78e + 03 ± 1.33e + 03 +
f10 2.44e + 03 ± 5.46e + 02 2.68e + 03 ± 6.96e + 02 + 5.32e + 05 ± 6.46e + 04 + 1.94e + 05 ± 8.87e + 04 +
f11 9.47e + 02 ± 1.10e + 02 3.83e + 02 ± 8.22e + 01 − 3.18e + 02 ± 1.67e + 01 − 2.11e + 02 ± 2.76e + 01 −
f12 −6.18e + 02 ± 4.16e + 00 −6.09e + 02 ± 1.83e + 01 + −6.03e + 02 ± 5.15e + 00 + 2.22e + 07 ± 2.13e + 07 +
f13 3.21e + 01 ± 1.68e + 00 3.35e + 01 ± 4.87e + 00 = 5.08e + 01 ± 2.08e + 00 + 7.69e + 02 ± 2.46e + 02 +
f14 −5.23e + 01 ± 4.89e − 05 −5.23e + 01 ± 5.47e − 05 + −5.23e + 01 ± 2.77e − 03 + −4.65e + 01 ± 3.89e + 00 +
f15 1.95e + 03 ± 1.18e + 02 4.53e + 03 ± 5.89e + 02 + 2.10e + 03 ± 3.63e + 01 + 1.59e + 03 ± 8.67e + 01 −
f16 8.25e + 01 ± 1.56e + 00 9.51e + 01 ± 6.11e + 00 + 9.53e + 01 ± 2.04e + 00 + 1.01e + 02 ± 3.46e + 00 +
f17 −8.97e + 00 ± 1.62e + 00 −2.63e − 02 ± 3.97e + 00 + −1.21e + 01 ± 2.96e − 01 − −1.45e + 01 ± 5.96e − 01 −
f18 1.56e + 01 ± 6.47e + 00 4.55e + 01 ± 1.54e + 01 + 1.12e + 00 ± 1.09e + 00 − −8.79e + 00 ± 2.11e + 00 −
f19 −9.32e + 01 ± 2.16e + 00 −9.08e + 01 ± 3.39e + 00 + −9.48e + 01 ± 2.29e − 01 − −9.50e + 01 ± 2.26e − 01 −
f20 −5.45e + 02 ± 1.17e − 01 −5.46e + 02 ± 9.61e − 02 − −5.45e + 02 ± 6.24e − 02 + −5.12e + 02 ± 9.92e + 01 +
f21 4.32e + 01 ± 2.63e + 00 5.19e + 01 ± 1.21e + 01 + 4.17e + 01 ± 1.21e + 00 − 4.93e + 01 ± 6.25e + 00 +
f22 −9.96e + 02 ± 5.45e + 00 −9.82e + 02 ± 1.47e + 01 + −9.98e + 02 ± 5.95e − 01 − −9.94e + 02 ± 6.66e + 00 +
f23 7.52e + 00 ± 1.07e − 01 8.21e + 00 ± 4.93e − 01 + 1.03e + 01 ± 2.74e − 01 + 1.07e + 01 ± 3.78e − 01 +
f24 1.26e + 03 ± 1.41e + 02 2.79e + 03 ± 4.75e + 02 + 1.21e + 03 ± 4.50e + 01 − 1.03e + 03 ± 4.44e + 01 −

Table 3 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against its predecessor 3SOME and popular meta-heuristics
on CEC2008 (Tang et al. 2007) in 1000 dimensions

RIS 3SOME CLPSO JADE

f1 −4.50e + 02 ± 1.33e − 09 −4.50e + 02 ± 4.03e − 08 + −2.98e + 02 ± 3.50e + 01 + 1.00e + 06 ± 3.23e + 05 +
f2 −4.50e + 02 ± 2.43e − 02 −4.50e + 02 ± 3.17e − 02 + −3.72e + 02 ± 6.49e − 01 + −3.21e + 02 ± 8.63e + 00 +
f3 1.51e + 03 ± 8.53e + 01 1.38e + 03 ± 8.37e + 01 − 4.02e + 03 ± 2.64e + 02 + 4.26e + 11 ± 2.13e + 11 +
f4 5.83e + 03 ± 3.67e + 02 −3.30e + 02 ± 4.11e − 04 − −7.28e + 01 ± 1.44e + 01 − 4.45e + 03 ± 1.00e + 03 −
f5 −1.80e + 02 ± 1.89e − 03 −1.80e + 02 ± 8.46e − 03 + −1.78e + 02 ± 2.17e − 01 + 8.45e + 03 ± 3.11e + 03 +
f6 −1.40e + 02 ± 5.02e − 07 −1.40e + 02 ± 4.49e − 04 + −1.40e + 02 ± 9.84e − 05 + −1.22e + 02 ± 6.01e − 01 +
f7 −1.35e + 04 ± 1.08e + 02 −1.39e + 04 ± 6.56e + 01 − −1.33e + 04 ± 4.19e + 01 + −1.19e + 04 ± 4.24e + 02 +

easily observed that RIS is at least as good as its variant
without inheritance and, in some cases, appears significantly
more promising. Similar results have been obtained for the
other benchmarks/dimensionality values under consideration
in this article but, for the sake of brevity, only the results in
Table 13 are shown. For the sake of completeness Figs. 6,
7, 8, and 9 show the average (over 100 runs) performance
trends for four optimization problems amongst the 76 under
consideration.

3.2 Statistical ranking by means of Holm-Bonferroni
procedure

In addition to the results presented above, the ranking among
all the algorithms considered in this article has been per-
formed by means of the Holm-Bonferroni procedure, (see
Holm 1979; Garcia et al. 2008), for the 10 algorithms under
study (MA-CMA-Chains and MA-SSW-Chains have been
considered as a unique algorithm for performing this test

123



2244 F. Caraffini et al.

Table 4 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against its predecessor 3SOME and popular meta-heuristics
on CEC2010 (Tang et al. 2010) in 1000 dimensions

RIS 3SOME CLPSO JADE

f1 4.16e − 06 ± 5.82e − 07 1.88e − 02 ± 5.82e − 02 + 6.15e + 05 ± 1.42e + 05 + 1.40e + 10 ± 6.91e + 09 +
f2 5.80e + 03 ± 4.17e + 02 1.97e + 01 ± 2.87e + 01 − 1.99e + 02 ± 1.27e + 01 − 4.56e + 03 ± 1.04e + 03 −
f3 4.84e − 06 ± 5.21e − 07 3.93e − 01 ± 3.61e − 01 + 9.04e − 01 ± 1.06e − 01 + 1.76e + 01 ± 6.75e − 01 +
f4 2.13e + 13 ± 4.05e + 12 8.57e + 12 ± 2.82e + 12 − 1.22e + 13 ± 2.82e + 12 − 2.62e + 12 ± 1.03e + 12 −
f5 4.62e + 08 ± 1.11e + 08 7.17e + 08 ± 1.22e + 08 + 1.93e + 08 ± 2.20e + 07 − 8.58e + 07 ± 1.77e + 07 −
f6 1.95e + 07 ± 2.27e + 06 1.98e + 07 ± 1.16e + 05 = 9.51e + 03 ± 2.09e + 04 − 3.48e + 06 ± 1.40e + 06 −
f7 1.89e + 10 ± 4.23e + 09 1.57e + 09 ± 4.02e + 08 − 5.53e + 08 ± 1.30e + 08 − 3.37e + 09 ± 3.66e + 09 −
f8 2.39e + 10 ± 1.33e + 10 4.80e + 08 ± 1.78e + 09 − 7.53e + 07 ± 2.77e + 07 − 6.31e + 13 ± 1.80e + 14 +
f9 1.69e + 08 ± 6.69e + 06 4.01e + 08 ± 6.95e + 07 + 9.54e + 08 ± 5.86e + 07 + 1.67e + 10 ± 5.87e + 09 +
f10 7.22e + 03 ± 2.90e + 02 6.75e + 03 ± 3.73e + 02 − 6.36e + 03 ± 1.92e + 02 − 7.50e + 03 ± 1.07e + 03 +
f11 1.34e + 02 ± 3.80e + 01 1.99e + 02 ± 7.14e − 01 + 9.71e + 01 ± 7.27e + 00 − 1.94e + 02 ± 7.49e + 00 +
f12 1.26e + 04 ± 3.41e + 03 1.59e + 05 ± 7.73e + 04 + 7.77e + 05 ± 3.78e + 04 + 2.32e + 06 ± 4.55e + 05 +
f13 2.54e + 05 ± 4.03e + 04 1.49e + 04 ± 5.82e + 03 − 9.09e + 03 ± 2.13e + 03 − 8.02e + 10 ± 4.76e + 10 +
f14 4.47e + 07 ± 1.44e + 06 1.22e + 08 ± 3.18e + 07 + 1.45e + 09 ± 9.35e + 07 + 1.31e + 10 ± 4.64e + 09 +
f15 7.26e + 03 ± 3.80e + 02 1.38e + 04 ± 5.34e + 02 + 1.25e + 04 ± 3.21e + 02 + 8.51e + 03 ± 1.03e + 03 +
f16 1.58e + 02 ± 3.61e + 01 3.71e + 02 ± 7.82e + 01 + 2.42e + 02 ± 1.61e + 01 + 3.83e + 02 ± 1.19e + 01 +
f17 2.13e + 04 ± 4.35e + 03 2.77e + 05 ± 2.15e + 05 + 1.80e + 06 ± 6.51e + 04 + 2.63e + 06 ± 7.56e + 05 +
f18 1.55e + 03 ± 1.27e + 03 2.68e + 04 ± 1.42e + 04 + 7.08e + 04 ± 1.22e + 04 + 4.42e + 11 ± 1.91e + 11 +
f19 2.47e + 06 ± 2.79e + 05 1.44e + 05 ± 1.73e + 04 − 5.82e + 06 ± 2.81e + 05 + 3.59e + 06 ± 7.17e + 05 +
f20 1.18e + 03 ± 1.64e + 02 1.13e + 03 ± 1.26e + 02 − 3.65e + 04 ± 7.28e + 03 + 5.48e + 11 ± 2.10e + 11 +

Table 5 Average fitness ± SD and Wilcoxon Rank-Sum Test (reference = RIS) for RIS against state-of-the-art algorithms on CEC 2005 (Suganthan
et al. 2005) in 30 dimensions

RIS CCPSO2 MA-CMA-Chains MDE-pBX

f1 −4.50e + 02 ± 1.31e − 13 −4.50e + 02 ± 6.40e − 13 + −4.50e + 02 ± 8.36e − 10 + −4.50e + 02 ± 1.52e − 13 −
f2 −4.50e + 02 ± 1.23e − 10 −4.38e + 02 ± 3.92e + 01 + −4.50e + 02 ± 1.47e − 02 + −4.50e + 02 ± 2.54e − 03 +
f3 2.03e + 05 ± 1.25e + 05 1.56e + 06 ± 9.03e + 05 + 1.45e + 05 ± 4.32e + 05 − 2.81e + 05 ± 1.99e + 05 +
f4 1.88e + 04 ± 5.57e + 03 1.81e + 04 ± 3.74e + 03 = 3.21e + 02 ± 5.06e + 02 − −1.29e + 02 ± 9.67e + 02 −
f5 3.48e + 03 ± 7.70e + 02 9.18e + 03 ± 1.59e + 03 + 5.60e + 02 ± 5.63e + 02 − 2.74e + 03 ± 6.34e + 02 −
f6 6.91e + 02 ± 4.39e + 02 4.63e + 02 ± 5.05e + 01 = 4.00e + 02 ± 3.07e + 01 − 4.33e + 02 ± 4.81e + 01 −
f7 −1.80e + 02 ± 3.38e − 03 −1.80e + 02 ± 1.86e − 02 + −1.41e + 02 ± 1.16e + 02 + 2.03e + 06 ± 1.88e + 07 +
f8 −1.20e + 02 ± 4.05e − 04 −1.19e + 02 ± 5.34e − 02 + −1.20e + 02 ± 9.08e − 03 + −1.19e + 02 ± 4.23e − 01 +
f9 −1.18e + 02 ± 1.63e − 05 −1.18e + 02 ± 1.98e − 01 + −3.30e + 02 ± 7.35e − 01 − −1.17e + 02 ± 1.14e + 00 +
f10 2.14e + 02 ± 1.52e + 01 2.55e + 02 ± 1.98e + 01 + −2.96e + 02 ± 2.17e + 01 − 2.23e + 02 ± 2.44e + 01 +
f11 1.09e + 02 ± 1.90e + 00 1.18e + 02 ± 2.48e + 00 + 1.14e + 02 ± 3.18e + 00 + 1.11e + 02 ± 4.59e + 00 +
f12 1.90e + 02 ± 1.41e + 03 3.36e + 03 ± 4.99e + 03 + 2.46e + 02 ± 1.07e + 03 = 3.77e + 03 ± 3.87e + 03 +
f13 −1.21e + 02 ± 1.92e + 00 −1.27e + 02 ± 1.90e − 01 − −1.27e + 02 ± 1.96e + 00 − −1.19e + 02 ± 2.28e + 00 +
f14 −2.86e + 02 ± 2.79e − 01 −2.87e + 02 ± 2.89e − 01 − −2.87e + 02 ± 3.18e − 01 − −2.87e + 02 ± 4.50e − 01 −
f15 1.44e + 03 ± 3.89e − 01 1.44e + 03 ± 1.25e − 01 − 4.27e + 02 ± 2.92e + 01 − 1.46e + 03 ± 6.43e + 00 +
f16 1.55e + 03 ± 7.51e + 00 1.58e + 03 ± 9.17e + 00 + 2.61e + 02 ± 1.62e + 02 − 1.58e + 03 ± 1.11e + 01 +
f17 1.66e + 03 ± 1.54e + 01 1.70e + 03 ± 1.29e + 01 + 3.05e + 02 ± 1.68e + 02 − 1.62e + 03 ± 9.04e + 00 −
f18 9.10e + 02 ± 4.58e − 10 9.10e + 02 ± 1.58e − 12 − 9.11e + 02 ± 3.88e + 01 + 9.10e + 02 ± 8.31e − 11 −
f19 9.10e + 02 ± 4.52e − 10 9.10e + 02 ± 1.41e − 12 − 9.07e + 02 ± 4.09e + 01 − 9.10e + 02 ± 2.42e − 10 −
f20 9.10e + 02 ± 4.29e − 10 9.10e + 02 ± 1.65e − 12 − 9.09e + 02 ± 3.94e + 01 − 9.10e + 02 ± 3.41e − 11 −
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Table 5 continued

RIS CCPSO2 MA-CMA-Chains MDE-pBX

f21 1.69e + 03 ± 4.33e + 00 1.71e + 03 ± 5.62e + 00 + 8.82e + 02 ± 1.13e + 02 − 1.70e + 03 ± 5.51e + 00 +
f22 2.42e + 03 ± 2.92e + 01 2.49e + 03 ± 2.85e + 01 + 1.25e + 03 ± 1.31e + 01 − 2.41e + 03 ± 4.97e + 01 =
f23 1.72e + 03 ± 6.16e + 00 1.71e + 03 ± 4.86e + 00 − 9.00e + 02 ± 6.27e + 01 − 1.70e + 03 ± 5.28e + 00 −
f24 1.68e + 03 ± 6.83e + 00 1.70e + 03 ± 7.97e + 00 + 4.60e + 02 ± 0.00e + 00 − 1.67e + 03 ± 1.55e + 01 −
f25 1.43e + 03 ± 3.74e + 02 1.85e + 03 ± 9.19e + 01 + 1.89e + 03 ± 8.19e + 00 + 1.83e + 03 ± 1.55e + 02 +

Table 6 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against state-of-the-art algorithms on BBOB 2010 (Hansen
et al. 2010) in 100 dimensions

RIS CCPSO2 MA-CMA-Chains MDE-pBX

f1 7.95e + 01 ± 1.59e − 12 7.95e + 01 ± 1.81e − 13 − 7.95e + 01 ± 6.55e − 10 + 7.95e + 01 ± 7.60e − 05 +
f2 −2.10e + 02 ± 7.48e − 08 −2.10e + 02 ± 1.76e − 12 − −2.10e + 02 ± 5.31e − 06 + −2.10e + 02 ± 6.06e − 03 +
f3 −3.35e + 02 ± 2.15e + 01 −4.54e + 02 ± 8.40e + 00 − −4.14e + 02 ± 9.03e + 00 − 3.29e + 01 ± 7.94e + 01 +
f4 −2.85e + 02 ± 3.40e + 01 −4.40e + 02 ± 1.31e + 01 − −3.82e + 02 ± 1.14e + 01 − 4.03e + 02 ± 1.31e + 02 +
f5 −9.21e + 00 ± 1.83e − 05 −9.21e + 00 ± 1.20e − 03 + −9.21e + 00 ± 0.00e + 00 − −3.09e − 02 ± 1.27e + 01 +
f6 3.59e + 01 ± 3.75e − 07 1.25e + 02 ± 4.02e + 01 + 3.59e + 01 ± 1.60e − 03 + 8.03e + 01 ± 3.32e + 01 +
f7 2.09e + 02 ± 1.93e + 01 4.38e + 02 ± 4.90e + 01 + 1.33e + 02 ± 7.77e + 00 − 3.70e + 02 ± 7.43e + 01 +
f8 2.30e + 02 ± 4.51e + 01 2.70e + 02 ± 3.42e + 01 + 1.59e + 02 ± 1.45e + 01 − 3.40e + 02 ± 6.77e + 01 +
f9 1.77e + 02 ± 2.64e + 01 2.30e + 02 ± 2.78e + 01 + 1.80e + 02 ± 8.49e + 00 + 2.52e + 02 ± 3.75e + 01 +
f10 2.44e + 03 ± 5.46e + 02 2.61e + 04 ± 6.64e + 03 + 2.40e + 03 ± 1.44e + 03 = 1.64e + 04 ± 7.99e + 03 +
f11 9.47e + 02 ± 1.10e + 02 6.21e + 02 ± 1.95e + 02 − 1.85e + 02 ± 1.85e + 01 − 9.16e + 01 ± 7.45e + 00 −
f12 −6.18e + 02 ± 4.16e + 00 −6.13e + 02 ± 1.20e + 01 + −6.21e + 02 ± 6.95e − 01 − −5.99e + 02 ± 7.07e + 01 +
f13 3.21e + 01 ± 1.68e + 00 3.31e + 01 ± 4.20e + 00 = 3.11e + 01 ± 1.76e + 00 − 3.47e + 01 ± 6.70e + 00 =
f14 −5.23e + 01 ± 4.89e − 05 −5.23e + 01 ± 2.34e − 04 + −5.23e + 01 ± 6.00e − 05 − −5.23e + 01 ± 2.55e − 03 +
f15 1.95e + 03 ± 1.18e + 02 2.33e + 03 ± 2.32e + 02 + 1.41e + 03 ± 1.88e + 02 − 1.66e + 03 ± 1.10e + 02 −
f16 8.25e + 01 ± 1.56e + 00 9.88e + 01 ± 4.27e + 00 + 8.38e + 01 ± 1.79e + 00 + 8.85e + 01 ± 4.46e + 00 +
f17 −8.97e + 00 ± 1.62e + 00 −8.29e + 00 ± 1.62e + 00 + −1.69e + 01 ± 4.95e − 02 − −1.35e + 01 ± 4.83e − 01 −
f18 1.56e + 01 ± 6.47e + 00 1.61e + 01 ± 6.61e + 00 = −1.64e + 01 ± 1.89e − 01 − −4.84e + 00 ± 1.68e + 00 −
f19 −9.32e + 01 ± 2.16e + 00 −9.46e + 01 ± 1.29e + 00 − −1.00e + 02 ± 1.17e + 00 − −1.00e + 02 ± 7.13e − 01 −
f20 −5.45e + 02 ± 1.17e − 01 −5.46e + 02 ± 6.73e − 02 − −5.45e + 02 ± 9.48e − 02 + −5.44e + 02 ± 1.14e − 01 +
f21 4.32e + 01 ± 2.63e + 00 4.41e + 01 ± 3.38e + 00 + 4.55e + 01 ± 7.35e + 00 + 4.49e + 01 ± 5.88e + 00 +
f22 −9.96e + 02 ± 5.45e + 00 −9.95e + 02 ± 5.83e + 00 + −9.92e + 02 ± 8.63e + 00 + −9.92e + 02 ± 9.11e + 00 +
f23 7.52e + 00 ± 1.07e − 01 9.39e + 00 ± 4.22e − 01 + 7.66e + 00 ± 2.66e − 01 + 9.34e + 00 ± 7.99e − 01 +
f24 1.26e + 03 ± 1.41e + 02 1.19e + 03 ± 1.53e + 02 − 4.15e + 02 ± 1.12e + 02 − 4.75e + 02 ± 4.72e + 01 −

Table 7 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against state-of-the-art algorithms on CEC 2008
(Tang et al. 2007) in 1000 dimensions

RIS CCPSO2 MA-SSW-Chains MDE-pBX

f1 −4.50e + 02 ± 1.33e − 09 −4.50e + 02 ± 3.54e − 12 − 6.18e + 04 ± 6.12e + 05 + 1.20e + 05 ± 4.41e + 04 +
f2 −4.50e + 02 ± 2.43e − 02 −4.09e + 02 ± 2.46e + 01 + −2.66e + 02 ± 1.81e + 00 + −3.33e + 02 ± 4.09e + 00 +
f3 1.51e + 03 ± 8.53e + 01 1.80e + 03 ± 1.12e + 02 + 1.45e + 11 ± 1.01e + 12 + 3.13e + 10 ± 1.65e + 10 +
f4 5.83e + 03 ± 3.67e + 02 −2.00e + 02 ± 1.07e + 02 − 1.53e + 04 ± 1.02e + 03 + 7.60e + 03 ± 2.55e + 02 +
f5 −1.80e + 02 ± 1.89e − 03 −1.80e + 02 ± 2.98e − 03 + −1.72e + 02 ± 1.09e + 01 + 1.08e + 03 ± 4.60e + 02 +
f6 −1.40e + 02 ± 5.02e − 07 −1.40e + 02 ± 9.34e − 11 − −1.20e + 02 ± 3.19e − 01 + −1.21e + 02 ± 5.10e − 02 +
f7 −1.35e + 04 ± 1.08e + 02 −1.44e + 04 ± 7.46e + 01 − −9.97e + 03 ± 8.06e + 02 + −1.11e + 04 ± 1.63e + 02 +
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Table 8 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against state-of-the-art algorithms on CEC2010 (Tang et
al. 2010) in 1000 dimensions

RIS CCPSO2 MA-SSW-Chains MDE-pBX

f1 4.16e − 06 ± 5.82e − 07 6.47e − 14 ± 1.41e − 13 − 2.45e + 11 ± 4.07e + 10 + 1.05e + 09 ± 6.58e + 08 +
f2 5.80e + 03 ± 4.17e + 02 1.36e + 02 ± 1.11e + 02 − 1.97e + 04 ± 1.74e + 03 + 7.02e + 03 ± 2.38e + 02 +
f3 4.84e − 06 ± 5.21e − 07 7.34e − 11 ± 1.05e − 10 − 2.02e + 01 ± 4.21e − 01 + 1.93e + 01 ± 4.76e − 02 +
f4 2.13e + 13 ± 4.05e + 12 2.14e + 12 ± 1.27e + 12 − 1.24e + 15 ± 5.69e + 14 + 3.21e + 12 ± 9.76e + 11 −
f5 4.62e + 08 ± 1.11e + 08 3.92e + 08 ± 7.98e + 07 − 8.09e + 08 ± 6.58e + 07 + 1.54e + 08 ± 2.77e + 07 −
f6 1.95e + 07 ± 2.27e + 06 1.71e + 07 ± 4.45e + 06 − 2.03e + 07 ± 2.24e + 05 + 3.65e + 06 ± 1.75e + 06 −
f7 1.89e + 10 ± 4.23e + 09 7.60e + 09 ± 9.72e + 09 − 7.64e + 11 ± 5.09e + 11 + 6.79e + 06 ± 1.01e + 07 −
f8 2.39e + 10 ± 1.33e + 10 5.46e + 07 ± 4.16e + 07 − 5.34e + 16 ± 3.07e + 16 + 2.03e + 08 ± 1.63e + 08 −
f9 1.69e + 08 ± 6.69e + 06 5.01e + 07 ± 7.68e + 06 − 2.81e + 11 ± 4.08e + 10 + 1.68e + 09 ± 1.00e + 09 +
f10 7.22e + 03 ± 2.90e + 02 4.57e + 03 ± 2.75e + 02 − 1.85e + 04 ± 1.76e + 03 + 7.33e + 03 ± 2.55e + 02 +
f11 1.34e + 02 ± 3.80e + 01 2.00e + 02 ± 5.98e + 00 + 2.20e + 02 ± 3.44e + 00 + 2.06e + 02 ± 2.40e + 00 +
f12 1.26e + 04 ± 3.41e + 03 6.12e + 04 ± 8.14e + 04 + 1.69e + 07 ± 4.07e + 06 + 2.92e + 05 ± 6.60e + 04 +
f13 2.54e + 05 ± 4.03e + 04 1.14e + 03 ± 5.42e + 02 − 1.27e + 12 ± 5.77e + 11 + 2.88e + 09 ± 3.17e + 09 +
f14 4.47e + 07 ± 1.44e + 06 1.60e + 08 ± 3.35e + 07 + 3.23e + 11 ± 3.62e + 10 + 1.04e + 09 ± 1.97e + 08 +
f15 7.26e + 03 ± 3.80e + 02 9.31e + 03 ± 5.52e + 02 + 1.86e + 04 ± 1.58e + 03 + 7.44e + 03 ± 2.80e + 02 +
f16 1.58e + 02 ± 3.61e + 01 3.95e + 02 ± 1.45e + 00 + 4.00e + 02 ± 7.55e + 00 + 3.84e + 02 ± 1.22e + 00 +
f17 2.13e + 04 ± 4.35e + 03 1.41e + 05 ± 1.44e + 05 + 4.64e + 07 ± 1.30e + 07 + 4.35e + 05 ± 8.33e + 04 +
f18 1.55e + 03 ± 1.27e + 03 5.62e + 03 ± 4.13e + 03 + 5.38e + 12 ± 7.78e + 11 + 3.73e + 10 ± 1.95e + 10 +
f19 2.47e + 06 ± 2.79e + 05 1.14e + 06 ± 1.22e + 06 − 1.24e + 08 ± 3.39e + 07 + 9.22e + 05 ± 1.06e + 05 −
f20 1.18e + 03 ± 1.64e + 02 1.42e + 03 ± 1.19e + 02 + 6.07e + 12 ± 8.88e + 11 + 4.18e + 10 ± 2.02e + 10 +

and indicated as MACh) and the 76 problems under con-
sideration. The Holm-Bonferroni procedure consists of the
following. Considering the results in the tables above, the 10
algorithms under analysis have been ranked on the basis of
their average performance calculated over the 76 test prob-
lems. More specifically, a score Ri for i = 1, . . . , NA (where
NA is the number of algorithms under analysis, NA = 10 in
our case) has been assigned. The score has been assigned
in the following way: for each problem, a score of 10 is
assigned to the algorithm displaying the best performance,
9 is assigned to the second best, 8 to the third and so on.
The algorithm displaying the worst performance scores 1.
For each algorithm, the scores obtained on each problem are
summed up averaged over the amount of test problems (76
in our case). On the basis of these scores the algorithms are
sorted (ranked). With the calculated Ri values, RIS has been
taken as a reference algorithm. Indicating with R0 the rank
of RIS, and with R j for j = 1, . . . , NA − 1 the rank of one
of the remaining seven algorithms, the values z j have been
calculated as

z j = R j − R0
√

NA(NA+1)
6NT P

(7)

where NT P is the number of test problems in consideration
(NT P = 76 in our case). By means of the z j values, the

corresponding cumulative normal distribution values p j have
been calculated. These p j values have then been compared
with the corresponding δ/j where δ is the level of confidence,
set to 0.05 in our case. Table 14 displays the ranks, z j val-
ues, p j values, and corresponding δ/j obtained in this way.
The rank of RIS is shown in parenthesis. Moreover, it is indi-
cated whether the null-hypothesis (that the two algorithms
have indistinguishable performances) is “Rejected”, i.e. RIS
statistically outperforms the algorithm under consideration,
or “Accepted” if the distribution of values can be considered
the same (there is no out-performance).

As shown in Table 14, the proposed RIS is ranked third
amongst all the algorithms considered in this study. The best
two algorithms, PMS and CCPSO2, are characterized by the
same ranking that is very close to the RIS ranking. The RS
algorithm, which is as simple as RIS, is ranked right after
RIS. The MACh, MDE-pBX, 3SOME, and CLPSO algo-
rithms also displays respectable performance. As a general
consideration, the algorithms exhibiting the highest rank are
much simpler than other modern algorithms. This finding
confirms, in accordance with the Ockham’s Razor in MC,
that the performance of simple, properly designed algorithms
can be as good as (or even better than) the performance of
modern complex algorithms, composed of multiple and com-
putationally expensive components.
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Table 9 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against other state-of-the-art single solution algorithms on
CEC2005 (Suganthan et al. 2005) in 30 dimensions

RIS PMS cDE

f1 −4.50e + 02 ± 4.56e − 13 −4.50e + 02 ± 2.36e − 13 − 6.59e + 03 ± 4.31e + 03 +
f2 −4.50e + 02 ± 1.23e − 10 −4.50e + 02 ± 3.43e − 05 + 3.68e + 04 ± 1.16e + 04 +
f3 2.03e + 05 ± 1.25e + 05 2.09e + 05 ± 1.23e + 05 = 1.49e + 08 ± 8.08e + 07 +
f4 1.88e + 04 ± 5.57e + 03 1.33e + 04 ± 5.32e + 03 − 6.65e + 04 ± 1.91e + 04 +
f5 3.48e + 03 ± 7.70e + 02 9.47e + 03 ± 4.35e + 03 + 1.30e + 04 ± 3.01e + 03 +
f6 6.91e + 02 ± 4.39e + 02 6.89e + 02 ± 5.60e + 02 = 7.17e + 08 ± 1.06e + 09 +
f7 −1.80e + 02 ± 3.38e − 03 −1.80e + 02 ± 1.37e − 02 + 4.63e + 03 ± 8.41e + 01 +
f8 −1.20e + 02 ± 4.05e − 04 −1.20e + 02 ± 2.97e − 02 + −1.19e + 02 ± 1.00e − 01 +
f9 −1.18e + 02 ± 1.63e − 05 −3.30e + 02 ± 2.62e − 13 − −1.60e + 02 ± 3.38e + 01 −
f10 2.14e + 02 ± 1.52e + 01 −4.54e + 01 ± 9.47e + 01 − −2.68e + 01 ± 5.58e + 01 −
f11 1.09e + 02 ± 1.90e + 00 1.21e + 02 ± 5.30e + 00 + 1.23e + 02 ± 3.42e + 00 +
f12 1.90e + 02 ± 1.41e + 03 1.26e + 03 ± 2.83e + 03 + 3.22e + 05 ± 1.37e + 05 +
f13 −1.21e + 02 ± 1.92e + 00 −1.23e + 02 ± 4.12e + 00 − 1.48e + 03 ± 2.29e + 03 +
f14 −2.86e + 02 ± 2.79e − 01 −2.86e + 02 ± 5.81e − 01 = −2.87e + 02 ± 3.49e − 01 −
f15 1.44e + 03 ± 3.89e − 01 4.32e + 02 ± 2.24e + 02 − 7.73e + 02 ± 9.44e + 01 −
f16 1.55e + 03 ± 7.51e + 00 4.73e + 02 ± 1.17e + 02 − 4.90e + 02 ± 9.34e + 01 −
f17 1.66e + 03 ± 1.54e + 01 5.42e + 02 ± 1.24e + 02 − 5.59e + 02 ± 1.14e + 02 −
f18 9.10e + 02 ± 4.58e − 10 9.37e + 02 ± 2.35e + 01 + 9.73e + 02 ± 2.85e + 01 +
f19 9.10e + 02 ± 4.52e − 10 9.36e + 02 ± 1.85e + 01 + 9.70e + 02 ± 2.61e + 01 +
f20 9.10e + 02 ± 4.29e − 10 9.39e + 02 ± 1.67e + 01 + 9.73e + 02 ± 2.75e + 01 +
f21 1.69e + 03 ± 4.33e + 00 1.03e + 03 ± 2.68e + 02 − 1.52e + 03 ± 3.85e + 01 −
f22 2.42e + 03 ± 2.92e + 01 1.50e + 03 ± 8.29e + 01 − 1.44e + 03 ± 7.86e + 01 −
f23 1.72e + 03 ± 6.16e + 00 9.95e + 02 ± 2.15e + 02 − 1.52e + 03 ± 3.72e + 01 −
f24 1.68e + 03 ± 6.83e + 00 5.91e + 02 ± 3.54e + 02 − 1.36e + 03 ± 9.09e + 01 −
f25 1.43e + 03 ± 3.74e + 02 1.62e + 03 ± 2.29e + 02 + 1.91e + 03 ± 9.04e + 00 +

3.3 Memory and computational overhead

In order to summarize the difference, in terms of computa-
tional requirements, of the algorithms under investigation,
Table 15 displays the main features and required memory
slots (candidate solutions saved in memory) of each of them.
Np indicates the population size.

Figure 10 displays the average (over 30 runs) computa-
tional overhead depending on the problem dimensionality n
of the algorithms under examination. Each run has been con-
tinued until 10000 fitness evaluations. With computational
overhead of an algorithm we mean here the calculation time
of a run without the time required to perform the fitness eval-
uations.

It can be easily observed that RIS (as well 3SOME) is
much less demanding in terms of memory usage with respect
to the population-based algorithms. In addition, RIS is char-
acterized by a more modest computational overhead than that
of all the other algorithms. Most importantly, the overhead
of RIS grows with the dimensionality slower than the over-
head of the other algorithms. It is interesting to note that the

overhead of RIS is much lower even than the overhead of its
predecessor 3SOME. In addition, as shown in Fig. 10, the
algorithms characterized by the most modest overhead, i.e.
RIS and CCPSO2, are also those that exhibit the best perfor-
mance. This fact confirms that the computational cost is not
directly correlated to the algorithmic performance.

Although a proof of algorithmic convergence of RIS is
not given in this paper, a few further considerations are here
offered to better understand its algorithmic functioning in
the light of the displayed results. Since RIS, besides the re-
sampling mechanism, attempts to improve upon the solu-
tion by an exploitative local search that performs movements
along the axes, it is suitable to tackle separable problems. It
can be observed from numerical results that RIS succeeds at
solving several separable problems among those considered,
such as f1 and f2 from CEC2005 testbed. In other separable
cases, although RIS does not solve the problem, still achieves
a better fitness values than that achieved by all the other algo-
rithms. According to our interpretation, the RIS success is
due to efficiency of the search along the axes. In the non-
separable cases, especially multi-modal, PMS often displays
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Table 10 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against other state-of-the-art single solution algorithms
on BBOB2010 (Hansen et al. 2010) in 100 dimensions

RIS PMS cDE

f1 7.95e + 01 ± 1.59e − 12 7.95e + 01 ± 1.18e − 13 − 4.88e + 02 ± 5.44e + 01 +
f2 −2.10e + 02 ± 7.48e − 08 −2.10e + 02 ± 1.44e − 13 − 3.64e + 06 ± 1.63e + 06 +
f3 −3.35e + 02 ± 2.15e + 01 −3.67e + 02 ± 1.66e + 01 − 2.38e + 03 ± 3.00e + 02 +
f4 −2.85e + 02 ± 3.40e + 01 −3.40e + 02 ± 2.05e + 01 − 3.93e + 03 ± 5.42e + 02 +
f5 −9.21e + 00 ± 1.83e − 05 −9.21e + 00 ± 3.51e − 12 − 3.20e + 02 ± 5.32e + 01 +
f6 3.59e + 01 ± 3.75e − 07 4.05e + 01 ± 4.61e + 00 + 2.91e + 05 ± 1.27e + 05 +
f7 2.09e + 02 ± 1.93e + 01 3.70e + 02 ± 8.80e + 01 + 2.83e + 03 ± 3.80e + 02 +
f8 2.30e + 02 ± 4.51e + 01 2.21e + 02 ± 5.96e + 01 = 1.36e + 06 ± 3.50e + 05 +
f9 1.77e + 02 ± 2.64e + 01 1.72e + 02 ± 2.30e + 01 − 7.31e + 05 ± 1.89e + 05 +
f10 2.44e + 03 ± 5.46e + 02 2.37e + 03 ± 6.64e + 02 = 7.16e + 06 ± 1.56e + 06 +
f11 9.47e + 02 ± 1.10e + 02 6.51e + 02 ± 8.17e + 01 − 1.05e + 03 ± 1.14e + 02 +
f12 −6.18e + 02 ± 4.16e + 00 −6.11e + 02 ± 1.52e + 01 + 8.03e + 08 ± 1.26e + 08 +
f13 3.21e + 01 ± 1.68e + 00 3.60e + 01 ± 6.01e + 00 + 3.94e + 03 ± 3.22e + 02 +
f14 −5.23e + 01 ± 4.89e − 05 −5.23e + 01 ± 1.80e − 05 − 3.42e + 01 ± 1.19e + 01 +
f15 1.95e + 03 ± 1.18e + 02 2.39e + 03 ± 6.32e + 02 + 4.23e + 03 ± 4.02e + 02 +
f16 8.25e + 01 ± 1.56e + 00 9.23e + 01 ± 9.50e + 00 + 1.07e + 02 ± 3.78e + 00 +
f17 −8.97e + 00 ± 1.62e + 00 −1.96e + 00 ± 9.61e + 00 + −3.49e + 00 ± 1.82e + 00 +
f18 1.56e + 01 ± 6.47e + 00 4.89e + 01 ± 4.41e + 01 + 3.48e + 01 ± 6.97e + 00 +
f19 −9.32e + 01 ± 2.16e + 00 −5.08e + 01 ± 4.81e + 01 + −6.17e + 01 ± 5.07e + 00 +
f20 −5.45e + 02 ± 1.17e − 01 −5.45e + 02 ± 1.28e − 01 = 1.21e + 05 ± 4.71e + 04 +
f21 4.32e + 01 ± 2.63e + 00 5.05e + 01 ± 1.12e + 01 + 1.18e + 02 ± 3.05e + 00 +
f22 −9.96e + 02 ± 5.45e + 00 −9.83e + 02 ± 1.29e + 01 + −9.25e + 02 ± 4.82e + 00 +
f23 7.52e + 00 ± 1.07e − 01 8.70e + 00 ± 8.16e − 01 + 1.01e + 01 ± 4.85e − 01 +
f24 1.26e + 03 ± 1.41e + 02 2.14e + 03 ± 6.37e + 02 + 2.83e + 03 ± 1.66e + 02 +

Table 11 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against other state-of-the-art single solution algorithms
on CEC2008 (Tang et al. 2007) in 1000 dimensions

RIS PMS cDE

f1 −4.50e + 02 ± 1.33e − 09 −4.50e + 02 ± 5.91e − 13 − 4.80e + 06 ± 1.57e + 05 +
f2 −4.50e + 02 ± 2.43e − 02 −3.88e + 02 ± 5.17e + 01 + −2.76e + 02 ± 2.81e + 00 +
f3 1.51e + 03 ± 8.53e + 01 1.34e + 03 ± 5.37e + 02 = 4.70e + 12 ± 2.43e + 11 +
f4 5.83e + 03 ± 3.67e + 02 −3.30e + 02 ± 1.33e − 12 − 2.06e + 04 ± 5.08e + 02 +
f5 −1.80e + 02 ± 1.89e − 03 −1.80e + 02 ± 1.50e − 02 + 4.29e + 04 ± 1.21e + 03 +
f6 −1.40e + 02 ± 5.02e − 07 −1.38e + 02 ± 6.36e + 00 + −1.19e + 02 ± 5.41e − 02 +
f7 −1.35e + 04 ± 1.08e + 02 −1.37e + 04 ± 2.80e + 02 − −7.24e + 03 ± 1.57e + 02 +

a better performance than that of RIS. In our opinion, these
results can be explained considering that PMS combines
two diverse search operators, the first moves along the axes,
while the second employs the exploration logic of Rosen-
brock algorithm, (see Rosenbrock 1960), and thus performs
diagonal moves within the decision space, (see Caraffini et
al. 2013). Although an operator that uses diagonal moves
while following the variations of the gradient appears to have
some impact on the robustness of the algorithm, its cost is a

n × n matrix and a non-negligible overhead, see Table 15
and Fig. 10. In addition, the simple combination of moves
along the axes and re-sampling mechanism of RIS appears
to lead to a respectable performance also for non-separable
problems, as shown in Iacca et al. (2012a). In this light RIS
can be a good scheme for those applications where (cost and
space) hardware limitation as well as real-time requirements
impose a fast algorithmic response and a modest memory
usage.
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Table 12 Average fitness ± SD and Wilcoxon Rank-Sum test (reference = RIS) for RIS against other state-of-the-art single solution algorithms
on CEC2010 (Tang et al. 2010) in 1000 dimensions

RIS PMS cDE

f1 4.16e − 06 ± 5.82e − 07 2.86e − 21 ± 9.54e − 23 − 1.93e + 11 ± 1.71e + 10 +
f2 5.80e + 03 ± 4.17e + 02 1.49e − 13 ± 2.79e − 13 − 2.00e + 04 ± 5.02e + 02 +
f3 4.84e − 06 ± 5.21e − 07 4.52e − 01 ± 2.76e + 00 + 2.12e + 01 ± 5.69e − 02 +
f4 2.13e + 13 ± 4.05e + 12 5.27e + 11 ± 2.72e + 11 − 6.07e + 14 ± 2.16e + 14 +
f5 4.62e + 08 ± 1.11e + 08 4.78e + 08 ± 1.40e + 08 = 4.84e + 08 ± 7.40e + 07 =
f6 1.95e + 07 ± 2.27e + 06 1.92e + 07 ± 2.24e + 06 − 1.98e + 07 ± 6.56e + 05 =
f7 1.89e + 10 ± 4.23e + 09 1.02e + 08 ± 2.57e + 08 − 1.30e + 11 ± 2.89e + 10 +
f8 2.39e + 10 ± 1.33e + 10 1.17e + 08 ± 1.30e + 08 − 9.94e + 15 ± 5.16e + 15 +
f9 1.69e + 08 ± 6.69e + 06 6.19e + 06 ± 2.80e + 06 − 1.90e + 11 ± 2.15e + 10 +
f10 7.22e + 03 ± 2.90e + 02 5.25e + 03 ± 2.09e + 03 − 2.03e + 04 ± 4.01e + 02 +
f11 1.34e + 02 ± 3.80e + 01 1.85e + 02 ± 3.03e + 01 + 2.34e + 02 ± 4.85e − 01 +
f12 1.26e + 04 ± 3.41e + 03 1.06e + 03 ± 7.23e + 02 − 9.89e + 06 ± 9.79e + 05 +
f13 2.54e + 05 ± 4.03e + 04 1.18e + 03 ± 6.33e + 02 − 1.95e + 12 ± 1.41e + 11 +
f14 4.47e + 07 ± 1.44e + 06 1.44e + 07 ± 5.47e + 06 − 1.78e + 11 ± 2.42e + 10 +
f15 7.26e + 03 ± 3.80e + 02 1.20e + 04 ± 3.87e + 03 + 2.03e + 04 ± 3.72e + 02 +
f16 1.58e + 02 ± 3.61e + 01 3.27e + 02 ± 9.13e + 01 + 4.26e + 02 ± 7.85e − 01 +
f17 2.13e + 04 ± 4.35e + 03 1.37e + 03 ± 8.23e + 02 − 1.86e + 07 ± 2.25e + 06 +
f18 1.55e + 03 ± 1.27e + 03 2.41e + 03 ± 1.00e + 03 + 4.81e + 12 ± 2.38e + 11 +
f19 2.47e + 06 ± 2.79e + 05 1.47e + 05 ± 4.93e + 04 − 3.41e + 07 ± 5.53e + 06 +
f20 1.18e + 03 ± 1.64e + 02 9.57e + 02 ± 5.37e + 02 = 5.28e + 12 ± 2.49e + 11 +

3.4 Tuning of ρ

On the basis of our experience, the vector parameter ρ plays
a crucial role on the RIS performance. In order to justify our
choice and systematically offer a hint on the setting of this
parameter the following procedure has been designed. We
considered four test problems, i.e. f1, f6, f13, and f15 from
CEC2005. We chose these problems in order to have a diverse
reduced testbed that includes separable and non-separable
problems as well as uni-modal and multi-modal problems.
For these optimization problem, RIS has been run with vari-
ous ρ values. Since the problems are defined in hyper-cubical
spaces, ρ is a vector of identical numbers. Thus, this vector
parameter is here indicated as a scalar ρ. In correspondence
to ρ values equal to 0.1, 0.2, 0.3, 0.4, and 0.5, respectively,
RIS has been run 30 times for 5000 × n fitness evaluations.
Table 16 shows the average final error for the problems under
consideration.

Numerical results show that small ρ values can be inad-
equate as each local search activation can be excessively
exploitative. Since a proper global search is missing within
RIS framework, a large initial radius appear to be beneficial
to start the local search. On the other hand, an excessively
large radius, such as 0.5 is likely to initially generate solutions
outside the decision space (while the bounds are handled by
the toroidal technique described above). Although a proper

setting of ρ obviously depends on the problem, as numerical
results show, the setting of 0.4 appears to be a reasonable
compromise that offers a reliable algorithmic behaviour.

4 Application case: tuning of a control system
for a helicopter Robot

The proposed RIS has been also tested on a real-world
problem, i.e. the tuning of a yaw (heading) controller of
an autonomous small indoor helicopter. The problem under
investigation consists of the design of a control system that
allows the tail of a helicopter to keep a desired position,
namely set-point, and to go back to this position when a dis-
turbance occurs (e.g. wind). For this application a standard
integral-state limited Proportional, Integral, and Derivative
(PID) control system, (see Wescott 2000), has been selected
while the RIS has been used to tune the parameters of the
control system.

Our hardware setup consists of an autonomous small
indoor helicopter namely Flyper. This device is characterized
by a rotor span of 34 cm and a total weight of 191 g. Four actu-
ators to enable the control of all six degrees of freedom are
integrated into the system. Two motors which independently
control the speed of each rotor, giving combined control over
altitude and yaw, are present on-board. The two engines and
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Table 13 Average fitness ± SD
and Wilcoxon Rank-Sum test on
the fitness (reference = RIS) for
RIS against its variant without
inheritance, RS, on CEC 2005
(Suganthan et al. 2005) in 30
dimensions

RIS RS

f1 −4.50e + 02 ± 1.31e − 13 −4.50e + 02 ± 1.54e − 13 +
f2 −4.50e + 02 ± 1.23e − 10 −4.50e + 02 ± 1.29e − 10 =
f3 2.03e + 05 ± 1.25e + 05 2.30e + 05 ± 1.39e + 05 =
f4 1.88e + 04 ± 5.57e + 03 3.42e + 04 ± 6.04e + 03 +
f5 3.48e + 03 ± 7.70e + 02 4.04e + 03 ± 8.22e + 02 +
f6 6.91e + 02 ± 4.39e + 02 6.45e + 02 ± 6.52e + 02 =
f7 −1.80e + 02 ± 3.38e − 03 −1.80e + 02 ± 3.00e − 03 =
f8 −1.20e + 02 ± 4.05e − 04 −1.20e + 02 ± 7.51e − 03 =
f9 −1.18e + 02 ± 1.63e − 05 −1.17e + 02 ± 3.69e − 01 +
f10 2.14e + 02 ± 1.52e + 01 2.15e + 02 ± 1.49e + 01 =
f11 1.09e + 02 ± 1.90e + 00 1.10e + 02 ± 1.76e + 00 =
f12 1.90e + 02 ± 1.41e + 03 1.25e + 02 ± 1.20e + 03 =
f13 −1.21e + 02 ± 1.92e + 00 −1.22e + 02 ± 1.76e + 00 =
f14 −2.86e + 02 ± 2.79e − 01 −2.86e + 02 ± 3.43e − 01 =
f15 1.44e + 03 ± 3.89e − 01 1.45e + 03 ± 5.00e − 01 +
f16 1.55e + 03 ± 7.51e + 00 1.55e + 03 ± 6.53e + 00 +
f17 1.66e + 03 ± 1.54e + 01 1.70e + 03 ± 1.30e + 01 +
f18 9.10e + 02 ± 4.58e − 10 9.10e + 02 ± 4.47e − 10 =
f19 9.10e + 02 ± 4.52e − 10 9.10e + 02 ± 4.72e − 10 =
f20 9.10e + 02 ± 4.29e − 10 9.10e + 02 ± 4.79e − 10 =
f21 1.69e + 03 ± 4.33e + 00 1.70e + 03 ± 4.06e + 00 +
f22 2.42e + 03 ± 2.92e + 01 2.45e + 03 ± 2.98e + 01 +
f23 1.72e + 03 ± 6.16e + 00 1.73e + 03 ± 5.51e + 00 +
f24 1.68e + 03 ± 6.83e + 00 1.68e + 03 ± 6.59e + 00 +
f25 1.43e + 03 ± 3.74e + 02 1.44e + 03 ± 2.64e + 02 +

Fig. 6 Performance trend for f25 from CEC2005 Fig. 7 Performance trend for f24 from BBOB2010
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Fig. 8 Performance trend for f3 from CEC2008

Fig. 9 Performance trend for f11 from CEC2010

rotors of this dual coaxial rotor helicopter spin in opposite
directions, thus creating opposite torque effects that can can-
cel each other out. If one rotor’s speed is reduced whilst the
other’s speed is increased by an identical amount, the head-
ing will change whilst the amount of lift is maintained. As
part of the embedded system, a digital compass is used to
determine the current heading. The sensor is connected to
a micro-controller which handles all on-board computation,
sensor inputs, motor outputs, and serial communication used
to transfer information to and from a base station.

In order to properly tune the control system, the dual rotor
helicopter is attached to a ball bearing supported turn table,
restricted to turn up to 90◦ and −90◦ from its middle position.
A fan is used to cool down the helicopter’s motors and the
embedded system in between controller fitness evaluations.
Figure 11 gives an graphical representation of the controlled
system, the base station running the algorithms, and the com-
munication between them.

The main disadvantage of helicopter based robotic plat-
forms is that they are highly nonlinear and unstable. As a con-
sequence, the helicopter is prone to be very sensitive to exter-
nal disturbances (Bagnell and Schneider 2001), and therefore
difficult to control. For this reason, the control system for an
autonomous helicopter must be able to quickly compute the
control response and promptly react to any disturbances.

The PID control systems are characterized by an overall
PID control response equal to:

P I Dout = Pout + Iout + Dout (8)

where Pout , Iout , and Dout are the individual control method
outputs. The input to the individual methods is the error e at
time t , which is defined as

e(t) = s − m(t) (9)

where s is the set-point and m the actual angle measurement
at time t . The standard form of the individual control method
outputs is given by:

Pout = K pe(t) (10)

Iout = Ki

t∫

0

e(t)dt (11)

Dout = Kd
de(t)

dt
(12)

where K p, Ki , and Kd are the proportional, integral, and
derivative gains respectively.

The integral-state limited PID controller is a modern vari-
ant of the traditional PID controller that limits the integral
state variable to a lower and upper bound Il and Iu respec-
tively, (see Wescott 2000). If the bound values are properly
selected, the limit introduction allows a mitigation of the
undesired overshoots from integrator windup.

Optimization algorithms have been widely used in the lit-
erature to tune PID control systems, (see e.g. Fleming and
Purshouse 2002; Passow et al. 2008; Iacca et al. 2012b). In
the majority of the cases, a simulation model of the corre-
sponding system is used to evaluate the fitness of each can-
didate solution (this kind of optimization is also known as
off-line), (see De Moura Oliveira 2005). In order to build up
a model, an extensive knowledge of the system and a thor-
ough parameter identification are obviously required. Since,
due to the presence of disturbances and unforeseeable events,
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Table 14 Holm-Bonferroni procedure on the algorithms under consideration, reference algorithm RIS (Rank = 6.46e + 00)

j Optimizer Rank z j p j δ/j Hypothesis

1 PMS 6.58e + 00 2.67e−01 6.05e−01 5.00e−02 Accepted

2 CCPSO2 6.58e + 00 2.67e−01 6.05e−01 2.50e−02 Accepted

3 RS 6.09e + 00 −8.29e−01 2.03e−01 1.67e−02 Accepted

4 MACh 5.74e + 00 −1.63e + 00 5.17e−02 1.25e−02 Accepted

5 MDE−pBX 5.74e + 00 −1.63e + 00 5.17e−02 1.00e−02 Accepted

6 3SOME 5.70e + 00 −1.72e + 00 4.29e−02 8.33e−03 Accepted

7 CLPSO 5.64e + 00 −1.84e + 00 3.32e−02 7.14e−03 Accepted

8 JADE 4.62e + 00 −4.15e + 00 1.69e−05 6.25e−03 Rejected

9 cDE 1.79e + 00 −1.05e + 01 3.72e−26 5.56e−03 Rejected

Table 15 Components and memory requirement of the algorithms under consideration

Algorithm Features Memory slots

CLPSO PSO structure modified velocity rule 2 × Np

JADE DE structure samples from distribution archive Np+archive

MA-CMA-Chains GA structure covariance matrix driven search for multiple individuals Np
(

1 + n2
)

MA-SSW-Chains GA structure Solis-Wets Local Search Np (1 + n)

CCPSO2 PSO structure variable decomposition 2 × Np

MDE-pBX DE structure multiple mutation strategies self adaptive parameters Np+ neighborhood

3SOME Single-solution structure 3 sequential operators trial and error coordination 3

RIS Single-solution structure 2 operators 3

cDE Compact DE based structure 3 samplings, rand/1/bin scheme 4

PMS Single-solution structure long distance exploration + short distance + Rosenbrock 3 + n2

Fig. 10 Average computational complexity (overhead vs. dimension-
ality) of the algorithms under consideration

some physical systems can be very hard to model, the opti-
mization might preferably be performed on the actual plant
(on-line optimization) and the fitness values can be measured
as the result of one or more experiments, (see Caponio et al.
2010). The difference in terms of control response of a PID
controller in off-line and on-line optimization is reported in

Caponio et al. (2007). In the present case, a realistic model
taking into account all the dynamics of the helicopter can be
extremely hard to build up as explained in Cai et al. (2010).
In this work, rather than optimizing the controller using a
simulation of the system (which would likely be unreliable),
the robot itself is used for the optimization and evaluation of
its controller. It must be remarked that a very good optimiza-
tion algorithm run over an inaccurate model would detect
a control system that would likely not be efficient on the
actual robot. Thus, on-line optimization implicitly performs
a system identification which can be subsequently used to
build-up an accurate and realistic simulator.

Each fitness evaluation takes about 20 s with 20 additional
seconds to cool down the system. The fan is switched off
while candidate solutions are evaluated. For each fitness eval-
uation the following operations have been performed. At first
the motors are switched on in the proximity of the set-point,
which is set to zero. Then, a perturbation of +90◦ is performed
(the helicopter tail is forced in one of the extreme position)
and 100 control cycles (equivalent to 10 s) are allowed to the
control system for its reaction. Finally, the symmetrical per-
turbation of −90◦ is performed followed by 10 s of waiting
time to allow the control response. Then for 20 s the heli-
copter is cooled down by the fan. The fitness to be minimized
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+ is the quadratic position error related to the helicopter tail.
More formally, our optimization problem consists of finding
those values for K p, Ki , and Kd from Eqs. (10), (11), and
(12) as well as the values for lower and upper bounds Il and
Iu , such that following error function is minimized:

f
(

K p, Ki , Kd , Il , Iu
) =

100
∑

t=1

(ht − s)2 +
200
∑

t=101

(ht − s)2

(13)

where t is time in control cycles, ht is the aircraft heading at
time t (measured by the compass sensor), and s is the desired
set-point. From t = 1 to t = 100 (the above-mentioned 10
s) the reaction of the control system to a +90◦ perturbation
is tested, while from t = 101 to t = 200 the reaction to
a −90◦ is considered. Between the two perturbations, the
control system is stopped and its performance not evaluated.
The two terms of the sum in Eq. (13) have been intention-
ally left apart in order to emphasize the separation of the two
perturbation actions. The decision space is a hyper-rectangle
identified by the Cartesian product generated by the inter-
vals limited by the range of variability of each parameter.
More specifically, since K p ∈ [0, 2] , Ki ∈ [0, 1] , Il ∈
[−400, 0] , Iu ∈ [0, 400], and Kd ∈ [0, 4], the decision
space D = [0, 2] × [0, 1] × [−400, 0] × [0, 400] × [0, 4].

4.1 Optimization results

In order to minimize the fitness function in Eq. (13), the
RIS has been run for 600 fitness evaluations with the para-
meter setting reported in Sect. 3. The performance of the
RIS algorithm has been compared against one of the most
promising optimization algorithms considered in this study
according to the Holm-Bonferroni ranking (see Table 14),
i.e. CCPSO2, and against its predecessor 3SOME. As for
the 3SOME the same parameter setting shown in Sect. 3
has been used. Regarding the CCPSO2, variable decomposi-
tion of size 1 and 5 (the only two possible values) have been
allowed. The final results in terms of average values and stan-
dard deviation, as well as the Wilcoxon test, are reported in
Table 17. The average performance trend of the three algo-
rithms considered for this real-world application is displayed
in Fig. 12.

The best fitness value on single run has been achieved
by RIS. Table 18 displays the best parameters detected by
each algorithm and the corresponding fitness value. Finally,
Fig. 13 shows the control response associated to the para-
meters reported in Table 18. More specifically, the time evo-
lution of the aircraft heading ht corresponding to the three
best control parameters are plotted. It must be observed how
the helicopter heading tends to return to oscillate around the
set-point after each perturbation.
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Fig. 11 Experimental setup of evolutionary heading controller tuning

Table 17 Average final fitness value obtained ± SD and Wilcoxon test
outcome (reference: RIS) on the real-world helicopter control problem

Algorithm Average SD W

RIS 19321 3.2534e + 03

CCPSO2 23167 4.2491e + 03 =
3SOME 24856 1.1367e + 04 =

Fig. 12 Performance trend of RIS, 3SOME, and CCPSO2 for the
helicopter control problem

Experimental results show then that RIS outperforms the
3SOME and CCPSO2 algorithms, thus confirming the value
of the proposed approach. It must be remarked that, due to its
modest computational overhead and memory requirement,
RIS can be easily implemented directly within the micro-
controller thus avoiding the necessity of using an external
computer. The embedded implementation of the optimiza-
tion algorithm within the micro-controller would allow a
real-time parameter tuning within the helicopter hardware

Table 18 Best PID parameters obtained on the real-world experiments
and associated fitness values

K p Ki Il Iu Kd f

RIS 0.8104 0.0628 −31.272 50.846 1.2199 13485

CPSO2 0.4031 0.0903 −0.2620 15.976 0.7581 14489

3SOME 0.2103 0.0032 −188.804 340.008 0.7432 16818

Fig. 13 Control signal related to the best solutions detected by RIS,
3SOME, and CCPSO2 for the helicopter control problem

thus making it completely autonomous. In the future, pow-
erful implementations of simple but yet highly performing
algorithms would allow an in-flight optimization.

5 Conclusion

This paper proposes a simple memetic approach for contin-
uous optimization problems. The proposed algorithm (RIS)
is composed of two memes, the first one sampling solutions
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within the entire decision space, the second performing a
deterministic local search to exploit the solutions suggested
by the first. Thus, the proposed algorithm can be seen as a
local search which incorporates a re-starting technique. How-
ever, this re-start is not performed purely random. On the
contrary, it combines a certain degree of randomization with
part of the genotype of the most promising solution (inheri-
tance). The presence of inheritance appeared to be beneficial
within the proposed scheme as it allowed to perform as good
or better than its variant which does not make use of it.

An extensive comparison with the-state-of-the-art algo-
rithms (including complex schemes) over various problems
showed that the proposed algorithm, despite its simplicity, is
extremely efficient. The statistical ranking highlights that the
proposed RIS displays the best performance with respect to
modern and much more sophisticated approaches. This find-
ing confirms the validity of the Ockham’s Razor in Memetic
Computing. In addition, RIS appears to be especially effi-
cient to tackle large scale problems. This result can be seen as
a consequence that exploitative approaches are likely more
successful than exploratory ones in high dimensions. The
real-world example reported in this study further confirms
the efficiency of the proposed approach in industrial prob-
lems. Most importantly, due to its minimalistic structure, RIS
is characterized by a modest memory requirement and com-
putational overhead. These features, together with its high
performance, make the RIS algorithm an appealing candi-
date for addressing those real-world problems that, as the
one considered in this study, would benefit from an embed-
ded and real-time implementation.
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