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Abstract The global economic meltdown of the late 2000s
exposed many organisations around the world, this drove the
need to build robust frameworks for predicting and assessing
risks in financial applications. Such predictive frameworks
helped organisations to increase the quality and quantity of
their transactions hence increasing the revenues and reduc-
ing the risks. Many organisations around the World still use
statistical regression techniques which are well established
for many problems such as fraud detection or risk analysis.
However, recent years have seen the application of compu-
tational intelligence techniques to develop predictive models
for financial applications. Some of the computational intelli-
gence techniques like neural networks provide good predic-
tive models, nevertheless they are considered as black box
models which do not provide an easy to understand reasoning
about a given decision or even a summary of the generated
model. However, in the current economic situation, trans-
parency became an important factor where there is a need
to fully understand and analyze a given financial model. In
this paper, we will present a Genetic Type-2 Fuzzy Logic
System (FLS) for the modeling and prediction of financial
applications. The proposed system is capable of generat-
ing summarized models from a specified number of linguis-
tic rules, which enables the user to understand the gener-
ated financial model. The system is able to use this summa-
rized model for prediction within financial applications. We
have performed several evaluations in two distinctive finan-
cialdomains, one for the prediction of good/bad customers
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in a financial real-world lending application and the other
domain was in the prediction of arbitrage opportunities in the
stock markets. The proposed Genetic type-2 FLS has outper-
formed white box models like the Evolving Decision Rule
procedure (which is a white based on Genetic Programming
and decision trees) and gave a comparable performance to
black box models like neural networks while the proposed
genetic type-2 FLS provided a white box model which is easy
to understand and analyse by the lay user.

1 Introduction

The global economic meltdown of the late 2000s exposed
many organisations around the world where every financial
indicator was on a downward trend. As companies begin
their slow recovery, they are increasingly looking for ways
to reduce the risk associated with their business. This led to
the realisation of a number of advanced products and tech-
niques that aim to help organisations to reduce risk or take
better decisions. As a matter of the fact, when the quality
of the possible investments decreases or the risk associated
with investments increases, being able to fully understand
the faced risks and reduce them while avoiding bad invest-
ments can make the difference between dying, surviving or
expanding.

Nowadays organisations have access to a quantity of data
and information that was not available 20 years ago. Looking
at the current trend, in a few years the amount of informa-
tion will even be more. In addition, nowadays everything is
online and in seconds it is possible to have huge amounts
of information. Besides, it is also becoming much easier to
store and maintain large amounts of data. Hence, different
financial organisations are moving towards generating mod-
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els based on data where these models are trying to predict
the future by looking at the past.

Many organisations around the World still use statistical
regression models which capture only information that can
be refined into mathematical models to generate two outputs
(0/1 or Good/Bad). Statistical regression analysis include
many techniques (linear, multiple, logistic) for modelling and
analyzing several variables, when the focus is on the relation-
ship between a dependent variable and one or more indepen-
dent variables. One of the simplest and most popular mod-
elling methods is linear regression. Linear regression is the
most used technique in finance. For example the “capital asset
pricing model” uses linear regression (Cohen et al. 2003) as
well as the concept of “Beta” for analyzing and quantifying
the systematic risk of an investment (Levinson 2006). Linear
regression is also often used in financial time series mod-
elling (Cohen et al. 2003). In addition, linear regression is
also an important empirical tool in economics, for example,
it is used to predict consumption spending (Deaton 1992)
fixed investment spending, inventory investment, purchases
of a country’s exports (Krugman and Obstfeld 1988) spend-
ing on imports (Krugman and Obstfeld 1988) the demand to
hold liquid assets (Laidler 1993) labour demand (Ehrenberg
and Smith 2008) and labour supply (Ehrenberg and Smith
2008). Logistic regression is a variant of nonlinear regres-
sion that is appropriate when the target (dependent) vari-
able has only two possible values (e.g., live/die, buy/don’t-
buy, infected/not-infected). However regression techniques
in general are often considered black box models which can-
not be easily understood and analyzed by the normal user.

Some advanced machine learning and artificial intelli-
gence techniques have been applied in the financial domain.
For example Support Vector Machines (SVMs) have been
applied in Kim (2003) to forecast financial time series and
in Kim and Sohn (2010) to effectively manage govern-
mental funds to small and medium enterprises by identify-
ing those likely to default. Another machine learning tech-
nique is Neural Networks (NNs) which have been applied
successfully in big number of financial applications such
as Giacomini (2003), Lawrence (1997), Kwong (2001).
However, the drawback of such advanced machine learn-
ing techniques is that although they can give good prediction
accuracies, they provide black box models which are very dif-
ficult to understand and analyse by a financial analyst where
it is now becoming a common requirement to have an expla-
nation or the reasoning behind a given financial decision.

There are actually a number of reasons why models that
we can understand are important; the main reason is trust.
No matter how sophisticated our economy has become all
transactions still comes down to trust, we have to trust the
person that we are trading with. This requires transparency
so that we can see what the other party is doing. This need of
transparency is reflected in legislations that force financial

institutions to disclose the reasoning behind their financial
decisions and models.

There exist various white box transparent models, one of
these models is decision trees Decision trees are well suited
to modeling target variables with binary values, but—unlike
logistic regression—they also can model variables with more
than two discrete values, and they handle variable interac-
tions. In decision analysis, a decision tree can be used to
visually and explicitly represent decisions and decision mak-
ing. Decision trees can provide an explanation for the output
class chosen. Various works have been reported using deci-
sion trees in financial applications such as Garcia-Almanza
(2008); Garcia-Almanza and Tsang (2008).

Fuzzy Logic Systems (FLSs) provide white box models
which could be easily analyzed and understood by the layman
user. However FLSs suffer from the curse of dimensionality
problem which causes the FLS-based system to generate a
big number of rules in order to give good model accuracy.
Most recently type-2 FLSs that are capable of handling high
uncertainty levels have been employed for the generation of
classification models (Sanz et al. 2010, 2011). However, the
existing type-2 fuzzy classification systems are not suited
for the financial domain where such type-2 FLSs generate
big rule bases; besides, they make the assumption that all the
possible rules are represented in the existing models which is
impossible for systems with big number of inputs where the
generated model will only cover a small subset of the search
space. Furthermore, FLSs have a high number of parameter
to tune, which sometimes require some time to be chosen in
the optimal way.

In this paper, we will present a genetic type-2 FLS for
the modeling and prediction in financial applications. The
proposed system avoids the drawbacks of the existing type-
2 fuzzy classification systems in that the proposed system
is able to carry prediction based on a relativity small pre-
specified rule base size even if the incoming data vector does
not match any rules in the FLS rule base. The proposed type-2
FLS aims to increase the understandability of the generated
model by achieving the best performance possible with a
limited and summarized number of rules in order to achieve
simplicity and comprehensibility for the user. We have car-
ried various evaluations where we are going to present in
this paper results from two distinctive financial domains one
for prediction of good/bad customers in a financial real-
world lending application and the other domain was in the
prediction of arbitrage opportunities in the stock markets.
The proposed system was able to use the generated sum-
marized models for the prediction within financial applica-
tions. The proposed Genetic type-2 FLS has outperformed
white box models like the Evolving Decision Rule (EDR)
procedure (which is a white based on Genetic Programming
(GP) Garcia-Almanza and Tsang 2008 and decision trees)
and gave a comparable performance to white box models
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like neural networks while the proposed genetic type-2 FLS
provided a white box model which is easy to understand and
analyse by the lay user.

In Sect. 2, we will present a brief overview on type-2 FLSs.
Section 3 will present an overview on the fuzzy classification
systems. Section 4 will present the proposed genetic type-2
fuzzy based modeling and prediction system for financial
applications. Section 5 will present the experiments and the
achieved results. Finally Sect. 6 will present the conclusions
and future work.

2 Brief overview type-2 fuzzy logic systems

In the recent years type-2 FLSs have grown in popularity due
to their ability to handle high levels of uncertainties. Type-
2 FLSs employ type-2 fuzzy sets as shown in Fig. 1 where
a type-2 fuzzy set is characterized by a fuzzy Membership
Function (MF), i.e. the membership value (or membership
grade) for each element of this set is a fuzzy set in [0, 1],
unlike a type-1 fuzzy set where the membership grade is a
crisp number in [0, 1] (Hagras 2004).

The membership functions of type-2 fuzzy sets are three
dimensional and include a Footprint Of Uncertainty (FOU)
(shaded in grey in Fig. 1), it is the new third-dimension of
type-2 fuzzy sets and the Footprint Of Uncertainty (FOU)
that provide additional degrees of freedom that make it pos-
sible to directly model and handle uncertainties (Hagras
2004; Mendel 2001). The interval type-2 FLSs use inter-
val type-2 fuzzy sets (such as the type-2 fuzzy set shown in
Fig. 1 to represent the inputs and/or outputs of the FLS). In
the interval type-2 fuzzy sets all the third dimension values
are equal to one. The use of interval type-2 FLS helps to
simplify the computation (as opposed to the general type-2
FLS).

The proposed system in the paper is a type-2 fuzzy classifi-
cation system and hence it does not follow the structure of the
type-2 FLSs reported in Hagras (2004), and Mendel (2001)

Fig. 1 A type 2 fuzzy set

where the classification system process is summarized in the
following section.

An interval type-2 fuzzy set denoted Ã is written as fol-
lows:

µ Ã(x) =
∫

x∈X

∫

u∈
[
µ̄ Ã(x),µ

Ã
(x)

]1/u

(1)

µ̄ Ã(x), µ
Ã
(x), represent the upper and lower membership

functions respectively of the interval type-2 fuzzy set Ã.

The upper membership function is associated with the upper
bound of the footprint of uncertainty F OU ( Ã) of a type-
2 membership function. The lower membership function
is associated with the lower bound of F OU ( Ã) (Hagras
2004).

3 Brief overview on fuzzy classification systems

In fuzzy logic classification systems, for a given c-class pat-
tern classification problem with n attributes (or features), a
given rule in the FLS rule base could be written as follows:

Rule R j : If x1 is A j
1 and . . . and xn is A j

n then Class C j

with C Fj , j = 1, 2, . . . , N (2)

where x1 . . . , xn represent the n-dimensional pattern vector,
A j

i is the fuzzy set representing the linguistic label for the
antecedent pattern i , C j is a consequent class (which could
be one of the possible c classes), N is the number of fuzzy IF-
Then rules in the FLS rule base. C Fj is a certainty grade of
rule j (i.e., rule weight). Assuming each input pattern is rep-
resented by K fuzzy sets and given that we have n input pat-
terns, the possible number of rules that will cover the whole
search space is Kn . In the arbitrage application presented in
this paper, we have seven inputs where each input is repre-
sented by five fuzzy sets; hence the needed number of rules
to cover the whole search space for this given application
is 57 = 78,125 rules. Each rule represents all the available
input patterns where each pattern is represented by one of
the available fuzzy sets and “don’t care” conditions are not
considered by any input feature. For our future work, we will
introduce “don’t care” conditions as this will help to increase
the interpretability of the rule as explained in Ishibuchi et al.
(1999). In our given applications (which applies to the vast
majority of financial applications), we do not have enough
data to generate this huge number of rules. Hence, there will
be various cases where the incoming input vector will not
fire any rule in the FLS rule base.

In the design of a fuzzy rule-based system, there exist
two conflicting objectives: error minimization and compre-
hensibility maximization. The trade-off between these two
objectives has been discussed in some studies (Casillas et al.
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2003a,b). Several type-1 fuzzy classification systems have
been reported in the literature such as Ishibuchi (2001a,b),
Ishibuchi and Yamamoto (2004, 2005, 2006) Shigeo (1995),
Ahmad and Jahormi (2007), Wang (2003), and Mansoori
et al. (2006). However, in the vast majority of these papers,
the data was quite easy to partition, and if an input pat-
tern does not match any of the decision areas previously
labelled, the input is discharged. In financial applications
this cannot be done where if a new pattern that has never
been seen before is proposed, a decision needs to be made
anyway, and unfortunately discharging a given pattern a
priory cannot be the solution. A technique to resolve this
problem was proposed in Garcia-Almanza and Tsang (2006,
2008), and, this technique keeps in a rule repository all the
rules for the minority class in unbalanced data sets. All
the inputs that do not match any rule in the repository are
considered belonging to the majority class. This technique
can work in unbalanced data set but might not work in all
cases.

Most recently type-2 FLSs that are capable of handling
high uncertainty levels have been employed for the genera-
tion of classification models (Sanz et al. 2010, 2011). How-
ever, the existing type-2 fuzzy classification systems are not
suited for the financial domain where such type-2 FLSs gen-
erate big rule bases and make the assumption that all the
possible rules are represented in the existing models which
is impossible for the problems with big number of input vari-
ables where the generated model will only cover a small
subset of the search space. In this paper, we will present
a type-2 FLS for the modelling and prediction of financial
applications. The proposed system avoids the drawbacks of
the existing type-2 fuzzy classification systems where the
proposed system is able to carry prediction based on a pre-
specified rule base size even if the incoming data vector does
not match any rules in the FLS rule base.

4 The proposed genetic type-2 fuzzy modelling
and prediction system for financial applications

In fuzzy logic systems, the choice of the appropriate parame-
ters of the fuzzy sets poses a major challenge to the design
of a FLS. By simply changing the fuzzy sets parameters,
it is possible to change the behaviour of a fuzzy logic sys-
tem, for example in the field of managing risk in financial
systems it is possible to build riskier or risk-averse fuzzy
systems by changing the parameters of the fuzzy sets to
make the FLS passing more or less customers. It is extremely
difficult though to find the optimal configuration using a
simple manual or heuristic approach because of the num-
ber of the variables to be optimised and the interaction of
these variables. In our work Genetic Algorithms (GAs) were

Fig. 2 An overview of the proposed genetic type-2 fuzzy logic system

used to tune the parameters of the type-2 fuzzy sets of the
FLS.

The GA uses a population where each chromosome
describe a fuzzy set space, in other words the size and the
position of each membership function for each input. The
GA starts by producing randomly an initial population, and
then it evolves at each generation the previous population.
In the GA each instance of the FLS is created by using
each individual of the population and each instance gen-
erates a different fitness value. Using the fitness value the
best individuals are selected and operators of crossover and
mutation are applied to produce the new population for the
next iteration. As shown in Fig. 2, the steps followed by the
proposed genetic type-2 fuzzy system can be summarised
as:

1. Initialize randomly the first generation.
2. Build a rule-base for each parameter configuration of the

type-2 fuzzy sets as provided by a given chromosome.
As the matter of the fact each chromosome describes
the fuzzy membership functions configuration and this
in conjunction with the training data is used to build the
rule-base (the rule base generation process is discussed
in Sect. 4.2).

3. Evaluate the classification ability of the generated type-2
FLS and produce the fitness value for each individual.

4. If an individual reach the desired fitness value or the max
number of iteration are reached the algorithm terminates.

5. The GA uses the population and their fitness values to
evolve and produce a new population of type-2 fuzzy
sets.

6. Go to step 2.
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4.1 The GA operation

4.1.1 The GA fitness function

The GA tries to find the best membership function config-
uration to optimise the fitness function. Our work has been
focused on classification problems, where the aim is to iden-
tify the correct class for a given input. In order to evaluate the
performance we will use the Receiver Operating Character-
istic (ROC) curve (Swets 1996). In order to explain how the
ROC curve works we have first to briefly introduce the mea-
sures computed in a confusion matrix. A confusion matrix
displays the data about actual and predicted classifications
done by a classifier (Kohavi and Provost 1998). This infor-
mation is used in supervised learning to determine the per-
formance of classifiers. Given an instance and two classes
(positive and negative) there are four possible results: The
instance is positive and it is classified as positive (True Pos-
itive (TP)). The instance is negative and it is counted as pos-
itive (False Positive (FP)). The instance is positive and it is
classified as negative (False Negative (FN)). The instance
is negative and it is predicted as negative (True Negative
(TN)). Figure 3 summarise the confusion matrix for a two
class problem.

Hence True Positive (TP) is number of correct predic-
tions in positive cases; False Positive (FP) is the number of
incorrect predictions that were classified as positive when
the instance is negative. False Negative (FN) is the number
of incorrect predictions that were classified as negative when
the instance is positive while True Negative (TN) is the num-
ber of correct negative predictions.

The ROC curve explains the performance of a classifier
by plotting two measures.

• Recall which is also called sensitivity or true positive rate
which is defined as the proportion of positive cases that
were correctly identified (Kohavi and Provost 1998), it is
determined by the formula:

Recallpositive = TP

TP + FN
(3)

Fig. 3 Confusion matrix for a two class problem

Recall is calculated on the positive class only (Swets
1996), though it is possible to extend the Eq. (3) on the
negative class as well as shown in Eq. (4) below.

Recallnegative = TN

TN + FP
(4)

• False positive rate is the proportion of negative cases that
were wrongly predicted as positive. It is determined by
the formula:

False Positive Ratepositive = FP

FP + TN
(5)

False positive rate is by definition calculated on the false pos-
itive value of the confusion matrix (Swets 1996). However, in
the same way the Recallpositive was extended to RecallNegative

by calculating it for the negative class, it is possible to extend
the False Positive Rate by considering its symmetric version
on the negative class, as shown in Eq. (6) below, this measure
is also known as False Negative Rate.

False Positive Ratenegative = False Negative Rate

= FN

FN + TP
(6)

The point is that on a two class problem it is possible to
calculate the recall on both classes, so that there will be
recallpositive and recallnegative, as well as all other measures.
It is interesting to note that it is possible to calculate the false
positive rate for both classes as well using the following for-
mulas:

False Positive Ratepositive = 1 − recallnegative (7)

False Positive Ratenegative = 1 − recallpositive (8)

This conclusion is important for us because in this way we can
consider only the recall as a measure in the fitness function.
As the matter of the fact, in order to produce a classifier that
optimizes the curve on a ROC graph, the classifier could sim-
ply optimize the average of the recall for all classes. Hence
in our GA the fitness function will be the average recall for
all classes. In order though to produce different points on the
ROC curve representing more risky or risk-averse classifier
we used some weights in order to favour some recall for some
classes, and hence to position the classifier in different point
of the graph.

Fitness score =
∑N

i Recalli ∗ wi

N
(9)

N is the number of classes for the problem, and wi is the
weight defined as w = {w1, . . . , wn} with n = [1, N ].
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4.1.2 Employing genetic algorithms to determine the type-2
fuzzy sets parameters

This section explains how a chromosome is translated into
the fuzzy sets space, describing the size and position of the
membership functions. The GAs implementation of Shakya
(2004) was used to encode the chromosomes using real num-
bers. In order to use the implementation we needed to provide
the algorithm with the following parameters:

• Solution length: this is the length of a single chromosome;
in our implementation this was the number of parame-
ters describing the fuzzy set space that need to be tuned
(Kassem 2012).

• Min/Max Range: this is the minimum and maximum
number that can be generated in a gene (Kassem 2012).

• Fitness Function: this is the objective function that the GA
tries to optimize. This function should take as an input a
chromosome (a possible solution) and return fitness score
(Kassem 2012).

• Population Size: the number of individuals within a pop-
ulation (Kassem 2012).

• Crossover Rate: every time a pair of parents are chosen
from the population produced from the selection process,
a random number is generated, if this number is less than
the crossover rate then crossover is performed on the par-
ents, otherwise the parents are copied without alteration
as the offspring (Kassem 2012).

• Mutation Rate: for every gene within a chromosome a
random number is generated, if that number is less than
the mutation rate then mutation is performed on that gene,
otherwise the gene is left unaltered (Kassem 2012).

• Maximum Generation: this is the maximum number of
generations that if reached by the algorithm then termi-
nation is forced (Kassem 2012).

• Elite Solutions: this is the number of elite solutions
that are copied from one generation to another (Kassem
2012).

Once the above parameter have been chosen for the GA,
the algorithm starts by creating an initial generation of indi-
viduals randomly. An individual or gene is a membership
function parameter for the FLS.

Each input for the FLS is represented by five type-2 fuzzy
sets, which need 17 parameters to be represented as shown
in Fig. 4. Each of the 17 parameters represented in the chro-
mosome does not represent the absolute coordinate in the
universe of discourse, but the relative distance from the pre-
vious parameter. The translation process of a chromosome
into a fuzzy set space will be explained in more detail later.
To fully build the fuzzy sets needed by the system, the total
number of parameters (genes) to be optimised can be found
as follows:

Fig. 4 The number of type-2 fuzzy sets 17 parameters to be tuned for
each input

Table 1 The GA parameters

Population size 400

Solution length 119

Elite size 10

Crossover probability 0.8

Crossover type One point

Mutation probability 0.04

Mutation type One bit

Selection type Tournament

Number of parameters = 17 × F (10)

where F is the number of inputs (or features). For a dataset
with 7 input features the total number of parameter to tune
will be 119 parameters thus creating a chromosome com-
posed of 119 genes. The fuzzy partitions derived by the
chromosome are specified under the constraint that the upper
membership function of a given fuzzy set starts at the same
point as the right hand vertex of the previous member-
ship function. For this reason, upper membership functions
always intersect at the membership value of 0.5. In addition,
the sum of the upper membership values is equal to 1.

The used GA parameters are listed in Table 1.
If we consider a single input, in order to shape the inter-

val type-2 fuzzy sets for an input we need 17 parameters (as
shown in Fig. 4). Each gene contains a percentage represent-
ing the distance between parameter i and i − 1. Let’s take
for example the segment of the chromosome shown in Fig. 5.
This segment contains all parameters needed to build a fuzzy
set space for one input. The sum of all genes within this seg-
ment is 150, so gene5 (21) is equivalent to (21/150) which is
14 %, this means that the distance between V4 and V5 is 14 %
of the total universe of discourse. Let’s take another exam-
ple; gene1 (6), this gene would be equivalent to 4 %. This
means that the distance between V1 and the starting point of
the fuzzy set would be 4 % of the total universe of discourse,
considering that in this example the universe of discourse
start from zero and ends at 50 as shown in Fig. 8, the core of
the first membership function ends in a decimal value of 2.
If the starting point of the universe of discourse would have
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Fig. 5 A segment of a
chromosome

Fig. 6 Percentages derived
from the chromosome

Fig. 7 Distances derived from
the percentages

Fig. 8 Final values of the derived membership functions

been S, then the core would have been ending in S + 2. Fig-
ure 6 shows the equivalent percentages for each of the genes
shown in Fig. 5. After these percentages are derived, they
are applied to the universe of discourse in order to determine
the distance for each part of the membership functions. As
mentioned, in the example considered in Fig. 8, the universe
of discourse start in zero and end in 50, the equivalent dis-
tances for the membership functions can be shown in Fig. 7.
So if we take gene2(2 %), so 2 % of 50 is 1, which is the
second component in Fig. 7. As we have mentioned earlier
these components are the distances between the parameters,
hence the distance between the second and first parameter is
1 and the decimal value is 2 + 1 = 3 from the beginning of
the type-2 fuzzy sets universe of discourse. The final values
of the parameters and the distances are shown in Fig. 8.

In order to build a fuzzy set space for 11 variables, 11
different chromosome segments will be selected and used
to build the fuzzy set space, needing a chromosome of size
11 ∗ 17 = 187 genes.

4.2 Rule generation in the proposed genetic type-2 FLS

The previous section showed how to employ genetic algo-
rithms to learn the parameters of the type-2 fuzzy sets. This
subsection will show how the rules of the type-2 FLS are
modelled taking as an input a dataset and the fuzzy sets whose

parameters were optimised by the GA. This is called mod-
elling phase. In the modelling phase the rule base of the type-2
fuzzy classification system is constructed from the existing
training dataset. Once the model has been built the FLS can
be used to predict new inputs. This is called prediction phase.
In the prediction phase, the generated rule base is used to pre-
dict the incoming input vectors. Figure 9 shows an overview
on the modelling and prediction phases.

4.2.1 The modeling phase

The modeling phase operates according to the following steps
(as shown in Fig. 9):

Step 1: Raw rule extraction: For a fixed input–output pair
(x (t), C (t)) in the dataset, t = 1, . . . T (T is the total number
of data training instances available for the modeling phase)
compute the upper and lower membership values µ̄Aq

s
, µ

Aq
s

for each antecedent fuzzy set q = 1, . . . K (K is the total
number of fuzzy sets representing the input pattern s where
s = 1 . . . n). Generate all rules combining the matched fuzzy
sets Aq

s (i.e. either µ̄Aq
s

> 0 or µ
Aq

s
> 0) for all s = 1 . . . n.

Thus the rules generated by (x (t), C (t)) will have different
antecedents and the same consequent class C (t) Thus each
of the extracted raw rules by (x (t), C (t)) could be written as
follows:
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Fig. 9 An overview on the modelling and prediction phases

R j : If x1 is Ãq j t
1 and . . . and xn is Ãq j t

n then Class Ct ,

t = 1, 2, . . . , T (11)

For each generated rule, we calculate the firing strength
Ft . This firing strength measures the strength of the points
x (t) belonging to the fuzzy region covered by the rule. Ft is
defined in terms of the lower and upper bounds of the firing
strength f (t), f (t) of this rule which are calculated as follows:

f j t (x (t)) = µ
Aq jt

1
(x1) ∗ · · · ∗ µ

Aq jt
n

(xn) (12)

f j t (x (t)) = µ
Aq jt

n
(x1) ∗ · · · ∗ µ

Aq jt
n

(xn) (13)

The * denotes the minimum or product t-norm. Step 1
is repeated for all the t data points from 1 to T to obtain
generated rules in the form of Eq. (11).

The financial data is usually highly imbalanced (for exam-
ple in a lending application it is expected that the major-
ity of people will be good customers and a minority being
bad customers and usually the interesting class is the minor-
ity class). Hence, we will present a new approach called
“weighted scaled dominance” which is an extension of our
previous work “scaled dominance” and the “weighted confi-
dence” work introduced by Ishibuchi and Yamamoto (2005).
This method tries to handle imbalanced data by trying to
give minority classes a fair chance when competing with the
majority class. In order to compute the scaled dominance for
a given rule having a consequent Class C j , we divide the
firing strength of this rule by the summation of the firing
strengths of all the rules which had C j as the consequent
class. This allows handling the imbalance of data towards a
given class. We scale the firing strength by scaling the upper
and lower bounds of the firing strengths as follows

f s j t = f j t

∑
j∈Classj f j

(14)

f s j t = f j t

∑
j∈Classj f j t

(15)

Step 2: Scaled support and scaled confidence calcu-
lation: Many of the generated rules will share the same
antecedents but different consequents. To resolve this con-
flict, we will calculate the scaled confidence and scaled sup-
port which are calculated by grouping the rules that have the
same antecedents and conflicting classes. For given m rules
having the same antecedents and conflicting classes. The
scaled confidence ( Āq ⇒ Cq) (defined by its upper bound
c and lower bound c, it is scaled as it involves the scaled
firing strengths mentioned in the step above) that class Cq is
the consequent class for the antecedents Ãq (where there are
m conflicting rules with the same antecedents and conflicting
consequents) could be written as follows:

c̄( Ãq ⇒ Cq) =
∑

xs∈ClassCq
f s j t (xs)∑m

j=1 f s j t (xs)
(16)

c( Ãq ⇒ Cq) =
∑

xs∈Classcq
f s j t (xs)∑m

j=1 f s j t (xs)
(17)

The scaled confidence can be viewed as measuring the valid-
ity of (Aq ⇒ Cq). The confidence can be viewed as a numer-
ical approximation of the conditional probability (Ishibuchi
2001b). The scaled support (defined by its upper bound s̄
and lower bound s, it is scaled as it involves the scaled firing
strengths mentioned in the step above) is written as follows:
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s̄( Ãq ⇒ Cq) =
∑

xs∈ClassCq
f s j t (xs)

m
(18)

s( Ãq ⇒ Cq) =
∑

xs∈Classcq
f s j t (xs)

m
(19)

The support can be viewed as measuring the coverage of
training patterns by (Aq ⇒ Cq). The scaled dominance,
(defined by its upper bound d̄ and lower bound d) can now
be calculated by multiplying the scaled support and scaled
confidence of the rule as follows:

d̄( Ãq ⇒ Cq) = c̄( Ãq ⇒ Cq) · s̄( Ãq ⇒ Cq) (20)

d( Ãq ⇒ Cq) = c( Ãq ⇒ Cq) · s( Ãq ⇒ Cq) (21)

The “weighted scaled dominance” (defined by its upper
bound wd and lower bound wd) is calculated as follows:

wd( Ãq ⇒ Cq) = d̄( Ãq ⇒ Cq) − dave (22)

wd( Ãq ⇒ Cq) = d( Ãq ⇒ Cq) − dave (23)

where dave is the average dominance (defined in terms of
dave and dave) over fuzzy rules with the same antecedent Ãq

but different consequent classes.
For rules that share the same antecedents and have differ-

ent consequent classes, we will replace these rules by one
rule having the same antecedents and the consequent class
which will be corresponding to the rule that gives the highest

average “weighted scaled dominance value” = (
wd+wd

2 )

In Sanz et al. (2010), the rule generation system generated
only the rule with the highest firing strength, however in our
method, we generate all rules that are generated by the given
input patterns, and this allows covering a bigger area in the
decision space.

Step 4: Rule selection: As fuzzy based classification
methods generate a large number of rules, this could cause
major problems for financial applications where the users
need to understand the system. Hence, in our method, we will
reduce the rule base to a relatively small pre-specified size
of rules that generates a summarized model which could be
easily read, understood and analyzed by the user. In this step,
we select only the top Y rules per class (Y is pre-specified
by the given financial application) which has the rules with
the highest average weighted scaled dominance values. This
selection is useful because rules with low weighted scaled
dominance may not actually be relevant and possibly intro-
duce errors. This helps to keep the classification system more
balanced between the majority and minority classes. By the
end of this step, the modeling phase is finished where we
have X = nC · Y rules (with nC the number of classes)
ready to classify and predict incoming patterns as discussed
below in the prediction phase.

4.2.2 Prediction phase

When an input pattern is introduced to the generated model,
two cases will happen: the first case is when the input x (p)

matches any of the X rules in the generated model, in this
case we will follow the process explained by case 1 below.
If x (p) does not match any of the existing X rules, we will
follow the process explained by case 2.

4.2.2.1 Case 1: The input matches one of the existing rules
In case the incoming input x (p) matches any of the existing

X rules, we will calculate the firing strength of the matched
rules according to Eqs. (12) and (13), this will result in
f j (x (p)), f j (x (p)). In this case, the predicted class will be
determined by calculating a vote for each class as follows:

Z̄Classh(x (p)) =
∑

j∈h f j (x (p)) ∗ wd(Aq → Cq)

max j ∈ h( f j (x (p)) ∗ wd(Aq → Cq))

(24)

ZClassh(x (p)) =
∑

j∈h f j (x (p)) ∗ wd(Aq → Cq)

max j ∈ h( f j (x (p)) ∗ wd(Aq → Cq))

(25)

In the above equations max j ∈ h( f j (x (p)) ∗wd(Aq → Cq))

and max j ∈ h( f j (x (p)) ∗ wd(Aq → Cq)) represent taking
the maximum of the product of the upper and lower firing
strengths and the weighted scaled dominance respectively
among the “K ” rules selected for each class. The total vote
strength is then calculated as:

ZClassh = ZClassh(x (p)) + ZClassh(x (p))

2
(26)

The class with the highest ZClassh will be the class pre-
dicted for the incoming input vector x (p).

4.2.2.2 Case 2: The input does not match any of the exist-
ing rules In case the incoming input vector x (p) does
not match any of the existing X rules, we need to decide
the output class for the input. The first step is to build
all the rules that are possible to be generated from the
given input, using the matched fuzzy sets. Let’s suppose
we have a classification problem with two inputs x1 and
x2 Let’s suppose that a given input x (p)will match overall
four different fuzzy sets as shown in Fig. 10. Let M R(x (p))

the set of rules obtained by combining the matched fuzzy
sets. In the example shown in Fig. 10, there will be four
matching fuzzy sets which will generate four different
rules: R1 = {Small, Medium} R2 = {Small, Large} R3 =
{Medium, Medium} R4 = {Medium, Large}. Each rule will
have an associated a firing strength but not an output class.

The following step is to find the closest rule in the rule
base for each rule in M R(x (p)). In order to do this, we need
to calculate the similarity (or distance) between each of the
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Fig. 10 An example to illustrate the similarity measure

fuzzy rules generated by x (p) and each of the X rules stored
in the rule base. Let’s define “k” to be the number of rules
generated from the input x (p) (k = 4 in the example shown
in Fig. 10). Let the linguistic labels that fit x (p) be written
as vinputr = (vinput1r, vinput2r, . . . , vinputnr) where r is the
index of the r -th rule generated from the input. Let the lin-
guistic labels corresponding to a given rule in the rule base
be v j = (v j1, v j2, . . . , v jn). Each of these linguistic labels
(Low, Medium, etc) could be decoded into an integer. Hence
the similarity between the rule generated by x (p) and a given
rule in the rule base could be calculated by finding the dis-
tance between the two vectors as follows:

Similarityinputr↔ j =
(
(1 −

∣∣∣ vinput1r−v j1
V 1

∣∣∣
)

∗
(

1 −
∣∣∣ vinput2r−v j2

V 2

∣∣∣
)

∗ · · · · ∗
(

1 −
∣∣∣ vinputnr−vjn

Vn

∣∣∣
)

(27)

where V1 . . . Vn represents the number of linguistic labels
representing each variable. Each rule in the rule-base will
have at this point a similarity associated with the r-th rule
generated form the input. For each rule in M R(x (p)) the most
similar rule in the rulebase, using Eq. (27) will be found to
decide on the output class. There will be “k” rules (the most
similar rules to the k rules in M R(x (p))) selected to decide
for the x (p) input the output class. The predicted class will
be determined as a vote for each class as follows:

Z̄Classh(x (p)) =
∑

j∈h wd(Aq → Cq) ∗ f j (x (p))

max j ∈ h( f j (x (p)) ∗ wd(Aq → Cq))

(28)

ZClassh(x (p)) =
∑

j∈h wd(Aq → Cq) ∗ f j (x (p))

max j ∈ h( f j (x (p)) ∗ wd(Aq → Cq))

(29)

where f j (x (p)) and f j (x (p)) are the lower and upper fir-
ing strength of the most similar rule in the rule base and
wd(Aq → Cq) and wd(Aq → Cq) are the upper and lower
interval of the weighted scaled dominance of the most
similar rule of the rule considered in M R(x (p)). In the
above equation max j ∈ h( f j (x (p)) ∗ wd(Aq → Cq)) and
max j ∈ h( f j (x (p)) ∗ wd(Aq → Cq)) represent taking
the maximum of the product of the upper and lower firing

strengths and the weighted scaled dominance respectively
among the most similar rules to the “k” rules, this measure
is used to scale the lower and upper voting strength of each
class. The total vote strength is then calculated as:

ZClasshr = ZClassh(x (p)) + ZClassh(x (p))

2
(30)

The class with the highest ZClassh will be the class associated
x (p).

5 Evaluations and results

The classification ability of the proposed system has been
tested with two different datasets. The first sets of experi-
ments are based on the data which has been used for spotting
arbitrage opportunities in the London International Finan-
cial Futures Exchange (LIFFE) market (Garcia-Almanza and
Tsang 2006).

The second one is a credit approval dataset. This dataset
was achieved from a real-world credit reference agency iden-
tifying good and bad customers where good customers are
profitable customers and bad customers are non-profitable
customers.

5.1 Performance on arbitrage dataset

We have tested the proposed genetic type-2 FLS to model and
predict arbitrage opportunities. Computers today are able to
spot in milliseconds the stock misalignment in the market.
This would allow them to make almost risk-free profits. There
are two main challenges in this type of operation. Firstly, arbi-
trage situation do not occur very often. Secondly, the operator
must act ahead of others, so the competition is reduced to how
fast a computer is, and how fast its connection to the stock
exchange is. Garcia-Almanza and Tsang (2006) showed that
arbitrage opportunities do not appear instantaneously. There
are patterns in the market which can be recognized 10 min
ahead.

The proposed system is trained to identify ahead of time
arbitrage opportunities (Garcia-Almanza 2008). The data
reported in this paper was further developed in Garcia-
Almanza (2008), Garcia-Almanza and Tsang (2008) in order
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Table 2 The seven input features (variables) for the arbitrage data set (Garcia-Almanza and Tsang 2008)

No Name Description

1 Moneyness Strike price/underlving index level

2 Basis % (×100,00) Futures price minus spot index level.divided by futures price, multiplied by 10,000

3 Und (×10) Spot index level divided by futures price, multiplied by 10

4 Interest ask % The LIBOR ask rate for the maturity closest to the maturity of futures contract, multiplied by 100

5 Futures (T-t) The nave trigger, profit after transaction costs, divided by futures price, multiplied by 1,000,000

6 C-P % (×l00) The difference between the call and the put prices, divided by futures price

7 Profit after TC (×1,000,000) The nave trigger, profit after transaction costs, divided by futures price, multiplied by 1,000,000

to identify arbitrage situations by analyzing option and
futures prices in the London International Financial Futures
Exchange (LIFFE) market. The pre-processed data com-
prised 1,641 instances of which only 401 representing arbi-
trage opportunities and the rest representing non-arbitrage
opportunities. The data was split into 2/3 for modelling and
1/3 for testing.

According to Garcia-Almanza and Tsang (2008), the
information used from the option and future prices in the
London International Financial Futures Exchange (LIFFE)
market have been manipulated, selected and reduced to just
seven features. Those are described in Table 2.

We have compared the proposed genetic type-2 FLS
approach with one of the most powerful white box modelling
and prediction systems for spotting arbitrage opportunities
which is Evolving Decision Rule (EDR) procedure (Garcia-
Almanza and Tsang 2008). The EDR method evolves a set
of decision rules by using Genetic Programming (GP) and it
receives feedback from a key element that is called reposi-
tory. The repository is a structure whose objective is to store
a set of rules. The resulting rules are used to create a range of
classifications that allows the user to choose the best trade-off
between misclassifications and false alarms cost.

We have compared as well the proposed genetic type-2
FLS approach against Neural Networks which was found to
give a better performance than any other black box model
available for this data set.

The proposed genetic type-2 FLS aims to fulfil two objec-
tives: The first one is to get good results on both RECALL
and false positive rate, the second objective is to use small
number of rules to model and predict the arbitrage opportuni-
ties, thus presenting a white box model which could be easily
understood and analyzed by the lay user. The perfect ideal
classifier is able to have a RECALL (True Positive Rate) of
1 and a False Positive Rate (FPR) of 0 (where the area under
the ROC curve will be equal to 1), thus the more predic-
tive the given model is, the higher is its ROC curve which
means that the ROC curve for the given prediction model
approaches the ideal classifier. In general, this means having
the highest RECALL possible and the lowest false positive

rate possible. Hence, the more predictive a given model is,
the more the area under its ROC curve will approach the ideal
classifier whose area under its ROC curve equals to one.

Moving along the Receiver Operating Characteristic
(ROC) curve (which plots the true positive rate, vs. false
positive rate) means increasing the FPR at the expenses of
the RECALL or vice versa.

In the following evaluations, we have employed the pro-
posed Genetic type-2 FLS with different fuzzy set space con-
figurations in order to move along the ROC curve. In order
to do so the fitness function of the GA was weighed using
different weights in Eq. (9). Figure 11 shows the ROC curve
obtained over testing data by the proposed genetic type-2
FLS plotted against the ROC curves obtained by the EDR
procedure (Garcia-Almanza and Tsang 2008) and the Neural
Networks respectively. From Fig. 11, it is obvious that the
proposed genetic type-2 FLS gives a better ROC curve than
the EDR procedure and the Neural Networks while the type-
2 FLS presents the user with a small number of rules which
summarizes the model and explains the system behaviour to
the lay user in an understandable and comprehensible way.
Figure 11 shows the results obtained when employing the
proposed genetic type 2 FLS with only 200 and 40 rules. The
best results are obtained using 200 rules; the genetic type-2
FLS with just 40 rules has slightly worst performance than
the performance with 200 rules but still produces much better
results than the EDR procedure and also producing a slightly
better performance when compared to Neural Networks. The
selected 40 or 200 rules have been selected taking those with
highest average weighted scaled dominance.

In order to compare the classifier on their overall behaviour
(including all range of riskier and risk-averse classifiers) the
area under the curve (AUC) technique has been used. The
machine learning community can use the ROC AUC statistic
for model comparison (Hanley and McNeil 1983). The area
under curve (AUC), when using normalized units, is equal to
the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one
(assuming ‘positive’ ranks higher than ‘negative’) (Fawcett
2006). Table 3 summarise the AUC results for the classifier

123



2196 D. Bernardo et al.

Fig. 11 ROC graph over testing data for the arbitrage prediction comparing EDR, NN and genetic type-2 FLSs

Table 3 AUC results for the arbitrage data

Classifier AUC

GA T2 FLS 200 rules 0.9849

GA T-2 FLS 40 rules 0.9755

NN 0.9607

EDR 0.8039

used where it is shown that the AUC for the genetic type-2
FLS with 200 rules gives the best AUC of 0.9849 followed by
the AUC of 0.9755 for the genetic type-2 FLS with 40 rules
which gave better performances than the Neural Networks
classifier which gives an AUC of 0.9607 followed by the
AUC 0.8039 for EDR.

The best average recall overall obtained on this dataset
is 96.22 % with the Genetic Type-2 FLS with 200 rules.
The Genetic FLS with 40 rules best average recall perfor-
mance was 94.64 %. The best average recall obtained by the
neural network was 94.04 %. The EDR best average recall
was around 78 %.

These results shows that the proposed genetic type-2 FLS
gives a better performance when compared to a white box
model like the EDR procedure. The proposed genetic type-2
FLS gave also better performance when compared to black
box models which shows that the proposed genetic type-2
FLS can achieve a similar or even better performance than
black box models while providing a transparent white box
model with a summarised number of rules which are easy to
understand and analyse by the lay user.

It should be emphasised that all the inputs for the arbi-
trage data were continuous inputs which allowed the FLSs
to give the best results. However in data employed in the
next subsection the inputs will be both continuous and cate-
gorical/discrete (like gender) which will not allow the FLSs
to give its best performance, however the FLSs will be able
to give good comparable results to black box models which
giving a white box model.

5.2 Performance on credit approval dataset

With the economic crisis of the recent year, prime and sub-
prime credit requests continuously expanded. Unfortunately
with the increase of the number of people asking for credit,
the number of people not being able to repay increased as
well. The ability of finding and declining bad credit request
has been crucial for lenders and provide a huge money saving.
Lots of effort is nowadays put in finding the best techniques
to reduce the risk in the lending market. The proposed sys-
tem has been tested using data gathered from a credit lender
company. The dataset built includes the information that a
customer would provide when asking for credit. The dataset
is composed by 123,116 records and 10 features divided into
3/4 for the training set (92,397 records) and 1/4 for the test-
ing set (30,720 records). The 40 % of the training set is used
during the GA tuning as validation set. The system need to
be able to find bad credit requests but as well need not to
decline too many requests. As the matter of the fact a simple
approach to avoid all bad credit requests would be simply of
not accepting any requests at all, but of course this extreme
scenario is not feasible because this does not match with
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Fig. 12 Credit approval dataset ROC curve over testing data

Table 4 Credit approval AUC and best average recall

Classifier AUC Best AVG Recall

Neural network 0.8303 76.25 %

GA T2 FLS full rule-base 0.748 73.84 %

the business model of credit lenders. The data is extremely
unbalanced as it presents 98.54 % of customer belonging to
class 0 (Good Customers) inputs and 1.46 % of customers
belonging to class 1 (Bad Customers). Different types of our
classifiers have been built for this reason, providing a more
risk averse or riskier approach thus accepting more or less
requests. It is worth mentioning that the data is quite differ-
ent from the Arbitrage data set mentioned in the previous
subsection where this data set is very noisy and sparse the
hence the prediction accuracy of any prediction system will
be rather limited.

The genetic type 2 FLS was compared to neural networks
which were found to be the best black box model suited for
this data set. Figure 12 shows the ROC curve over the testing
data of the proposed genetic type-2 FLS plotted against the
Neural Networks ROC curve. Table 4 summarise the best
average recall and the area under the curve for both tech-
niques.

The best performances on this dataset are obtained by
the neural network. The reason is mainly because half of
the features on this dataset are categorical, and the FLS at
the moment reduce its performance when dealing with these
kinds of features. However, it can be seen that over this unbal-
anced noisy data, the proposed genetic type-2 FLS produced

comparable results to black box models like Neural Networks
while the proposed type-2 FLS produced a white box model
that could be easily understood and analysed by the lay user.

5.3 Comparison between the proposed weighted scaled
dominance and other measures employed in Fuzzy
classification systems

In this paper, we have presented a new measure called
weighted scaled dominance which is based on the exten-
sion of the “scaled dominance” measure introduced in our
previous work and the weighted confidence measure intro-
duced by Ishibuchi and Yamamoto (2005). The aim of this
new measure is to give more weight to associations that do
not occur very often in the dataset, especially those associa-
tions affiliated with the minority classes and hence described
in the decision space by few samples. In most of the cases
the minority classes are usually the relevant class to iden-
tify, and scarcity of the samples makes the problem more
challenging. There exist in the literature other measures that
aim to give more importance to infrequent but still important
associations; one of these measures is the lift. The lift can
be defined as the combined support of the consequent and
the antecedent of a rule, over the support of the antecedent
multiplied by the support of the consequent (Tufféry 2011).

l( Ãq ⇒ Cq) = s( Ãq ⇒ Cq)

s( Ãq) ∗ s(Cq)
(31)
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Fig. 13 Comparison between the proposed weighted scaled dominance and other measures employed in fuzzy classification systems

Equation (31) can be rewritten using the definition of con-
fidence in Eqs. (16) and (17) as follows:

l( Ãq ⇒ Cq) = c( Ãq ⇒ Cq)

s(Cq)
(32)

The nominator is the confidence of the rule and the denom-
inator of the equation represent the support of the consequent
class. Another important measure is the weighted dominance
which is obtained simply by the multiplication of scaled
confidence and scaled support, explained in Ishibuchi and
Yamamoto (2004, 2005). Those metrics are defined as fol-
lows:

wc( Ãq ⇒ Cq) = c( Ãq ⇒ Cq) − cave (33)

ws( Ãq ⇒ Cq) = s( Ãq ⇒ Cq) − save (34)

wd( Ãq ⇒ Cq) = wc( Ãq ⇒ Cq) ∗ ws( Ãq ⇒ Cq) (35)

where cave and save are the average confidence and support
over fuzzy rules with the same antecedent Ãq but different
consequent classes (Ishibuchi and Yamamoto 2004, 2005).

We compared the results obtained by the different metrics
using the same fuzzy sets. We have compared the metrics
over various data sets but due to the space limitation, we will
report only the results achieved over a complicated noisy data
from the banking credit evaluation system (different from the
data sets employed above). Figure 13 summarise the results
obtained with the different data mining measures with vary-
ing the size of the rule bases used for classification.

As shown in Fig. 13, the best result (with best aver-
age recall) was obtained employing the suggested weighted
scaled dominance measure as described in Eq. (22), (23) or
in general whenever the scaling procedure is used in any
technique. The scaling procedure is applied by employing
the scaled firing strength described in Eqs. (14)–(15). When
the scaling is not used the next best results are obtained with
lift described by Eq. (32). This underlines the point that infre-
quent association can as well be very important, and this is
extremely true in imbalanced datasets. The weighted domi-
nance is described by Eqs. (33)–(35) but without using the
scaling procedure it did not get good results, as the matter
of the fact this measure did not use the scaled firing strength
as in the weighted scaled dominance. As can be seen, the
comparisons have been conducted with different pre spec-
ified rule sizes. The rule selection has been performed by
selecting those only with highest metrics in question.

5.4 Evaluation of the performance of the proposed
similarity technique

The quality of a fuzzy logic system is positively correlated
with the quality of its rule-base. But what happen though
if an input does not match any rule in the rule base? In the
majority of fuzzy classification systems, there are two main
approaches to handle a situation when the incoming input
does not match any rules from the FLS rule base. The first
approach is to reject the input, and do not give a prediction for
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Table 5 Confusion matrix

Actual positive Actual negative

Positive prediction 700 (TP) 300 (FP)

Negative prediction 0 (FN) 0 (TN)

Recall (%) 100 0

this given input, and hence do not consider it in the confusion
matrix and in the calculation of the recall and false positive
rate. The second approach is to build a default rule that fires
every time an input does not fire any rules from the rule base.

The first approach is unacceptable solution for the finan-
cial domain where the prediction system should always be
able to provide a prediction. The second approach could be
acceptable in the case of highly unbalanced datasets and in
case the system has only two output classes but overall it is not
a strong solution as the matter of the fact it does not improve
the quality of the classifier and will have problems when
there is a big number of output classes. In fact on a two class
problem, this approach by definition will always produce the
same average recall improvement (for inputs not matching
rules from the rule base) regardless of the class chosen as
default option. Let’s consider for example a dataset where
there are 1000 inputs that do not match any rule in the rule-
base. Let’s suppose then that 700 of these cases are actually
class 1 while 300 are actually class 0. If we create a default
rule which says that all of these 1,000 unmatched inputs must
be mapped as Class 1, we will have the confusion matrix in
Table 5.

From the example, even though the dataset is unbalanced
and we chose the rule that would have made better sense,
the achieved average recall is only 50 %, as the matter of
fact regardless of the default rule we choose the recall on the
default class by definition will always be 100 % and the recall
will be 0 % on the other class and so the average recall will
always be 50 % on the cases of inputs not matching rules from
the rule base. Hence, the contribution that the default rule will
give to the classifier will always be the same minimal (50 %)
contribution (on the recall measure) regardless the output
class chosen.

Our proposed techniques on the other hand aim to find the
most similar rules from the rule base (as discussed above in
Sect. 4.2.2.2, and choose by using the weighted scaled dom-
inance approach the output class. This section will show the
results obtained on both arbitrage and credit approval datasets
mentioned above by the proposed similarity approach.

On the arbitrage data, we tried various pre specified rule
base sizes of 10 rules, 20 rules, 30 rules and 40 rules. The
numbers of cases where the inputs did not match any rules
in the rule base were 97 (in case of using a rule base of 10
rules), 62 (in case of using a rule base of 20 rules), 56 (in
case of using a rule base of 30 rules) and 34 (in case of using

Fig. 14 Comparison between the similarity and default rule technique
on arbitrage data set

a rule base of 40 rules). Figure 14 shows the comparison
on testing data on the average recall obtained when using
similarity technique and the default rule technique. As shown
in Fig. 14, when employing the similarity technique with just
5 rules per class (10 rules in the rule-base) the cases of inputs
not matching rules in the rule base were 97, and the achieved
average recall on cases where the inputs not matching rules
from the rule base was 63.9 % (compared to 50 % average
recall when using any default rule approach). The similarity
method gives better results when increasing the number of
rules in the rule-base because the decision space is better
represented by the rules in the rule-base so the similarity can
find more appropriate similar rules. On a rule-base of 40 rules
the similarity is able to achieve an average recall of 100 % on
cases where the inputs not matching rules from the rule base,
thus the similarity technique was able to correctly classify all
the 34 cases where the inputs did not match rules from the
rule base.

The similarity measure was tested as well on the credit
approval dataset which presented more complex features
where the dataset have unordered categorical features on
which it is difficult to create an ordered relationship (like for
example credit card type). On these type of features a default
distance of 1/(tot number of labels −1) was given, and the
similarity formula in Eq. (27) is changed accordingly. The
similarity technique on this dataset has been tested with a
rule-base of 50, 100, 150, 200, 250, 300 and 350 rules. The
credit approval data is a bigger dataset and highly unbalanced
and the number of cases where the inputs do not match any
of the rules in the rule base were 2,426, 748, 429, 319, 188,
125, 92 in case of using 50, 100, 150, 200, 250, 300 and 350
rules respectively. The dataset present 98.54 % of class 0 and
1.46 % of class 1. Figure 15 shows the average recall com-
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Fig. 15 Comparison between the similarity and default rule technique
on credit approval data set

parison when employing the similarity and the default rule
technique. It can be seen that again the similarity technique
gives better average recall (compared to the default rule) on
the cases where the inputs do not match any rules from the
rule base

6 Conclusions and future work

The global economic meltdown of the late 2000s exposed
many organisations around the world, this drove the need to
build robust frameworks for predicting and assessing risks
in financial applications. In the current economic situation,
transparency became an important factor where there is a
need to fully understand and analyze a given financial model.
In this paper, we have presented a genetic type-2 FLS capable
of generating summarized models from pre-specified number
of linguistic rules, which enables the user to understand the
generated financial model, thus generating a transparent and
easy to read and analyse model. The proposed system was
tested on two different datasets.

We have shown how the proposed genetic system allows
learning the various parameters of the input type-2 fuzzy sets
which cannot be easily designed or manually tuned.

We have presented two novel measures, the first mea-
sure is a data-mining measure called weighted scaled dom-
inance. The performance of this novel technique was com-
pared against other classic data-mining metrics and it was
shown that the proposed weighted scaled dominance outper-
formed other widely used measures. The second presented
measure was called similarity measure which is a technique
used to be able to provide a classification even when the
inputs do not match any rules from the rule base. This tech-
nique was implemented to avoid a commonly used approach
of discharging any inputs that do not match any rule in the

rule-base. We have also shown the improvements of the pro-
posed similarity measures over the default rule where we
have shown that for inputs not matching rules in the rule
base, the proposed similarity measure result in a consider-
able uplift in the average recall when compared to using the
default rule which cannot be easily used when the number of
output classes is more than 2.

We have performed several evaluations in two distinctive
financial domains one for the prediction of good/bad cus-
tomers in a financial real-world lending application and the
other domain was in the prediction of arbitrage opportunities
in the stock markets. The proposed Genetic type-2 FLS has
outperformed white box models like the Evolving Decision
Rule (EDR) procedure (which is a white based on Genetic
Programming (GP) and decision trees) and gave a compara-
ble performance to black box models like neural networks
while the proposed genetic type-2 FLS provided a white box
model which is easy to understand and analyse by the lay
user.

In financial applications, there is a need to have clear,
transparent and easy to understand models which stresses
the importance of increasing the interpretability of the given
financial model. Hence, for our future work, we will aim to
optimize also the length of the rules and use do not care condi-
tions to make the genetic type-2 FLC easier to read by the lay
user. In Ishibuchi and Nojima (2007), the trade-off between
interpretability and accuracy of type-1 fuzzy systems has
been discussed and how accuracy can be affected when try-
ing to build interpretable systems. In our future work, we aim
to carry out the same analysis as Ishibuchi and Nojima (2007)
for fuzzy type-2 systems and investigate how this trade off
affects type-2 systems.
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