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Abstract Interval type-2 fuzzy similarity and inclusion
measures have been widely studied. In this paper, the
axiomatic definitions of general type-2 fuzzy similarity and
inclusion measures are given on the basis of interval type-
2 fuzzy similarity and inclusion measures. To improve the
shortcomings of the existing general type-2 fuzzy similarity
and inclusion measures, we define two new general type-2
fuzzy similarity measures and two new general type-2 fuzzy
inclusion measures based on α-plane representation the-
ory, respectively, and discuss their related properties. Unlike
some existing measures, one of the proposed similarity and
inclusion measures are expressed as type-1 fuzzy sets, and
therefore these definitions are consistent with the highly
uncertain nature of general type-2 fuzzy sets. The theoretical
proof is also given to illustrate that the proposed measures
are natural extensions of the most popular type-1 fuzzy mea-
sures. In the end, the performances of the proposed similarity
and inclusion measures are examined.
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1 Introduction

Type-1 fuzzy sets (Zadeh 1965) extend the classical notion
of set and express the vagueness of real life. After decades
of development, type-1 fuzzy sets have been successfully
applied in the fields of automatic control, system identifica-
tion, fault diagnosis, etc. To enhance the ability of systems for
dealing with uncertainties and experience more freedom in
design than type-1 fuzzy sets, Zadeh (1975) proposed type-
2 fuzzy sets. The membership grades of type-2 fuzzy sets
are type-1 fuzzy sets on [0, 1]. In highly uncertain situa-
tions, the performances of type-2 fuzzy sets are obviously
beyond the type-1 fuzzy sets (Karnik et al. 1999). From the
time Zadeh presented type-2 fuzzy set theory, its applica-
tions were limited due to the computational complexity. On
the contrary, interval type-2 fuzzy set, as a simplified version
of type-2 fuzzy set, has been made great development. The
secondary membership grade of interval type-2 fuzzy set is 1,
which makes it relatively simple. Thus, most of researchers
were interested in the interval type-2 fuzzy systems (Liang
and Mendel 2000). The general type-2 fuzzy sets can handle
complex and changing systems, and therefore must be better
than the interval type-2 fuzzy sets to deal with uncertainties
(John and Coupland 2007).

So far, the investigations about general type-2 fuzzy sets
are relatively less due to the computational complexity. In
order to simplify the calculation for general type-2 fuzzy sets,
researchers proposed various methods. The representation of
general type-2 fuzzy sets is one of these methods. There are
five kinds of popular representation for general type-2 fuzzy
sets: vertical-slice representation, wave-slice representation,
geometric representation, α-plane representation, and z-slice
representation. Vertical-slice representation of type-2 fuzzy
set was firstly recognized by researchers, and so type-2 fuzzy
systems were studied on the basis of Vertical-slice theory at
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the beginning (Mendel 2001). Subsequently, Mendel et al.
(2006) proposed Wave-slice notation, and claimed that the
set operations of type-2 fuzzy sets can be defined under the
premise of not using the extension principle. Next, Coupland
and John (2004a,b, 2007) proposed computational geome-
try representation for type-2 fuzzy sets, which is essentially
approximate calculation method based on some discretiza-
tions to a certain extent, but also can reduce the calculation
complexity. Recently, Liu (2008) proposed the α-plane rep-
resentation of type-2 fuzzy sets where centroid computation
of type-2 fuzzy sets by using the α-plane representation was
studied, and it was claimed that the α-plane representation
can greatly reduce the computational workload. Almost at
the same time, the theory of z-slice method has also been
proposed in (Wagner and Hagras 2008, 2009, 2010), but
Mendel et al. (2009) proved that z-slice method and α-plane
method are essentially same. The α-plane method has been
extensively studied (Mendel 2010; Zhai and Mendel 2011),
because it can take advantages of the interval type-2 fuzzy
sets theory to study the general type-2 fuzzy sets.

Similarity and inclusion measures between general type-2
fuzzy sets are important from applications point of view. In
contrast to the investigations discussing similarity and inclu-
sion measures between interval type-2 fuzzy sets (Wu and
Mendel 2007; Zeng and Li 2006; Zeng and Guo 2008; Zhang
et al. 2009; Wu and Mendel 2008, 2009; Liu and Xiong 2002),
the research about similarity and inclusion measures between
general type-2 fuzzy sets is relatively scarce (Mitchell 2005;
Yang and Lin 2009; Hwang et al. 2011; Rickard et al. 2009).
Mitchell (2005) defined a similarity measure for general type-
2 fuzzy sets, but it has the following drawbacks: (1) it does
not satisfy reflexivity, i.e., the similarity measure between A
and A does not equal to 1; (2) the symmetry can not be satis-
fied; (3) the similarity measure may change from experiment
to experiment. In addition, similarity and inclusion mea-
sures for general type-2 fuzzy sets based on the vertical slice
theory have also been defined in (Yang and Lin 2009; Hwang
et al. 2011), but the primary membership of type-2 fuzzy sets
in each primary variable must be same. That is to say, the foot-
print of uncertainty must be same, which limits application
scopes of these results. Rickard et al. (2009) used Zadeh’s
extension principle to extend Kosko’s definition of the type-1
fuzzy inclusion measure, and defined type-2 fuzzy inclusion
measure. However, their inclusion measure does not satisfy
reflexivity (Mendel and Wu 2010), i.e., the inclusion measure
between A and A does not equal to 1.

In order to expand the theoretical researches of similar-
ity and include measures for general type-2 fuzzy sets, and
also to improve the shortcomings of the existing measures, in
this paper, we define two new general type-2 fuzzy similarity
measures and two new general type-2 fuzzy inclusion mea-
sures based on α-plane representation theory, respectively.
Different from some existing general type-2 fuzzy similar-

ity and inclusion measures, we put forward a new definition
for general type-2 fuzzy similarity and inclusion measures,
i.e., one of the proposed general type-2 fuzzy similarity and
inclusion measures are expressed as type-1 fuzzy sets. The
above definition method is consistent with the highly uncer-
tain nature of general type-2 fuzzy set. However, it is not intu-
itive when the general type-2 fuzzy similarity and inclusion
measures are expressed as type-1 fuzzy sets. Thus, another
general type-2 fuzzy similarity and inclusion measures are
defined as certain value in [0, 1]. The theoretical proof is
also given to illustrate that the proposed measures are nat-
ural extensions of the most popular type-1 fuzzy measures.
The rest of our work is organized as follows. In Sect. 2, the
definitions and basic terminologies on general type-2 fuzzy
sets will be reviewed briefly, and the axiomatic definitions of
general type-2 fuzzy similarity and inclusion measures will
also be given. In Sect. 3, the new general type-2 fuzzy similar-
ity and inclusion measures will be defined, and their related
properties will also be derived. Furthermore, in Sect. 4 we
use numerical examples to examine the performances of the
proposed similarity and inclusion measures. The last section
concludes this paper.

2 Background

In this section, we review the definitions and basic termi-
nologies on general type-2 fuzzy sets, and give the axiomatic
definitions of general type-2 fuzzy similarity and inclusion
measures.

2.1 α-Plane representation theory for general type-2 fuzzy
sets

Definition 2.1 (Mendel 2001) A type-2 fuzzy set, denoted
Ã, is expressed as:

Ã =
∫

x∈X

u Ã(x)/x =
∫

x∈X

⎡
⎢⎢⎣

∫

u0∈J Ã
x

fx (u0)/u0

⎤
⎥⎥⎦

/
x J Ã

x ⊆ [0, 1].

where J Ã
x is the primary membership of x; fx (u0) is a sec-

ondary membership grade.

In the following sections, the class of all general type-2
fuzzy sets of the universe x is denoted as F2(X).

Definition 2.2 (Mendel 2001) The footprint of uncertainty
(F OU ) of a type-2 fuzzy set, Ã, is the union of all primary
memberships, i.e.,

FOU( Ã) = ∪
x∈X

J Ã
x .

Definition 2.3 (Mendel 2001) The upper membership func-
tion is associated with the upper bound of F OU ( Ã), and is
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denoted by ū Ã(x). The lower membership function is asso-
ciated with the lower bound of FOU(A), and is denoted by
u Ã(x).

Definition 2.4 (Mendel et al. 2009) An α-plane for general
type-2 fuzzy set Ã, which is denoted by Ãα , is defined as
follow:

Ãα =
∫

x∈X

∫

u0∈J Ã
x

{(x, u0)| fx (u0) ≥ α}

=
∫

x∈X

⎡
⎢⎢⎣

∫

u0∈[S Ã
L (x |α),S Ã

R (x |α)]

u0

⎤
⎥⎥⎦

/
x α ∈ [0, 1].

where [S Ã
L (x |α), S Ã

R (x |α)] denote an α-cut of the secondary
membership function u Ã(x).

From the Definitions 2.2 and 2.4, we have F OU ( Ã) =
Ã0. That is to say, the FOU of a type-2 fuzzy set is the
α = 0 plane. Furthermore, α/ Ãα can be regarded as a spe-
cial interval type-2 fuzzy set whose secondary membership
grade is equal to α.

Definition 2.5 (Mendel et al. 2009) The α-plane represen-
tation (theorem) for type-2 fuzzy set Ã is

Ã = ∪
α∈[0,1]

α/ Ãα.

From the above definition, we can find that a general type-
2 fuzzy set can be decomposed into some special interval
type-2 fuzzy sets. As a result, the advantages of interval type-
2 fuzzy sets can be used to study general type-2 fuzzy sets,
and many complex definitions and representations can also be
simplified by using α-plane approach. For example, the set-
theoretic operations based α-plane representation are more
intuitionistic than those based on extension principle.

Theorem 2.1 (Mendel et al. 2009) Let ( Ã ∪ B̃)α and ( Ã ∩
B̃)α be α-plane of Ã ∪ B̃ and Ã ∩ B̃, respectively, we have

Ã ∪ B̃ = ∪
α∈[0,1]

α/( Ãα ∪ B̃α);
Ã ∩ B̃ = ∪

α∈[0,1]
α/( Ãα ∩ B̃α).

where

Ãα ∪ B̃α =
∫

x∈X

⎡
⎢⎢⎣

∫

u0∈[S Ã
L (x |α)∨SB̃

L (x |α),S Ã
R (x |α)∨SB̃

R (x |α)]

u0

⎤
⎥⎥⎦

/
x;

Ãα ∩ B̃α =
∫

x∈X

⎡
⎢⎢⎣

∫

u0∈[S Ã
L (x |α)∧SB̃

L (x |α),S Ã
R (x |α)∧SB̃

R (x |α)]

u0

⎤
⎥⎥⎦

/
x

Obviously, S Ã∪B̃
L (x |α)= S Ã

L (x |α)∨SB̃
L (x |α), S Ã∪B̃

R (x |α) =
S Ã

R (x |α)∨ SB̃
R (x |α), S Ã∩B̃

L (x |α) = S Ã
L (x |α)∧ SB̃

L (x |α) and

S Ã∩B̃
R (x |α) = S Ã

R (x |α) ∧ SB̃
R (x |α) hold.

Definition 2.6 (Hamrawi and Coupland 2010) Let Ã, B̃ ∈
F2(X), define Ã ⊆ B̃ if S Ã

L (x |α) ≤ SB̃
L (x |α) and S Ã

R (x |α) ≤
SB̃

R (x |α) hold for any α ∈ [0, 1] and x ∈ X.
It can be seen that the above containment concept of gen-

eral type-2 fuzzy sets satisfies the following properties: (1) if
Ã ⊆ B̃ and B̃ ⊆ Ã, then Ã = B̃; (2) if Ã ⊆ B̃ and B̃ ⊆ C̃,
then Ã ⊆ C̃; (3) Ã ⊆ B̃ ⇔ Ã∩ B̃ = Ã and Ã∪ B̃ = B̃. Thus,
the above containment definition of general type-2 fuzzy sets
is intuitive and justified. Certainly, the containment concept
of type-2 fuzzy sets is still to be properly defined by using
other approaches.

In Zhai and Mendel (2011), five uncertainty measures of
general type-2 fuzzy sets were studied by using α-plane
representation theory. Similar to the literature (Zhai and
Mendel 2011), in this paper we also make some assump-
tions on the secondary membership functions. For any Ã =∫

x∈X [∫u0∈J Ã
x

fx (u0)/u0]/x, it must satisfy:

fx (u0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gx (u0) u0 ∈ [S Ã
L (x |0), S Ã

L (x |1)]
1 u0 ∈ [S Ã

L (x |1), S Ã
R (x |1)]

hx (u0) u0 ∈ [S Ã
R (x |1), S Ã

R (x |0)]
0 u0 ∈ (−∞, S Ã

L (x |0)) ∪ (S Ã
R (x |0),∞)

,

where gx (u0) ∈ [0, 1] is monotonically non-decreasing, and
hx (u0) ∈ [0, 1] is monotonically non-increasing. That is to
say, each secondary membership function of Ã must be a
normal and convex type-1 fuzzy set.

2.2 Axiomatic definitions of general type-2 fuzzy similarity
and inclusion measures

Similarity and inclusion measures have important applica-
tions in the fields of clustering analysis, word computing,
fault diagnosis, etc. In contrast to type-1 fuzzy similarity and
inclusion measures, there are two explanations about gen-
eral type-2 fuzzy similarity and inclusion measures. First,
general type-2 fuzzy similarity and inclusion measures are
type-1 fuzzy sets on [0, 1]. Second, general type-2 fuzzy
similarity and inclusion measures are certain value in [0, 1].
In Zhai and Mendel (2011), five uncertainty measures of
general type-2 fuzzy sets were studied, and the ultimate
manifestation of these measures are type-1 fuzzy sets. In
fact, type-2 fuzzy sets are mainly used to describe highly
uncertain phenomenon, so it is coincident with the nature
of law when the uncertainty measures of type-2 fuzzy sets
are expressed as type-1 fuzzy sets. Similarly, the general
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type-2 fuzzy similarity and inclusion measures should be
represented as type-1 fuzzy sets. However, if the general
type-2 fuzzy similarity and inclusion measures are expressed
as uncertain amounts, then they may be subject to certain
restrictions in practical applications because that they are
not intuitive. One solution is that these type-1 fuzzy sets are
defuzzified, so that one can get some certain values. Another
solution is that we directly define these type-2 fuzzy simi-
larity and inclusion measures as certain value in [0, 1]. In
summary, if the type-2 fuzzy similarity and inclusion mea-
sures are expressed as uncertain amount, they are more in line
with the nature of type-2 fuzzy sets. If type-2 fuzzy similar-
ity and inclusion measures are expressed as certain values,
they are more intuitive and play an important role in practi-
cal applications. In the following, the two situations will be
discussed.

Similar to the axiomatic definitions of interval type-2
fuzzy similarity and inclusion measures (Mendel and Wu
2010), we give the axiomatic definitions of general type-2
fuzzy similarity and inclusion measures in next part. Here we
define type-2 fuzzy empty set ∅̃ = ∫

x∈X [∫u0∈[0,0] 1/u0]/x .

Obviously, S∅̃
L(x |α) = S∅̃

R(x |α) = 0 holds for any x ∈ X
and α ∈ [0, 1].

Definition 2.7 A real function I : F2(X)× F2(X) → [0, 1]
is called an inclusion measure of general type-2 fuzzy sets,
if I satisfies the following axioms:

(I1) ∀ Ã ∈ F2(X), I ( Ã, ∅̃) = 0;
(I2) ∀ Ã, B̃ ∈ F2(X), Ã ⊆ B̃ ⇔ I ( Ã, B̃) = 1;
(I3) ∀ Ã, B̃, C̃ ∈ F2(X), Ã ⊆ B̃ ⊆ C̃ ⇒ I (C̃, Ã) ≤

I (B̃, Ã), I (C̃, Ã) ≤ I (C̃, B̃).

Remark 1 If I (•, •) is a type-1 fuzzy set, then “0” in (I1) is
expressed as “1/0”, “1” in (I2) is expressed as “1/1”, and
“≤” in (I3) represents inclusion relation of type-1 fuzzy
sets.

Definition 2.8 A real function S : F2(X)× F2(X) → [0, 1]
is called a similarity measure of general type-2 fuzzy sets, if
S satisfies the following axioms:

(S1) ∀ Ã, B̃ ∈ F2(X), S( Ã, B̃) = S(B̃, Ã);
(S2) ∀ Ã ∈ F2(X), S( Ã, Ã) = 1;
(S3) ∀ Ã, B̃, C̃ ∈ F2(X), Ã ⊆ B̃ ⊆ C̃ ⇒ S( Ã, C̃) ≤

S( Ã, B̃), S( Ã, C̃) ≤ S(B̃, C̃).

Remark 2 If S(•, •) is a type-1 fuzzy set, then “1” in (S2)
is expressed as “1/1”, and “≤” in (S3) represents inclusion
relation of type-1 fuzzy sets.

3 General type-2 fuzzy similarity and inclusion
measures

3.1 Definitions of general type-2 fuzzy inclusion measures

The most popular inclusion measure for type-1 fuzzy sets
was proposed by Kosko (1990), which is

IK (A, B) =
∫

x∈X min(u A(x), u B(x))dx∫
x∈X u A(x)dx

.

where A and B are type-1 fuzzy sets on X . The notation∫
is an integral, for discrete universes of discourse X,

∫
is

replaced by the summation
∑

.
In the following, based on the Definition 2.7 and the fore-

going analysis, we define new general type-2 fuzzy inclu-
sion measures. Furthermore, the theoretical proof will also
be given to illustrate that the proposed inclusion measures
are natural extensions of the type-1 fuzzy inclusion measure
IK (•, •). The new general type-2 fuzzy inclusion measure is
defined as:

I1( Ã, B̃) = ∪
α∈[0,1]

{α/[IL( Ã, B̃, a), IR( Ã, B̃, a)]}.

where

IL( Ã, B̃, a)=min

{∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X S Ã
R (x |α)dx

}
;

IR( Ã, B̃, a)=max

{∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X S Ã
R (x |α)dx

}
.

Theorem 3.1 I1(•, •) is an inclusion measure on F2(X).

Proof (I1) ∀ Ã ∈ F2(X), α ∈ [0, 1] and x ∈ X , we have

S Ã
L (x |α) ∧ S∅̃

L(x |α) = 0 and S Ã
R (x |α) ∧ S∅̃

R(x |α) = 0.
That is to say, for any α ∈ [0, 1], we have IL( Ã, B̃, a) =
IR( Ã, B̃, a) = 0. Thus, I1( Ã, ∅̃) = 1/0.

(I2) if Ã ⊆ B̃, then S Ã
L (x |α) ≤ SB̃

L (x |α) and S Ã
R (x |α) ≤

SB̃
R (x |α) hold for any α ∈ [0, 1] and x ∈ X . Thus,

IL( Ã, B̃, a) = 1 and IR( Ã, B̃, a) = 1 hold for any α ∈
[0, 1]. We obtain I1( Ã, B̃) = 1/1. On the other hand, if
I1( Ã, B̃) = 1/1, then IL( Ã, B̃, a) = 1 and IR( Ã, B̃, a) = 1
hold for any α ∈ [0, 1]. Thus, for any α ∈ [0, 1], we have

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

=
∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X S Ã

R (x |α)dx
= 1.
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Thus,
∫

x∈X [S Ã
L (x |α) − min(S Ã

L (x |α), SB̃
L (x |α))]dx = ∫

x∈X

[S Ã
R (x |α) − min(S Ã

R (x |α), SB̃
R (x |α))]dx = 0.

Since S Ã
L (x |α)−min(S Ã

L (x |α), SB̃
L (x |α)) ≥ 0 and S Ã

R (x |α)−
min(S Ã

R (x |α), SB̃
R (x |α)) ≥ 0 hold for any α ∈ [0, 1]

and x ∈ X , we have S Ã
L (x |α) = min(S Ã

L (x |α), SB̃
L (x |α))

and S Ã
R (x |α) = min(S Ã

R (x |α), SB̃
R (x |α)). That is to say,

S Ã
L (x |α) ≤ SB̃

L (x |α) and S Ã
R (x |α) ≤ SB̃

R (x |α) hold for any
α ∈ [0, 1] and x ∈ X . Therefore, Ã ⊆ B̃.

(I3) if Ã ⊆ B̃ ⊆ C̃ , then S Ã
L (x |α) ≤ SB̃

L (x |α) ≤ SC̃
L (x |α)

and S Ã
R (x |α) ≤ SB̃

R (x |α) ≤ SC̃
R (x |α) hold for any α ∈

[0, 1] and x ∈ X . We have IL(C̃, Ã, a) ≤ IL(B̃, Ã, a)

and IR(C̃, Ã, a) ≤ IR(B̃, Ã, a) for any α ∈ [0, 1]. Thus,
I1(C̃, Ã) ≤ I1(B̃, Ã). Similarly,I1(C̃, Ã) ≤ I1(C̃, B̃). The
whole proof is completed. ��
Theorem 3.2 If Ã and B̃ are degenerated to the type-1 fuzzy
sets on X , then the general type-2 fuzzy inclusion measure
I1(•, •)becomes the type-1 fuzzy inclusion measure IK (•, •).

Proof Since Ã and B̃ are degenerated to the type-1 fuzzy set
on X , we have

Ã =
∫

x∈U

u Ã(x)/x =
∫

x∈X

⎡
⎢⎢⎣

∫

u0∈J Ã
x

1/u0

⎤
⎥⎥⎦

/
x, J Ã

x ∈ [0, 1],

B̃ =
∫

x∈U

u B̃(x)/x =
∫

x∈X

⎡
⎢⎢⎣

∫

u0∈J B̃
x

1/u0

⎤
⎥⎥⎦

/
x, J B̃

x ∈ [0, 1].

That is to say, the primary memberships J Ã
x and J B̃

x of x only

can take a sole value. Thus, we obtain S Ã
L (x |α) = S Ã

R (x |α) =
S Ã

L (x |1) and SB̃
L (x |α) = SB̃

R (x |α) = SB̃
L (x |1) for any x ∈ X

and α ∈ [0, 1]. If we set S Ã
L (x |1) = u A(x) and SB̃

L (x |1) =
u B(x), then u A(x) ∈ [0, 1] and u B(x) ∈ [0, 1] are functions
related to x ∈ X . Thus,

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

=
∫

x∈X min(u A(x), u B(x))dx∫
x∈X u A(x)dx

,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X S Ã
R (x |α)dx

=
∫

x∈X min(u A(x), u B(x))dx∫
x∈X u A(x)dx

.

That is to say, for any α ∈ [0, 1], we have

IL( Ã, B̃, a) = IR( Ã, B̃, a) =
∫

x∈X min(u A(x), u B(x))dx∫
x∈X u A(x)dx

.

Hence, I1( Ã, B̃) =
∫

x∈X min(u A(x),u B (x))dx∫
x∈X u A(x)dx

. The whole proof

is completed. ��
The general steps for computing the general type-2 fuzzy

inclusion measure I1( Ã, B̃) can be summarized as:
Step1: decide on the numbers of α-planes. Call that num-

ber � + 1. Regardless of � + 1, α = 0 and α = 1 must
always be used.

Step2: for each α, compute α/[IL( Ã, B̃, a), IR( Ã, B̃, a)].
Step3: compute I1( Ã, B̃).
Noted that the inclusion measure I1(•, •) is a type-1 fuzzy

set, so we can obtain the centroid Centroid(I1(•, •)) of
I1(•, •) by using centroid defuzzification method. Based on
Centroid(I1(•, •)), we can be very intuitive to see the degree
to which a type-2 fuzzy set is included in another type-2
fuzzy set. As the foregoing analysis, another program is that
we directly define general type-2 fuzzy inclusion measure as
certain value in [0, 1]. If the α is broken into �+1 values, the
general type-2 fuzzy inclusion measure I2(•, •) as a certain
value, is defined as follow:

I2( Ã, B̃) = 1

� + 1

∑
α=0, 1

�
, 2
�

,··· , �−1
�

,1

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx
.

Theorem 3.3 I2(•, •) is an inclusion measure on F2(X).

Proof (I1) ∀ Ã ∈ F2(X), α ∈ [0, 1] and x ∈ X , we have

S Ã
L (x |α) ∧ S∅̃

L(x |α) = 0 and S Ã
R (x |α) ∧ S∅̃

R(x |α) = 0. That
is to say, for any α ∈ [0, 1], we have

∫
x∈X min(S Ã

L (x |α), S∅̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), S∅̃

R(x |α))dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx
= 0.

Thus, I2( Ã, ∅̃) = 0.
(I2) if Ã ⊆ B̃, then S Ã

L (x |α) ≤ SB̃
L (x |α) and S Ã

R (x |α) ≤
SB̃

R (x |α) hold for any α ∈ [0, 1] and x ∈ X . Thus, for any
α ∈ [0, 1], we have

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx

=
∫

x∈X S Ã
L (x |α)dx + ∫

x∈X S Ã
R (x |α)dx∫

x∈X S Ã
L (x |α)dx + ∫

x∈X S Ã
R (x |α)dx

= 1.

We obtain I2( Ã, B̃) = 1.
On the other hand, if I2( Ã, B̃) = 1, then

� + 1 =
∑

α=0, 1
�

, 2
�

,..., �−1
�

,1

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx
.
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Since
∫

x∈X min(S Ã
L (x |α),SB̃

L (x |α))dx+∫
x∈X min(S Ã

R (x |α),SB̃
R (x |α))dx∫

x∈X S Ã
L (x |α)dx+∫

x∈X S Ã
R (x |α)dx

≤
1, we have

∫
x∈X [S Ã

L (x |α) − min(S Ã
L (x |α), SB̃

L (x |α))]dx

+ ∫
x∈X [S Ã

R (x |α) − min(S Ã
R (x |α), SB̃

R (x |α))]dx = 0.

Furthermore, S Ã
L (x |α)−min(S Ã

L (x |α), SB̃
L (x |α)) ≥ 0 and

S Ã
R (x |α) − min(S Ã

R (x |α), SB̃
R (x |α)) ≥ 0 hold for any α ∈

[0, 1] and x ∈ X . Thus, S Ã
L (x |α) ≤ SB̃

L (x |α) and S Ã
R (x |α) ≤

SB̃
R (x |α) hold for any α ∈ [0, 1] and x ∈ X . That is to say,

Ã ⊆ B̃.
(I3) if Ã ⊆ B̃ ⊆ C̃ , then S Ã

L (x |α) ≤ SB̃
L (x |α) ≤ SC̃

L (x |α)

and S Ã
R (x |α) ≤ SB̃

R (x |α) ≤ SC̃
R (x |α) hold for any α ∈ [0, 1]

and x ∈ X . That is to say, for anyα ∈ [0, 1], we have

I2(C̃, Ã) = 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X min(SC̃

L (x |α), S Ã
L (x |α))dx + ∫

x∈X min(SC̃
R (x |α), S Ã

R (x |α))dx∫
x∈X SC̃

L (x |α)dx + ∫
x∈X SC̃

R (x |α)dx

= 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx∫
x∈X SC̃

L (x |α)dx + ∫
x∈X SC̃

R (x |α)dx

≤ 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx∫
x∈X SB̃

L (x |α)dx + ∫
x∈X SB̃

R (x |α)dx

= 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X min(SB̃

L (x |α), S Ã
L (x |α))dx + ∫

x∈X min(SB̃
R (x |α), S Ã

R (x |α))dx∫
x∈X SB̃

L (x |α)dx + ∫
x∈X SB̃

R (x |α)dx

= I2(B̃, Ã).

Similarly, I2(C̃, Ã) ≤ I2(C̃, B̃). The whole proof is com-
pleted. ��
Theorem 3.4 If Ã and B̃ are degenerated to the type-1 fuzzy
sets on X , then the general type-2 fuzzy inclusion measure
I2(•, •)becomes the type-1 fuzzy inclusion measure IK (•, •).

Proof If Ã and B̃ are degenerated to the type-1 fuzzy set on
X , from the discussion of Theorem 3.2, we have S Ã

L (x |1) =
u A(x) and SB̃

L (x |1) = u B(x), where u A(x) ∈ [0, 1] and
u B(x) ∈ [0, 1] are functions related to x ∈ X . Thus, for any
α ∈ [0, 1], we have

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx

=
∫

x∈X min(u A(x), u B (x))dx + ∫
x∈X min(u A(x), u B (x))dx∫

x∈X u A(x)dx + ∫
x∈X u A(x)dx

=
∫

x∈X min(u A(x), u B (x))dx∫
x∈X u A(x)dx

.

That is to say, I2( Ã, B̃) =
∫

x∈X min(u A(x),u B (x))dx∫
x∈X u A(x)dx

. The whole

proof is completed. ��

Remark 3 Rickard et al. (2009) used Zadeh’s extension prin-
ciple to define a general type-2 fuzzy inclusion measure. It
should be noted that the measure defined there is also rep-
resented as type-1 fuzzy set. Rickard’s inclusion measure
has important application values. However, it does not sat-
isfy reflexivity. From Theorem 3.1, we find that the proposed
measure I1(•, •) can satisfy reflexivity. Furthermore, it will
also be seen that the proposed inclusion measures I1(•, •)

and I2(•, •) would obtain more desirable properties than
Rickard’s inclusion measure from Sect. 3.3. The inclusion
measures of general type-2 fuzzy sets based on the vertical
slice theory have also been defined in (Yang and Lin 2009;
Hwang et al. 2011), but it is required that the FOU of two
general type-2 fuzzy sets must be same. From the definitions
of I1(•, •) and I2(•, •), one can know that the proposed mea-
sures have not such limitations.

3.2 Definitions of general type-2 fuzzy similarity measures

The most popular similarity measure for type-1 fuzzy sets
was proposed by Jaccard (Wu and Mendel 2009), which is

SJ (A, B) =
∫

x∈X min(u A(x), u B(x))dx∫
x∈X max(u A(x), u B(x))dx

.

where A and B are type-1 fuzzy sets on X . The notation
∫ is an integral, for discrete universes of discourse X , ∫ is
replaced by the summation

∑
.

In the following, based on the Definition 2.8 and the fore-
going analysis, we define new general type-2 fuzzy simi-
larity measures. Furthermore, the theoretical proof will also
be given to illustrate that the proposed similarity measures
are natural extensions of the type-1 fuzzy similarity measure
SJ (•, •). The new general type-2 fuzzy similarity measure
is defined as:

S1( Ã, B̃) = ∪
α∈[0,1]

{α/[SL( Ã, B̃, a), SR( Ã, B̃, a)]}

where

SL( Ã, B̃, a) = min

{ ∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X max(S Ã
L (x |α), SB̃

L (x |α))dx
,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

}
;

SR( Ã, B̃, a) = max

{ ∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X max(S Ã
L (x |α), SB̃

L (x |α))dx
,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

}
.

Theorem 3.5 S1(•, •) is a similarity measure on F2(X).

Proof (S1) and (S2) are trivial.
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(S3) if Ã ⊆ B̃ ⊆ C̃ , then S Ã
L (x |α) ≤ SB̃

L (x |α) ≤ SC̃
L (x |α)

and S Ã
R (x |α) ≤ SB̃

R (x |α) ≤ SC̃
R (x |α) hold for any α ∈ [0, 1]

and x ∈ X . Thus, for any α ∈ [0, 1], we have

SL( Ã, C̃, a) = min

{ ∫
x∈X min(S Ã

L (x |α), SC̃
L (x |α))dx∫

x∈X max(S Ã
L (x |α), SC̃

L (x |α))dx
,

∫
x∈X min(S Ã

R (x |α), SC̃
R (x |α))dx∫

x∈X max(S Ã
R (x |α), SC̃

R (x |α))dx

}

= min

{∫
x∈X S Ã

L (x |α)dx∫
x∈X SC̃

L (x |α)dx
,

∫
x∈X S Ã

R (x |α)dx∫
x∈X SC̃

R (x |α)dx

}

≤ min

{∫
x∈X S Ã

L (x |α)dx∫
x∈X SB̃

L (x |α)dx
,

∫
x∈X S Ã

R (x |α)dx∫
x∈X SB̃

R (x |α)dx

}

= min

{ ∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X max(S Ã
L (x |α), SB̃

L (x |α))dx
,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

}
.

That is to say, SL( Ã, C̃, a) ≤ SL( Ã, B̃, a). Similarly, we
obtain SR( Ã, C̃, a) ≤ SR( Ã, B̃, a).

Therefore, S1( Ã, C̃) ≤ S1( Ã, B̃). Similarly, S1( Ã, C̃) ≤
S1(B̃, C̃). The whole proof is completed. ��
Theorem 3.6 If Ã and B̃ are degenerated to the type-1
fuzzy sets on X , then the general type-2 fuzzy similarity
measure S1(•, •) becomes the type-1 fuzzy similarity mea-
sureSJ (•, •).

Proof If Ã and B̃ are degenerated to the type-1 fuzzy set on
X , from the discussion of Theorem 3.2, we have S Ã

L (x |1) =
u A(x) and SB̃

L (x |1) = u B(x), where u A(x) ∈ [0, 1] and
u B(x) ∈ [0, 1] are functions related to x ∈ X . Thus, for any
α ∈ [0, 1], we have

SL( Ã, B̃, a) = SR( Ã, B̃, a) =
∫

x∈X min(u A(x), u B(x))dx∫
x∈X max(u A(x), u B(x))dx

.

That is to say, S1( Ã, B̃) =
∫

x∈X min(u A(x),u B (x))dx∫
x∈X max(u A(x),u B (x))dx

. The whole

proof is completed. ��
Noted that the similarity measure S1(•, •) is a type-1 fuzzy

set, so we can obtain the centroid Centroid(S1(•, •)) of
S1(•, •) by using centroid defuzzification method. If the α is
broken into �+1 values, the general type-2 fuzzy similarity
measure S2(•, •) as a certain value, is defined as follow:

S2( Ã, B̃) = 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X max(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx
.

Theorem 3.7 S2(•, •) is a similarity measure on F2(X).

Proof (S1) and (S2) are trivial.
(S3) if Ã ⊆ B̃ ⊆ C̃ , then S Ã

L (x |α) ≤ SB̃
L (x |α) ≤ SC̃

L (x |α)

and S Ã
R (x |α) ≤ SB̃

R (x |α) ≤ SC̃
R (x |α) hold for any α ∈ [0, 1]

and x ∈ X . Thus, for any α ∈ [0, 1], we have

S2( Ã, C̃) = 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X min(S Ã

L (x |α), SC̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SC̃

R (x |α))dx∫
x∈X max(S Ã

L (x |α), SC̃
L (x |α))dx + ∫

x∈X max(S Ã
R (x |α), SC̃

R (x |α))dx

= 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx∫
x∈X SC̃

L (x |α)dx + ∫
x∈X SC̃

R (x |α)dx

≤ 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X

S Ã
L (x |α)dx + ∫

x∈X S Ã
R (x |α)dx

∫
x∈X SB̃

L (x |α)dx + ∫
x∈X SB̃

R (x |α)dx

= 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X max(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

= S2( Ã, B̃).

Similarly, S2( Ã, C̃) ≤ S2(B̃, C̃). The whole proof is com-
pleted. ��

Theorem 3.8 If Ã and B̃ are degenerated to the type-1
fuzzy sets on X , then the general type-2 fuzzy similarity mea-
sure S2(•, •) becomes the type-1 fuzzy similarity measure
SJ (•, •).

Proof If Ã and B̃ are degenerated to the type-1 fuzzy set on
X , from the discussion of Theorem 3.2, we have S Ã

L (x |1) =
u A(x) and SB̃

L (x |1) = u B(x), where u A(x) ∈ [0, 1] and
u B(x) ∈ [0, 1] are functions related to x ∈ X . Thus, for any
α ∈ [0, 1], we have

S2( Ã, B̃) = 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X max(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

= 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1∫
x∈X min(u A(x), u B (x))dx + ∫

x∈X min(u A(x), u B (x))dx∫
x∈X max(u A(x), u B (x))dx + ∫

x∈X max(u A(x), u B (x))dx

=
∫

x∈X min(u A(x), u B (x))dx∫
x∈X max(u A(x), u B (x))dx

.

The whole proof is completed. ��
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Remark 4 Observe that if Ã and B̃ become interval type-2
fuzzy sets, then S2(•, •) reduces to the interval type-2 fuzzy
similarity measure defined in Wu and Mendel (2009).

Remark 5 Mitchell (2005) defined a general type-2 fuzzy
similarity measure sets by using wave-slice representa-
tion theory, but Mitchell’s similarity measure does not sat-
isfy reflexivity and symmetry. However, from Theorem 3.5
and Theorem 3.7, it is clear that the proposed similarity
measures S1(•, •) and S2(•, •) have improved the short-
comings. Furthermore, the proposed measures have also
no limitations to the FOU of two general type-2 fuzzy
sets.

3.3 Properties of general type-2 fuzzy similarity
and inclusion measures

In this subsection, some properties of general type-2 fuzzy
similarity and inclusion measures will be derived.

Theorem 3.9 For any Ã, B̃, C̃ ∈ F2(X), if B̃ ⊆ C̃ , then
the following statements hold:

(1) I1( Ã, B̃) ≤ I1( Ã, C̃);
(2) I2( Ã, B̃) ≤ I2( Ã, C̃).

Proof (1) Since B̃ ⊆ C̃ , we have SB̃
L (x |α) ≤ SC̃

L (x |α) and

SB̃
R (x |α) ≤ SC̃

R (x |α) for any α ∈ [0, 1] and x ∈ X . Thus, for
any α ∈ [0, 1], we can obtain

IL( Ã, B̃, a) = min

{∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X S Ã
R (x |α)dx

}

≤ min

{∫
x∈X min(S Ã

L (x |α), SC̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

,

∫
x∈X min(S Ã

R (x |α), SC̃
R (x |α))dx∫

x∈X S Ã
R (x |α)dx

}

= IL( Ã, C̃, a).

IR( Ã, B̃, a) = max

{∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X S Ã
R (x |α)dx

}

≤ max

{∫
x∈X min(S Ã

L (x |α), SC̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

,

∫
x∈X min(S Ã

R (x |α), SC̃
R (x |α))dx∫

x∈X S Ã
R (x |α)dx

}

= IR( Ã, C̃, a).

Therefore, I1( Ã, B̃) ≤ I1( Ã, C̃).
(2) From B̃ ⊆ C̃ , we have

I2( Ã, B̃) = 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx

≤ 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1

∫
x∈X min(S Ã

L (x |α), SC̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SC̃

R (x |α))dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx

= I2( Ã, C̃).

The whole proof is completed. ��

Theorem 3.10 For any Ã, B̃ ∈ F2(X), the following state-
ments hold:

(1) S1( Ã ∪ B̃, Ã ∩ B̃) = S1( Ã, B̃);
(2) S2( Ã ∪ B̃, Ã ∩ B̃) = S2( Ã, B̃).

Proof (1) For any α ∈ [0, 1], we have

SL ( Ã ∪ B̃, Ã ∩ B̃, a) = min

⎧⎨
⎩

∫
x∈X min(S Ã∪B̃

L (x |α), S Ã∩B̃
L (x |α))dx∫

x∈X max(S Ã∪B̃
L (x |α), S Ã∩B̃

L (x |α))dx
,

∫
x∈X min(S Ã∪B̃

R (x |α), S Ã∩B̃
R (x |α))dx∫

x∈X max(S Ã∪B̃
R (x |α), S Ã∩B̃

R (x |α))dx

⎫⎬
⎭

= min

⎧⎨
⎩

∫
x∈X S Ã∩B̃

L (x |α)dx∫
x∈X S Ã∪B̃

L (x |α)dx
,

∫
x∈X S Ã∩B̃

R (x |α)dx∫
x∈X S Ã∪B̃

R (x |α)dx

⎫⎬
⎭

= min

⎧⎨
⎩

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X max(S Ã
L (x |α), SB̃

L (x |α))dx
,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

⎫⎬
⎭

= SL ( Ã, B̃, a).

Similarly, SR( Ã∪ B̃, Ã∩ B̃, a) = SR( Ã, B̃, a). Thus, S1( Ã∪
B̃, Ã ∩ B̃) = S1( Ã, B̃).

(2) S2( Ã ∪ B̃, Ã ∩ B̃)
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= 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1∫
x∈X min(S Ã∪B̃

L (x |α), S Ã∩B̃
L (x |α))dx + ∫

x∈X min(S Ã∪B̃
R (x |α), S Ã∩B̃

R (x |α))dx∫
x ∈ Xmax(S Ã∪B̃

L (x |α), S Ã∩B̃
L (x |α))dx + ∫

x∈X max(S Ã∪B̃
R (x |α), S Ã∩B̃

R (x |α))dx

= 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1∫
x∈X S Ã∩B̃

L (x |α)dx + ∫
x∈X S Ã∩B̃

R (x |α)dx∫
x∈X S Ã∪B̃

L (x |α)dx + ∫
x∈X S Ã∪B̃

R (x |α)dx

= 1

� + 1

∑
α=0, 1

�
, 2
�

,..., �−1
�

,1∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X max(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

= S2( Ã, B̃).

The whole proof is completed. ��

Theorem 3.11 For any Ã, B̃ ∈ F2(X), the following state-
ments hold:

(1) I1( Ã ∪ B̃, Ã ∩ B̃) = S1( Ã, B̃);
(2) I2( Ã ∪ B̃, Ã ∩ B̃) = S2( Ã, B̃);
(3) S1( Ã, Ã ∩ B̃) = I1( Ã, B̃);
(4) S2( Ã, Ã ∩ B̃) = I2( Ã, B̃).

Proof (1) For any α ∈ [0, 1], we have

IL( Ã ∪ B̃, Ã ∩ B̃, a)

= min

{∫
x∈X min(S Ã∪B̃

L (x |α), S Ã∩B̃
L (x |α))dx∫

x∈X S Ã∪B̃
L (x |α)dx

,

∫
x∈X min(S Ã∪B̃

R (x |α), S Ã∩B̃
R (x |α))dx∫

x∈X S Ã∪B̃
R (x |α)dx

}

= min

{∫
x∈X S Ã∩B̃

L (x |α)dx∫
x∈X S Ã∪B̃

L (x |α)dx
,

∫
x∈X S Ã∩B̃

R (x |α)dx∫
x∈X S Ã∪B̃

R (x |α)dx

}

= min

{ ∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X max(S Ã
L (x |α), SB̃

L (x |α))dx
,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

}

= SL( Ã, B̃, a).

Similarly, IR( Ã ∪ B̃, Ã ∩ B̃, a) = SR( Ã, B̃, a). Thus,
I1( Ã ∪ B̃, Ã ∩ B̃) = S1( Ã, B̃).

(2) I2( Ã ∪ B̃, Ã ∩ B̃)

= 1

� + 1

∑
α=0, 1

�
, 2

�
,..., �−1

�
,1

∫
x∈X min(S Ã∪B̃

L (x |α), S Ã∩B̃
L (x |α))dx +∫

x∈X min(S Ã∪B̃
R (x |α), S Ã∩B̃

R (x |α))dx∫
x∈X S Ã∪B̃

L (x |α)dx+∫
x∈X S Ã∪B̃

R (x |α)dx

= 1

� + 1

∑
α=0, 1

�
, 2

�
,..., �−1

�
,1

∫
x∈X S Ã∩B̃

L (x |α)dx + ∫
x∈X S Ã∩B̃

R (x |α)dx∫
x∈X S Ã∪B̃

L (x |α)dx + ∫
x∈X S Ã∪B̃

R (x |α)dx

= 1

� + 1

∑
α=0, 1

�
, 2

�
,..., �−1

�
,1

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X max(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X max(S Ã
R (x |α), SB̃

R (x |α))dx

= S2( Ã, B̃).

(3) For any α ∈ [0, 1], we have

SL( Ã, Ã ∩ B̃, a)

= min

{ ∫
x∈X min(S Ã

L (x |α), S Ã∩B̃
L (x |α))dx∫

x∈X max(S Ã
L (x |α), S Ã∩B̃

L (x |α))dx
,

∫
x∈X min(S Ã

R (x |α), S Ã∩B̃
R (x |α))dx∫

x∈X max(S Ã
R (x |α), S Ã∩B̃

R (x |α))dx

}

= min

{∫
x∈X S Ã∩B̃

L (x |α)dx∫
x∈X S Ã

L (x |α)dx
,

∫
x∈X S Ã∩B̃

R (x |α)dx∫
x∈X S Ã

R (x |α)dx

}

123



818 T. Zhao et al.

= min

{∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx∫

x∈X S Ã
L (x |α)dx

,

∫
x∈X min(S Ã

R (x |α), SB̃
R (x |α))dx∫

x∈X S Ã
R (x |α)dx

}

= IL( Ã, B̃, a).

Similarly, we have SR( Ã, Ã ∩ B̃, a) = IR( Ã, B̃, a). Thus,
S1( Ã, Ã ∩ B̃) = I1( Ã, B̃).

(4) S2( Ã, Ã ∩ B̃)

= 1

� + 1

∑
α=0, 1

�
, 2

�
,..., �−1

�
,1

∫
x∈X min(S Ã

L (x |α), S Ã∩B̃
L (x |α))dx+∫

x∈X min(S Ã
R (x |α), S Ã∩B̃

R (x |α))dx∫
x∈X max(S Ã

L (x |α), S Ã∩B̃
L (x |α))dx+∫

x∈X max(S Ã
R (x |α), S Ã∩B̃

R (x |α))dx

= 1

� + 1

∑
α=0, 1

�
, 2

�
,..., �−1

�
,1

∫
x∈X S Ã∩B̃

L (x |α)dx + ∫
x∈X S Ã∩B̃

R (x |α)dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx

= 1

� + 1

∑
α=0, 1

�
, 2

�
,..., �−1

�
,1

∫
x∈X min(S Ã

L (x |α), SB̃
L (x |α))dx + ∫

x∈X min(S Ã
R (x |α), SB̃

R (x |α))dx∫
x∈X S Ã

L (x |α)dx + ∫
x∈X S Ã

R (x |α)dx

= I2( Ã, B̃).

The whole proof is completed. ��
Remark 6 From the Theorems 3.1 to 3.11, it can be seen
that the proposed measures improve the shortcomings of the
existing measures since that the proposed measures satisfy
more desirable properties. Furthermore, the proposed mea-
sures are natural extensions of the most popular type-1 fuzzy
measures. As a result, the proposed measures keep the char-
acteristics of the most popular type-1 fuzzy measures. Unlike
some existing measures, the similarity measure S1(•, •) and
inclusion measure I1(•, •) are expressed as type-1 fuzzy sets,
and therefore the definitions are consistent with the highly
uncertain nature of general type-2 fuzzy sets.

4 Examples

In this section, we by several examples examine the perfor-
mances of the proposed general type-2 fuzzy similarity and
inclusion measures. By doing so, we hope to solve the fol-
lowing issues:

(1) If I1(•, •) and S1(•, •) are type-1 fuzzy sets, do the
shapes of these type-1 fuzzy sets have inevitable link with
the shapes of secondary membership functions of the general
type-2 fuzzy sets?

Remark 7 As is well known, the secondary membership
functions of general type-2 fuzzy sets are type-1 fuzzy sets.

Furthermore, it is noted that the proposed measures I1(•, •)

and S1(•, •) are also expressed as type-1 fuzzy sets. Hence,
one needs to investigate whether the shapes of I1(•, •) and
S1(•, •) have inevitable link with the shapes of secondary
membership functions of the general type-2 fuzzy sets. These
may be guidance for the further applications of I1(•, •) and
S1(•, •), for example, perceptual computing and clustering.

(2) Do Centroid(I1(•, •)) and Centroid(S1(•, •)) con-
verge to real values as � increases?

Remark 8 Since I1(•, •) and S1(•, •) are expressed as type-
1 fuzzy sets, they may be subject to certain restrictions
in practical applications since that they are not intuitive.
Hence, we can obtain the centroid Centroid(I1(•, •)) of
I1(•, •) by using centroid defuzzification method. Based
on Centroid(I1(•, •)), one can be very intuitive to see the
degree to which a general type-2 fuzzy set is included in
another general type-2 fuzzy set. However, it should be noted
that Centroid(I1(•, •)) is relative to the numbers of α-
planes, i.e., �. In real applications, we should decide on how
many α-planes will be used. Thus, it is necessary to judge
the convergence of Centroid(I1(•, •)).

(3) Do I2(•, •) and S2(•, •) converge to real values as �

increases?

Remark 9 Since I2(•, •) and S2(•, •) are also relative to the
numbers of α-planes, i.e., �. Of course, it is desirable to
consider the convergences of I2(•, •) and S2(•, •).

(4) The performance comparisons about I1(•, •) and
I2(•, •), S1(•, •) and S2(•, •).

Remark 10 By comparisons, we hope to see the differences
about I1(•, •) and I2(•, •), and S1(•, •) and S2(•, •), so that
we can get some guidance in real applications.

Because Gaussian membership function, triangular mem-
bership function and trapezoid membership function are the
normal situation in practical applications of type-2 fuzzy
systems, various cases should be tested based on different
choices made for these membership functions. In this sec-
tion, we present nine cases.

Case 1: Gaussian function with randomly generated
triangular vertical slice.

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their upper membership functions and lower membership
functions are Gaussian functions:

ū Ã(x) = e− (x−6)2
8 ; u Ã(x) = e− (x−6)2

2 ; ū B̃(x) = e− (x−4)2
18 ;

u B̃(x) = e− (x−4)2
2 .

where FOU of Ã are shown in Fig. 1a, and FOU of B̃ are
shown in Fig. 1b. For any x , the secondary membership
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Fig. 1 a The FOU of Ã for case 1, case 2 and case 3. b The FOU of B̃ for case 1, case 2 and case 3

function u Ã(x) is triangular membership function, whose
apex is determined by the following formula:

Apex = u Ã(x) + rand ∗ (ū Ã(x) − u Ã(x)).

where rand ∈ [0, 1] is randomly generated value. For any x ,
the secondary membership function u B̃(x) is also triangular
membership function, whose apex computation formula is
same with the Ã.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4a. Centroid(I1(•, •)) and
Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5a. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6a.

Case 2: Gaussian function with randomly generated
trapezoid vertical slice.

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their FOU are same with Case 1, shown in Fig. 1a, b. For
any x , the secondary membership function u Ã(x) is trapezoid
membership function, whose top left and right endpoint are
determined by the following formulas:

Lapex = u Ã(x) + 0.8 ∗ rand ∗ (ū Ã(x) − u Ã(x));
Rapex = u Ã(x) + rand ∗ (ū Ã(x) − u Ã(x)).

where rand ∈ [0, 1] is randomly generated value. For any
x , the secondary membership function u B̃(x) is also trape-
zoid membership function, whose top endpoint computation
formulas are same with the Ã.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4b. Centroid(I1(•, •)) and
Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5b. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6b.

Case 3: Gaussian function with randomly generated
Gaussian vertical slice.

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their FOU are same with Case 1, shown in Fig. 1a, b. For
any x , the secondary membership function u Ã(x) is Gaussian
membership function, whose mean is determined by μ =

(ū Ã(x) + u Ã(x))/2 and standard deviation σ is determined
by the following formula:

σ = 10 ∗ rand.

where rand ∈ [0, 1] is randomly generated value. For any x ,
the secondary membership function u B̃(x) is also Gaussian
membership function, whose mean and standard deviation
computation formulas are same with the Ã.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4c. Centroid(I1(•, •)) and
Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5c. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6c.

Case 4: Triangular function with randomly generated
triangular vertical slice.

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their upper membership functions and lower membership
functions are triangular functions: ū Ã(x) = trimf(x, [−2, 2,

20]); u Ã(x) = 0.8 ∗ trimf(x[−1, 3, 15]); ū B̃(x) = tr im f (x,

[−20, 5, 50]); u B̃(x) = 0.8 ∗ tr im f (x, [−10, 8, 35]). Where
trimf denotes triangular function, the first parameter and
third parameter of [] denote bottom left and right endpoint,
respectively, and the second parameter of [] denote apex.
Where FOU of Ã are shown in Fig. 2a, and FOU of B̃ are
shown in Fig. 2b. For any x , the secondary membership func-
tions u Ã(x) and u B̃(x) are triangular membership functions,
whose apex computation formulas are same with Case 1.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4d. Centroid(I1(•, •)) and
Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5d. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6d.

Case 5: Triangular function with randomly generated
trapezoid vertical slice.

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their FOU are same with Case 4, shown in Fig. 2a, b. For any
x , the secondary membership functions u Ã(x) and u B̃(x) are
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Fig. 2 a The FOU of Ã for case 4, case 5 and case 6. b The FOU of B̃ for case 4, case 5 and case 6
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Fig. 3 a The FOU of Ã for case 7, case 8 and case 9. b The FOU of B̃ for case 7, case 8 and case 9

trapezoid membership functions, whose top endpoint com-
putation formulas are same with Case 2.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4e. Centroid(I1(•, •)) and
Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5e. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6e.

Case 6: Triangular function with randomly generated
Gaussian vertical slice.

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their FOU are same with Case 4, shown in Fig. 2a, b. For any
x , the secondary membership functions u Ã(x) and u B̃(x) are
Gaussian membership functions, whose mean and standard
deviation computation formulas are same with Case 3.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4f. Centroid(I1(•, •)) and
Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5f. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6f.

Case 7: Trapezoid function with randomly generated
triangular vertical slice.

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their upper membership functions and lower member-
ship functions are trapezoid functions: ū Ã(x) = trapmf(x,

[−8, 2, 5, 20]);

u Ã(x) = 0.7 ∗ trapmf(x, [−5, 3, 8, 15]); ū B̃(x) =
trapmf(x, [−18, 3, 6, 25]); u B̃(x) = 0.6 ∗ trapmf(x, [−5,

6, 7, 19]). Where trapmf denotes trapezoid function, the first
parameter and four parameter of [] denote bottom left and
right endpoint, respectively, and the second parameter and
third parameter of [] denote top left and right endpoint,
respectively. Where FOU of Ã are shown in Fig. 3a, and FOU
of B̃ are shown in Fig. 3b. For any x , the secondary member-
ship functions u Ã(x) and u B̃(x) are triangular membership
functions, whose apex computation formulas are same with
Case 1.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4g. Centroid(I1(•, •)) and
Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5g. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6g.

Case 8: Trapezoid function with randomly generated
trapezoid vertical slice.

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their FOU are same with Case 7, shown in Fig. 3a, b. For any
x , the secondary membership functions u Ã(x) and u B̃(x) are
trapezoid membership functions, whose top endpoint com-
putation formulas are same with Case 2.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4h. Centroid(I1(•, •)) and
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Fig. 4 a I1(•, •) and S1(•, •) for Case 1. b I1(•, •) and S1(•, •) for
Case 2. c I1(•, •) and S1(•, •) for Case 3. d I1(•, •) and S1(•, •) for
Case 4. (e) I1(•, •) and S1(•, •) for Case 5. f I1(•, •) and S1(•, •) for
Case 6. g I1(•, •) and S1(•, •) for Case 7. h I1(•, •) and S1(•, •) for
Case 8. i I1(•, •) and S1(•, •) for Case 9

Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5h. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6h.

Case 9: Trapezoid function with randomly generated
Gaussian vertical slice.
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Fig. 5 a Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 1.
b Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 2.
c Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 3.
d Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 4.
e Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 5.
f Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 6.
g Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 7.
h Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 8.
i Centroid(I1(•, •)) and Centroid(S1(•, •)) for Case 9

Let Ã, B̃ be two general type-2 fuzzy sets on X = [0, 10].
Their FOU are same with Case 7, shown in Fig. 3a, b. For any
x , the secondary membership functions u Ã(x) and u B̃(x) are
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Fig. 6 a I2(•, •) and S2(•, •) for Case 1. b I2(•, •) and S2(•, •) for
Case 2. c I2(•, •) and S2(•, •) for Case 3. d I2(•, •) and S2(•, •) for
Case 4. e I2(•, •) and S2(•, •) for Case 5. f I2(•, •) and S2(•, •) for
Case 6. g I2(•, •) and S2(•, •) for Case 7. h I2(•, •) and S2(•, •) for
Case 8. i I2(•, •) and S2(•, •) for Case 9

Gaussian membership functions, whose mean and standard
deviation computation formulas are same with Case 3.

The membership functions of I1(•, •) and S1(•, •) for
� =10,000 is depicted in Fig. 4i. Centroid(I1(•, •)) and
Centroid(S1(•, •)) for � ranging from 1 to 5,000 are shown
in Fig. 5i. I2(•, •) and S2(•, •) for � ranging from 1 to 5,000
are shown in Fig. 6i.

Observe from Fig. 4a–i that, regardless of the natures of
the secondary membership functions of Ã and B̃, the shapes
of membership functions of S1(•, •) and I1(•, •) are always
similar to the trapezoid when � =10,000. But noted that
we only describe the membership functions of S1(•, •) and
I1(•, •) when � =10,000. This is because that � is greater,
S1(•, •) and I1(•, •) are more close to the true values. In
fact, this can be derived from the definitions of I1(•, •) and
S1(•, •). It is noted that we only discuss the cases that the
secondary membership functions of general type-2 fuzzy sets
are Gaussian membership function, triangular membership
function or trapezoid membership function. Since Gaussian
membership function, triangular membership function and
trapezoid membership function are normal and convex, we
have [IL( Ã, B̃, 1), IR( Ã, B̃, 1)] �= ∅ from the definition of
I1(•, •). That is to say, the 1-cut set of I1(•, •) is a closed
interval. Furthermore, from the convexity of secondary mem-
bership functions, we can see that I1(•, •) is convex. Hence,
the shape of I1(•, •) is the trapezoid. It is similar to the analy-
sis of S1(•, •).

From Fig. 5a–i, we find that Centroid(I1(•, •)) and
Centroid(S1(•, •)) are always volatile. Even if � is
increased to 5,000, most of the situations for Centroid
(I1(•, •)) and Centroid(S1(•, •)) are still not stabilized.
Especially, for the cases three, seven, eight and nine,
we almost do not see a trend of convergence. In fact,
Centroid(I1(•, •)) and Centroid(S1(•, •)) are obtained
by using centroid defuzzification method to I1(•, •) and
S1(•, •). It is noted that the shapes of I1(•, •) and S1(•, •)

are easily influenced by the value of �. Thus, Centroid
(I1(•, •)) and Centroid(S1(•, •)) are always volatile as the
value of �.

From Fig. 6a–i, we can obtain that I2(•, •) and S2(•, •)

as � increases, will soon stabilize and converge to a certain
value. The above conclusions show that I2(•, •) and S2(•, •)

have more practical values. However, I1(•, •) and S1(•, •)

are coincident with the nature of and the semantic interpre-
tation of general type-2 fuzzy sets, and therefore may have
more further research topics.

5 Conclusions

In this paper, the new general type-2 fuzzy similarity and
inclusion measures have been defined by using α-plane the-
ory. The proposed measures improve the shortcomings of
the existing measures. Furthermore, the proposed measures
are natural extensions of the most popular type-1 fuzzy mea-
sures. As a result, the proposed measures keep the character-
istics of the most popular type-1 fuzzy measures. Since the
proposed measures are relative to the numbers of α-planes,
we should decide on how many α-planes will be used in real
applications. However, it is difficult to decide on the numbers
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of α-planes in theory. Of course, the larger the numbers of α-
planes are, the more stable proposed measures are, whereas
if the numbers of α-planes are too large, the computing time
would increase. Hence, it is of high interest to find efficient
algorithm to handle the problem, and further research will
focus on this issue.
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