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Abstract Educational timetabling problem is a challeng-
ing real world problem which has been of interest to many
researchers and practitioners. There are many variants of
this problem which mainly require scheduling of events and
resources under various constraints. In this study, a curricu-
lum based course timetabling problem at Yeditepe University
is described and an iterative selection hyper-heuristic is pre-
sented as a solution method. A selection hyper-heuristic as
a high level methodology operates on the space formed by
a fixed set of low level heuristics which operate directly on
the space of solutions. The move acceptance and heuristic
selection methods are the main components of a selection
hyper-heuristic. The proposed hyper-heuristic in this study
combines a simulated annealing move acceptance method
with a learning heuristic selection method and manages a
set of low level constraint oriented heuristics. A key goal in
hyper-heuristic research is to build low cost methods which
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are general and can be reused on unseen problem instances as
well as other problem domains desirably with no additional
human expert intervention. Hence, the proposed method is
additionally applied to a high school timetabling problem,
as well as six other problem domains from a hyper-heuristic
benchmark to test its level of generality. The empirical results
show that our easy-to-implement hyper-heuristic is effective
in solving the Yeditepe course timetabling problem. More-
over, being sufficiently general, it delivers a reasonable per-
formance across different problem domains.

Keywords Heuristic · Hyper-heuristic · Timetabling ·
Computational design

1 Introduction

A hyper-heuristic is a high level search methodology which
performs a search over the space of heuristics rather than the
space of solutions for solving hard computational problems
(Burke et al. 2013). The idea of combining different heuristics
(neighbourhood operators) with the goal of exploiting their
strengths dates back to the early 1960s (Fisher and Thomp-
son 1963; Crowston et al. 1963). Since then, there has been
a growing interest into hyper-heuristics. A recent theoretical
study shows that mixing heuristics could lead to exponen-
tially faster search than using each standalone heuristic on
some benchmark functions (Lehre and Özcan 2013). Hyper-
heuristics that control and mix a fixed set of low level heuris-
tics are referred to as selection hyper-heuristics. A selection
heuristic generally combines a heuristic selection and move
acceptance methods under an iterative framework. At each
step, a low level heuristic is used to modify a solution in
hand, then a decision is made whether to accept or reject
the new solution. Almost all previously proposed selection
hyper-heuristics are designed respecting the concept of a
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Fig. 1 A selection hyper-heuristic framework

domain barrier which separates the hyper-heuristic from the
problem domain containing the low level heuristics (Cowling
et al. 2001) as illustrated in Fig. 1. Traditionally, this barrier
prohibits any problem domain specific information to pass
through to the hyper-heuristic level. This type of layered and
modular approach to the design of automated search method-
ologies supports the development of more general methods
than currently there exist, which are applicable to unseen
instances from a single problem domain or even different
problem domains. Moreover, reuse of algorithmic compo-
nents becomes possible.

Educational timetabling problem is a challenging real-
world combinatorial optimisation problem which is known to
be NP-hard (Even et al. 1976; de Werra 1997). There are dif-
ferent types of educational timetabling problems, such as uni-
versity course timetabling and high school timetabling which
have been of interest to many researchers and practitioners.
This study mainly concerns university course timetabling
(Lewis 2007; Lewis et al. 2007; Erben and Keppler 1996;
Socha et al. 2002). Two subclasses of university course
timetabling problems can be identified in the literature: (1)
post-enrolment problems in which the student enrolment is
known, (2) curriculum based problems in which the student
enrolment is not known, but curriculums of the students are
available prior to the timetabling process (McCollum et al.
2010). A solution to a given university course timetabling
problem requires scheduling of courses considering limited
resources subject to a set of hard and so f t constraints. In
most of the cases, a feasible solution which satisfies the hard
constraints is sought. The soft constraints represent prefer-
ences. A solution method attempts to satisfy as many of the
soft constraints as possible.

In this study, a curriculum based university course
timetabling problem constantly dealt with at Yeditepe Uni-
versity, Faculty of Engineering and Architecture, Computer

Engineering Department is introduced. Additionally, a selec-
tion hyper-heuristic solution to the problem, which combines
a fast reacting greedy and gradient heuristic selection mech-
anism with a simulated annealing is described. We com-
pared the performances of different heuristic selection meth-
ods used within a selection hyper-heuristic framework. In
order to show that the proposed hyper-heuristic is sufficiently
general and can be applied to the other problem domains
without requiring any change, it is implemented as an exten-
sion to a public software library and tested on a high school
timetabling problem as well as a hyper-heuristic benchmark.
The empirical results indeed show that our hyper-heuristic is
adaptive and general, performing better than some previously
proposed approaches on university course timetabling prob-
lem, high school timetabling problem and six other domains
from the benchmark. Designing an effective and general
selection hyper-heuristic approach or its component with less
number of parameters to tune or control has always been
of interest. The proposed heuristic selection method has no
parameter to set.

An earlier version of this research first appeared in the
UKCI conference (Kalender et al. 2012). Following the con-
ference, the editors issued an invitation to submit extended
versions of the conference papers to this special issue. This
paper is the result of that process. The performance analysis
of our approach on course timetabling and hyper-heuristic
benchmark domains is revised and we report additional
results obtained from testing our hyper-heuristic on a new
domain, namely high school timetabling.

Section 2 provides a brief overview of the selection hyper-
heuristics that relates to the design of our solution method
and previous approaches used to solve university course
timetabling problem. Section 3 describes the curriculum-
based course timetabling problem at Yeditepe University and
the developed selection hyper-heuristic framework includ-
ing all algorithmic components and low level heuristics for
solving it. Section 4 summarises initial set of experimen-
tal results and compares the performance of different hyper-
heuristics including the proposed one on Yeditepe course
timetabling. Section 5 covers the rest of the experimental
results discussing the performance of the proposed hyper-
heuristic on high school timetabling and other benchmark
problem domains. Finally, Sect. 6 presents the conclusions.

2 Related work

2.1 Selection hyper-heuristics

There are two main types of hyper-heuristic methodologies in
the literature: methodologies to select and generate heuris-
tics (Burke et al. 2010). This study focuses on an iterative
selection hyper-heuristic framework based on a single point
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search consisting of two stages: heuristic selection and move
acceptance (Özcan et al. 2008; Cowling et al. 2001). Firstly, a
hyper-heuristic under such a framework attempts to improve
a solution in hand by selecting and applying an appropriate
heuristic from a fixed set of low level heuristics. This stage
yields a new solution. Then, a decision is made whether to
accept or reject this new solution. The search process con-
tinues iteratively until the termination criteria are satisfied.
A selection hyper-heuristic controls and mixes a set of per-
turbative low level heuristics, each processing and return-
ing a complete solution when invoked In this part, we dis-
cuss some selection hyper-heuristics and their components
from the literature that relates to the design of our hyper-
heuristic. A selection hyper-heuristic will be denoted as
heuristic selection-move acceptance from this point onward.

Cowling et al. (2001) investigated the performance of
many simple selection hyper-heuristic components on a
scheduling problem. The heuristic selection methods cov-
ered in this study include simple random, random descent,
random permutation, random permutation descent, greedy
and choice function. Greedy applies all heuristics to the cur-
rent candidate solution and chooses the one that achieves the
best quality. Choice function utilises a mechanism that scores
each heuristic based on its individual performance, pair-wise
successive performance and the duration since the last time a
heuristic was invoked. At each step, choice function selects
a heuristic with the maximum score and updates the rele-
vant information for the chosen heuristic after its applica-
tion to the current solution. A hyper-heuristic either utilises
a learning mechanism or operates without any learning at
all (Burke et al. 2010). Both greedy and choice function are
online learning methods, since they get feedback during the
search process. The memory length of choice function is
determined by means of the limits on the score values. A
larger range for the score indicates a longer term memory as
compared to a lower range. On the other hand, greedy has the
shortest memory and gets instantaneous feedback during the
search process, then forgets this feedback in the following
step. Cowling et al. (2001) combined these heuristic selec-
tion methods with two move acceptance strategies including
accept all moves and accept only improving moves. Cowling
et al. (2001) reported that choice function-accept all moves
is the most promising hyper-heuristic. The successful perfor-
mance of the choice function heuristic selection method has
also been confirmed by the other studies (Özcan et al. 2008;
Burke et al. 2012; Bilgin 2007).

There are different types of move acceptance methods
used within selection hyper-heuristics in the literature (Burke
et al. 2013). Mostly, those methods accept all improving
moves, but they differ at how they treat non-improving
moves. For example, simulated annealing move acceptance
method accepts non-improving moves with a probability pro-
vided in Eq. 1.

pt = e
− � f

�F(1− t
T ) (1)

where � f is the quality change at step t , T is the maximum
number of steps, �F is an expected range for the maximum
quality change in a solution after applying a heuristic. Bai
and Kendall (2005) and Bai et al. (2007b) and Bilgin (2007)
reported the success of simulated annealing as a move accep-
tance on the shelf allocation and examination timetabling
problems, respectively. Moreover, Bilgin (2007) tested 36
different hyper-heuristics by pairing up a range of heuristic
selection and move acceptance methods over a set of exami-
nation timetabling problem instances. The results indicate the
success of the choice function—simulated annealing hyper-
heuristic.

2.1.1 Hyper-heuristics flexible framework

Hyperion (Swan et al. 2011) and Hyper-heuristics Flexible
Framework (Hyflex) (Ochoa et al. 2012) are recent soft-
ware libraries which are made publicly available for rapid
development of hyper-heuristics (as well as metaheuristics)
and research. The Java Hyflex implementation provides an
object-oriented hyper-heuristic framework, having support
for six minimisation problem domains of Boolean Satisfia-
bility (SAT), One Dimensional Bin Packing (BP), Permuta-
tion Flow Shop (PFS), Personnel Scheduling (PS), Travel-
ling Salesman Problem (TSP) and Vehicle Routing Problem
(VRP). Hyflex strictly imposes the domain barrier and does
not give user any access to the problem domain dependant
information (see Fig. 1). Hyflex was recently used at the
Cross-Domain Heuristic Search Challenge (CHeSC 2011).1

The goal of this competition was determining the best selec-
tion hyper-heuristic with the best mean performance across
thirty problem instances, five from each of the six problem
domains. 20 competitors reached the finals in the competi-
tion. CHeSC 2011, including the Hyflex implementation and
competing hyper-heuristics, currently serves as a benchmark
to compare the performance of selection hyper-heuristics.

Hyflex provides implementation of each domain with a
set of low level heuristics. Hyflex low level heuristics are
classified as mutational (MU), hill climbing (HC), ruin and
re-create (RC) and crossover (XO) heuristics. All heuristics
are perturbative. A mutational heuristic returns as solution
after processing a given solution with no quality guaran-
tee, while a hill climbing heuristic always returns a non-
worsening solution, even if the returned solution is the same
as the input. Ruin and re-create heuristic first creates a partial
solution based on a given solution and then rebuild a com-
plete solution. The crossover low level heuristics take two
solutions as a parameter, combine them and return a new solu-
tion. The number of the low level heuristics for each heuris-

1 http://www.asap.cs.nott.ac.uk/chesc2011/.
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Table 1 The number of different types of low level heuristics [mutation
(MU), hill climbing (HC), ruin and re-create (RC), crossover (XO)] used
in each problem domain

Domain MU HC RC XO Total

SAT 6 2 1 2 11

BP 3 2 2 1 8

PS 1 5 3 3 12

PFS 5 4 2 4 15

TSP 5 3 1 4 13

VRP 3 3 2 2 10

tic/operator type for each problem domain implemented in
Hyflex is summarised in Table 1. We use OPid to denote
the idth low level heuristic of type OP. For example, MU0
and MU5 for SAT are the 0th and 5th mutational low level
heuristics in the SAT domain.

2.2 University course and High school timetabling
problems

Due to the intrinsic difficulty of educational timetabling prob-
lems (Even et al. 1976; de Werra 1997), the exact solvers gen-
erally fail to produce high quality solutions in a given time.
Hence, alternative approaches have been used to solve uni-
versity course and high school timetabling problems, rang-
ing from single point based search methods, including simu-
lated annealing and tabu search to population based methods,
such as, evolutionary algorithms and ant colony optimisation.
High school timetabling is different from university course
timetabling. The main difference is that the timetable for
a student is more packed in high schools and students are
fully occupied throughout a day. Consequently, the shared
resources are more loaded.

Abramson (1991) employed simulated annealing for
course timetabling. Colorni et al. (1992) investigated the
performances of genetic algorithm, simulated annealing and
tabu search. They observed that memetic algorithm com-
bining genetic algorithm and local search performed better.
Hertz (1992) utilised tabu search. Erben and Keppler (1996)
employed genetic algorithms with smart operators to gen-
erate a weekly timetable with a heavily constraint problem
instance. Binary encoding is used as a representation scheme.
Schaerf (1996) used tabu search to solve high-school course
timetabling problems and developed an interactive interface.
Paechter et al. (1998) used an evolutionary algorithm and
developed a user interactive tool which allowed users to visu-
alise violated objectives and modify the objectives during
a run for solving Napier University timetabling problem.
Abramson et al. (1999) tested different cooling schedules
within simulated annealing for course timetabling. Filho et al.
(2001) formulated timetabling problem as a clustering prob-

lem and applied a constructive genetic algorithm for solving
timetabling problems of public schools in Brazil. Socha et al.
(2002) described a max–min ant system for solving course
timetabling problem and compared their approach to a ran-
dom restart local search approach using eleven benchmark
problem instances.

Alkan and Özcan (2003) hybridised a violation directed
hierarchical hill climbing method (VDHC) using constraint
oriented neighbourhood heuristics with genetic algorithms
for solving the university course timetabling problem. Simi-
larly, the constraint oriented neighbourhood heuristics were
found to be effective when used as a part of a hybrid
framework in Özcan et al. (2012) for solving a variant
of a high school course timetabling problem. Burke et al.
(2003) used a combination of tabu search and reinforce-
ment learning scheme as a heuristic selector and tested their
hyper-heuristic over different timetabling problems. Burke
et al. (2006) employed a case-based reasoning approach as
a hyper-heuristic using different measures for similarity of
instances for solving course timetabling problems. Burke
et al. (2003) used tabu search hyper-heuristic to build solu-
tions using graph colouring heuristics for solving timetabling
problems.

2.2.1 International timetabling competition

Determining the state-of-the-art method among modern
approaches for a given timetabling problem and providing
a real world benchmark for comparison of approaches are
the main deriving ideas behind the International Timetabling
Competition series. ITC2007 (McCollum et al. 2010) hosted
by PATAT and WATT2 was on educational timetabling.
Recently, the Third International Timetabling Competition
(ITC2011)3 on high school timetabling with three differ-
ent rounds was organised. In this study, we test our hyper-
heuristic on the high school timetabling problem instances
obtained used in the second round of this competition. More-
over, we compare its performance to the competing algo-
rithms. The ITC2011 problem instances consist of (1) times
which are indivisible time intervals (2) resources that attend
the events (3) events which indicate the meetings between
resources and 15 types of (4) constraints, including assign
resource, assign time, split events, distribute split events, pre-
fer resources, prefer times, avoid split assignments, spread
events, link events, avoid clashes, avoid unavailable times,
limit idle times, cluster busy times, limit busy times, limit
workload (Post et al. 2012). Each constraint could be defined
as hard or soft for a given instance. In the ITC2011 competi-
tion, hard constraints violations are relaxed and they are sim-

2 http://www.cs.qub.ac.uk/itc2007/.
3 ITC2011 website: http://www.utwente.nl/ctit/hstt/.

123

http://www.cs.qub.ac.uk/itc2007/
http://www.utwente.nl/ctit/hstt/


A greedy gradient-simulated annealing selection hyper-heuristic 2283

ply much more heavily penalised than the ’soft’ constraints
based on weights.

3 A selection hyper-heuristic framework for solving
a course timetabling problem

3.1 Problem description

Every year, Computer Engineering Department (and so the
other departments as well) at Yeditepe University, Faculty of
Engineering and Architecture deals with a curriculum-based
course timetabling problem. Each student has to follow a
curriculum at Yeditepe University. Since, time to time some
changes are made to the curriculums, there might be a cohort
of students with different curriculums to follow based on the
existing courses at a given time. A curriculum consists of
eight terms and there are on average six courses per term
for a student to register. In general, a student registers to
all the courses at a given term, unless the student has failed
from some previous courses. The latter type of students are
not considered during the timetabling process. Some courses
have prerequisites and/or co-requisites. The timetables are
produced for the regular students. A course consists of lec-
tures, problem solving and/or laboratory session meetings
which could take place at different locations (rooms). It is
always desirable that the lab or problem solving sessions are
after the lecture hours for a given course.

Lecturers handle the teaching, while laboratory and prob-
lem solving sessions could be handled by a lecturer or a
teaching assistant or both. There are full time and part time
lecturers. The requests of part time lecturers regarding the
time that they teach have to be accommodated. There are
some courses which have to be taken by all students across
the university and by all engineering students and by all stu-
dents at a department. Similarly, there are optional courses
open to all students in the university, or within the faculty,
or within a department. Moreover, the optional courses are
part of the curriculum appearing in different terms. A lecture,
problem solving or laboratory session meeting takes 1, 2 or
3 h, respectively. The university imposes a template for the
other units to follow to make the timetabling process eas-
ier as illustrated Fig. 2. Only certain slots can be allocated
for the meetings of 1 and 2 h duration. Three hour meet-
ings have to consist of (2 + 1, 1 + 2) blocks. The lecturers
are allowed to provide preference for their lectures, which is
taken seriously. In general, the teaching assistants are them-
selves postgraduate students taking other courses, hence their
teaching/tutorial hours must not overlap with the lectures that
they will attend.

After the university sets the times for the university-wide
compulsory courses, the faculty does the same and passes
the information to the departments. Then the departments

Fig. 2 Yeditepe University course timetabling template

have to deal with the timetabling of the remaining courses
and the required resources. The following hard constraints
are identified:

– C01: The timetable template provided by the university
must be respected while scheduling meetings (see Fig. 2).
2-h blocks cannot be divided into a 1-h block.

– C02: Course meetings can be assigned to predefined
time-slots.

– C03: A set of courses can appear as a part of multiple
terms in the curriculum. This is to accommodate optional
courses.

– C04: Course meetings can be enforced to take place in
the same day or in different days.

– C05: (w1) Meetings of a lecturer must not overlap.
– C06: (w2) Lecturers can provide their weekly availability

(or unavailability) for teaching.
– C07: (w3) The courses in a given term of the curriculum

must not overlap.
– C08: (w4) Certain time-slots from the weekly timetable

can be excluded during the timetabling process of the
courses for a term. One of the uses of this constraint is to
arrange a common time slot for departmental or faculty
meetings. The aim is to get as many lecturers free of
teaching during those times as possible, and so it is a soft
constraint.

– C09: (w5) A room with a suitable capacity must be allo-
cated for each course without any overlap.

– C10: (w6) The equipment required by a course must be
allocated without any overlap.

Soft constraints are as follows:

– C11: (w7) The duration between the meetings of a lec-
turer on a day should be within predefined minimum and
maximum limits.

– C12: (w8) The duration between the meetings on a day
for a regular student (studying term) should be within
predefined minimum and maximum limits.

– C13: (w9) The total number of meeting hours during
when a lecturer teaches on a day cannot exceed a prede-
termined maximum value.
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Table 2 Conflict weight values of the hard and soft constraints

w1 w2 w3 w4 w5 w6

5 5 5 5 3 3

w7 w8 w9 w10 w11 w12

1 1 3 3 1 1.9

– C14: (w10) The total number of meeting hours that a
regular student (studying a term) attends on a day should
be within predefined minimum and maximum limits.

– C15: (w11) The total number of courses scheduled for a
lecturer on a day cannot exceed a predetermined maxi-
mum value.

– C16: (w12) The order of between different course meet-
ings can be defined.

The constraints C01–C04 are handled through representa-
tion and restricting the value assignment to each course and
so does not require any further attention during the search
process. Solving the course timetabling problem requires
finding a high quality timetable with the minimum number
of constraint violations, if possible with no violations. The
objective function (evaluation/cost) used in this study takes
the weighted average of the total number of constraint vio-
lations and treats all constraints as if they were the same, but
punishes the hard constraint violations heavier than the soft
constraint violations:

Objective f unction(T ) =
∑

∀i

wi gi (T ) (2)

where T represents a candidate timetable, wi indicates the
weight associated to constraint i , gi indicates the number of
constraint violations of constraint i for the given timetable.
The goal is to find a timetable which minimises the cost
computed using the objective function. The cost reflects the
quality of a given timetable. Lower the cost, better the quality
of a timetable gets. The minimum possible cost occur when-
ever a perfect solution is obtained with an objective value
of 0, indicating that there are no constraint violations. The
weight values used during the experiments are provided in
Table 2.

3.2 A selection hyper-heuristic framework using greedy
gradient heuristic selection

In this study, we present a learning hyper-heuristic for solv-
ing curriculum-based course timetabling problem at Yeditepe
University. In most of the previous applications of rein-
forcement learning in hyper-heuristics, a utility value is
increased as a reward mechanism and decreased for pun-
ishment (Nareyek 2004; Bai et al. 2007a). It has also been

observed that the memory length affects the performance.
The proposed hyper-heuristic framework is somewhat adapts
a similar strategy. Instead of a predefined scoring mechanism,
the cost change in between the old and current solution gener-
ated after the application of the selected heuristic is used as a
utility value. Whenever the utility value of each heuristic is 0,
a greedy-like strategy is invoked (Algorithm 1, steps 2, 3 and
4). Each heuristic is called one by one using the same solution
at hand and the cost change is recorded as a utility value of
the corresponding heuristic. If a heuristic causes a worsening
move, its utility value is set to 0. Then, a heuristic is chosen
based on the scores (Algorithm 1, steps 6 and 7). In this study,
max function which chooses an option with the highest value
and in this case, chooses a heuristic with the maximum score
is employed. After applying the selected heuristic, its score
is updated right away using the cost change. This strategy
neither makes use of a periodic update of scores as in Bai
et al. (2007b), nor forgets the scores as soon as a heuris-
tic is selected as in a greedy method (Cowling et al. 2001).
In the case when one heuristic has a non-zero value, it will
be selected as long as the solution improves and the hyper-
heuristic will act like a gradient hill climber.

During the heuristic selection process, utility values of a
subset of heuristics returned by the max function might be
the same, necessitating a tie breaking strategy. Two differ-
ent cases emerge: a non-zero tie score for some heuristics or
all 0s. A random selection is performed in the former case.
For the latter case, a problem dependent feature is imple-
mented. Another utility array is maintained to keep track of
the number of violations due to each constraint type. Again,
max function is used for determining the highest number of
violations and the corresponding constraint type. Hence, the
corresponding heuristic is invoked. Then, the utility values
of the selected heuristic are updated in both arrays using the
new solution.

Algorithm 1 Pseudocode of the greedy gradient heuristic
selection method
1: procedure GG_Select_Heuristic(scores, current solution)
2: if all heuristic scores are 0 then
3: invoke each heuristic using the current solution
4: record cost change as the score for each heuristic
5: reset the score of a heuristic to 0 if cost increases
6: end if
7: choose a heuristic based on the scores
8: in case of a tie, use a tie breaking strategy
9: return (chosen heuristic id for invocation)
10: end procedure

A hyper-heuristic framework is implemented using the
simulated annealing move acceptance method which allows
non-improving moves based on Eq. 1 (see Sect. 2.1). In some
problem domains, the maximum (expected) change in the
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quality of solutions are not easy to be estimated. In such
cases, �F is set to a factor of the cost of the best solution
in hand. There is strong empirical evidence showing that
the choice of a selection hyper-heuristic components influ-
ences its performance (Özcan et al. 2008; Özcan et al. 2006).
In this study, the performances of different heuristic selec-
tion methods including the greedy gradient under the sim-
ulated annealing based selection hyper-heuristic framework
are investigated. This framework contains a fixed set of con-
straint based neighbourhood operators as low level heuristics,
similar to the ones designed in Alkan and Özcan (2003), and
Özcan and Ersoy (2005). Each low level heuristic attempts to
improve upon a corresponding constraint. An event (course)
causing the relevant violation is rescheduled to the best times-
lot which reduces the overall cost at most. For example, if the
low level heuristic handling C15 violation is selected, then
one of the events (courses) causing that violation is randomly
chosen and rescheduled to the timeslot which produces the
least cost. Selection hyper-heuristics work as a high level
strategy to manage those low level heuristics. They aim to
find a solution attempting to minimise the hard and soft con-
straint violations, simultaneously.

4 Experimental results for the Yeditepe course
timetabling problem

The performance of four selection hyper-heuristics are inves-
tigated over eight instances (rp1-8) which are randomly gen-
erated based on the Yeditepe course timetabling problem and
a real instance (cse). The experiments were performed on a
PC P4 Processor 3 GHz, 512 RAM. A run terminates after
solution found or time limit reached 600 seconds. Figure 3
summarises the performance of each hyper-heuristic based
on 50 runs for each instance. As evaluation measure success
rate is used: s.r. = (number of runs for which the perfect
solution is obtained)/50. The rankings of the different hyper-
heuristics in Fig. 3 are calculated according to the success
rates, the average best cost and the average best duration val-
ues of the tests. Lower the ranking, better a hyper-heuristic is.

The results show that greedy gradient, in the overall, per-
forms better than simple random (SR), greedy (GR) and
choice function (CF) heuristic selection methods as a part of
a selection hyper-heuristic embedding simulated annealing
(SA) as a move acceptance method. It is successful in par-
ticular when the problem size grows. For the cse instance,
all hyper-heuristics perform similarly. Our ultimate goal was
to be able to solve the university timetabling problem for
the whole university when the solver was designed. The
results show that greedy gradient-simulated annealing (GG-
SA) hyper-heuristic is promising in this respect.

Table 3 provides a pairwise performance comparison
of two top ranking selection hyper-heuristics, the greedy

Fig. 3 Performance ranking of each hyper-heuristic combined with the
SA move acceptance over the Yeditepe course timetabling instances

Table 3 Average performance comparison between GG-SA and
CF-SA

Label GG-SA vs. CF-SA

rp1 GG-SA ≥ CF-SA

rp2 GG-SA � CF-SA

rp3 GG-SA � CF-SA

rp4 GG-SA > CF-SA

rp5 GG-SA � CF-SA

rp6 GG-SA > CF-SA

rp7 GG-SA > CF-SA

rp8 GG-SA � CF-SA

cse GG-SA ≥ CF-SA

gradient-simulated annealing (GG-SA) and the choice function-
simulated annealing (CF-SA) based on average cost using the
Wilcoxon singed-rank test on the Yeditepe course timetabling
instances. The following notation is used: Given A versus
B, > (≥) denotes that A performs (slightly) better than B,
since this performance variation is (not) statistically signif-
icant within a 95% confidence level, while � indicates that
they deliver the same performance. GG-SA performs sig-
nificantly better than choice function-simulated annealing
on three instances: rp4, rp6, rp7. Greedy gradient-simulated
annealing is slightly better than choice function-simulated
annealing for rp1 and cse, while they perform the same for
the rest of the instances.

In most of the cases, the hyper-heuristics rapidly improve
the quality of the solutions in hand. After a while, the
improvement process slows down as the approach reaches
a local optimum. Still, it seems that the simulated annealing
acceptance works well as a part of the implemented hyper-
heuristics, allowing further improvement in time until we
get the perfect solution where all the constraints are satis-
fied. This behaviour is illustrated in Fig. 4. The figure shows
the average best cost over 50 runs versus the time in seconds
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Fig. 4 Average best cost (over 50 runs) versus time for the top two
hyper-heuristics on rp8

for GG-SA and choice function-simulated annealing on the
rp8 instance.

5 Performance of GG-SA on the other problem domains

The experimental results on the Yeditepe course timetabling
problem indicates the success of GG-SA. This section pro-
vides the results of the experiments in which we have
tested the performance of this hyper-heuristic on high school
timetabling as well as six other problem domains from the
CHeSC 2011 benchmark.

5.1 High school timetabling

Greedy gradient-simulated annealing is tested on high school
timetabling problem instances from the ITC2011 dataset
which contains a variety of instances obtained from dif-
ferent countries across the world. A solution is evaluated
using concatenation of infeasibility and objective values
(in f easibili t y-value.objective-value) as cost which rep-
resent the weighted hard and soft constraint violations,
respectively. For example, a cost value of 63.00225 indi-
cates an infeasibility value of 63 and objective value of 225.
In the second round of the competition, each algorithm was
given 1,000 nominal seconds with respect to the organisers’
computer. Ten trials were performed using each algorithm
for each instance, and then algorithms were ranked for each
result. The average ranking was used to determine the win-
ner. Four solvers, each identified by the name of the design-
ing team were submitted to the ITC2011 competition (Post
et al. 2012). HySST (Kheiri et al. 2012) applied a multi-
stage hyper-heuristic managing a set of mutational heuristics
and two hill climbers. This selection hyper-heuristic incor-
porates random choice for the heuristic selection and an
adaptive threshold move acceptance method. HFT (Dom-
rös and Homberger 2012) used an evolutionary algorithm as
a solution method. Lectio (Sørensen et al. 2012) employed
an approach based on adaptive large neighbourhood search.

Table 4 The characteristics of the ITC2011 dataset (where t.: times,
T .: number of teachers, R.: number of rooms, C.: number of classes,
S.: number of students, dur.: duration) and performance comparison of

GG-SA to the other competing approaches over 10 trials showing the
best quality (cost) of a solution indicated as feasibility-value.objective-
value in Round 2 of ITC2011

Problem: Country t. T . R. C. S. dur. GG-SA HySST GOAL HFT Lectio

Instance2: Brazil 25 14 6 150 0.00046 1.00069 1.00051 5.00183 0.00019

Instance3: Brazil 25 16 8 200 0.00122 0.00096 0.00087 26.00264 0.00112

Instance4: Brazil 25 23 12 300 1.00234 2.00238 16.00104 63.00225 1.00172

Instance6: Brazil 25 30 14 350 0.00201 2.00229 4.00207 21.00423 0.00183

ElementarySchool: Finland 35 22 21 60 445 0.00003 0.00004 0.00003 29.00080 0.00003

SecondarySchool2: Finland 40 22 21 36 566 0.00035 0.00006 0.00000 28.01844 0.00014

Aigio 1st HS 2010 35 37 208 532 0.00514 0.00322 0.00006 45.03665 0.00653

Instance4: Italy 36 61 38 1101 0.00882 0.04012 0.00169 250.05966 0.00225

Instance1: Kosovo 62 101 63 1912 71.35367 1065.17431 38.09789 986.42437 274.04939

Kottenpark2003: Netherlands 38 75 41 18 453 1203 0.18738 0.47560 0.87084 203.87920 34.55960

Kottenpark2005A: Netherlands 37 78 42 26 498 1272 30.27471 26.35251 27.37026 393.40463 185.83973

Kottenpark2008: Netherlands 40 81 11 34 1118 51.99999 32.71562 10.33034 INVALID 84.99999

Kottenpark2009: Netherlands 38 93 53 48 1301 31.99999 33.99999 25.1403 337.99999 97.96060

Woodlands2009: South 42 40 30 1353 0.00121 2.00047 2.00012 59.00336 0.00094

School: Spain 35 66 4 21 439 0.04005 0.01247 0.00597 63.13873 0.01927

WesternGreeceUni3: Greece 35 19 6 210 0.00016 0.00010 0.00005 14.00198 30.00002

WesternGreeceUni4: Greece 35 19 12 262 0.00030 0.00016 0.00005 233.00277 35.00070

WesternGreeceUni5: Greece 35 18 6 184 0.00004 0.00001 0.00000 9.00174 4.00013

Average ranking 2.56 2.69 1.36 4.64 2.91

The best values are highlighted in bold
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GOAL (Fonseca et al. 2012) combined iterated local search
based on multiple neighbourhood operators with simulated
annealing, which turned out to be the winner of the second
round of the competition.

In this study, GG-SA manages the same set of seven
mutational low level heuristics as used by HySST (Kheiri
et al. 2012). A low level heuristic swaps, combines, splits or
reschedules events, times or resources, randomly. The �F
value in the simulated annealing move acceptance compo-
nent of our hyper-heuristic is set to 0.1 of the cost of the best
solution in hand if there is any hard constraint violation. This

Fig. 5 Comparisons of the different hyper-heuristics over each domain
based on Formula1 scores

value is set to 0.0001, if the best solution contains only soft
constraint violations, for which the infeasibility value is 0.

Based on the same performance measurement and rules
of the competition, GG-SA ranks the second among the
competing algorithms as illustrated in Table 4. GOAL is
still the best ranking approach generating the best solutions
for twelve instances. Greedy gradient-simulated annealing
achieves the best results for the ElementarySchool—Finland
and Kottenpark2003—Netherlands instances. Moreover, the
Wilcoxon singed-rank test reveals that GG-SA performs
significantly better than GOAL and HySST on average
within a confidence interval of 95% on four instances of
Instance2—Brazil, Instance6—Brazil, ElementarySchool—
Finland and Woodlands2009—South Africa. This supe-
rior performance over HySST is observed on Instance1—
Kosovo and on Instance4—Brazil over GOAL. The aver-
age performance of the GG-SA hyper-heuristic is slightly
better on Kottenpark2003—Netherlands than GOAL, and
HySST on SecondarySchool2—Finland, Instance4—Brazil
and Kottenpark2003—Netherlands.

5.2 CHeSC 2011 benchmark

Greedy gradient-simulated annealing is further tested on
Hyflex problem domains, used in an earlier competition lead-
ing to the main event and CHeSC 2011. In both competitions,

Table 5 Comparisons of the different hyper-heuristics based on Formula1 scoring system

HH SAT BP PS PFS TSP VRP TOT

AdapHH 34.3 45 9 36 40.3 15 179.5

VNS-TW 34.3 2 35.5 31 17.3 6 126

ML 14 11 27.5 38 13 22 125.5

PHUNTER 10 3 11.5 7.5 26.3 33 91.3

EPH 0 10 8.5 19 36.3 12 85.8

NAHH 14 19 1 22 12 6 74

HAHA 32.3 0 23.5 0.8 0 14 70.6

ISEA 6 29 13.5 1.5 12 5 67

KSATS-HH 23.5 9 7.5 0 0 22 62

GGHH 4 9 23 18 0 0 54

HAEA 0.5 3 1 6.8 11 27 49.3

ACO-HH 0 20 0 8.3 8 2 38.3

GenHive 0 12 5.5 6 3 6 32.5

DynILS 0 12 0 0 13 1 26

XCJ 5.5 11 0 0 0 5 21.5

AVEG-Nep 12 0 0 0 0 9 21

SA-ILS 0.3 0 16 0 0 4 20.3

GISS 0.3 0 10 0 0 6 16.3

SelfSearch 0 0 2 0 3 0 5

MCHH-S 4.3 0 0 0 0 0 4.3

Ant-Q 0 0 0 0 0 0 0
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Fig. 6 Performance comparison (ranking) of hyper-heuristics for each CHeSC 2011 problem domain based on the results converted to the
normalised objective function values. The dots in the box-plots are outliers
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a hyper-heuristic was given ten nominal minutes to run. All
algorithms were then ranked using the Formula1 scoring sys-
tem. In this system, the best performing hyper-heuristic for
a given instance receives an award of 10 points, while the
second one gets 8, and the next one gets 6, 5, 4, 3, 2, 1 in
that order and then all the remaining approaches get zero
point. These points are accumulated as a score for a hyper-
heuristic over all instances from all problem domains. The
proposed hyper-heuristic is implemented as an extension to
Hyflex. In the simulated annealing acceptance method, the
value of �F is fixed as 0.01 of the cost of the best solution
in hand, since Hyflex does not have a feature which supports
the computation of maximum (expected) change in the qual-
ity of solutions. Our hyper-heuristic operates under a single
point based search framework, and so ignores all crossover
operators during the search process for any given problem.
We use Formula1 scoring system for comparing the perfor-
mance of our hyper-heuristic against the other algorithms in
both competitions.

5.2.1 Comparison to the mock competition hyper-heuristics

Prior to the actual competition of CHeSC 2011, the organis-
ers arranged a mock competition using eight hyper-heuristics
(HH1-HH8). The results of this mock competition were pro-
vided for the competitors to form a baseline and assess
the performance of their algorithms. The mock competi-
tion hyper-heuristics were designed based on the previously
proposed techniques from the literature. All hyper-heuristics
were allowed to run a single trial on 10 instances from each
problem domain, including boolean SAT, one dimensional
bin packing, PFS and PS, given ten nominal minutes as the
time limit. Then eight hyper-heuristics were ranked based on
the Formula1 scoring system. The maximum overall score
that a hyper-heuristic can achieve was 400. More details
on the mock competition can be found at the CHeSC 2011
website.

In the SAT problem domain, our hyper-heuristic pro-
duces the best results in 3 out of 10 instances and there is
a tie in 1 instance when compared to the mock competi-
tion hyper-heuristics. It is the second best hyper-heuristic
based on the Formula1 scoring system in this domain. In
the bin packing problem domain, our hyper-heuristic per-
forms still well and produces the best results in 2 instances,
but in the personnel scheduling problem, its performance is
not as good as on the other problem domains. In permuta-
tion flow shop, the proposed hyper-heuristic produces the
best results in 2 instances. Figure 5 provides the individual
and overall ranking of our hyper-heuristic for each problem
domain based on Formula1 scoring system and overall the
proposed hyper-heuristic ranks the third with a total score
of 211.5.

5.2.2 Comparison to the CHeSC 2011 hyper-heuristics

In CHeSC 2011, the competing hyper-heuristics are run for
thirty one trials on the reference machine and the median
result is used for comparison of the approaches based on the
Formula1 system. The 20 submitted hyper-heuristics com-
peted over thirty problem instances, five coming from each
of the six problem domains: boolean SAT , one dimensional
bin packing, PFS and PS, TSP and VRP. The maximum over-
all score that a hyper-heuristic could achieve was 300. The
performance of our hyper-heuristic is compared to all 20
competition entries based on the Formula1 scoring system.
Table 5 summarises the overall results. GG-SA ranks the
tenth among others with a total score of 54.0. The proposed
hyper-heuristic delivers the worst performance on the vehicle
routing and traveling salesman problem domains.

Di Gaspero and Urli (2012) suggested the use of nor-
malised objective function values (cost) as a measurement
to rank the hyper-heuristics for a given domain. The median
results obtained from the algorithms from each domain are
normalised to a value in [0,1] based on the maximum and
minimum cost obtained for all instances. Hence, the box
plots for the algorithms in a given domain would indi-

Fig. 7 Average percentage utilisation of low level heuristics over 10
runs while solving an arbitrary instance from each problem domain
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Fig. 8 Plots of the cost versus
time over 10 runs while solving
an arbitrary instance from each
problem domain. Blue curve for
the “average cost” and red curve
for the “average best cost”

cate the relative variation of each competing hyper-heuristic
for that problem domain. Figure 6 illustrates the ranking
based on the median of the normalised cost for each prob-
lem domain. Lower the ranking, better an algorithm is.
The greedy-gradient hyper-heuristic is the top in personnel
scheduling problem domain when compared to the previ-
ously proposed CHeSC 2011 approaches. On the permutation
flow shop domain, the GG-SA hyper-heuristic produces high
quality solutions when compared to the other approaches and
becomes the fourth bests performing hyper-heuristic. How-
ever, the proposed hyper-heuristic yields a poor performance
on the other problem domains, particularly on the vehicle
routing problem domain.

Percentage utilisation is the ratio of number of a given low
level heuristic is invoked to the number of overall heuristic
invocations. Figure 7 shows the average percentage utilisa-
tion over 10 runs for each low level heuristic considering the
invocations in which an improvement is obtained while solv-
ing an arbitrarily chosen instance from each problem domain.
Some low level heuristics do not make generate improve-
ment in the quality of a solution. For example, in SAT, MU0,
MU1 and HC1 are the only heuristics that generate improve-
ments. However, the other heuristics may still be useful when

combined with another heuristic, considering that worsening
solutions could be accepted. Mutational heuristics dominate
the hill climbing heuristics in improvement for SAT, while
the situation is vice verse in all other problem domains.
A similar phenomena is observed on the other instances
as well.

Figure 8 shows the behaviour of the greedy gradient hyper-
heuristic for an arbitrarily selected instance from each prob-
lem over 10 runs. In most of the cases, the approach rapidly
improves the quality of the solution in hand. After a while, the
improvement process slows down as the approach reaches a
local optimum. A similar phenomena is observed for almost
all other instances from each problem domain.

6 Conclusion

A goal of hyper-heuristic research is to raise the level of
generality by providing automated methodologies which are
applicable to a variety of problem domains. In this study, we
have introduced a GG-SA selection hyper-heuristic which
automates the process of mixing perturbative heuristics. A
set of selection hyper-heuristics using four different heuristic
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selection methods, including the proposed method are tested
on a real world problem obtained from the Computer Engi-
neering Department at Yeditepe University and eight problem
instances which are randomly generated based on the defini-
tion of the given problem. The results show that the proposed
greedy gradient heuristic selection method when combined
with simulated annealing acceptance criterion outperforms
the other selection hyper-heuristics. Although the perfor-
mance of the new hyper-heuristic is evaluated on a new prob-
lem, it is our intention to extend our studies and investigate its
performance across the other university course timetabling
instances, such as ITC2007. The proposed methodology was
particularly designed for a software tool implementing a user
interface and the hyper-heuristic framework including all
low level heuristics to deal with a curriculum-based univer-
sity course timetabling problem at Yeditepe University. To
test the level of generality that the proposed hyper-heuristic
achieves, it is applied to the high school timetabling prob-
lem and six other problem domains obtained from a hyper-
heuristic benchmark and compared to the previously pro-
posed selection hyper-heuristics. The results show that our
hyper-heuristic is a viable general methodology performing
extremely well on not only course timetabling but also par-
ticularly personnel scheduling domain as well. Moreover, the
proposed hyper-heuristic became the second best approach
among the competing algorithms for high school timetabling.
Although we have not performed any extensive parameter
tuning on our hyper-heuristic, still the parameter that sim-
ulated annealing introduces can be considered as its weak-
ness. Özcan et al. (2008) observed that the acceptance crite-
ria could make significant impact on the performance of the
hyper-heuristics. As future work, we would like to analyse
the effect of using other move acceptance criteria preferably
requiring no parameter tuning in combination with the greedy
gradient heuristic selection method. Additionally, crossover
operators provided in each hyper-heuristic benchmark prob-
lem domain are ignored by our hyper-heuristic during the
experiments, since crossover requires two solutions as input
necessitating another top level mechanism to decide on those
solutions. We plan to modify our hyper-heuristic to han-
dle such operations and investigate into the benefit of using
crossover. Finally, we would like to improve the performance
of our selection hyper-heuristic further by incorporating the
dominance-based method as described in Özcan and Kheiri
(2012) which aims to reduce the set of the low level heuristics
automatically during the search process.
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