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Abstract In this paper, we consider a high-order linear dif-
ferential equation with fuzzy initial values. We present solu-
tion as a fuzzy set of real functions such that each real func-
tion satisfies the initial value problem by some membership
degree. Also we propose a method based on properties of
linear transformations to find the fuzzy solution. We find out
the solution determined by our method coincides with one
of the solutions obtained by the extension principle method.
Some examples are presented to illustrate applicability of the
proposed method.

Keywords Fuzzy initial value problem · Fuzzy differential
equation · Fuzzy set · Linear transformation

1 Introduction

Fuzzy initial value problem (FIVP) has been studied by many
researchers. Buckley and Feuring (2000, 2001) presented two
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methods to consider this problem. In the first method, they
solved two crisp problems by taking initial value as the right
and left end-points of the given fuzzy initial value. Then they
hoped for each time t , the values of solutions were right and
left end-points of a fuzzy number. However, they showed by
some examples that this does not take place in general. In the
another method, they deduced the solution by using Zadeh’s
extension principle. According to this principle, they first
solved the associated crisp problem. Then the crisp initial
value was replaced by fuzzy initial value to get a fuzzy func-
tion. Then the authors checked if this function satisfies the
differential equation and fuzzy initial conditions. Although
this method works for linear equations, it will not work for
nonlinear equations and even linear equation systems (Buck-
ley et al. 2002).

Perfilieva et al. (2008) used an approach similar to the
Buckley and Feuring’s first method. Different from Buckley
and Feuring, as well as the other researchers, they thought
that the dependence of the solution on argument is fuzzy and
in order to find dependence’s membership degree, they used
fuzzy transforms and Lukasiewicz implication.

Hüllermeier (1997) showed that differential equations can
be transformed into crisp differential inclusions.

Gasilov et al. (2011a,b), Barros et al. (2013) and Gomes
and Barros (2012) considered the solution as a fuzzy set of
real functions. To find the solution Barros et al. (2013) and
Gomes and Barros (2012) proposed concepts of fuzzy cal-
culus, analogically to classical calculus, and studied fuzzy
differential equations in terms of this calculus. Under cer-
tain conditions, they established the existence of a solution
for the first-order fuzzy initial value problem and suggested
a solution method. Gasilov et al. (2011a,b) benefitted from
properties of linear transformations and proposed a method
to find fuzzy bunch of solution functions for linear equation.
The method is applicable both to high-order linear differ-
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ential equations and to system of linear differential equa-
tions.

Most of researchers assumes the derivative in the differ-
ential equation as a derivative of a fuzzy function in some
sense. In earlier researches the derivative was considered
as Hukuhara derivative. Studies in this direction was made
by Kaleva (1987, 1990, 2006). When Hukuhara derivative
is used, then uncertainty of the solution may increase infi-
nitely with time. Furthermore, Bede and Gal (2005) showed
that a simple fuzzy function, generated by multiplication of
differentiable crisp function and a fuzzy number, may not
have Hukuhara derivative. In order to overcome this diffi-
culty Bede and Gal (2005) developed the generalized deriva-
tive concept and after that the studies about this subject were
accelerated (Bede 2006; Bede et al. 2007; Khastan and Nieto
2010; Khastan et al. 2011; Chalco-Cano and Román-Flores
2008, 2009; Chalco-Cano et al. 2007, 2008). Calculation of
the generalized derivatives up to nth order is divided to 2n

cases and this made difficult to implement these derivatives
to high-order equations and equations system (Khastan et al.
2009). Moreover, a simple fuzzy function may not have gen-
eralized derivative. The other difficulty is about interpreting
the obtained 2n solutions correctly and how this model of
derivative reflects the nature of the considered problem.

In this paper we consider the fuzzy initial value problem
as a set of crisp problems. Using properties of linear transfor-
mations, we propose a new method to solve FIVP. For clarity
we explain the proposed method for second order fuzzy linear
differential equations, but the results are true for high-order
equations too. We show the fuzzy solution by our method
coincides with extension principle’s results.

Paper consists of 6 sections including Introduction. In Sec-
ond section the necessary preliminary information is given.
In Third section, FIVP is defined. The solution method is
described in Fourth section. In Fifth section, this method
is applied to examples and compared with the method,
which uses generalized Hukuhara derivative. In Sixth sec-
tion, results are interpreted.

2 Preliminaries

2.1 A matrix representation of the solution in the crisp case

In this section, we consider crisp initial value problem (IVP)
for second order homogeneous linear differential equation
(not necessary with constant coefficients):
⎧
⎨

⎩

x ′′ + a1(t)x ′ + a2(t)x = 0,

x(0) = a,

x ′(0) = b,

(1)

where a, b ∈ R. Let x1(t) and x2(t) be linear indepen-
dent solutions of the differential equation and s(t) =
(x1(t), x2(t)). Then the solution of (1) can be represented as

x(t) = w1(t) a + w2(t) b (2)

or, in vector form (using dot product) as

x(t) = w(t) · u (3)

where

w(t) = s(t) M−1. (4)

and M=
[

x1(0) x2(0)

x ′
1(0) x ′

2(0)

]

, u = (a, b), w(t)=(w1(t), w2(t)).

One can see, that w1(t) and w2(t) are the solutions of (1)
corresponding to the initial values (x(0), x ′(0)) = (1, 0)

and (x(0), x ′(0)) = (0, 1), respectively. We note that M
is the Wronski matrix at t = 0, and if a1(t) and a2(t) are
continuous functions, it is invertible.

2.2 Preliminaries of the fuzzy sets theory

Below, we use the notation ũ = (uL(r), u R(r)), 0 ≤ r ≤ 1
to indicate a fuzzy number in parametric form. We denote
u = uL(0) and u = u R(0) to indicate the left and the right
end-points of ũ, respectively. An α-cut of ũ is an interval
[uL(α), u R(α)], which we denote as uα = [uα, uα].

We represent a triangular fuzzy number as ũ = (a, c, b)

for which uL(r) = a + r(c − a), u R(r) = b + r(c − b) and
u = a, u = b. In geometric interpretations, we refer to the
point c as a vertex.

Let us consider a triangular fuzzy number ũ = (p, 0, q)

the vertex of which is 0 (Note that p < 0 and q > 0 in this
case). Then uL(α) = (1 − α) p and u R(α) = (1 − α) q and
consequently, α-cuts are intervals [(1 − α) p, (1 − α) q] =
(1 − α) [p, q]. From the last representation one can see that
an α-cut is similar to the interval [p, q] (i.e. to the 0-cut)
with similarity coefficient (1 − α).

We often express a fuzzy number ũ as ũ = ucr + ũun

(crisp part + uncertainty). Here ucr is a number with mem-
bership degree 1 and represents the crisp part (the vertex) of
ũ; while ũun represents the uncertain part with vertex at the
origin. For a triangular fuzzy number ũ = (a, c, b) we have
ucr = c and ũun = (a − c, 0, b − c). If fuzzy number ũ is in
parametric form, then ucr , in general, is not unique. In this
case, we can choose ucr arbitrarily to the extent that uL(1) ≤
ucr ≤ u R(1). For instance, we can put ucr = 0.5(uL(1)

+ u R(1)).
Let ũ and ṽ be fuzzy numbers. A fuzzy set K̃ on R2 with

membership function μK̃ (x, y) = min {μũ(x), μṽ(y)} we
call a fuzzy number vector and denote as K̃ = (̃u, ṽ).
In the xy-coordinate plane, the vector K̃ = (̃u, ṽ) forms
a fuzzy region in the form of rectangle. Furthermore,
the α-cuts of the region are rectangles nested within one
another.
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3 A fuzzy initial value problem (FIVP)

In this section, we describe a fuzzy initial value problem
(FIVP) and concept of solution which we propose. We inves-
tigate a fuzzy initial value problem with crisp linear differen-
tial equation and fuzzy initial values. Such a FIVP can arise
in modelling of a process the dynamics of which is crisp but
there are uncertainties in initial values. Consider the second
order fuzzy initial value problem:
⎧
⎨

⎩

x ′′ + a1(t)x ′ + a2(t)x = f (t),
x(0) = Ã,

x ′(0) = B̃,

(5)

where Ã, B̃ are fuzzy numbers and a1(t), a2(t) and f (t) are
continuous crisp functions. Let us represent the initial values
as Ã = acr + ã and B̃ = bcr + b̃, where acr and bcr are crisp
numbers while ã and b̃ are fuzzy numbers. We split the FIVP
(5) to the following problems:

(1) Associated crisp problem (which is non-homogeneous)
⎧
⎨

⎩

x ′′ + a1(t)x ′ + a2(t)x = f (t),
x(0) = acr ,

x ′(0) = bcr .

(6)

(2) Homogeneous problem with fuzzy initial values
⎧
⎨

⎩

x ′′ + a1(t)x ′ + a2(t)x = 0,

x(0) = ã,

x ′(0) = b̃.

(7)

It is easy to see if xcr (t) and x̃un(t) are solutions of (6)
and (7) respectively, then x̃(t) = xcr (t)+ x̃un(t) is a solution
of the given problem (5). Hence, (5) is reduced to solving
a homogeneous equation with fuzzy initial conditions (7).
Therefore, we will investigate how to solve (7).

Depending on different definitions for derivative of fuzzy
function or different definitions for solution of differen-
tial equation, the problem (7) can be interpreted by dif-
ferent ways. Here we interpret the problem (7) as a set
of crisp problems (1). Each problem is obtained by tak-
ing the initial values a from

[
a, a

]
and b from

[
b, b

]
. We

denote by xab(t) the solution of the crisp problem (1). Let
μab = min

{
μã(a), μb̃(b)

}
(where μã(a) denotes the mem-

bership degree of a in ã). We assume the function xab(t)
be an element of fuzzy solution set with membership degree
μab. Then the fuzzy solution can be defined as follows:
X̃ = {

xab(·) | x ′′ + a1(t)x ′ + a2(t)x = 0;
x(0) = a; x ′(0) = b; a ∈ ã; b ∈ b̃

}
(8)

where

μX̃ (xab(·)) = min
{
μã(a), μb̃(b)

}
(9)

and by a ∈ ũ we mean a ∈ [
u, u

]
.

The solution, defined above, of FIVP can be classified
as united solution set (USS) (Kearfott 1996; Muzzioli and
Reynaerts 2006).

4 The solution method

Let linear independent solutions of the crisp equation
(7), x1(t) and x2(t), be known. Then we can constitute the
vector-function w(t) (see, formula 4). According (2) and (8)
we have:

X̃ = {
xab = w · u | u = (a, b); a ∈ ã; b ∈ b̃

}
. (10)

Let us fix time t and put v = w(t). Then from (10 ) we
have:

X̃(t) = {
x = v · u | u = (a, b); a ∈ ã; b ∈ b̃

}
(11)

with membership function

μX̃(t)(x) = min
{
μã(a), μb̃(b)

}
. (12)

To determine how is the set X̃(t) we consider the transfor-
mation T (u) = v · u (here v is a fixed vector). One can see,
that T : R

2 → R
1 is a linear transformation. Therefore, X̃(t)

is the image of the set K̃ = {
u = (a, b) | a ∈ ã; b ∈ b̃

} =
(̃a, b̃) under the linear transformation T (u).

We shall make use of the following facts about linear trans-
formations (Anton and Rorres 2005):

1. A linear transformation maps the origin (zero vector) to
the origin (zero vector).

2. Under a linear transformation the images of a pair of
similar figures (bodies) are also similar.

3. Under a linear transformation the images of nested figures
(bodies) are also nested.
In addition, we shall reference a property of fuzzy number
vectors.

4. The fuzzy set K̃ = (̃a, b̃) forms a fuzzy region in the
ab-coordinate plane, its vertex is located at the origin and
its boundary is a rectangle. Furthermore, the α-cuts of the
region are rectangles nested within one another.

The facts 1–4 allow us to make the following conclusion.
The vector K̃ = (̃a, b̃) forms a fuzzy rectangle in the
ab-coordinate plane. The linear transformation T : R

2 →
R

1 maps this fuzzy rectangle to a fuzzy interval. The α-cuts
of this fuzzy interval are nested within one another. There-
fore, the solution at any time forms a fuzzy number. Note
that the left and right end-points of this fuzzy number are the
images of two corners of the rectangle K̃ = (̃a, b̃). There-
fore according to (11) to find the lower and upper boundaries
of the solution it is sufficient to analyze the behavior of 4
corner points.
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4.1 Particular case when initial values are triangular fuzzy
numbers

In particular, if ã and b̃ are triangular fuzzy numbers, the
α-cuts of the region K̃ = (̃a, b̃) are nested rectangles,
furthermore, they are similar. According to the discussion
above, their images are intervals that also are nested and
similar, consequently, form a triangular fuzzy number X̃(t).
Therefore, X̃(t) can be represented in the form X̃(t) =
(x(t), 0, x(t)). Now we investigate how to calculate x(t)
and x(t).

Let ã = (a, 0, a), b̃=(b, 0, b) and w(t)=(w1(t), w2(t)).
Since x(t) and x(t) are respectively the maximum and mini-
mum values among all products w(t) ·u = aw1(t)+bw2(t),
then we have:

x(t) = max
{
aw1(t), aw1(t)

} + max
{
bw2(t), bw2(t)

}

(13)

x(t) = min
{
aw1(t), aw1(t)

} + min
{
bw2(t), bw2(t)

}

(14)

Note that an α-cut of X̃(t) can be determined by similarity:

Xα(t) = [
xα(t), xα(t)

] = (1 − α)
[
x(t), x(t)

]
. (15)

Formulas (13–14) for x(t) and x(t) allow us to represent
the solution in a new way:

X̃(t) = w1(t) ã + w2(t) b̃, (16)

where the operations are assumed to be multiplication of real
number with fuzzy one, and addition of fuzzy numbers.

4.2 General case when initial values are parametric fuzzy
numbers

In the general case, when ã and b̃ are arbitrary fuzzy num-
bers, the solution can be obtained by using α-cuts. Let aα =[
aα, aα

]
and bα = [

bα, bα

]
. Then Kα = [

aα, aα

]×[
bα, bα

]
.

By similar argumentation to the preceding case, for the α-cut
of the solution we obtain the following formulas:

Xα(t) = [
xα(t), xα(t)

]
,

xα(t) = max
{
aαw1(t), aαw1(t)

}

+ max
{
bαw2(t), bαw2(t)

}

xα(t) = min
{
aαw1(t), aαw1(t)

}

+ min
{
bαw2(t), bαw2(t)

}
.

On the base of these formulas we can conclude that the
solution’s representation

X̃(t) = w1(t) ã + w2(t) b̃ (17)

is valid in general. Thus, the solution by our approach coin-
cides with the solution obtained from (2) by application of
the extension principle.

4.3 Solution algorithm

Based on the arguments above, we propose the following
algorithm to solve FIVP (5):

1. Represent the initial values as Ã = acr + ã and B̃ =
bcr + b̃.

2. Find linear independent solutions x1(t) and x2(t) of the
crisp differential equation x ′′ + a1(t)x ′ + a2(t)x = 0.
Constitute the vector-function s(t) = (x1(t), x2(t)),
the matrix M and calculate the vector-function w(t) =
(w1(t), w2(t)) by formula (4).

3. Find the solution xcr (t) of the non-homogeneous crisp
problem (6).

4. The solution of the given problem (5) is

x̃(t) = xcr (t) + w1(t) ã + w2(t) b̃. (18)

Remark The approach is valid also for the general case, when
nth order initial value problem is considered.

5 Examples

In this section, to demonstrate how the proposed method
works, we solve 2 examples.

Example 1 Let us consider the second order fuzzy initial
value problem:
⎧
⎨

⎩

x ′′ − 3x ′ + 2x = 0,

x(0) = (−0.5, 0, 1),

x ′(0) = ( −1, 0, 1).

(19)

We note that the problem is homogeneous and the initial
values are fuzzy numbers with vertices at 0. Therefore, the
solution can be calculated by the formula (17).

x1(t) = et and x2(t) = e2t are linear independent solu-
tions for the differential equation x ′′ −3x ′ +2x = 0. Hence,

s = (
et, e2t

)
, M =

[
1 1
1 2

]

and w = s(t) M−1 =
(
2et − e2t , e2t − et

)
. Then the formula (17) gives the solu-

tion of the given problem:

x̃(t) = (2et − e2t ) (−0.5, 0, 1) + (e2t − et ) (−1, 0, 1),

(20)

where the arithmetical operations are considered to be fuzzy
operations.

The fuzzy solution x̃(t) forms a band in the t x-coordinate
space (Fig. 1).
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Fig. 1 The fuzzy solution, obtained by the proposed method, for
Example 1

Since the initial values are triangular fuzzy numbers, an
α-cut of the solution can be determined by similarity with
coefficient (1 − α) , i.e.

xα(t) = (1 − α)
[
x(t), x(t)

]
. (21)

Example 2 Consider the FIVP:
⎧
⎨

⎩

x ′′ − 3x ′ + 2x = 4t − 6,

x(0) = (1.5, 2, 3),

x ′(0) = ( 2, 3, 4).

(22)

We represent the initial values as Ã = (1.5, 2, 3) =
2 + (−0.5, 0, 1), B̃ = (2, 3, 4) = 3 + (−1, 0, 1). We
solve crisp non-homogeneous problem

⎧
⎨

⎩

x ′′ − 3x ′ + 2x = 4t − 6,

x(0) = 2,

x ′(0) = 3

and find the crisp solution
xcr (t) = 2t + [

2(2et − e2t ) + (e2t − et )
] = 2t + 3et − e2t

(the dashed line in the middle of Fig. 2).
Fuzzy homogeneous problem to find the uncertainty of

the solution is as follows:
⎧
⎨

⎩

x ′′ − 3x ′ + 2x = 0,

x(0) = (−0.5, 0, 1),

x ′(0) = (−1, 0, 1).

This problem is the same as Example 1. Hence, the solution
is

x̃un(t) = (2et − e2t ) (−0.5, 0, 1) + (e2t − et ) (−1, 0, 1).

(23)

Fig. 2 The fuzzy solution, obtained by the proposed method, for
Example 2. Dashed line represents the crisp solution

We add this uncertainty to the crisp solution and get the fuzzy
solution of the given FIVP (22):

x̃(t) = xcr (t) + x̃un(t)

= 2t + (2et − e2t ) (1.5, 2, 3) + (e2t − et ) (0, 1, 2).

(24)

The fuzzy solution x̃(t) forms a band in the t x-coordinate
space (Fig. 2).

We can express the solution x̃(t) also via α-cuts, which

are intervals xα(t) =
[
xα (t), xα (t)

]
at any time t . Since the

initial values are triangular fuzzy numbers, x̃un(t) also is a
triangular fuzzy number, say x̃un(t) = (xun(t), 0, xun(t))
(One can use the formulas (13–14) to calculate xun(t) and
xun(t)). Consequently, an α-cut of x̃un(t) can be determined
by similarity with coefficient (1 − α), i.e.

xun, α(t) = (1 − α)
[
xun(t), xun(t)

]
. (25)

Adding the crisp solution gives the α-cut of the solution x̃(t):
[
xα (t), xα (t)

]
= xcr (t) + (1 − α)

[
xun(t), xun(t)

]
. (26)

In Fig. 3 we show the fuzzy solution via its α-cuts: 1 -cut
or crisp solution (dashed line), 0.7-cut (dotted lines), 0.3-cut
(dashed-dotted lines), 0-cut (continues lines) of the solution.

In the next example, we compare our solution with the
solution which uses generalized Hukuhara derivative (Khas-
tan and Nieto 2010). To see the differences better we consider
an easy case, when differential equation is homogeneous.
Furthermore, we consider initial values with vertex at 0.

Example 3 Let us consider FIVP:
⎧
⎨

⎩

x ′′ = −4x,

x(0) = ( −1, 0, 0.5),

x ′(0) = (−0.5, 0, 0.5).

(27)
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Fig. 3 The fuzzy solution, obtained by the proposed method, for
Example 2 and its α-cuts

x1(t) = cos 2t and x2(t) = sin 2t are linear independent
solutions for the differential equation x ′′ +4x = 0 (Note that
for our approach the equations x ′′ + 4x = 0 and x ′′ = −4x
are equivalent). Then

s = (cos 2t, sin 2t) , M =
[

1 0
0 2

]

and

w = s(t) M−1 =
(

cos 2t,
1

2
sin 2t

)

.

By formula (17), our method gives the following solution:

x̃(t) = cos 2t (−1, 0, 0.5) + 1

2
sin 2t (−0.5, 0, 0.5). (28)

The fuzzy solution x̃(t) forms a band in the t x-coordinate
space (Fig. 4). The solution is periodic (with period of π ), as
in the crisp case. The uncertainty does not increase essentially
or does not vanish as time goes. It changes periodically. This
fact also corresponds to the expectations from the crisp case.

Below we solve the FIVP (27) by the method, which uses
generalized Hukuhara derivative (Khastan and Nieto 2010).
We have to analyze four systems, depending on different
kinds of derivative.

(1) (1, 1) system is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x ′′(t;α) = −4x(t;α),

x ′′(t;α) = −4x(t;α),

x(0;α) = Aα; x(0;α) = Aα,

x ′(0;α) = Bα; x ′(0;α) = Bα.

We solve the system with respect to x(t;α) and get
x(t;α) = c1e−2t +c2e2t +c3 cos 2t +c4 sin 2t . Using initial
values we have:

Fig. 4 The fuzzy solution, obtained by the proposed method, for
Example 3

Fig. 5 The fuzzy solution for Example 3, obtained using generalized
(1,1)-derivative

c1 = 2(Aα − Aα) − (Bα − Bα)

8
;

c2 = 2(Aα − Aα) + (Bα − Bα)

8
;

c3 = Aα + Aα

2
; c4 = Bα + Bα

4
.

Formula for x(t;α) can be obtained using the relation
x(t;α) = − 1

4 x ′′(t;α).
Summarizing we have:

x(t;α) = −c1e−2t − c2e2t + c3 cos 2t + c4 sin 2t,

x(t;α) = c1e−2t + c2e2t + c3 cos 2t + c4 sin 2t.

We present graphics of x(t;α) (down line) and x(t;α) (upper
line) in Fig. 5.
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Fig. 6 The fuzzy solution for Example 3, obtained using generalized
(2,2)-derivative

We see the solution under Hukuhara derivative is not peri-
odic as it is expected from the crisp case. Also the initial
uncertainty increases infinitely as times goes. Therefore, in
the case of (1, 1)-derivative we do not have an appropriate
fuzzy solution.

(2) (2, 2) system is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x ′′(t;α) = −4x(t;α),

x ′′(t;α) = −4x(t;α),

x(0;α) = Aα; x(0;α) = Aα,

x ′(0;α) = Bα; x ′(0;α) = Bα.

We note that this system is similar to the system in the
preceding case: only the last 2 initial values are different. The
solution is represented in Fig. 6. Since the solution function is
assumed to have (2, 2)-derivative, we see this solution is not
(2, 2)-solution (the support of such a solution must become
narrow with time) (Khastan and Nieto 2010). Consequently,
we have not a fuzzy solution, which is valid on all the interval
[0,+∞).

(3) (1, 2) system is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x ′′(t;α) = −4x(t;α),

x ′′(t;α) = −4x(t;α),

x(0;α) = Aα; x(0;α) = Aα,

x ′(0;α) = Bα; x ′(0;α) = Bα.

Equation and initial values for x(t;α) are independent
from x(t;α) and vice versa. Consequently, x(t;α) and
x(t;α) can be calculated separately. Graphics of x(t;α)

and x(t;α) (Fig. 7) are the same as dashed-dotted lines in

Fig. 7 The fuzzy solution for Example 3, obtained using generalized
(1,2)-derivative

Fig. 4. Since the solution function is assumed to be a (1, 2)-
differentiable fuzzy function, as in the preceding case we see
from Fig. 7 that it is not a valid fuzzy function on [0,∞).
Consequently, we have not a fuzzy solution on all the interval
[0,+∞).

(4) (2, 1) system is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x ′′(t;α) = −4x(t;α),

x ′′(t;α) = −4x(t;α),

x(0;α) = Aα; x(0;α) = Aα,

x ′(0;α) = Bα; x ′(0;α) = Bα.

This system is solved similarly to the preceding one.
Graphics of x(t;α) and x(t;α) (Fig. 8) are the same as dot-
ted lines in Fig. 4. In this case the solution also is not a valid
(2, 1)-differentiable fuzzy function on [0,∞).

It is worth noting in this paper, generalized differentiable
solutions are understood in the sense that the solutions con-
sidered have no switching points. Obviously, if we consider
switching points and the two types of differentiability alter-
nately, then we obtain more solutions (see Bede and Stefanini
2012). On the other hand, following the results of Bede and
Stefanini (2012), it is easy to check that when the initial val-
ues are symmetric numbers, the solution (18) obtained by the
proposed method is gH-differentiable on [0,+∞) and satis-
fies Eq. (5) exactly. This circumstance can be considered as
an advantage of the proposed method.

Now, let us discuss relation between the proposed method
and the one by Barros et al. (2013), Gomes and Barros (2012).
Barros et al. (2013), Gomes and Barros (2012) also consider
the solution as a fuzzy set of real functions. Based on Zadeh’s
extension principle, they define the concepts of derivative and
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Fig. 8 The fuzzy solution for Example 3, obtained using generalized
(2,1)-derivative

integral operators for fuzzy set of functions. Some properties
that occur with the classical operators are checked for fuzzy
operators, such as Fundamental Theorem of Calculus. The
authors study fuzzy differential equations in terms of the new
fuzzy derivative. Under certain conditions, they prove the
existence of a solution for the first-order fuzzy initial value
problem, and propose a solution method.

Further development of the proposed approach for high-
order equations requires that other operations (for example,
the summation) are also defined for fuzzy sets of functions
in an effective manner similar to derivative and integral. But
it is not easy task. To see, let us consider formula (4) from
Gomes and Barros (2012):

X (t) = X0 + ˆ∫

0

t

F(s, X (s)) ds

where X is a fuzzy set of functions. The authors interpreted
the sum as
⎧
⎨

⎩
x0 +

t∫

0

f (s, x(s)) ds |

x0 = x(0) ∈ [X0]α , f (·, x(·)) ∈ [F(·, X (·))]α
⎫
⎬

⎭
.

One can see that this sum is not a Minkowski sum, it is a
“dependent” sum: if a function takes participation in the first
operand it takes participation in the second one simultane-
ously. Such a sum may be useful, but obtaining considerable
results by using this sum is not easy.

To explain the main difference of our method from the
method mentioned above, let us consider FIVP (5). Actually,

we represent the differential equation as L̂ X = f , where L̂
is Zadeh’s extension of L = D2 +a1 D +a2, i.e. we consider
at once the extension of whole L , not its separate parts.

Summarizing, besides of that we greet the fuzzy calculus
proposed by Barros et al. (2013), Gomes and Barros (2012),
it seems that to obtain new results, in addition to derivative
and integral, other operations also must be developed.

6 Conclusion

In this paper we have investigated the fuzzy initial value prob-
lem as a set of crisp problems. We have proposed a solution
method based on the properties of linear transformations.
For clarity we have explained the proposed method for sec-
ond order linear differential equation. We have shown that
the fuzzy solution by our method coincides with result of
extension principle. As an example we have shown that the
deduced solution has no difficulties of Hukuhara differen-
tiable solutions and generalized differentiable solutions.
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