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Abstract This paper presents a general optimization model
gleaned ideas from root growth behaviours in the soil.
The purpose of the study is to investigate a novel biologi-
cally inspired methodology for complex system modelling
and computation, particularly for optimization of higher-
dimensional numerical function. For this study, a mathemat-
ical framework and architecture are designed to model root
growth patterns of plant. Under this architecture, the inter-
actions between the soil and root growth are investigated.
A novel approach called “root growth algorithm” (RGA) is
derived in the framework and simulation studies are under-
taken to evaluate this algorithm. The simulation results show
that the proposed model can reflect the root growth behav-
iours of plant in the soil and the numerical results also demon-
strate RGA is a powerful search and optimization technique
for higher-dimensional numerical function optimization.
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1 Introduction

Nature ecosystem is a dynamic assemblage of organisms,
interacting with each other and with the physical environ-
ment they live in. Today, the study of the relations between
these elements has become an important research field since
it is more and more related to economic issues in agricul-
ture as well as to the protection of the environment. Nature
ecosystems have also been the rich source of mechanisms for
designing computational systems to solve difficult engineer-
ing and computer science problems. Modeling is an impor-
tant tool for the comprehension of complex systems such
as nature ecosystems and the model inspired from nature
ecosystem is instantiated as an optimizer for numerical func-
tion and engineering optimization.

In this paper, we design a novel model inspired from
growth behaviors of plant root system and the model is instan-
tiated as a novel algorithm called “root growth algorithm”
(RGA) for higher-dimensional numerical function optimiza-
tion and simulation of plant root system. The main motivation
of the proposed model is to make use of the main character-
istics of plant root growth in the soil. In this work, to prove
the approach is effective a comprehensive comparative study
on the performances of well-known evolutionary and swarm-
based algorithms for optimizing a set of numerical functions
is presented. The other objective of the study is to simulate
the interactive relationships between changing soil environ-
ment and the root growth. The results show that the root
growth model is feasible and RGA is a powerful search and
optimization approach.

This paper is structured as follows: Sect. 2 presents a
brief overview of related work about computational root
growth models and biologically inspired algorithms. Root
growth model is presented in Sect. 3. Root system of plant
is simulated in Sect. 4. In Sect. 5, experimental settings and
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experimental results are given. Finally, Sect. 6 concludes the
paper.

2 Related work

Computational root growth models or “virtual root system
of plant” are increasingly seen as a useful tool for compre-
hending complex relationships between gene function, plant
physiology, root system development, and the resulting plant
form. Therefore accurate root growth models for simulation
of root–soil interactions are of major significance. In the field
of modeling root system of plant, there already exists a vari-
ety of elaborate approaches (Gerwitz and Page 1974; Pages
et al. 1989; White et al. 2005; Lynch 2007; Hodge 2009;
Leitner et al. 2010). Simple spatial models of root growth
and development have been available for a long time (Ger-
witz and Page 1974). In Pages et al. (1989), a quantitative
three-dimensional dynamic model of the root system archi-
tecture is presented. The model takes into account current
observations on the morphogenesis of the maize root sys-
tem. There is now considerable evidence linking root archi-
tecture with water and nutrient acquisition efficiency (White
et al. 2005; Lynch 2007; Hodge 2009). The structure and
dynamics of root system architecture, however, is complex,
and architectural modelling has resulted from the need to
incorporate space into models and to take account of the bio-
physical interactions taking place between roots and their
environment. In Leitner et al. (2010), a dynamic root sys-
tem growth model is proposed based on L-Systems. The
modular approach is developed to root growth and archi-
tecture modelling with a special focus on soil root inter-
actions. The approaches model root systems from different
perspectives. However, the complexity of the root–soil sys-
tem requires an accurate and detailed description not only of
each subsystem, but also of their mutual linkage and influ-
ence.

In the past few decades, in pursuit of finding solution
to the optimization problems many researchers have been
drawing inspiration from the nature (Eberhart et al. 2001).
A lot of such biologically inspired algorithms have been
developed, such as a basic genetic algorithm (GA), parti-
cle swarm optimization (PSO), differential evolution (DE)
and so on. The five components are included in a basic GA.
They are a fitness evaluation unit, a random number gener-
ator and genetic operators for reproduction, crossover and
mutation operations (Holland 1975). In PSO, a population of
particles starts to move in search space by following the cur-
rent optimum particles and changing the positions in order to
find out the optimal solution. The positions of these particles
refer to possible solutions of the function to be optimized.

Table 1 The relationship between biology behaviors and algorithms

Algorithms Behaviors

GA The genetic feature in the biology

PSO Bird flocking behavior

CO The foraging behavior of ants

AIS Antibody and antigen in immune system of biology

ABC The foraging behavior of honeybees

PGSA Plant growth behavior

Evaluating the function by the particles’ positions provides
the fitness values of those solutions (Kennedy and Eberhart
1995). The DE algorithm which is also a population-based
algorithm is like genetic algorithms using the similar oper-
ators: crossover, mutation and selection. The main differ-
ence between them in constructing better solutions is that DE
relies on mutation operation while genetic algorithm relies
on crossover (Price and Storn 1995). There are still many
other algorithms based on biology behaviors, such as evo-
lutionary programming (EP) (Fogel et al. 1965), ant colony
optimization (ACO) (Dorigo et al. 1991), artificial immune
system (AIS) (De Castro and Von Zuben 1999), artificial
bee colony (ABC) (Karaboga and Basturk 2008) and so on.
The relationship between these biology behaviors and algo-
rithms listed in Table 1. There are some improved hybrid
approaches based on swarm intelligence for optimization.
The hybrid FPSO + FGA approach that combines PSO and
GA using fuzzy logic to integrate the results of both methods
and for parameters tuning is a useful tool in solving com-
plex optimization problems (Valdez et al. 2011). We should
note that there are some algorithms based on plant growth
theory for numerical function. Plant growth simulation algo-
rithm (PGSA) is a powerful evolutionary algorithm simu-
lating plant growth that has been proposed for solving the
global optimization problem of integer programming (Tong
et al. 2005). Another optimization algorithm, plant growth
optimization (PGO) is presented on the basis of the plant
growth characteristics including leaf growth, branching, pho-
totropism and spatial occupancy (Cai et al. 2008). These algo-
rithms with their stochastic means are well equipped to han-
dle such problems. However, the algorithms inspired from
plant root models are very few.

In this paper, we present a root growth model inspired from
growth behaviors of plant root system. The model can be for-
mulated as an optimization algorithm called RGA for higher-
dimensional numerical function optimization and simulation
of root growth patterns of plant. The two self-adaptive strate-
gies in accordance with growth behaviours of root hairs are
employed in RGA to improve the performance of the algo-
rithm.
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3 Proposed root growth model

3.1 Description for growth behaviors of root system

A plant begins from its seed and the growth of root is
indispensable for plant growth. All roots of a plant can
be seen as a system composed by a large number of root
hairs and tips. At the end of the 1960s, Lindenmayer
introduced Transformational-generative grammar into biol-
ogy and developed a variant of a formal grammar, namely
L-Systems, most famously used to model the growth proces-
ses of plant development. L-Systems are based on simple
rewriting rules and branching rules and successfully make a
formal description for the plant growth. We use L-Systems to
describe growth behavior of root system as follows (Sheng
and Lei 1995):

(1) A seed germinates in the soil, partly becoming stems
of plant above the earth’s surface. The other part grows
down, becoming root system of plant. New root hairs
grow from the root tips.

(2) More new root hairs grow from the root tips of old root
hairs. The behavior of root system which is repeated is
called as branching of the root tips.

(3) Most root hairs and root tips are similar to each other.
The entire root system of plant has self-similar structure.
The root system of each plant is composed of numerous
root hairs and root tips with similar structure.

3.2 Plant morphology

The impact of roots and rhizosphere traits on plant resource
efficiency is important. The uneven concentration of nutrients
in the soil makes root hairs growing towards different direc-
tions. This characteristic of root growth relates to the mor-
phogenesis model in biological theory. The formation of the
model could be considered as a complex process that cells are
differentiated and generate new spatial structure with a clear
definition. When the rhizome of root system grows, three or
four growing points with different rotation directions will be
generated at each root tip. The rotation diversifies the growth
direction of the root tip. Root tips from which root hairs ger-
minate contain undifferentiated cells. These cells are consid-
ered as fluid bags in which there are homogeneous chemical
constituents. One of chemical constituents is a version of the
growth hormone, called as morphactin. The morphactin con-
centration is a parameter of the morphogenesis model. The
parameter changes between 0 and l. The morphactin concen-
tration determines whether cells start to divide. When cells
start to divide, root hairs appear (Mainzer 1997).

With regard to the process of root growth, there have been
the following conclusions in biology:

(1) If root system of plant have more than one root tip, which
root tips could germinate root hairs depends on their mor-
phactin concentration. The probability of new root hairs
germinating is higher from root tips with larger mor-
phactin concentration than root tips with less ones.

(2) The morphactin concentration in cells is not static, but
depends on its surroundings, in other words, the spatial
distribution of nutrients in the soil. After new root hairs
germinate and grow, the morphactin concentration will
be reallocated among new root tips in line with the new
concentration of nutrients in the soil.

In order to simulate the above process, it is assumed
that the sum of the morphactin concentration of is con-
stant (considered as 1) in the morphactin state space of
the multi-cellular closed system. If there are n root tips
xi (i = 1, 2, . . . , n) which are D-dimensional vectors, the
morphactin concentration of any cell is defined as Ei (i =
1, 2, . . . , n). The morphactin concentration of each root tip
can be expressed as:

Ei = 1/ f (xi )
∑n

i=1 1/ f (xi )
(1)

where f (*) is objective function which represents the spatial
distribution of nutrients in the soil. In expression (1), the mor-
phactin concentration of each root tip is determined by the
relative position of each point and environmental information
(objective function value) at this position. Therefore, n root
tips correspond to n morphactin concentration value. When
new root hairs germinate, the morphactin concentration may
be changed.

3.3 Branching of the root tips

Branching of the root tips in the root growth model proposed
is important for the simulation and the instantiated algorithm.
There are four rules for branching of the root as follow:

(1) Plant growth begins from a seed.
(2) In each cycle of growth process, some excellent root tips

which have larger morphactin concentration values (The
fitness values in the instantiated algorithm) are selected
to branch.

(3) The distance should not be close between the selected
root tips in order to make spatial distribution of the root
system wider and increase the diversity of the fitness val-
ues.

(4) If the number of the root tips selected equals the prede-
fined value, the loop of the selection process terminates.

The flowchart of the selection process of the root tips is
showed in Fig. 1. In order to produce a new growing point
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SELECT THE ROOT TIP WITH 
THE LARGEST FITNESS VALUE 
AS THE FIRST ONE TO BRANCH

SELECT THE ROOT TIP WITH 
THE LARGEST FITNESS VALUE 

IN THE REMAINING ONES

STOP CRITERIA

CALCULATE 
DISTANCE BETWEEN 

THE ROOT TIPS

DETERMINE THE ROOT TIP 
TO BRANCH

NO

THE SELECTION 
PROCESS ENDS

YES

GREATER THAN 
THE THRESHOLD

LESS THAN THE 
THRESHOLD

Fig. 1 The selection process of the root tips

from the old root tip in memory, the proposed model uses the
following expression:

pgl j =
{

xi j + (2 × δi j − 1) j = k
xi j j �= k

(2)

where k ∈ {1, 2, . . . , D} are randomly chosen indexes and
j ∈ {1, 2, . . . , D}. pgl (i = 1, 2, . . . , S) are S new growing
points. δi j is a random number between [−1, 1].

3.4 Root hair growth

After new growing points are produced, root hairs begin to
grow from these growing points. Root hair growth depends
on its growth angle and growth length. The growth angle is
a vector for measuring the growth direction of root hair. The
growth angle of each root hair ϕi (i = 1, 2, . . . , n) which is
produced randomly can be expressed as:

(φ1, φ2, . . . , φD) = rand(D) (3)

ϕi = (φ1, φ2, . . . , φD)
√

φ2
1 + φ2

2 + · · · + φ2
D

(4)

The growth length of each root hair is defined as δi (i =
1, 2, . . . , n) which is an important parameter in the root
growth model. Some strategies of tuning the parameter
can produce multiple versions of the root growth model.
After growing, a new root tip is produced by the following
expression:

xi = xi + δiϕi (5)

In order to simulate the trophotropism of root system, some
rules are defined as follows:

(1) If morphactin concentration (fitness) of a new root tip is
better than old one in the same cycle t , the root tip will
continue to grow. A new root tip in the inner loop can be
expressed as:

xt
i = xt

i + δiϕi (6)

But the number of iterations in the inner loop is a prede-
fined value. While the number of iterations in the inner
loop equals a predefined value, the inner loop stops.

(2) If morphactin concentration of a new root tip is worse
than old one in the same cycle t , the root tip will stop
growing and t = t + 1. A new root tip can be expressed
as:

xt+1
i = xt+1

i + δiϕi (7)

3.5 Root growth algorithm

The root growth model proposed is instantiated as RGA for
simulation of root system of plant and higher-dimensional
numerical function optimization. The threshold of the dis-
tance between root tips and the growth length of each root
hair are important parameters for RGA. The flowchart of the
RGA is presented in Fig. 2. The pseudocode for the RGA is
listed in Table 2.

4 Simulation of root system of plant

4.1 Simulating root–soil interaction

As the first stage of a comprehensive root growth model, the
objective of the study was to simulate the interactive rela-
tionships between changing soil environment and the root
growth. In the simulation, Ackley function is used as soil
environment in computer. Ackley function is presented in
Sect. 4.1 and the setting of the parameters is the same as one
in Sect. 4.2. Figures 3 and 4 shows the simulation result of
root–soil interaction. The color changes in the simulation of
soil indicate the uneven distribution of nutrients in the soil.
The root system is represented by points and a point rep-
resents a root tip. It is simulated successfully that the roots
of plant grow towards the directions with the higher con-
centration of nutrients. It is also illustrated that RGA can
obtain optimal solution for numerical function optimization
in Figs. 3 and 4.

123



Root growth model 525

INITIALIZE SEED POSITION 
AND PARAMETERS

ACCORDING TO RGA RULES

EVALUATE  FITNESS 
VALUES OF ALL ROOT TIPS
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TIPS SELECTED

ROOT HAIR GROWING AND 
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STOP CRITERIA

END

NO

YES

YES

NO

Fig. 2 The flowchart of the RGA

Table 2 Pseudocode for the RGA

Set t: = 0; 

INITIALIZE. Randomize position of a seed and parameters.  

WHILE (the termination conditions are not met) 

FOR (each root tip x) 

Select S root tips pg

END FOR 

FOR (each root tip selected pg) 

  Produce n new growing points using Eq. (2) 

END FOR 

FOR (each root tip x) 

Produce new root tips using Eq. (5) 

END FOR

Tune the parameter δ

Set t: = t + 1; 

END WHILE 

4.2 Simulating self-adaptive growth of root hairs

The self-adaptive growth is a significant characteristic for the
growth of plant root system. Simulating self-adaptive growth
of root hairs is important for learning relationships between
the nutrient concentration of the soil and the growth length

of root hairs. The self-adaptive strategies in accordance with
growth behaviours of root hairs can improve the performance
of RGA. So the two self-adaptive strategies are proposed
to optimize numerical functions and simulate self-adaptive
growth of root hairs in this section.

Rastrigin function is used as soil environment in com-
puter. Rastrigin function is presented in Sect. 4.1 and the
setting of the parameters is the same as one in Sect. 4.2.
The growth length of each root hair δi (i = 1, 2, . . . , n)

is the master variable for self-adaptive growth of root
hairs. The variable which is an important parameter in
root growth model can produce multiple versions of the
model and the proper tuning of the parameter can improve
the result of the instantiated algorithm for optimization.
The two strategies of self-adaptive growth are proposed as
follows:

(1) The growth length of all root hairs is the same when
initialized. At set intervals of cycle times, root growth
length decreases by the specific rate α. If the fitness value
of a root tip is not changed at set intervals of cycle times,
its root growth length increases by the specific rate β.
But root growth length cannot exceed its initial value
after increasing. The pseudocode of the first strategy of
self-adaptive growth is listed in Table 3. Figure 5 shows
the simulation of the first self-adaptive growth strategy.
A point represents the growth length of a root tip. The
distribution of root tips to polarization is obvious after
some generations. One part of root tips grow toward the
direction with the best concentration of nutrients and
the other part exploit more extensive region of the soil.
The simulation indicates the trophotropism of root sys-
tem and the relationship competition between root hairs.
The roots of plant grow towards the directions with the
higher concentration of nutrients, but if too many root
hairs concentrated in the same area with the higher con-
centration of nutrients, some week root hairs leave the
area. The simulation also shows the instantiated algo-
rithm, RGA, for optimization can find the optimal solu-
tion. The variation of RGA with the first self-adaptive
growth strategy is named as “RGA-α”.

(2) The growth length of all root hairs change as their fit-
ness values change. The pseudocode and the formula of
the second strategy of self-adaptive growth are listed in
Table 4 in which τ is a nonnegative number. Figure 6
shows the simulation of the second self-adaptive growth
strategy. The roots of plant grow towards the same direc-
tion with the high concentration of nutrients. From the
view point of the optimization, the second self-adaptive
growth strategy can make all points moving toward the
area with the largest fitness value and then these points
move around back and forth for intensive search. So
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Fig. 3 The simulation of root–soil interaction

Fig. 4 The contour chart of root–soil interaction

RGA using the strategy of self-adaptive growth can
obtain better optimal solution easily and quickly. The
variation of RGA with the second self-adaptive growth
strategy is named as “RGA-τ”.

5 Numerical experiments for optimization

5.1 Benchmark functions

The set of benchmark functions contains eight functions
that are commonly used in evolutionary computation

literature (Krink et al. 2002; Shi and Ebrehart 1998; Shi and
Eberhart 1999; Karaboga and Akay 2009) to show solution
quality and convergence rate. The first four functions are uni-
modal problems and the remaining functions are multimodal.
The functions are listed below. The dimensions, initialization
ranges, global optimum, and the criterion of each function
are listed in Table 5.

(1) Sphere function

f1(x) =
D∑

i=1

x2
i (8)
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Table 3 Pseudocode for the first self-adaptive growth strategy

Set: δ i = Initial value

FOR each generation 

FOR each point xi

IF no change count > default count 

      Set: δ i = δ i α

  IF δ i > Initial value 

        Set: δ i = Initial value 

END IF

END IF 

END FOR

IF λ | iteration 

Set: δ i = δ i β

END IF 

END FOR

(2) SumSquares function

f2(x) =
D∑

i=1

i x2
i (9)

(3) Rosenbrock function

f3(x) =
D−1∑

i=1

(100(x2
i − xi+1)

2 + (1 − xi )
2) (10)

(4) Schwefel 2.22 function

f4(x) =
D∑

i=1

|xi | +
D∏

i=1

|xi | (11)

Table 4 Pseudocode for the second self-adaptive growth strategy

Set: δ i = Initial value

FOR each generation 

FOR each point xi

Set: δ i = |Ei| / |Ei + τ |

END FOR 

END FOR

(5) Rastrigin function

f5(x) =
D∑

i=1

(x2
i − 10 cos(2πxi ) + 10) (12)

(6) Schwefel function

f6(x) =
D∑

i=1

−xi sin(
√|xi |) (13)

(7) Ackley function

f7(x) = 20 + e − 20e

(

−0.2
√

1
D

∑D
i=1 x2

i

)

−e

(
1
D

∑D
i=1 cos(2πxi )

)

(14)

(8) Griewank function

f8(x) = 1

4,000

(
D∑

i=1

x2
i

)

−
(

D∏

i=1

cos

(
xi√

i

))

+ 1

(15)

Fig. 5 The simulation of the
first self-adaptive growth
strategy
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Fig. 6 The simulation of the
second self-adaptive growth
strategy

Table 5 Parameters of the benchmark functions

Function Dimensions Initial range Minimum

Sphere 30 and 45 [−100, 100]D 0

SumSquares 30 and 45 [−10, 10]D 0

Rosenbrock 30 and 45 [−30, 30]D 0

Schwefel 2.22 30 and 45 [−10,10]D 0

Rastrigin 30 and 45 [−10,10]D 0

Schwefel 30 and 45 [−500, 500]D −12,569.5

Ackley 30 and 45 [−32.768, 32.768]D 0

Griewank 30 and 45 [−600, 600]D 0

5.2 Settings

The proposed algorithm RGA with the two self-adaptive
strategies come into being two variations, RGA-α and RGA-
τ . RGA-α and RGA-τ are compared with GA, DE and PSO
and they are run in MATLAB 7 on a Personal Computer with
a Pentium Dual Core 2.20 GHz processor and 1 GB memory.

For the experiments, the value of the common parameter,
total evaluation number, used in each algorithm was chosen

to be the same. Population size in GA, DE and PSO was
50. The maximal number of fitness function evaluations was
2,000,000 for all functions.

For GA, a binary coded standard GA were employed. The
rate of single point crossover operation was 0.8. Mutation
rate was 0.01. The selection method was stochastic uniform
sampling technique. Generation gap is the proportion of the
population to be replaced. Chosen generation gap value in
experiments was 0.9. For DE, F was set to 0.5. Crossover rate
was chosen to be 0.9 as recommended in Corne et al. (1999).
For PSO, inertia weight was 0.6 and cognitive and social
components were both set to 1.8 (Vesterstrom and Thomsen
2004).

The parameter settings of RGA-α and RGA-τ for simu-
lation and optimization are listed in Table 6. All parameter
values have been tested many times to obtain better simula-
tion and optimal solution and then were used.

5.3 Numerical results and comparison

The GA, DE, PSO RGA-α and RGA-τ algorithms are com-
pared on eight functions with 30 and 45 dimensions described

Table 6 Parameter setting of
RGA-α and RGA-τ Simulation settings Optimization settings Value

The number of seed The number of initial population 1

The maximum number of root tips The maximum number of population 100

The initial length of each root fair δi The initial value of the parameter δi 1

The distance threshold between root tips A parameter 1

Branching number of each root tip selected A parameter 4

S S 4

α α 1.2

β β 0.8

τ τ 1–1,000

λ λ 200
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Table 7 Comparison of results with 30D obtained by GA, DE, PSO, RGA-α and RGA-τ

Function GA DE PSO RGA-α RGA-τ

Sphere
Mean 0.92505 22.6724 2.25409e−008 0.212980 1.09852e−008

Std 1.29811 28.6836 1.76046e−008 0.546753 1.61596e−008

Min 0.50220 3.69461 1.06366e−008 6.23595e−003 5.90561e−024

Max 3.19916 55.6673 4.27632e−008 1.04037 2.95410e−008

SumSquares
Mean 0.0423408 366.243 1.15988e−003 0.0133962 4.07359e−003

Std 6.91778e−003 144.776 6.23641e−004 6.56423e−003 5.53186e−004

Min 0.0372955 249.874 9.67914e−004 9.37678e−003 3.49710e−003

Max 0.0502266 528.369 3.28971e−003 0.0167695 4.60007e−003

Rosenbrock

Mean 4,300.21 11,859.6 36.0147 1,440.22 21.2087

Std 638.258 5,221.57 37.1823 1,837.75 0.808404

Min 3,662.62 7,170.21 12.1717 150.406 20.3453

Max 4,939.16 17,486.4 78.8579 3,241.94 21.9481

Schwefel 2.22
Mean 0.194223 21.3174 0.0958865 0.122179 0.0549662

Std 0.032346 2.48856 0.0709508 0.0209892 1.99853e−003

Min 0.162737 19.4056 0.0714948 0.0979435 0.0460287

Max 0.227365 24.1311 0.176012 0.134432 0.0675534

Rastrigin
Mean 87.1626 156.074 28.5221 17.2605 4.28574e−004

Std 12.4927 70.4707 9.02802 6.67254 9.69091e−005

Min 79.1588 96.8458 21.8891 12.8178 3.35807e−004

Max 101.558 234.011 38.8034 24.9334 5.29153e−004

Schwefel
Mean −8,793.98 −8,746.91 −5,251.66 −7,808.34 −8,487.84

Std 587.525 1,328.42 1,176.508 1,060.61 1,041.19

Min −9,285.05 −10,175.6 −6,469.01 −8,558.30 −9,666.01

Max −8,143.08 −7,548.97 −4,935.01 −7,058.38 −7,691.38

Ackley
Mean 4.90392 12.8558 6.44018e−007 3.03418 3.27635e−004

Std 0.42856 1.06169 4.68484e−007 0.655751 1.28737e−005

Min 4.57918 11.6323 2.42885e−007 2.54542 1.57042e−004

Max 5.38955 13.5347 1.1589e−006 3.77940 4.34591e−004

Griewank
Mean 1.81473 1.38865 0.0338252 0.659995 3.70074e−003

Std 0.20679 0.29033 0.0483038 0.445041 5.22626e−003

Min 1.58355 1.05381 4.98359e−006 0.336426 3.53763e−007

Max 1.98206 1.57037 0.0891463 1.17155 4.17191e−003

Bold values indicate the best values obtained by the five algorithms

in the previous section and are listed in Table 5. Each of
the experiments in this section was repeated 30 times. The
mean values, the standard deviation, the minimum values
and the maximum values produced by the algorithms have
been recorded in Tables 7 and 8. The best values obtained
by the five algorithms for each function are marked as
bold. The mean best function value profiles are shown in

Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
and 22.

5.3.1 Analyzing numerical results with 30D

As shown in Table 7, RGA-τ algorithm can obtain better per-
formance than the other algorithms on Sphere, Rosenbrock,
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Table 8 Comparison of results with 45D obtained by GA, DE, PSO, RGA- α and RGA-τ

Function GA DE PSO RGA-α RGA-τ

Sphere
Mean 37.5669 290.36 2.27609e−006 12.8228 1.93873e−006

Std 4.4795 184.704 2.62744e−007 5.36133 1.22332e−006

Min 32.7708 92.9845 2.0238e−006 9.52884 7.03555e−007

Max 41.6423 459.032 2.54817e−006 19.0092 3.89349e−006

SumSquares
Mean 2.06001 173.516 7.25119e−006 463.418 9.84732e−006

Std 0.687524 49.7097 6.5067e−006 410.908 2.94736e−006

Min 1.59746 118.217 2.12194e−006 20.1757 1.98714e−006

Max 2.85009 214.492 1.45703e−005 831.659 2.84367e−005

Rosenbrock
Mean 1,532.26 473,057 41.0732 1,511.97 34.3239

Std 901.440 645,794 3.8414 2,418.96 2.11109

Min 612.841 80,480.9 36.6457 39.9037 33.9825

Max 2,414.59 1.2184e+006 43.52 4,303.76 38.2233

Schwefel 2.22
Mean 1.68119 1.73382 0.00681453 21.5694 0.00268347

Std 0.210885 1.64727 0.000966737 6.27545 0.000429901

Min 1.53852 0.725999 0.00321511 17.6566 0.00222769

Max 1.92331 3.63478 0.0120881 28.8077 0.0030817

Rastrigin
Mean 128.885 238.902 74.6218 401.69 0.55754

Std 22.188 4.86127 4.33688 277.133 0.943137

Min 104.3864 233.291 69.647 82.1326 0.0130062

Max 147.629 241.843 77.6067 576.123 1.64658

Schwefel
Mean −10,057.2 −13,540.4 −9,864.92 −11,698.2 −11,494.2

Std 2,512.79 1,252.87 1,768.21 1,617.28 1,658.22

Min −12,957.7 −14,981 −11,194.8 −13,460.7 −13,404.1

Max −8,543.17 −12,705.2 −7,858.28 −10,282.5 −10,421.5

Ackley
Mean 2.52123 14.486 0.00346664 2.02747 0.00806774

Std 0.258816 1.58301 0.00164182 1.32354 0.00285592

Min 2.37049 12.6661 0.00175844 1.19584 0.00348745

Max 2.81999 15.5435 0.00503285 3.55371 0.010199283

Griewank
Mean 1.30435 8.80927 0.0249269 0.189923 0.00579939

Std 0.1203 3.24603 0.042542 0.223845 0.0050909

Min 1.19407 5.3781 3.42295e−004 0.025093 8.80639e−005

Max 1.43262 11.8314 0.0740501 0.444761 0.0098603

Bold values indicate the best values obtained by the five algorithms

Schwefel 2.22, Rastrigin, and Griewank functions with
30D. PSO algorithm shows better performance on Sum-
Squares and Ackley functions. GA and DE obtain better opti-
mal solution on Schwefel function. RGA-α can also obtain
better performance on every function.

Sphere and SumSquares function are two unimodal
variable–separable functions. On the two functions, PSO and
RGA-τ obtained satisfying results. However, RGA-τ algo-
rithm showed the best performance on Sphere and the search

performance order is RGA-τ > PSO > RGA-α > GA > DE.
PSO algorithm shows the better performance on SumSquares
and the search performance order is PSO > RGA-τ > RGA-
α > GA > DE.

Rosenbrock and Schwefel 2.22 functions are two uni-
modal non-separable functions. On the two functions, RGA-
τ algorithm showed the best performance. On Rosenbrock
function, PSO was a little worse than RGA-τ . GA and DE
cannot obtain better performance on this function. On Schwe-
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Fig. 7 f1, Sphere with 30D
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Fig. 8 f2, SumSquares with 30D
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Fig. 9 f3, Rosenbrock with 30D
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Fig. 10 f4, Schwefel 2.22 with 30D
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Fig. 11 f5, Rastrigin with 30D
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Fig. 12 f6, Schwefel with 30D

123



532 H. Zhang et al.

0 0.5 1 1.5 2

x 10
6

10
-8

10
-6

10
-4

10
-2

10
0

10
2 Mean of Best function values

No. of fitness evaluation

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue
 (

Lo
g)

RGO-τ
PSO

DE
GA

RGA-α

Fig. 13 f7, Ackley with 30D
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Fig. 14 f8, Griewank with 30D
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Fig. 15 f1, Sphere with 45D
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Fig. 16 f2, SumSquares with 45D
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Fig. 17 f3, Rosenbrock with 45D
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Fig. 18 f4, Schwefel 2.22 with 45D
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Fig. 19 f5, Rastrigin with 45D
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Fig. 20 f6, Schwefel with 45D
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Fig. 21 f7, Ackley with 45D
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Fig. 22 f8, Griewank with 45D

fel 2.22 function, PSO, RGA-α and GA can also obtain better
optimal solution. The search performance order on the two
functions is RGA-τ > PSO > RGA-α > GA > DE.

Rastrigin and Schwefel functions are two multimodal
variable–separable functions. As it can be seen in Fig. 11,
the convergence profile of RGA-τ was significantly better
than the other four algorithms and PSO, DE, GA and RGA-α
also trapped in the local optimum soon on Rastrigin function.
The search performance order on Rastrigin function is RGA-
τ > RGA-α > PSO > GA > DE. On Schwefel, GA and DE
show the better performance. The search performance order
is GA > DE > RGA-τ > RGA-α > PSO.

Ackley and Griewank functions are two multimodal non-
separable functions. On these two functions, the results
obtained by RGA-τ and PSO were significantly better than
GA and DE, as shown in Figs. 13 and 14. RGA-α can also
obtain better results than GA and DE. On Ackley function,
PSO showed a better converge performance than RGA-τ and
the search performance order is PSO > RGA-τ > RGA-
α > GA > DE. But on Griewank function, RGA-τ con-
verged better. PSO algorithm converged fast at the beginning
and trapped in the local optimum soon on Griewank function.
The search performance order is RGA-τ > PSO > RGA-α >

DE > GA.

5.3.2 Analyzing numerical results with 45D

As shown in Table 8, RGA-τ algorithm can obtain better per-
formance than the other algorithms on Sphere, Rosenbrock,
Schwefel 2.22, Rastrigin, and Griewank functions with 45D.
PSO algorithm shows better performance on SumSquares
and Ackley functions. DE obtains the best optimal solution
on Schwefel function. RGA-α can also obtain better perfor-
mance on most functions.
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Table 9 Experimental results of RGA-τ under varying τ values

Function τ

1 50 100 500 1,000

Sphere
Mean 6.03750 1.39662e−005 0.0109505 1.59217e−008 1.48642e−005

Std 0.405303 1.92988e−007 0.0154830 7.79135e−009 1.92248e−006

SumSquares
Mean 150.623 0.0405131 9.84551e−003 0.0417146 3.61794e−003

Std 44.2301 5.94027e−003 2.01407e−003 0.0581283 4.58169e−004

Rosenbrock
Mean 2,504.52 1,841.08 3,117.08 60.098 18.6324

Std 2,018.48 184.827 1,758.65 8.36271 0.970460

Schwefel 2.22
Mean 14.9426 0.175768 0.0628732 0.221833 0.218181

Std 2.13443 0.0349579 1.87490e−003 4.11223e−3 0.0251149

Rastrigin
Mean 361.247 354.175 355.371 0.0185982 5.05323e−003

Std 42.1935 11.6724 6.09598 0.43982e−003 7.13957e−003

Schwefel
Mean −8,372.39 −8,678.21 −8,145.58 −7,977.11 −8,037.08

Std 1,267.7 712.181 2,398.20 1,498.3069 1,872.12

Ackley
Mean 3.60046 3.71368e−003 9.39340 3.68786e−004 2.80895e−003

Std 0.321164 5.59902e−004 12.7740 2.31268e−006 3.6843e−004

Griewank
Mean 9.14804e−003 3.70074e−003 5.89445e−003 3.63194 24.9365

Std 1.91572e−003 5.22626e−003 8.29661e−003 1.52999 9.27919

On Sphere and SumSquares function, both PSO and RGA-
τ obtained satisfying results. However, RGA-τ algorithm
showed the best performance on Sphere and the search per-
formance order is RGA-τ > PSO > RGA-α > GA > DE.
PSO algorithm shows the better performance on SumSquares
and the search performance order is PSO > RGA-τ > GA
> DE > RGA-α.

On Rosenbrock and Schwefel 2.22 functions, RGA-τ
algorithm showed the best performance. On the two func-
tion, RGA-τ , GA and DE cannot obtain better perfor-
mance on this function. The search performance order on
the two functions is RGA-τ > PSO > GA > RGA-
α > DE.

As it can be seen in Fig. 19, the convergence profile of
RGA-τ was significantly better than the other four algorithms
and PSO, DE, GA and RGA-α also trapped in the local opti-
mum soon on Rastrigin function. The search performance
order on Rastrigin function is RGA-τ > PSO > GA > DE
> RGA-α. On Schwefel, DE show the better performance.
The search performance order is DE > RGA-α > RGA-τ >

GA > PSO.
On Ackley and Griewank functions, the results obtained

by RGA-τ were significantly better than GA and DE, as
shown in Figs. 21 and 22. PSO also obtains better results.

RGA-α can also obtain better results than GA and DE. On
Ackley function, PSO showed a better converge performance
than RGA-τ and the search performance order is PSO >

RGA-τ > RGA-α > GA > DE. But on Griewank func-
tion, RGA-τ converged better. PSO algorithm converged fast
at the beginning and trapped in the local optimum soon on
Griewank function. The search performance order is RGA-
τ > PSO > RGA-α > GA > DE.

Overall, RGA algorithm with the two self-adaptive strate-
gies can obtain good performance on most functions with
higher-dimension, especially on the unimodal non-separable
function and the multimodal non-separable functions. RGA-
τ shows very good performance. The second self-adaptive
strategy is matched with RGA better. So RGA based on root
growth model is appropriate for higher dimensional numer-
ical function optimization.

5.4 Parameter τ Tuning

While solving a problem by an optimization algorithm,
adjusting algorithm parameters have significant importance
on the performance of the algorithm. A fine tuning of control
parameters is required for most of the algorithms to obtain
desired solutions (Table 9).
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Fig. 23 Effect of τ parameter on Sphere function
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Fig. 24 Effect of τ parameter on SumSquares function

0 0.5 1 1.5 2

x 10
6

10
0

10
2

10
4

10
6

10
8

10
10 Mean of Best function values

No. of fitness evaluation

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue
 (

Lo
g)

τ=1

τ=50

τ=100
τ=500

τ=1000

Fig. 25 Effect of τ parameter on Rosenbrock function
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Fig. 26 Effect of τ parameter on Schwefel 2.22 function

0 0.5 1 1.5 2

x 10
6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4 Mean of Best function values

No. of fitness evaluation

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue
 (

Lo
g)

τ=1

τ=50

τ=100
τ=500

τ=1000

Fig. 27 Effect of τ parameter on Rastrigin function
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Fig. 28 Effect of τ parameter on Schwefel function
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Fig. 29 Effect of τ parameter on Ackley function
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Fig. 30 Effect of τ parameter on Griewank function

As listed Table 6, RGA employs some control parameters,
but effect of only parameter τ on the performance of RGA
is analyzed in this paper. Because τ is a characteristic para-
meter in the second self-adaptive growth strategy for RGA
and appropriate values of parameter τ can improve perfor-
mance of RGA notably. In the experiment, the maximal num-
ber of fitness function evaluations was 2,000,000 for Sphere,
SumSquares, Rosenbrock, Schwefel 2.22, Rastrigin, Ackley
and Griewank functions and 200,000 for Schwefel function
to make the figure of effect of τ parameter clear. In tables
reporting the experimental results, mean values and standard
deviations of 20 runs are presented.

In the experiment, the values of parameter τ are changed
as 1, 50, 100, 500 and 1,000. Results of this experiment are
reported on Table 8. Results in this table show that when
other parameters are the same, different values of parameter
τ can make the results obtained by RGA distinct on the same

function. Reason of this fact is that parameter τ decides the
growth length of root hairs which can make RGA exploring
new regions better. But the performance of the algorithm on
Schwefel function was not highly influenced by the incre-
ment in the value of parameter τ . The mean best function
value profiles with different values of parameter τ are shown
in Figs. 23, 24, 25, 26, 27, 28, 29 and 30 which clearly demon-
strate the results in Table 8. So parameter τ has an important
effect on RGA.

6 Conclusion

In this paper, we present a root growth model based on
root growth behaviours in the soil. By using this model as
a computational metaphor, we propose a novel algorithm
called RGA for simulation of plant root system and higher-
dimensional numerical function optimization. For simula-
tion, some root growth behaviours, root–soil interaction and
self-adaptive growth of root hairs, are simulated. The char-
acteristics of root growth are showed in the form of images.
For optimization, numerical results obtained from the pro-
posed algorithm have been compared with those obtained
from GA, DE and PSO. It is seen from the comparison that
RGA performs better than GA, DE and PSO. RGA can opti-
mize higher-dimensional numerical function better.
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