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Abstract An improved neural network of time series pre-
dicting is presented in this paper. We introduce a random
data-time effective radial basis function neural network in
determination of the output weights, the center vectors and
the widths in the hidden layer of the network. In the training
modeling, we consider that the historical data on the finan-
cial market is key to the investors’ decision-making for their
investing positions, and the impact of historical data depends
closely on the time. We develop a random data-time effec-
tive function to describe this impact strength, and a weight is
given to each of the historical data, where a drift function and
a random Brownian volatility function are applied to express
the behavior of the time strength. Further, this neural net-
work is applied to the prediction of financial price series of
crude oil, SSE, N225 and DAX. The empirical experiments
show that the proposed neural network results in better per-
formance in financial time series forecasting and is advanta-
geous in increasing the forecasting precision.

Keywords RBF neural network · Random data-time
effective function · Financial time series · Prediction ·
Gradient descent

1 Introduction

Financial market is a complex evolved dynamic system with
high volatilities and noises. The modelling and forecasting
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of financial time series, which takes an existing series of
data (historical data) to predict the next value of a series
known up to a specific time, is regarded as a rather chal-
lenging task in that financial time series are inherently noisy,
nonstationary and deterministically chaotic (Yaser and Atiya
1996). Moreover, numerous factors, including political con-
texts, general economic situations, competition and even the
expectations of traders, can influence the fluctuation behav-
iors (Niu and Wang 2013; Wang and Deng 2008) of such
series. For traditional statistical methods, such as the univari-
ate model ARIMA (autoregressive integrated moving aver-
age) and the multivariate regression model, it is difficult to
capture the irregularity and nonlinearity underlying in the
financial time series and it results in unsatisfactory estima-
tions since the linear structure of the model is pre-assumed
(Box et al. 1994).

Recently, more advanced nonlinear methods have been
frequently applied with success. The ability of support vec-
tor machine (SVM) to solve nonlinear regression estimation
problems makes SVM successful in time series forecasting
(Cao and Tay 2001; Flake and Lawrence 2002; He and Wu
2011; Samsudin et al. 2010). SVM estimates the regression
using a set of linear functions that are defined in a high-
dimensional feature space and carries out the regression esti-
mation by risk minimization. Fuzzy logic based modelling
techniques are also appealing because of its good perfor-
mance in terms of accuracy and interpretability. In partic-
ular, fuzzy systems (Babbar et al. 2013; Gacto et al. 2009;
Di Martino et al. 2010; Pouzols et al. 2010) exhibit a com-
bined description and prediction capability as a consequence
of their rule-based structure. Furthermore, artificial neural
network (ANN), which is an emulation of the biological
system of human brain to learn and identify patterns and
is composed of many interconnected neurons, has become
increasingly popular in financial time series forecasting (Ao
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2011; Azoff 1994; Bahrammirzaee 2010; Dhamija 2010; Guo
et al. 2013; Kaastra and Boyd 1996; Liao and Wang 2010;
Liu and Wang 2011; Nekoukar and Beheshti 2001; Ocon-
nor and Madden 2006; Pino et al. 2008; Rojas et al. 2000;
Sun et al. 2005; Virili and Freisleben 2001; Wang and Wang
2012; Yu 2009). As large-scale parallel processing nonlinear
systems that depend on their own intrinsic link data, ANN
can approximate any nonlinear continuous function without
requiring formal specification of the model, and also has other
advantages including robustness and adaptability compared
to expert systems due to the large number of interconnected
processing elements that can be trained to learn new patterns
(Hansen 1999; Trippi and Turban 1993).

Radial basis function neural networks (RBF) (Broom-
head and Low 1988), as an important branch of neural net-
works, have attracted considerable attention in recent time
due to their ability to approximate complex nonlinear map-
pings directly from the input–output data with a simple topo-
logical structure, short learning time and global optimiza-
tion. These advantages have enabled RBF neural networks
widely-applied in financial fields (Dhamija 2010; Nekoukar
and Beheshti 2001; Rojas et al. 2000; Sun et al. 2005). The
training parameters in RBF neural networks merely include
centers, widths and weights between the hidden layer and the
output layer (Haykin 1999). There are some learning algo-
rithms that have been proposed in the literature for training
RBF networks (Grabusts 2001; Harpham and Dawson 2006;
Jareanpon et al. 2004; Karayiannis 1999; Niros and Tsek-
ouras 2012; Zheng and Billings 1999), such as orthogonal
least squares algorithm, genetic algorithm, supervised and
unsupervised gradient-based method, and the nearest neigh-
bor cluster algorithm, etc. In the present paper, we train all the
parameters simultaneously by applying the gradient descend-
ing algorithm.

In the real financial markets, the investing environments as
well as the fluctuation behaviors of the markets are not invari-
ant. Especially, in the current Chinese stock markets, the
rapid changes of trading rules and management systems have
made it difficult to reflect the markets’ development using
the early data. However, if only the recent data are selected,
a lot of useful information (which the early data hold) will be
lost. In the present paper, we suppose that the historical data
can affect the volatility of the current market, specifically, the
nearer the time of historical data is to the present, the stronger
impact the data will have on the predicting model. Therefore,
the impact of the historical data in the training set should be
time-variant such that it can appropriately reflect the differ-
ent behavior patterns of the markets at different time. If all
the data are equivalently used to train the network, the net-
work system may be of inconformity with the fluctuations of
the real financial market. In this research, we propose a ran-
dom data-time effective function, and combine it with RBF
neural network, called RBFRT model or an improved RBF

neural network. For this improved network model, each of
historical data is given a weight depending on the time at
which it occurs. The degree of impact of historical data on
the market is expressed by a stochastic process (Wang 2007),
where a drift function and a stochastic Brownian volatility
function are employed to describe the behavior of the time
strength. The Brownian motion ensures the model to have the
effect of random movement while maintaining the original
trend. To test the effectiveness, we apply the improved RBF
neural network to the prediction of four financial time series,
which are WTI crude oil price (dollar/barrel), Shanghai Stock
Exchange (SSE) Composite Index, Nikkei 225 (N225) and
Deutscher Aktien Index (DAX) respectively. The forecast-
ing performance of the model is comparatively analyzed for
different parameters and evaluated in various ways.

2 Methodology

2.1 Radial basis function neural network

Neural networks have been extensively tested on nonlinear
dynamic systems modeling and forecasting. A radial basis
function (RBF) network is a special type of neural network
that uses a radial basis function as its activation function
(Broomhead and Low 1988). Due to their universal approxi-
mation, more compact topology and faster learning speed,
RBF networks have attracted considerable attention, and
they have been widely applied in many other fields (Bors and
Gabbouj 1994; Devaraj et al. 2002; Garg et al. 2008; Oyang
et al. 2005). The RBF neural network is a three-layer feed-
forward propagated network. The corresponding structure is
m × h × 1, where m is the number of inputs, h is the num-
ber of neurons in the hidden layer and one output unit. Let
Xt = {x1t , x2t , . . . , xmt } (t = 1, 2, . . . N ) denote the set of
input vector of neurons, and f (x) denote the output. Between
the inputs and the output, there is a layer of processing units
called hidden units. Each of them implements a radial basic
function �, see Fig. 1.

Primarily, time series prediction can be supposed to a
modelling problem. The first step is establishing a mapping
between inputs and outputs. Commonly, the mapping is non-
linear and chaotic. After such a mapping is set up, future
values are predicted based on past and current observations
(Rojas et al. 2000). RBF neural network achieves a mapping
f : R

m → R as

f (x) = w0 +
h∑

i=1

wi�(||x − ci ||) (1)

where ‖ · ‖ represents Euclidean norm; w0 is the bias width
between hidden and output layer (w0 = 0 in this paper is
considered); wi is the associate weights from node i of hidden
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Fig. 1 General structure of three-layer RBF neural network

layer to output layer; x = Xt is the input vector; ci denotes
the center vector of the i th unit in the hidden layer, and � j

is the nonlinear activated function. Gauss-based function is
usually used for hidden-layer activated function in following
expression

�i (||x − ci ||) = exp{−||x − ci ||2/2β2
i } (2)

where βi is the width of the center. From the above, the
design procedure of RBF neural network includes determin-
ing the number of neurons in the hidden layer. Then, in order
to obtain the desired output of RBF neural network, three
parameters need to be defined for each neurons in the hidden
layer, center ci , width βi and weight wi .

2.2 Predicting algorithm with a random data-time effective
function

In order to determine the parameters in RBF neural network,
we employ the Gradient Descent (GD) optimization algo-
rithm (Karayiannis 1999) which takes steps proportional to
the negative of the gradient of function at the current point to
minimize a given cost function, with its advantages of easily
implementation and low storage requirements. Considering
the single-node output, let otn denote the output value and ytn
be the actual value at time tn , then the error of the output is
εtn = otn − ytn . The error of the sample n is defined as

E(tn) = 1

2
C (tn)(otn − ytn )

2 (3)

where C (tn) is a random data-time effective function, which
is defined as

C (tn) = 1

τ
× e

∫ tn
t0

μ(t) dt+∫ tn
t0

σ(t) d B(t) (4)

where τ is the time strength coefficient, t0 is the current time
or the time of the newest data in the data set and tn is an

arbitrary time point in the data set. μ(t) is the drift func-
tion, σ(t) is the volatility function, and B(t) is the standard
Brownian motion (Harrison 1990; Meyer and Saley 2002;
Wang 2007). Intuitively, the drift function is used to model
deterministic trends, the volatility function is often used to
model a set of unpredictable events occurring during this
motion, and Brownian motion is usually thought as random
motion of a particle in liquid (where the future motion of
the particle at any given time is not dependent on the past).
Brownian motion is a continuous-time stochastic process,
and it is the limit of or continuous version of random walks.
Since Brownian motion’s time derivative is everywhere infi-
nite, it is an idealised approximation to actual random phys-
ical processes, which always have a finite time scale. We
begin with an explicit definition. A Brownian motion is a
real-valued, continuous stochastic process {Y (t), t ≥ 0} on
a probability space (�,A, P), with independent and station-
ary increments. In details: (a) continuity: the map s �→ Y (s)
is continuous P a.s.; (b) independent increments: If s ≤ t ,
Yt − Ys is independent of F = σ(Yu, u ≤ s); (c) stationary
increments: If s ≤ t , Yt − Ys and Yt−s − Y0 have the same
probability law. From this definition, if {Y (t), t ≥ 0} is a
Brownian motion, then Yt − Y0 is a normal random variable
with mean r t and variance σ 2t , where r and σ are constant
real numbers. A Brownian motion is standard (we denote it
by B(t)) if B(0) = 0 P a.s., E[B(t)] = 0 and E[B(t)]2 = t .
In the above random data-time effective function, the impact
of the historical data on the stock market is regarded as a
time variable function, the efficiency of the historical data
depends on its time. Then the corresponding total error of all
the data at each network repeated training set in the output
layer is given as

E =
N∑

n=1

E(tn)= 1

2

N∑

n=1

1

τ
e
∫ tn

t0
μ(t) dt+∫ tn

t0
σ(t) d B(t)

(otn −ytn )
2.

(5)

The main objective of learning algorithm is to minimize
the value of cost function E until it reaches the pre-set min-
imum value ξ by repeated learning. On each repetition, the
output is calculated and the total error E is obtained. The gra-
dient of the cost function is given by 	E = ∂ E/∂W . Then,
RBF can be optimized with adjusting the output weights, the
center vector and the width value in the radial basis func-
tion by iteratively computing the partials and performing the
following updates

	wi = −η1
∂ E

∂wi
= η1εtn C (tn)�i (6)

	ci = −η2
∂ E

∂ci
= η2εtn wiC (tn)

�i

βi
2 (x − ci) (7)

	βi = −η3
∂ E

∂βi
= η3εtn wiC (tn)

�i

βi
3 ||x − ci || (8)
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Fig. 2 The flow chart of
training algorithm for the
improved RBF neural network

where η1, η2, η3 are the learning rates, which are usually set
between 0 and 1. Therefore the modification of the weights,
the centers and the width is given by

wi (l + 1) = wi (l) + 	wi = wi (l) + η1εtn C (tn)�i (9)

ci (l+1) = ci (l)+	ci =ci (l)+η2εtn wiC (tn)
�i

βi
2 (x−ci)

(10)

βi (l+1)=βi (l)+	βi =βi (l)+η3εtn wiC (tn)
�i

βi
3 ||x−ci ||.

(11)

According to the above description, the training algorithm
procedure of the random data-time effective RBF neural net-
work is briefly shown in Fig. 2.

3 Empirical analysis

3.1 Data selection and normalization

To examine the effectiveness of the improved RBF neural
network, we apply it to the financial time series forecasting.
The data adopted in this paper includes the WTI crude oil
price, Shanghai Stock Exchange Composite Index, Nikkei
225 and Deutscher Aktien Index. The crude oil data cover
the time period from 06/07/2001 up to 19/06/2012, which
accounts to 2,753 data points. The SSE is from 16/02/2005 to
15/06/2012 with 1,837 data points. The data of the N225 used
in this paper is from 05/06/2006 to 13/07/2012 with 1,449

data points, while that of the DAX is totally 2,301 data points
from 01/07/2003 to 29/06/2012. Usually, the nontrading time
periods are treated as frozen such that we adopt only the time
during trading hours. Let p(t) (t = 1, 2, . . .) denote the price
sequences of crude oil, SSE, N225 and DAX at time t , then
the corresponding logarithmic return is given by

r(t) = ln p(t + 1) − ln p(t). (12)

In Fig. 3, we show the plots of returns for these four price
series. We can see that the prices fluctuate wildly, and this
means that there is a very high level of noise in the data which
brings in the difficulty in forecasting.

To reduce the impact of noise in the financial market and
finally lead to a better prediction, the collected data should
be properly adjusted and normalized at the beginning of the
modelling. There are different normalization methods that
are tested to improve the network training (Chaturvedi et
al. 1996; Demuth and Beale 2002; Sola and Sevilla 1997),
which include “the normalized data in the range of [0, 1]” in
the following equation, which is also adopted in this work

p(t)′ = p(t) − min p(t)

max p(t) − min p(t)
(13)

where the minimum and maximum values are obtained on
the training set during the training process. In order to obtain
the true value after the forecasting, we can revert the output
variables as p(t) = p(t)′(max p(t) − min p(t)) + min p(t).
Then the data is passed to the improved RBF neural network
as the nonstationary data.
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Fig. 3 The plots of logarithmic returns for the crude oil, SSE, N225 and DAX

3.2 Predicting with the improved RBF neural network

Following the procedure of the three-layer RBF neural net-
work introduced in Sect. 2.1, we initially take the number of
input nodes as 4, that is, a historical lag with order 4 is consid-
ered in the analyzed data. Correspondingly, the original price
data of the crude oil, SSE, N225 and DAX are first formed
into 2,750, 1,834, 1,496, and 2,298 input–output data pairs
respectively. Then the data sets are divided into two parts
respectively to form the data training set and the data testing
set. Note that the data points for these four time series are
not the same, the lengths of training data and testing data
are also set differently. The training set for the crude oil is
from 11/07/2001 to 11/09/2008 with totally 1,800 data, while
that for SSE is from 21/02/2005 to 05/01/2009 with data of
1,000. The training data for N225 are 1000 from 08/06/2006
to 07/07/2010, and those for DAX are 1500 from 04/07/2003
to 22/05/2009. The rest of the data is defined as the testing set.
The number of hidden nodes in the hidden layer is pre-set as
15, then we obtain the 4 × 15 × 1 neural network. The maxi-
mum training cycle is set l = 200, the learning rate of weight,
center and width parameter is η1 = η2 = η3 = 0.001, and
the pre-set minimum error accuracy is 0.0001. Besides, we
set that the output weights following the uniform distribu-
tion on (−0.1, 0.1), the center vector following the uniform
distribution on (0, 1) and the widths following the uniform
distribution on (0.1, 0.3). For each time series, we run 10
times of the neural network with different initial points, and
the average of the error rates are reported. When we apply
the random data-time effective function RBF neural network

to predict the daily prices of the crude oil and other three
stock indexes, we assume μ(t) (the drift function) and σ(t)
(the volatility function) to be following forms

μ(t) = 1

(t + a)2 , σ (t) =
√√√√ 1

N − 1

N∑

i=1

(xi − x̄)2 (14)

where a is the predictive parameter, and we take it as the
length of the time series in this paper, x̄ is the mean of the
sample data. The corresponding cost function of network
training can be written by

E =
N∑

n=1

E(tn)= 1

2

N∑

n=1

1

τ
e
∫ tn

t0
1

(t+a)2
dt+∫ tn

t0

√
1

N−1

∑N
i=1 (xi −x̄)2 d B(t)

×(otn − ytn )
2. (15)

To exclude the significant impacts on the performance of
the proposed model for the randomness of initialization of the
parameters, we perform a two-sample t-test on the total errors
in the training set of network RBFRT model for the above
randomly-selected initial parameters and the fixed initial
parameters respectively. We take crude oil for example, the
corresponding statistical test results are presented in Table 1.
Let S f = {wi , ci , βi }, i = 1, . . . , h (or Sr = {wi , ci , βi })
represents the fixed (or random) initial parameter set, where
wi , ci and βi denotes the value of weight, center and width
parameter of i-th neuron respectively (see Sect. 2.1). We
select three different fixed initial parameter sets, that is
S1

f = {0.01, 0.5001, 0.2001}, S2
f = {0.08, 0.8001, 0.2901}

and S3
f = {−0.08, 0.01, 0.1201}, and make the correspond-
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Table 1 Statistical test of training errors with different initialization of
parameters respectively for crude oil

S1
f vs. Sr S2

f vs. Sr S3
f vs. Sr

H t-value Prob. p H t-value Prob. p H t-value Prob. p

0 −0.0925 0.9263 0 0.1363 0.8916 0 −0.8297 0.4991

ing statistical test on the total errors after training for RBFRT
network with each of these fixed initial parameters and ran-
dom ones. It is shown in Table 1 that, for all the error pairs
with two different initialization of parameters, the values of
double-tail test p are larger than the significance level 0.05
and the values of H are 0. Thus the null hypothesis is accepted
that the errors for RBFRT with random initial parameters and
fixed initial parameters have no significance difference.

In the follows, we study the predicting results of the pro-
posed RBFRT model with the pair values of (μ(t), σ (t)).
Meanwhile, the comparisons of other three pair values of
(μ(t), 0), (0, σ (t)) and (0, 0) are also performed. Figure 4
shows the predicting values of the crude oil for the training
set and test set with parameter value (0, 0) in Fig. 4a, b and
with parameter value (μ(t), σ (t)) in Fig. 4c, d respectively.

From these plots, the predicting values of the improved RBF
network are more close to the actual values in intuitive sense.
The predicting results of training and test data for SSE, N225
and DAX with the improved RBFRT model are also corre-
spondingly given in Fig. 5. The curves of actual data and
predictive data are intuitively very approximating.

The fluctuation behaviors of time series of relative errors
for the crude oil, SSE, N225 and DAX are demonstrated in
Fig. 6. In these plots, the time 0 represents the farthest data
to the current data, and the larger t represents the data that
is closer to the current data. Figure 6 manifests that the ran-
dom data-time effective RBF neural network can be realized
by assigning different weights to the data of different time.
Time sequences of relative errors of the crude oil and SSE in
Fig. 6a, b also reflect the randomness of model by the effect
of the Brownian motion. From the figure, we find that the
relative errors of DAX are obviously smaller than those of
other three time series, and the magnitude of all errors for
DAX is lower than 0.1. Moreover, most of the predicting rel-
ative errors for these four price series are between −0.05 and
0.05.

In Table 2, the predictive values and the relative errors of
the crude oil in the test set for a week are given for differ-
ent values μ(t) and σ(t). It exhibits that the relative error

(a) (b)

(c) (d)

Fig. 4 a, b The predicting results of the crude oil on the training data and the test data with (μ(t) = 0, σ (t) = 0). c, d The predicting results of
the crude oil using training data and test data with the parameter (μ(t), σ (t))
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(a) (b)

(c)

Fig. 5 Predicting results of three actual stock indexes with the model RBFRT. a SSE, b N225, c DAX

(a) (b)

(c) (d)

Fig. 6 The plots of relative errors for a the crude oil, b SSE, c N225 and d DAX with the proposed RBFRT model
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Table 2 Predictive values and relative errors of the crude oil for differ-
ent values of (μ(t), σ (t))

Time Actual Predictive Error

(μ(t), σ (t))

2012/05/21 92.57 92.2287 0.0037

2012/05/22 91.44 91.9954 −0.0061

2012/05/23 89.40 89.5747 −0.0019

2012/05/24 90.36 91.0781 −0.0079

2012/05/25 90.64 90.8144 −0.0019

(0, σ (t))

2012/05/21 92.57 92.8687 −0.0032

2012/05/22 91.44 92.4483 −0.0110

2012/05/23 89.40 91.3108 −0.0214

2012/05/24 90.36 91.1267 −0.0084

2012/05/25 90.64 90.4506 0.0021

(μ(t), 0)

2012/05/21 92.57 93.7608 −0.0129

2012/05/22 91.44 90.4041 0.0113

2012/05/23 89.40 91.8128 −0.0161

2012/05/24 90.36 92.1981 −0.0313

2012/05/25 90.64 91.2418 −0.0066

(0,0)

2012/05/21 92.57 90.7523 0.0196

2012/05/22 91.44 93.3205 −0.0205

2012/05/23 89.40 91.4946 −0.0234

2012/05/24 90.36 89.2907 0.0118

2012/05/25 90.64 88.8663 0.0196

is the smallest when the pair value is (μ(t), σ (t)) (below
1 %), and the relative error is the largest for the pair value
(0, 0) (from 1 to 3 %). Take the date 2012/05/23 for instance,
for the pair value (μ(t), σ (t)), the magnitude of the relative
error is 0.19 %; for the pair value (0, σ (t)), the magnitude
of the relative error is 2.14 %; for the pair value (μ(t), 0),
the magnitude of the relative error is 1.61 %; and for the pair
value (0, 0), the magnitude of the relative error is 2.34 %.
Therefore, this means that the developed drift function and
volatility (μ(t), σ (t)) in the neural network is advantageous
for increasing the precision of forecasting.

Moreover, in Table 3, we give parts of testing values and
relative errors of different testing dates for the crude oil,
SSE, N225 and DAX with the improved RBFTR model of
(μ(t), σ (t)) respectively. Take the relative error of the crude
oil for example, it is observable that the errors for the years
2008 and 2009 are larger than those in the years 2010 and
2011. The error values become smaller as the time goes on,
this clearly shows the effect of the random data-time effec-
tive function. Likewise, the relative errors of SSE, N225 and
DAX show the similar predicting behaviors for the testing
data.

Table 3 Comparisons of the relative errors of different testing data for
the crude oil, SSE, N225 and DAX with the RBFRT model

Time Actual Predictive Error

Crude oil

2008/11/24 53.63 52.0758 0.0290

2009/11/27 75.95 77.1083 −0.0153

2010/11/29 85.73 84.62 0.0129

2011/11/21 96.73 96.6777 −0.0098

SSE

2009/05/19 2,676.68 2,616.9795 0.0223

2010/05/21 2,583.52 2,552.0408 0.0122

2011/05/12 2,844.08 2,822.1233 0.0077

2012/05/21 2,348.30 2,359.1913 −0.0047

N225

2010/09/13 9,321.82 9,191.6301 0.0139

2011/06/14 9,547.79 9,485.1204 0.0066

2012/06/14 8,568.89 8,613.3187 −0.0052

DAX

2009/06/08 5,004.72 5,077.6897 −0.0146

2010/06/07 5,904.95 6,037.6047 −0.0225

2011/06/08 7,060.23 7,010.8155 0.0069

2012/06/08 6,130.82 6,104.9193 0.0042

3.3 Predicting performance evaluation

To evaluate the forecasting accuracy of the proposed RBFRT
model, we will compare the outputs of the model with
different values of μ(t) and σ(t) for the crude oil, SSE, N225
and DAX. First, we apply the following several error-type
and trend-type performance measures to value the predic-
tion performance. The mean absolute error MAE, the root
mean square error RMSE, and the correlation coefficient
R are error-type measures used to estimate the forecasting
accuracy. Directional symmetry (DS), correct up-trend (CP)
and correct down-trend (CD) are the trend-type performance
measures used to check the correct treading rate of the prac-
tical stock movement. The corresponding definitions of them
are given as

MAE = 1

l1

l1∑

i=1

|yi −oi |, RMSE =
√√√√ 1

l1

l1∑

i=1

(yi −oi )2,

R =
∑l1

i=1(yi − ȳ)(oi − ō)
√∑l1

i=1(yi − ȳ)2
∑l1

i=1(oi − ō)2
(16)

DS = 100

l1

l1∑

i=1

di , di =
{

1, If (yi −yi−1)(oi −oi−1)≥0
0, Otherwise

(17)
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CP= 100

l2

l2∑

i=1

di , di =
⎧
⎨

⎩

1, If (yi −yi−1) > 0 and
(yi −yi−1)(oi −oi−1) ≥ 0

0, Otherwise

(18)

CD= 100

l3

l3∑

i=1

di , di =
⎧
⎨

⎩

1, If (yi −yi−1) < 0 and
(yi −yi−1)(oi −oi−1) ≥ 0

0, Otherwise

(19)

where y is the actual value, o is the predictive value, ȳ is
the mean of the actual values, ō is the mean of the predictive

values, l1 denotes the number of the evaluated data, l2 is the
number of data for (yi − yi−1) > 0 and l3 is the number
of data for (yi − yi−1) < 0. The smaller MAE value and
RMSE value and the larger R value show the less deviation
of the forecasting results from the actual values. The larger
the values of DS, CP, CD, the closer are the predictive values
to those of the actual ones.

In Table 4, the values of error-type measures MAE,
RMSE, R and trend-type measures DS, CP, CD for the
four time series with different (μ(t), σ (t)) are presented.
These training and testing examples illustrate the forecasting

Table 4 Predicting performance of the crude oil with different (μ(t), σ (t))

Method Crude oil SSE

MAE RMSE R DS CP CD MAE RMSE R DS CP CD

(μ(t), σ (t))

Training 0.9512 1.4571 0.9986 67.98 72.12 62.93 64.2073 92.4743 0.9989 69.78 70.86 66.19

Test 1.5686 2.1248 0.9934 67.86 67.92 67.74 39.0553 48.3032 0.9917 66.15 68.78 63.17

Total 1.1645 1.7174 0.9981 67.92 70.64 64.35 52.7696 75.6556 0.9975 68.88 66.74 65.59
(0, σ (t))

Training 0.9693 1.4799 0.9985 67.65 71.69 62.22 50.1132 91.2593 0.9984 67.57 64.95 63.79

Test 1.7651 2.3541 0.9919 67.76 67.71 67.74 41.9480 51.5778 0.9918 66.15 68.78 63.17

Total 1.2442 1.8297 0.9978 67.66 70.29 64.20 56.4018 69.3989 0.9980 68.03 69.94 63.49

(μ(t), 0)

Training 1.0104 1.4575 0.9986 67.59 70.94 62.46 64.8304 95.9129 0.9977 68.97 70.10 68.35

Test 1.6989 2.2217 0.9926 67.54 67.71 67.52 39.1226 51.0344 0.9891 65.67 68.33 62.66

Total 1.2482 1.7594 0.9980 67.55 70.22 64.58 54.7757 78.7423 0.9973 67.48 67.15 64.23

(0, 0)

Training 1.3974 1.9810 0.9974 67.32 71.58 61.62 67.4750 97.7902 0.9979 68.78 68.10 65.23

Test 1.5676 2.3836 0.9914 67.76 67.50 67.74 41.9518 51.7079 0.9904 65.15 68.78 62.17

Total 1.3050 2.0450 0.9973 67.44 69.72 63.81 55.3259 60.9547 0.9964 68.14 69.52 63.73

Method N225 DAX

MAE RMSE R DS CP CD MAE RMSE R DS CP CD

(μ(t), σ (t))

Training 163.4398 210.4131 0.9980 63.66 63.65 63.27 75.3680 92.8449 0.9986 66.38 72.49 58.94

Test 90.6990 121.2587 0.9835 62.42 64.52 60.32 72.8157 95.2294 0.9898 65.25 69.57 60.26

Total 139.3226 185.6602 0.9983 63.38 63.98 62.28 74.5372 93.6277 0.9980 66.00 71.51 59.69

(0, σ (t))

Training 171.3568 218.8644 0.9971 63.26 63.64 63.06 77.8382 95.9645 0.9985 66.04 71.76 58.79

Test 98.0276 131.2149 0.9817 62.42 64.52 60.32 76.0376 99.3182 0.9902 65.24 69.81 60.00

Total 160.8851 219.2122 0.9977 63.08 63.72 62.14 78.9675 97.5633 0.9978 65.78 71.35 59.36

(μ(t), 0)

Training 180.1834 230.9335 0.9976 63.36 64.26 62.65 78.0387 99.3755 0.9983 65.84 72.25 57.90

Test 109.6594 121.3190 0.9832 62.42 64.52 60.32 77.5281 96.0948 0.9908 65.22 70.53 60.00

Total 144.7141 192.0929 0.9979 63.28 64.64 61.87 80.4320 98.2487 0.9977 65.78 71.67 58.36

(0, 0)

Training 192.0625 251.6922 0.9978 63.16 64.24 63.06 81.9770 102.1632 0.9982 65.58 72.00 57.61

Test 127.4936 163.5150 0.9761 62.42 64.52 60.32 81.0998 100.4998 0.9920 65.12 70.05 59.47

Total 162.2699 210.9818 0.9982 63.01 64.38 61.17 85.2603 97.4939 0.9977 65.43 71.10 58.32
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(a) (b)

(c) (d)

Fig. 7 The comparison and linear regression of the actual data and the predictive value for the crude oil, SSE, N225 and DAX

accuracy and tendency with six measure-types under four
prediction cases. Take the crude oil for example, we can see
from the table that the proposed approach has improved the
forecasting ability. Both for the training set and the test set,
the measure values MAE and RMSE of the crude oil for
the improved RBFRT model are smaller than those for other
three cases, while the values of R for it are larger than those
for other three cases. In the training and test set, the tend-
type measures for RBFRT models are almost all larger than
those for other three different cases, that is DS = 67.98, CP
= 72.12, CD = 62.93 in training period and DS = 67.86,
CP = 67.92, CD = 67.74 in test period. This indicates a bet-
ter predicting performance for the random data-time effec-
tive RBF neural network. Meanwhile, the performances for
SSE, N225 and DAX shows the similar trends, which sug-
gests a quite well predicting performance for the RBFRT
model.

The plots of the actual and the predictive data for these four
price sequences are respectively shown in Fig. 7. Through
the linear regression analysis, we make a comparison of the
predictive value of the improved RBF neural network with
the actual value. It is known that the linear regression can be
use to fit a predictive model to an observed data set of Y and
X . The linear equations of the crude oil, SSE, N225 and DAX
are exhibited respectively in Fig. 7a–d. We can observe that

all the slopes of the linear equations for them are drawing
near to 1, which implies that the predictive values and the
actual values are not deviating too much.

4 Extension

Since the random data-time effective function which is
embedded in the gradient algorithm in the proposed improved
model, is independent of the neural network itself, it can
show that the improved predicting algorithm with a random
data-time effective function could also be extended to many
other neural networks, whose training is done by a gradient-
based learning method where the learning error is propagated
backwards through the network. For instance, multilayer
perceptron (MLP) is such one of powerful nonlinear mod-
elling tools, which has one or more hidden layers. The struc-
tures of MLP and RBF network are very similar. The major
difference between them is the behavior of the single hid-
den layer (Jayawardema 1997; Memarian and Balasundram
2012). Rather than using the Gauss-based function in RBF
network, the hidden units in MLP use two main sigmoidal
activation functions which can be described as follows:

φ(i) = tanh(neti ), φ(i) = 1

1 + exp{−neti } (20)
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where the former function is a hyperbolic tangent ranging
from −1 to 1, and the latter is a logistic function similar in
shape but ranges from 0 to 1. Here, φ(i) is the output of the i th
neuron and neti is the weighted sum of the input synapses. A
comprehensive discussion on MLP can be found in Popescu
et al. (2009).

5 Conclusion

In the present paper, we introduce a random data-time effec-
tive function in the three-layer RBF neural network to mod-
ify the network’s parameters, the output weights, the center
vector and the widths in the hidden layer. In this random data-
time effective function, we consider the timely effectiveness
of μ(t) and the random volatility of B(t), since we think that
the data in the training set should be time-variant such that
it can reflect different behavior patterns of financial market
at different time. The predicting results and its effectiveness
are demonstrated through applying the improved RBF neural
network to the financial time series forecasting. We select
four financial series, the crude oil, SSE, N225 and DAX, to
test their predicting accuracy and to study the impact of ran-
dom data-time effective function with different pair values of
(μ(t), σ (t)). Empirical examinations of the predicting preci-
sion for price series (by the comparison of the relative errors
and the predicting measures as MAE, RMSE and R) show
that the proposed random data-time effective function in RBF
neural network has the advantage of improving the preci-
sion of forecasting, and the volatility of the financial model
much approaches to the actual financial market movement.
We hope that the proposed model can make some beneficial
contributions to ANN research and its application in the time
series forecasting.
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