
METHODOLOGIES AND APPLICATION

A Granular Computing approach to the design of optimized graph
classification systems

Filippo Maria Bianchi • Lorenzo Livi •

Antonello Rizzi • Alireza Sadeghian

Published online: 12 June 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Research on Graph-based pattern recognition

and Soft Computing systems has attracted many scientists

and engineers in several different contexts. This fact is

motivated by the reason that graphs are general structures

able to encode both topological and semantic information

in data. While the data modeling properties of graphs are of

indisputable power, there are still different concerns about

the best way to compute similarity functions in an effective

and efficient manner. To this end, suited transformation

procedures are usually conceived to address the well-

known Inexact Graph Matching problem in an explicit

embedding space. In this paper, we propose two graph

embedding algorithms based on the Granular Computing

paradigm, which are engineered as key procedures of a

general-purpose graph classification system. Tests have

been conducted on benchmarking datasets relying on both

synthetic and real-world data, achieving competitive results

in terms of test set classification accuracy.

Keywords Graph-based pattern recognition � Granular

Computing � Granular modeling � Inexact Graph Matching �
Graph embedding

1 Introduction

Research on inductive modeling has defined many auto-

matic systems able to cope with patterns defined on R
n

(Theodoridis and Koutroumbas 2006). However, many

recognition problems coming from interesting practical

applications deal directly with structured patterns, such as

images (Neuhaus and Bunke 2007; Del Vescovo and Rizzi

2007a, b), audio/video signals (Rizzi and Del Vescovo

2006), biochemical compounds (Borgwardt et al. 2005),

and metabolic networks (Tun et al. 2006), for instance.

Usually, in order to take advantage of the existing data-

driven modeling systems, each pattern of a structured

domain X is transformed to an R
m feature vector by

adopting a suitable explicit preprocessing function

/ : X ! R
m: The design of these functions is a challeng-

ing problem, mainly due to the implicit semantic and

informative gap between X and R
m: A key element to

design an automatic system dealing with classification

problems on structured domains is the information granu-

lation and compression of the input set X ; achieved

through the definition of suited information granules

(Bargiela and Pedrycz 2003). Another approach is the one

of kernel-based learning machines (Schölkopf and Smola

2002), where the representation of the input data in a high-

dimensional embedding space is performed implicitly,

defining a suitable valid kernel function k : X � X ! R:

Labeled graphs are general and flexible structures able

to model both topological and semantic information in

data. Consequently, the graph-based representation has

Communicated by W. Pedrycz.

F. M. Bianchi � L. Livi (&) � A. Rizzi

Department of Information Engineering, Electronics,

and Telecommunications, SAPIENZA University of Rome,

Via Eudossiana 18, 00184 Rome, Italy

e-mail: livi@diet.uniroma1.it

F. M. Bianchi

e-mail: bianchi@diet.uniroma1.it

A. Rizzi

e-mail: antonello.rizzi@uniroma1.it

A. Sadeghian

Department of Computer Science, Ryerson University,

350 Victoria Street, Toronto, ON M5B 2K3, Canada

e-mail: asadeghi@ryerson.ca

123

Soft Comput (2014) 18:393–412

DOI 10.1007/s00500-013-1065-z

been adopted extensively in different contexts. A labeled

graph is a tuple G ¼ ðV; E; l; mÞ; where V is the (finite) set

of vertices (also referred as nodes), E � V � V is the set of

edges, l : V ! LV is the vertex labeling (total) function

with LV denoting the vertex-labels set, and m : E ! LE is

the edge (total) labeling function with LE denoting the

edge-labels set. The generality of both LE and LV permits

to represent a broad set of patterns. Each inductive mod-

eling engine that has to deal with labeled graphs as input

patterns must be able to calculate effectively, and effi-

ciently, both structural and labels-related commonalities.

For this purpose, a suited graph matching procedure (Gao

et al. 2010; Livi and Rizzi 2012a, b) must be defined, able

to act as the basic matching measure for any given pair of

graphs of G: Of great interest are Inexact Graph Matching

(IGM) procedures that can be defined, from a very high

level of abstraction, as nonnegative functions of the form

f : G � G ! R
þ: Such a function can be constructed by

means of an explicit embedding, / : G ! R
m; such that the

matching between graphs is actually performed through

vector distance computations (e.g., Euclidean distance).

When the IGM algorithm is conceived in such a way, we

talk about graph embedding (Livi and Rizzi 2012a, b).

In this paper, we describe a general purpose graph-based

classification system which relies on two new graph

embedding methods. We focus on a specific methodology

to design the explicit embedding function /ð�Þ following

the Granular Computing paradigm (Bargiela and Pedrycz

2003; Pedrycz 2010). To prove the effectiveness of the

proposed system, we provide a wide experimental evalu-

ation over synthetic and real-world benchmarking datasets

of labeled graphs, focusing the comparison with other

state-of-the-art systems mainly on the test set classification

results.

The paper is organized as follows. Section 2 briefly

introduces Granular Computing as a data analysis para-

digm. In Sect. 3 we introduce some state-of-the-art

approaches to the IGM problem (Sect. 3.1), focusing in

Sect. 3.2 on particular IGM algorithms belonging to the

graph embedding family. Throughout Sect. 4 we discuss

the details of the proposed Granular Computing based

graph classification system. The experimental evaluation

on synthetic and well-known benchmarking datasets is

carried out in Sect. 5. Finally, in Sect. 6 we draw our

conclusions, delineating the future directions.

2 Brief introduction to Granular Computing

and modeling

Granular Computing (GrC) is a novel paradigm in the

broad domain of information processing. The analysis of

complex data is usually characterized by the need of dif-

ferent levels of representation of the underlying system or

process. The identification of those representation layers is

guided by suited objectives, aimed at the recognition of

peculiar regularities that can characterize the data at hand.

The low level entities are often described in terms of fea-

tures that can be either given a priori or extracted from the

system. The GrC approach to complex data modeling is

driven by the aim of representing compactly such entities

that are indistinguishable at the current level of abstraction

of the system: these groups of low level entities are called

information granules (Bargiela and Pedrycz 2003; Bello

et al. 2008; Pedrycz 2010). The indistinguishability prop-

erty of the low level entities has also other implications that

point beyond the pure dissimilarity based aggregation. In

fact, information granules represent aggregated data con-

veying a proper and homogeneous semantic interpretation

of system/process (Pedrycz 2010). Data can be observed

with different levels of granularity in the same way an

image can be viewed at different resolutions. In a data

analysis performed at highly detailed level, small features

become relevant, while in a lower resolution analysis it is

possible to find more aggregated features that characterize

the data. The proper granulation level depends on the type

of data, but also on the type of problem and analysis to be

faced. For this very reason, information granules with

different aggregation levels can be extracted from the same

input data.

In complex system modeling, the possibility to analyze

data samples (and thus the system itself) at different

granulation levels is a key point. Systems models can be

expressed (and synthesized) at different granulation levels,

relying on atomic elements (symbols) expressed in the

corresponding semantic level. In fact, complex input-out-

put relations can be difficult to discover with a wrong

information aggregation procedure, while they can be

easily expressed in terms of the right set of symbols. As

instance, let us consider a data mining problem in a bio-

informatics context, where we want to discover the causal

relation between some complex functions in cell mem-

branes with respect to its structure. Depending on the

nature of the underlying process to be modeled by a data-

driven procedure, we can identify at least three different

levels of granulation. The first one relies on single atoms,

for example considering hydrogen atoms H to be a salient

feature in the database. The second one considers chemical

groups, such as the methylene (CH2), as the fundamental

elements to be used in system description and modeling.

The third one defines cell membrane structure description

in terms of macromolecules, such as phospholipids, gly-

colipids, and cholesterols (see Fig. 1). Depending on the

complexity of the process to be modeled, in some cases it is

useful to define a set of symbols, to be used as basic

394 F. M. Bianchi et al.

123

modeling elements, belonging to (a few) different granu-

lation levels. The availability of an automatic procedure

able to determine the best granulation level is essential in

data-driven complex systems modeling.

3 Graph-based recognition algorithms and systems

3.1 State-of-the-art approaches of IGM

The aim of IGM algorithms is to determine the matching

degree of two input labeled graphs considering both

structural and semantic information, i.e., the content of the

labels. The challenge is clear, yet very difficult, and con-

sists in obtaining a good evaluation of how much the two

graphs are similar. In the technical literature, the problem

is coped by confronting the graphs directly on their domain

G; or producing a new representation of them, that is, an

embedding into a suitable space (Livi and Rizzi 2012a, b).

These matching algorithms are also called graphs dissimi-

larity or similarity measures, depending on the semantic of

the specific method. The definition of a (dis)similarity

measure between graphs permits to perform recognition

and learning tasks with standard tools, such as the k-NN

classifier, (Fuzzy) Neural Networks, or Kernel Machines

(Theodoridis and Koutroumbas 2006).

Livi and Rizzi (2012a, b) distinguish three mainstream

approaches for the IGM problem: Graph Edit Distance

(GED), Graph kernels, and Graph embedding. GED-based

algorithms (Fankhauser et al. 2011; Gao et al. 2008; Xiao

et al. 2008; Neuhaus and Bunke 2007; Neuhaus et al.

2006) search for what is called the minimum cost edit path

among two input graphs, i.e., a sequence of basic edit

operations on both vertices and edges, taking into account

also the labels. Usually, these approaches are very flexible

and adaptable to a wide range of contexts, requiring only

the definition of suited problem-dependent dissimilarity

measures in both the vertex end edge label spaces. Graph

kernels functions (Livi et al. 2012b; Gärtner 2008; Borg-

wardt et al. 2005; Kashima et al. 2003) are conceived to

exploit the famous kernel trick property of positive definite

(pd) kernels. This property permits to employ the family of

kernel machines (e.g., the well-known Support Vector

Machines) on the domain of graphs G (Schölkopf and

Smola 2002). A recent interesting development in this field

is the establishment of the so-called information-theoretic

kernels (Carli et al. 2012; Prı́ncipe 2010; Martins et al.

2009), aimed at the definition of pd kernel functions on

probability distributions. Finally, graph embedding algo-

rithms (Livi et al. 2012a; Gibert et al. 2011; Riesen and

Bunke 2010; Del Vescovo and Rizzi 2007a, b) are in some

sense a generalization of graph kernels. Indeed they

explicitly develop an embedding space D; enabling the

possibility to inspect and modify the processed data with

further analysis. Moreover, we will see that they are usu-

ally hybridized formulations, based on a core matching

procedure operating directly on G: In this scenario of

explicit embeddings, techniques based on the dissimilarity

representation of the input set have found wide application

in different contexts (Carli et al. 2010; Riesen and Bunke

2010; Batista et al. 2010; Pekalska and Duin 2005).

3.2 Graph embedding approaches

A graph embedding algorithm consists in defining explicitly

a mapping function / : G ! D; where D is a kind of geo-

metric space, such as the usual Euclidean space D � Rn:

Different generalized representations have been discussed

Fig. 1 Complex correlations between some functional property of

the cellular membrane and its inner chemical structure can be better

discovered and described when representing data at hand in the most

suited granulation level. Depending on the modeling task at hand, best

atomic information granules can be found at atomic level (left),

chemical compounds level (center), or at a higher level involving

more complex macromolecules (right)

A Granular Computing approach 395

123

by Pekalska and Duin (2005), in the so-called theory of

dissimilarity representations. This powerful approach con-

sists in deriving a dissimilarity matrix D of the input set X ;
where Dij = d(xi, xj), with xi; xj 2 X ; and dð�; �Þ is a suited

dissimilarity function d : X � X ! R
þ: Then, the embed-

ding space D is derived elaborating the matrix D by means

of transformation, projection, and normalization tech-

niques. Other approaches embed a graph into a Riemannian

manifold, using metric properties of differential geometry

operators to obtain a distance measure (Robles-Kelly and

Hancock 2007; Escolano et al. 2011).

In the following, we describe three different state-of-

the-art explicit embedding techniques for labeled graphs,

which are closely related to the contribution of this paper.

3.2.1 GED-based dissimilarity embedding

The approach, widely described by Riesen and Bunke

(2010), consists in producing a dissimilarity representation

Pekalska and Duin (2005) for the input graphs G using a

GED as core dissimilarity algorithm. Given a set of labeled

graphs G ¼ fG1; . . .;Gtg; a core GED-based dissimilarity

function d : G � G ! R
þ; a prototypes set P ¼

fP1; . . .;Png;P � G; the embedding vector of each graph

G is defined as

/PðGÞ ¼ ½dðG;P1Þ; . . .; dðG;PnÞ�T ; 8G 2 G; ð1Þ

where the superscript P remarks that the embedding is

relative to the chosen set of prototypes P: Consequently,

the whole input set G is mapped into a dissimilarity space

D: In this scenario, prototypes selection strategies play a

crucial role (Riesen and Bunke 2010).

The matching value d(G1, G2) of two given input graphs

is computed executing exactly 2jPj IGM computations

using the direct IGM algorithm dð�; �Þ; needed to produce

the respective embedding vectors.

3.2.2 Embedding of sequenced graphs

Livi et al. (2012a) described a novel graph embedding

method employed in a graph-based classification system.

The embedding method can be schematized by means of

two mapping functions. The first one, say f1 : G ! S; maps

a graph G 2 G to a sequence of vertex labels s 2 S: The

second one, say f2 : S ! D; maps each sequence s 2 S to a

numeric vector h 2 D; where usually D � R
n: The first

transformation, i.e., the mapping f1ð�Þ; is performed

applying a seriation algorithm to the input graphs, such as

an eigenvectors-based algorithm (Robles-Kelly and Han-

cock 2005). The second transformation is performed by the

means of the GRADIS (GRanular computing Approach for

DIscrete Sequences) procedure that performs mining and

embedding operations on the sequenced graphs set S (Livi

et al. 2012a).

It is worth noting that the nature of the set S is directly

defined by the vertices labels set LV : Practically, it is

possible to process any type of sequence (i.e., multidi-

mensional time series, sequence of complex events, and so

on) for which it is possible to define a suited dissimilarity

function of the type d : LV � LV ! R
þ: It is important to

underline that once obtained S; all useful information

stored in the edge labels is definitively unavailable to

subsequent processing stages. To this end, this information

should be used appropriately in the seriation stage through

the definition of a meaningful norm on the specific edge

labels set (i.e., the set LE).
Notwithstanding the potentialities of an explicit

embedding approach, like the one provided by the GRA-

DIS procedure, once the seriation stage is performed and

the set of sequences S is derived, it is possible to apply also

a more direct sequence matching scheme, such as a clas-

sifier based on the k-NN rule, equipped with the general-

ized global alignment Dynamic Time Warping (DTW)

algorithm (Sakoe 1978), or an SVM classifier equipped

with a suited string kernel (Yu and Hancock 2006), tailored

to the specific sequence type.

3.2.3 GrC based symbolic histograms representation

A graph embedding approach based on symbolic histo-

grams (Del Vescovo and Rizzi 2007a, b; Rizzi and Del

Vescovo 2006) consists in identifying a set of frequent

subgraphs A ¼ fg1; . . .; gmg of the input set G: Let G1 ¼
ðV1; E1; l1; m1Þ and G2 ¼ ðV2; E2;l2; m2Þ be two labeled

graphs. Graph G1 is a subgraph of G2, written also as G1 �
G2; if these conditions hold:

– V1 � V2;

– E1 � E2;

– l1ðvÞ ¼ l2ðvÞ; 8v 2 V1; and

– m1ðeÞ ¼ m2ðeÞ; 8e 2 E1:

The computation of A is performed by means of a

clustering ensemble procedure applied on an appropriate

set of subgraphs extracted from the training set. A suited

adaptive filtering of the obtained partitions is performed

with the aim of selecting only compact and populated

clusters of subgraphs. The set of subgraphs defining A is

eventually derived by compressing the information of the

corresponding filtered clusters considering the representa-

tive subgraphs only; the representative subgraph of a

cluster can be conveniently computed by means of the

well-known Minimum Sum Of Distances (MinSOD)

technique (Del Vescovo et al. 2011). Once obtained A;
called symbols alphabet, the embedding consists in a

396 F. M. Bianchi et al.

123

mapping function /A : G ! R
m that assigns to each graph

Gi an integer-valued vector hi called symbolic histogram,

which is defined as follows:

hi ¼ /AðGiÞ ¼ ½occðg1Þ; . . .; occðgmÞ�T ; 8Gi 2 G: ð2Þ

The function occð�Þ counts the occurrences of each

representative subgraphs gj 2 A in the input graphs. The

occurrence of a subgraph gj into a graph Gi is evaluated

using a weighted GED-based core IGM procedure dð�; �Þ
(Del Vescovo and Rizzi 2007a, b). If the matching score

reaches the symbol-dependent threshold sj, the occurrence

is considered.

Each symbol gj 2 A forms thus a granule of information

(Bargiela and Pedrycz 2003), containing both metric (i.e.,

information related to the intra-cluster dissimilarities) and

semantic information about the aggregated data it repre-

sents (the MinSOD element is a compressed cluster rep-

resentation directly interpretable by field experts). The

embedding space D is defined as the vector space con-

taining all the symbolic histogram representations

fhign
i¼1 � D � R

m: The procedure for extracting A from

the training set can be seen as an unsupervised feature

extraction algorithm, since during the computation of the

alphabet A no information about the classes is considered.

4 Proposed GrC based graph classification system

In this section we describe the graph classification system

that we called GRALG (GRaunlar computing Approach for

Labeled Graphs), which belongs to the family of the GrC-

based graph embedding techniques, introduced in Sect.

3.2.3. In fact, it relies on the computation of the symbols

alphabet A; extracting from the input (training) set suited

information granules expressed in terms of frequent sub-

graphs, which are identified as the representatives of

compact and populated clusters. Such clusters are gener-

ated trough a clustering ensemble procedure, which in our

algorithm has been implemented elaborating on the well-

known Basic Sequential Algorithmic Scheme (BSAS)

(Theodoridis and Koutroumbas 2006). GRALG performs

an optimized granulation of the input dataset of labeled

graphs by means of automatic tuning of system parameters

and symbols alphabet compression stages. Therefore, the

overall training process of GRALG consists in the auto-

matic determination and optimization of the embedding

space (i.e., the symbolic histograms representation) and in

the subsequent synthesis of a suited feature-based classi-

fier. Since the training procedure of GRALG relies on a

cross-validation approach, the initial training set is split

into a reduced training set Str and a validation set Svs: The

objective function—to be maximized—used in the system

optimization is the classification accuracy achieved on Svs:

The embedding procedure employs a parametric core

IGM algorithm that operates directly on the input space G:
As will be deeply discussed in the following, the behavior

of the embedding procedure depends, besides the weights

characterizing the core IGM algorithm, on several critical

parameters (denoted as C). Demanding their setting to the

user implies a deep knowledge of the processed data, often

requiring in turn a long and inappropriate ‘‘trials and

errors’’ session. Therefore, the first stage of the GRALG

training process consists in tuning the system’s parameters

C through a genetic algorithm, synthesizing a first opti-

mized version of the alphabet A: The second stage instead

consists in compressing the derived optimized alphabet A
selecting relevant features, which in turn contributes to the

reduction of the complexity of the procedure as a whole:

the lower the size of the alphabet, the simpler the resulting

learned model of the data. This second optimization step

aims to determine which is the smallest set of symbols that

is required for generating the most significant alphabet A
for the data at hand. Feature selection is then performed on

the embedding space derived from A; guiding the selection

using a fitness function defined as a linear convex combi-

nation of the classification accuracy computed on Svs; and

a term related to the number of selected symbols. For this

very reason, the developed feature selection method falls in

the wrapper-based family (Zhao et al. 2011).

As shown in Fig. 2, once the two-stage GRALG training

process is terminated, a new test pattern Gx can be classified

straightforwardly by using the previously synthesized feature-

based classifier on the corresponding embedding space. This

computation is fast, compared to the time required for the

whole GRALG synthesis, making the classification of new test

patterns a quick task once A has been defined. Indeed, given

A; the number of IGM evaluations for computing the dis-

similarity between any two graphs Gi and Gj is given by jAj �
ðjexpandðGiÞj þ jexpandðGjÞjÞ;where the function expandð�Þ
extracts from a graph the (not complete) set of its subgraphs.

Computing the distance between two input graphs is hence

linear in the number of derived symbols–information granules.

4.1 High-level explanation of the method

The key assumption underlying the GRALG classification

system is that the classes can be discriminated in terms of

the frequent subgraphs extracted from the training set Str:

If such a characterization exists, GRALG is able to develop

a new vector representation (embedding) of the input

graphs in terms of symbolic histograms, which in turns

contain the information needed to synthesize a suited

classification rule. Moreover, the symbolic histograms

A Granular Computing approach 397

123

representation contains interpretable information, which

can be exploited by field experts to derive insights for the

problem at hand. For example, it is possible to understand

which are the features that characterize a class, interpreting

the distribution of the alphabet symbols in the histograms

that represent its graphs. It is important to underline that

the clustering ensemble procedure is in charge of defining a

set of clusters of frequent subgraphs, which are candidate

to become meaningful information granules (symbols).

Optimization stages are performed in order to discover

those information granules actually related to the classifi-

cation task at hand. A symbol is therefore not just a rep-

resentative of a set of similar subgraphs found in the

training set: it is an information granule with a specific

semantic value. The semantic value is attributed by the

system during the first and second optimization stages,

when it is recognized as useful to the final classification

task, usually working in some logic conjunction with other

symbols. Note that the same frequent subgraph discovered

as a symbol for a given classification problem, can be

completely uninformative for another problem.

Figure 3 shows an example describing the mechanism

driving the GRALG classification system. Each input

labeled graph Gi is represented in terms of the symbols ofA:
To this aim, the j-th component of the symbolic histogram

associated to Gi contains the number of times the symbol

aj 2 A has been recognized into Gi (see Sect. 3.2.3 for more

details). Reasonably, graphs belonging to the same class will

be characterized by an analogue distribution in terms of

symbol occurrences, while graphs pertaining to different

classes will show a discriminative representation. The sim-

ilarity in terms of symbol occurrences will be reflected by the

Euclidean distance of the corresponding symbolic histo-

grams. A suited feature-based classifier (e.g., a neuro-fuzzy

network Rizzi et al. 2002) can be trained once the symbolic

histograms representation is completely defined.

4.2 The adopted core IGM algorithm

In GRALG, we used the GED algorithm known as weighted

Best Match First (wBMF) as the core dissimilarity measure

between labeled subgraphs, mainly for its good trade-off

between efficacy and computational complexity (Livi and

Rizzi 2012a, b). The matching algorithm consists in com-

puting an assignment of the vertices of G1 with respect to G2

on the base of a greedy strategy. Vertices with lowest

labels’ dissimilarity value are assigned for substitution in

each iteration, without the possibility to modify this deci-

sion. If G1 has more (less) vertices than G2, then additional

deletion (insertion) edit operations are considered in the

overall edit costs. The operations on the edges are induced

considering the ones performed on the vertices. In this

paper, we considered the weighting scheme for the edit

operations based on six parameters falling within the [0, 1]

range, which are used to modulate the importance of the

substitution, insertion, and deletion edit operations for both

vertices and edges.

The normalization of the outcomes of the core IGM

procedure within the [0, 1] interval is a very important

aspect in the GRALG system. To this aim, we assume that

both vertices and edges dissimilarity functions (i.e., the

dissimilarity functions for the vertices and edges labels)

have been defined to return values within the [0, 1] interval.

If r is the maximum order of the (undirected) graphs to be

compared, the maximum number of edit operations

required for transforming a complete graph Ki into another

complete graph Kj is upper bounded by d = r ? r(r - 1)/

2. Consequently, fixing to 1 insertion and deletion costs for

both vertices and edges, a simple way to obtained an IGM

function normalized in [0, 1] consists in dividing the

returned value by d. As we will see in the following, the

proposed classification system is conceived to perform

IGM computations only between subgraphs of a given

maximum order r.

4.3 Synthesis of the GRALG classification model

The key component of the GRALG classification system is

the graph embedding procedure, which is founded on the

GrC-based technique described in Sect. 3.2.3; Fig. 4

delineates its schematic.

Fig. 2 A new graph Gx, in order to be processed by the feature-based

classifier, must be transformed into an embedding vector: at first all

the subgraphs, up to order r, will be extracted in a structure Gx
g which

will be converted into a vector representation DðGxÞ using the

alphabet A and the learned parameters Pe � C related to the

embedder block. The embedding vector will be then processed by

the feature-based classifier that will assign a label Lx to the pattern

398 F. M. Bianchi et al.

123

The subgraphs extractor generates all the subgraphs Sg
tr

and Sg
vs; up to order r, expanding the graphs in Str and Svs;

respectively. The subgraphs Sg
tr of the training set Str are

used for computing the alphabet A (i.e., the set of sym-

bols–information granules), which is related to the recur-

rent substructures of the training set, using a specific set of

parameters Pa � C: A cluster Ck is characterized by a cost

function Fð�Þ defined as:

FðCkÞ ¼ gUðCkÞ þ ð1� gÞHðCkÞ; g 2 ½0; 1�: ð3Þ

Equation 3 is defined as a convex linear combination of two

cluster’s descriptors: the compactness UðCkÞ and the size

HðCkÞ costs. By defining the subgraph gk as the representative

of the cluster Ck according to the following equation:

gk ¼ arg min
gj2Ck

X

gi2Ck

dðgj; giÞ; ð4Þ

Fig. 3 In this example, let us suppose to have found four symbols

(frequent subgraphs) in the training set Str: namely S1, S2, S3, and S4.

Consequently, we will represent each input graph Gi with a symbolic

histogram of four dimensions/components, each of which will count

the number of occurrences of the corresponding symbol in the input

graph. For example, the graph G1 contains two occurrences of S1, one

occurrence of S2, two occurrences of S3, and finally one occurrence of

S4; thus the associated symbolic histogram will then be the following

vector [2, 1, 2, 1]T

Fig. 4 The overall graph

embedding procedure, defined

by a set of system’s parameters

C; transforms graphs into R
m

vectors synthesizing the

symbols alphabet A

A Granular Computing approach 399

123

the compactness cost of Ck is defined in turns as the

average intra-cluster distances with respect to gk:

UðCkÞ ¼
1

jCkj � 1

X

i 6¼k

dðgk; giÞ: ð5Þ

The size cost instead evaluates if the cluster is

sufficiently populated:

HðCkÞ ¼ 1� jCkj
jSg

trj
: ð6Þ

Each derived cluster of subgraphs defines a candidate

symbol for A: In particular, each cluster Ck generates a

candidate symbol which is defined by a triple (gk, 1 -

F(Ck), sk); gk is the MinSOD subgraph of the cluster Ck (see

Eq. 4 for the formulation), 1 - F(Ck) is the overall quality of

the cluster, and finally sk is the symbol-dependent

recognition threshold used by the embedder that is defined

as sk ¼ UðCkÞ � �; where �� 1 is a user-defined tolerance

parameter. Note that in this way, a cluster is effectively

modeled by a single subgraph gk, which represents

operatively and compactly the symbol–information

granule. The final step in the alphabet synthesis is based on

a filtering threshold sF, used to remove (candidate) symbols

with low quality. If the cost F(Ck) related to the cluster Ck

(equivalently, to the symbol gk) is lower or equal to the

symbols filtering threshold sF, the symbol is retained,

otherwise it is discarded. Once the filtered A is obtained,

the alphabet is used for building the embeddingsDðStrÞ and

DðSvsÞ of both training and validation set with the embedder

component, which produces the symbolic histograms related

to the input graphs—See Algorithm 1 for the pseudo-code

related to the symbolic histograms representation.

With the aim of tuning the herein described overall

graph embedding procedure (alphabet synthesis and rep-

resentation based on symbolic histograms), a classification

model is then learned on DðStrÞ; evaluating the perfor-

mance of the overall embedding as a convex linear com-

bination of the classification accuracy obtained on DðSvsÞ;
and a term related to the number of selected symbols. It is

worth to stress that once the input graphs have been

embedded, any feature-based classifier can be employed

directly. Accordingly, in the following two subsections we

detail the two stages characterizing the synthesis of the

GRALG classification system. The first one, discussed in

Sect. 4.3.1, involves the computation of an optimized

symbols alphabet A; while the second one, discussed in

Sect. 4.3.2, focuses on the feature selection, i.e., the iden-

tification of a relevant and essential subset of A: In both

optimization stages we relay on evolutionary global opti-

mization techniques, since the objective function to be

maximized is not known in closed form. Consequently it is

not possible to employ derivatives-based optimization

techniques. Specifically, we adopted a standard version of a

genetic algorithm.

4.3.1 Synthesis of the optimized alphabet

The genetic algorithm optimizes a code cP which contains

the values of the parameters used to determine the opti-

mized alphabet Aopt: The parameters set P ¼ Pa [Pe is

composed by the six weights of the GED-based core IGM

procedure, and two additional parameters used in the

symbols extraction stage: the maximum number of allowed

clusters that can be generated by the clustering ensemble

procedure (which is tuned to avoid overfitting), and the

symbols filtering threshold sF.

The following optimization procedure consists in

determining a sequence of candidate symbols alphabets

Ai: Each Ai is used for building an embedding of both

400 F. M. Bianchi et al.

123

training DiðStrÞ and validation DiðSvsÞ set. A classifier Mi

is then trained using DiðStrÞ and the achieved recognition

rate (RR) on DiðSvsÞ is considered as the fitness f ðcPi Þ of

the code cPi : The optimization ends when a genetic code

with a fitness higher than a user-defined threshold sRR is

generated (or when a maximum number of iterations is

reached). The code with highest fitness contains the

optimal parameters Popt used for synthesize Aopt; from

which optimal embeddings DoptðStrÞ and DoptðSvsÞ are

generated (Fig. 5). The optimization procedure is outlined

in Algorithm 2.

4.3.2 Feature selection algorithm

A second optimization stage is performed using another

dedicated genetic algorithm in charge of defining the

most significant subset of symbols of Aopt for the prob-

lem at hand. Relevant features are selected with a

projection mask l which reduces each symbolic histo-

gram h into a lower dimensional vector ĥ; according to

the selected symbols in Aopt: The optimal mask lopt is

determined trough a second optimization procedure,

aiming in discovering significant and essential subsets of

symbols semantically related to the classification problem

at hand, improving at the same time the overall gener-

alization capability, according to the well-known Ock-

ham’s Razor criterion (Rizzi et al. 2002; Theodoridis and

Koutroumbas 2006). The genetic code in this case coin-

cides with the mask lj (a tuple of binary digits), which,

according to the selected symbols of the induced subset

Aj; projects the embeddings DoptðStrÞ and DoptðSvsÞ;
derived from the previous optimization, in the corre-

sponding subspaces bD j
optðStrÞ and bD j

optðSvsÞ: A classifier

Mj is once again trained with bD j
optðStrÞ and its perfor-

mances are evaluated classifying the embedded validation

set bD j
optðSvsÞ: This time the fitness g(lj) is a convex

linear combination of the achieved recognition rate of the

classifier on bD j
optðSvsÞ and the cost of the mask

mc(lj), which is defined as:

mcðljÞ ¼
jAjj
jAj : ð7Þ

Optimization ends when a mask with a fitness higher

than a given threshold sFS is generated (or when a

maximum number of iterations is reached). Eventually,

the mask with highest fitness lopt is used for generating the

final embeddings for training bD	optðStrÞ and test bD	optðStsÞ
sets, respectively—see Fig. 6. Algorithm 3 summarizes the

feature selection procedure.

Fig. 5 In this optimization cycle, the genetic algorithm generates an

instance Pi which is a configuration of the parameters Pa and Pe used

by the embedding block for generating embeddings of Str and Svs:
The first dataset is then used for learning a classification model

Mi, whose performance pi is evaluated on the latter (classification

block). Performance is used for computing the fitness of Pi; guiding

the next evolutions of the genetic algorithm

A Granular Computing approach 401

123

4.4 Incremental Granules search

In the version of the GRALG system described so far, all

subgraphs, up to a given order r, are extracted at the same

time from the training set, defining thus the initial set of

subgraphs to be partitioned with a clustering ensemble

algorithm based on the BSAS (Rizzi and Del Vescovo

2006). Consequently, the set of subgraphs on which is

performed the clustering ensemble procedure can be easily

characterized by a very high cardinality (depending on the

training set size and the graphs topology), which can be

difficult to manage, especially from the in-memory foot-

print viewpoint. In order to speed-up the whole GRALG

training procedure, we developed an incremental strategy

to populate the set to be clustered. It consists in extracting

subgraphs progressively in r - 1 different iterations. In the

following, we refer to the herein described granulation

strategy as GRALGv2, and consequently to the version

described in previous sections as GRALGv1.

During the first iteration, subgraphs of order o = 1 (i.e.,

single vertices) are extracted and stored in a set Sð1Þ: In

general, at iteration i, with i B r, subgraphs of order

o = i are extracted in a set SðiÞ containing also all the

previously defined lower order subgraphs, i.e. o \ i. For

each i ¼ 1! r; the subgraphs of SðiÞ are partitioned with

the same clustering ensemble algorithm employed in

GRALGv1. The clusters characterized by high compact-

ness and cardinality descriptors form the symbols of the

alphabet AðiÞ of the i-th iteration. Conversely, the dis-

carded clusters are now marked as bad. Elements of bad

clusters are tracked with a boolean matrix BðiÞ 2
f0; 1gm�n; where m is the number of subgraphs and n the

Fig. 6 The embedding vectors generated by the optimal parameters

Popt; which are determined by the first optimization procedure, are

used for generating a classification model Mj, whose training and

validation phase is performed using a projection of the input

embedding vectors, according to a mask lj. The performances of

Mj and the numbers of features selected by lj determine the fitness

g(lj) of the mask, used by a genetic algorithm for guiding the

evolution of the next population

402 F. M. Bianchi et al.

123

number of partitions derived from SðiÞ: An entry bl,j
(i) is set

to 1 if the subgraph gl is in a bad cluster in the partition Pj.

If a subgraph belongs to a percentage of bad clusters that

is higher than a threshold sbad, the subgraph is marked as

bad subgraph. Bad subgraphs will not be expanded in the

next iterations, and, additionally, if their order is 1

(therefore they are vertices), they are removed from the

original graphs. In fact, such vertices cannot belong to

significant substructures of higher order because, if they

are not recurrent as single vertices, more complex sub-

structures which include these vertices cannot be recurrent

as well. For the same reason, when a subgraph of order 2

is marked as bad, the edge connecting the two vertices of

the subgraph is deleted from the original graph. Using

AðiÞ; the embeddings DðiÞðStrÞ and DðiÞðSvsÞ are built and

then a classifier M(i) is trained and tested in the same way

as in GRALGv1. If the recognition rate of M(i) is higher

than a user-defined threshold sRR or order i is equal to

r (i.e., to the maximum subgraphs order), the learned

classification model is returned, otherwise the algorithm

proceeds extracting and processing subgraphs of order

i ? 1.

With this granulation strategy, only a subset of sub-

graphs are expanded in a given iteration and even if the

maximum order r is reached, the total number of processed

subgraphs will be lower with respect to the original

method, since the subgraphs marked as bad are removed

dynamically at each iteration. This is an important fact

because the bottleneck of the entire procedure is the cal-

culation of the ensemble of partitions, and dealing with less

elements will reduce the in-memory footprint as well as the

general resources allocation of the procedure.

The procedure for building a classification model start-

ing from training and validation sets is implemented

accordingly to the pseudo-code of Algorithm 4. F(Ck) is the

function that evaluates the total cost of a cluster (see Eq. 3),

using the two cluster descriptors UðCkÞ and HðCkÞ for the

compactness and size costs (see Eqs. 5, 6, respectively).

Even this variant depends on some parameters that are

tuned by a suited genetic algorithm. Specifically, in addi-

tion to the parameters optimized by GRALGv1, the

threshold sbad is considered; as a direct consequence of the

granulation procedure performed by GRALGv2, a wrap-

per-based feature selection is not performed.

A Granular Computing approach 403

123

5 Performance evaluation

In this section, we show and discuss the experimental evalua-

tion of the two versions of the GRALG system, comparing the

obtained results with other state-of-the-art procedures. In Sect.

5.1, we face classification problem instances defined over

synthetically generated data. In Sect. 5.2 we test the proposed

systems on well-known benchmarking datasets for graph-based

pattern recognition systems evaluation. In all experiments

concerning GRALG, subgraphs are expanded up to order 3.

5.1 Tests on synthetic data

Tests on synthetic data have been conceived to asses the

performances of the considered graph-based pattern rec-

ognition systems on different classification problem

instances, characterized by a decreasing difficulty. Each

synthetic dataset has been generated using the same Mar-

kov chains based method described by Livi et al. (2012a).

We have conceived 15 different two-classes classification

problem instances. Each problem is defined by a training, a

validation, and a test set, containing 300 graphs each of

order 30 and a variable size between 40 and 75. The

hardness of the problem has been controlled generating the

labels of both vertices and edges as numeric vectors falling

in [0, 1]5. Each random vector has been constructed sam-

pling numbers from two different Gaussian distributions

(i.e., one for each class), distributed with means l1, l2 and

standard deviation r1, r2, respectively. Both standard

deviations have been fixed to 0.1. The hardness is directly

controlled varying the mean of the second class, l2, and

letting the first mean fixed to l1 = 0.5. The mean l2 varies

in a thin interval between 0.51 and 0.65, with an incre-

mental step of 0.01. In addition, the stochastic generation

process contributes in generating graphs with a randomized

topology.

In this experiment, we have considered five different

systems, always adopting a classifier based on the k-NN

rule. The first two systems are based on the two versions of

the proposed GRALG system (GRALGv1 and GRALGv2),

described in Sects. 4.3 and 4.4, respectively. Then we

tested two k-NN based systems that operate directly on the

input space G of graphs, which adopt the wBMF GED

algorithm using the 6 weights (PD6W) (Livi and Rizzi

2012a, b) and the triple (TWEC) (Rizzi and Del Vescovo

2006) weighting schemes for the edit distance computation.

Finally, a graph seriation-based system equipped with the

DTW distance (Seriation), tailored for sequences of five-

dimensional real vectors, is considered. Tests have been

performed using three values for the number k of the

considered nearest neighbors in the k-NN classification

rule, namely 1, 3, and 5. Finally, due to the stochastic

nature of the optimization procedure, we repeated the tests

on each instance ten times, reporting the average classifi-

cation accuracy.

Figure 7a shows the classification accuracy on test sets

obtained by the five systems using k = 1 over the batch of

tests, while Fig. 7b shows the corresponding standard

deviations (except for the seriation-based system, since it is

not affected by stochastic optimization heuristics). The

accuracy of the GRALG systems is considerably higher

with respect to the one of the other systems, in particular

considering the first version (GRALGv1). Notwithstanding

the standard deviation of GRALG results to be higher in

the first three tests, while it drops rapidly to lower values.

The same type of behavior is observed in the results

obtained setting k = 3 and k = 5 (see Figs. 8, 9).

5.1.1 PCA analysis

Principal Component Analysis (PCA) analysis can be used

to assess visually the quality of the derived embedding,

observing the (linear) separability of the embedding vec-

tors. For this purpose, Figs. 10, 11 show the scatter plot of

the first two principal components concerning a PCA per-

formed on an instance of an hard and a medium difficulty

Fig. 7 Results on Markov chains data with k = 1. a Classification accuracies on test sets. b Standard deviations

404 F. M. Bianchi et al.

123

classification problem; the first and the tenth instance. As it

is possible to observe, in the first case the classes overlap,

while in the latter we achieve a very discriminative

embedding, for both training and test sets. Indeed, the

achieved recognition rate on the first instance, regardless

the considered k, is considerably worse with respect to the

one obtained on the 10-th instance, which is nearly 1 (see

Figs. 7a, 8a, 9a). However, PCA performs just a linear

transformation of the data, which in some cases is not

sufficient enough to fully characterize the difficulty of the

problem in terms of class separability.

5.2 Experiments on IAM datasets

In this section, we provide different comparative experi-

mental evaluations over the IAM database (Riesen and

Bunke 2008). This shared set of datasets has been already

used by different authors Riesen and Bunke (2009a, b),

Fankhauser et al. (2011), Livi et al. (2012b), Gibert et al.

(2011), Riesen and Bunke (2009a, b), Jain et al. (2010), Jain

and Obermayer (2011), providing a good evaluation

benchmark for graphs-based pattern recognition systems. In

Sect. 5.2.3 we show the results achieved with the two

variants of the GRALG system, together with other state-of-

the-art graph embedding based systems. In Sect. 5.2.4 we

discuss the results of graphs classification systems that

operate directly in the input space G: Finally, in Sect. 5.2.5

we present the results obtained for classification systems

based on graph seriation techniques. In the following tables,

the symbol ‘‘-’’ means that the result is not available, and the

grayed rows denote results introduced in this paper.

5.2.1 Description of the datasets

The datasets Letter LOW, Letter MED, and Letter HIGH

are composed of a triple of training, validation and test sets,

each of 750 patterns. The first dataset is composed of let-

ters with a low level of distortion. The patterns of the

second and the third dataset are affected by medium and

high level of distortions. Each dataset contains equally-

distributed patterns from 15 different classes. The AIDS

dataset is a not-equally distributed two-class set of graphs

with 250, 250 and 1,500 samples for the training, validation

and test set, respectively. The represented data are

molecular compounds, denoting or not activity against

HIV. The atoms are represented directly through the ver-

tices, and covalent bonds by the edges of the graph. Ver-

tices are labeled with the chemical symbol and edges by

Fig. 9 Results on Markov chains data with k = 5. a Classification accuracies on test sets. b Standard deviations

Fig. 8 Results on Markov chains data with k = 3. a Classification accuracies on test sets. b Standard deviations

A Granular Computing approach 405

123

the valence of the linkage. The COIL-DEL dataset is

composed of 2400, 500 and 1,000 graphs for the training,

validation and test set, respectively, which are equally-

distributed among 100 classes. The Proteins dataset,

already studied in Borgwardt et al. (2005), is composed of

200 graphs for each set, equally distributed among six

classes. A labeled graph is constructed considering the

secondary structure elements of the protein. For this pur-

pose, vertices are labeled with their type (helix, sheet, or

loop) and their amino acid sequence. The connecting

undirected edges between vertices are defined by consid-

ering the three nearest elements, and assigning a label

denoting the type and the distance expressed in angstroms.

The GREC dataset consists of graphs representing symbols

from architectural and electronic drawings. The images

occur at five different distortion levels, and each graph has

been distorted multiple times. The dataset contains 1,100

graphs uniformly distributed over 22 classes, appropriately

separated into a training and a validation set of size 286

each, and a test set of size 528. Finally, the Mutagenicity

dataset contains chemical compounds that are converted

into labeled graphs in a straightforward manner by repre-

senting atoms as vertices and the covalent bonds as edges.

Vertices are labeled with the number of the corresponding

chemical symbol and edges by the valence. The Mutage-

nicity dataset is divided into two classes, depending on

their mutagenicity properties. The training, validation and

test set contain 1500, 500 and 2,337 graphs, respectively.

In the Tables 1, 3 and 5, we analyze the Letter LOW (L-

L), Letter MED (L-M), Letter HIGH (L-H), AIDS, COIL-

DEL (C-D), Proteins (P), GREC (G) and Mutagenicity

(M) datasets.

Fig. 11 The two principal components derived from the PCA performed on the embeddings of the graphs coming from the 10-th synthetic

dataset

Fig. 10 The two principal components derived from the PCA performed on the embeddings of the graphs coming from the first synthetic dataset

406 F. M. Bianchi et al.

123

5.2.2 Vertex and edge label dissimilarities

For every considered IAM dataset, a normalized (and

parametric) dissimilarity measure has been defined for both

vertex and edge labels. When the label type is a complex

structure with different heterogeneous fields, we have

added suited parameters with the aim of combining those

fields in a flexible and consistent way. Therefore, we

include those parameters in the global optimization process

of every considered graph-based pattern recognition sys-

tems (e.g., the GRALG system described in Sect. 4). In this

way, we give automatically more importance to the fields

of the structured label that result to be more correlated with

the problem at hand, that is, to the fields carrying useful

information for the classification problem at hand, with the

aim to improve the overall classification accuracy dis-

carding useless information.

In the following paragraphs, we detail the adopted ver-

tices and edges dissimilarity measures for each considered

IAM dataset.

5.2.2.1 Letter LOW, letter MED, and letter HIGH

– Vertices: The labels are two dimensional real-valued

vectors and they are compared with a normalized

Euclidean dissimilarity dE.

– Edges: There are no labels on edges, a constant

dissimilarity measure dc = 0 was used.

5.2.2.2 AIDS After some experiments, we have noticed

that considering only topological information of the input

graphs was sufficient for classifying the data with good

results, making the information on both vertices and edges

labels unnecessary. The discovery is motivated by the fact

that the considered molecular compounds are intrinsically

identified by the number of atoms, together with their

neighborhoods.

5.2.2.3 GREC

– Vertices: The labels are defined by a structure contain-

ing a discrete value named type, which is compared

with a delta dissimilarity dd (i.e., dd(x, z) = 1 if

x = z, otherwise is 0), and a two dimensional real-

valued vector v; which is compared with an normalized

Euclidean dissimilarity de. Given two vertex

labels l(vi) and l(vj), the resulting dissimilarity value

D will be obtained as,

D¼ 1 if ddðlðv1Þ:type;lðv2Þ:typeÞ¼1;
deðlðv1Þ:v;lðv2Þ:vÞ otherwise.

�

ð8Þ

– Edges: The labels are characterized by a variable

length structure containing an integer value frequency

and one or two pairs of the type (type, angle), where

the first element is a string which can assume two

values, namely arc and line, and the second element

of the pair is a real value in ½0;þ1Þ if type = arc, or

in [-p, p] if type = line. The value of frequency

represents the number of the pairs. A delta

dissimilarity dd is used for frequency and type, while

the field angle is compared with a module distance dm
l

normalized in [-p, p] if type = line, or a module

distance dm
a normalized in [0, arcmax] if type = arc.

Given two edge labels m(ei) and m(ej), three different

dissimilarities can be computed, depending on the

value of the frequency field:

1. If m(ei).frequency = m(ej).frequency == 1

D ¼

a � dl
mðmðeiÞ:angle0; mðejÞ:angle0Þ

if mðEiÞ:type0 ¼ mðEjÞ:type0 ¼ line;

b � da
mðmðeiÞ:angle0; mðejÞ:angle0Þ

if mðeiÞ:type0 ¼ mðEjÞ:type0 ¼ arc;

c otherwise.

8
>>>><

>>>>:

ð9Þ

2. If m(ei).frequency = m(ej).frequency == 2

Table 1 Test set classification results achieved using different features-based classifiers and graph embedding algorithms

Classification system Datasets

L-L L-M L-H AIDS C-D P G M

OV ? k-NN Gibert et al. (2011) 98.8 – – – – 97.5 –

kPCA ? k-NN Gibert et al. (2011) 97.6 – – – – – 80.6 –

ICA ? k-NN Gibert et al. (2011) 82.8 – – – – – 63.3 –

sk ? SVM Riesen and Bunke (2009a, b) 99.7 85.9 79.1 97.4 – – 94.4 55.4

le ? SVM Riesen and Bunke (2009a, b) 99.3 95.9 92.5 98.3 – – 96.8 74.3

lgq Jain et al. (2010) 81.5 – – – – – 86.2 –

bayes1 Jain and Obermayer (2011) 80.4 – – – – – 80.3 –

bayes2 Jain and Obermayer (2011) 81.3 – – – – – 89.9 –

GRALGv1 98.2 79.8 74.5 99.7 94.0 68.0 97.7 73.0

GRALGv2 97.6 89.6 82.6 99.7 97.8 64.7 97.6 73.0

A Granular Computing approach 407

123

D ¼

a
2
� dl

mðmðeiÞ:angle0; mðejÞ:angle0Þ
þ b

2
� da

mðmðe1Þ:angle1; mðe2Þ:angle1Þ
if mðe1Þ:type0 ¼ mðe2Þ:type0 ¼ line;

a
2
� dl

mðmðe1Þ:angle1; mðe2Þ:angle1Þ
þ b

2
� da

mðmðe1Þ:angle0; mðe2Þ:angle0Þ
if mðe1Þ:type0 ¼ mðe2Þ:type0 ¼ arc;

c otherwise.

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð10Þ

3. If m(e1).frequency = m(e2).frequency

D ¼ d: ð11Þ

a; b; c and d parameters, all defined within the [0, 1]

interval, are parameters optimized with the genetic

algorithm.

5.2.2.4 Mutagenicity

– Vertices: The labels store a discrete value chem which

is compared with a delta dissimilarity.

– Edges: The labels store a discrete value valence which

is compared with a delta dissimilarity.

5.2.2.5 Protein

– Vertices: The labels are defined by a structure contain-

ing a discrete value type, which is compared with a

delta dissimilarity measure dd, and a string sequence,

representing the aminoacids sequence, which is com-

pared with a normalized Levenshtein distance dL.

Given two vertex labels l(vi) and l(vj), the resulting

dissimilarity will be evaluated as,

D ¼ a � ddðlðviÞ:type; lðvjÞ:typeÞ
þ ð1� aÞ � dLðlðviÞ:sequence; lðvjÞ:sequenceÞ;

ð12Þ

where a 2 ½0; 1� is a parameter optimized with the genetic

algorithm.

– Edges: The labels are defined by a variable length

structure containing an integer value frequency and one

or two pairs (type, distance), where the first one is a

discrete value and the second one a real number. Both

frequency and type are compared with a delta dissimi-

larity dd, while the field distance is compared with a

normalized module distance dm. Given two edge labels

m(ei) and m(ej), three cases can occur, depending on the

value of frequency field:

1. If m(ei).frsequency = m(ej).frequency == 1

D¼ a � ddðmðeiÞ:type0;mðejÞ:type0Þ
þ ð1� aÞ � dmðmðeiÞ:distance0;mðejÞ:distance0Þ;

ð13Þ

2. If m(ei).frequency = m(ej).frequency == 2

D ¼ 1

2
ða � ddðmðeiÞ:type0; mðejÞ:type0Þ

þ ð1� aÞ � dmðmðeiÞ:distance0; mðejÞ:distance0ÞÞ

þ 1

2
ða � ddðmðeiÞ:type1; mðejÞ:type1Þ

þ ð1� aÞ � dmðmðeiÞ:distance1; mðejÞ:distance1ÞÞ;
ð14Þ

3. If m(ei).frequency = m(ej).frequency

D ¼ 1: ð15Þ

a 2 ½0; 1� is a parameter to be tuned by the global

parameters optimization process.

5.2.2.6 COIL-DEL

– Vertices: The labels are two dimensional real-valued

vectors and they are compared with a normalized

Euclidean dissimilarity dE.

– Edges: The labels are a discrete value valence which is

compared with a delta dissimilarity measure.

5.2.3 Results of graph embedding algorithms using

different classification systems

Table 1 shows the classification accuracy percentages

obtained using different explicit graph embedding meth-

ods, employed in different classification systems. In

Table 2 are reported the standard deviations for the two

different GRALG versions. The GRALG systems have

been optimized executing 20 evolutions and measuring its

achieved classification accuracy on the validation set. The

best configuration of those parameters has been used to test

the accuracy on the test set.

In the dataset L-L the recognition rate is pretty high in

both the results obtained using GRALGv1 and GRALGv2,

having at the same time a pretty low variance in the results.

This is because L-L is the easiest Letter dataset and the

value of the parameters is not so critical in the performance

of the classification, which can be performed correctly even

with different configurations of the parameters. In the other

Letter datasets, i.e., L-M and L-H, the performances

decrease, but this was expected because the higher distor-

tion of the letters makes the classification task more diffi-

cult. However, we can observe an increment on the

variance caused by the fact that the harder dataset depends

more critically from the parameters values, which are tuned

during the optimization procedure. In the AIDS dataset a

good solution is always found by the two versions of

GRALG. Notably, on the base of the opinion gathered from

a field expert, we neglected the dissimilarities of both edge

408 F. M. Bianchi et al.

123

and vertex labels, considering only the topological struc-

ture for classifying a graph. In the GREC and COIL-DEL

dataset, processed with GRALGv2, the results are good in

every run, even with different parameters configurations,

showing that the classification results do not depend too

much on the parameters setup. On the other hand, the

results obtained on COIL-DEL processed with GRALGv1

are worse, in particular in terms of the variance. The results

obtained in the Protein dataset, with both versions of

GRALG, are aligned with the ones shown in the next

section in Table 3. Finally, the recognition rate achieved on

the Mutagenicity dataset is aligned with the state-of-the-art

methods. Performances on test and validation set were

coherent, denoting a good generalization capability, and

the low variance in the result showed that data have been

processed reliably.

5.2.4 Classification results using the k-NN rule

Tables 3 and 4 show, respectively, the classification

accuracy percentages and standard deviations obtained

with the k-NN rule using the 6 weights-BMF (PD6W)

and the Graph Coverage (GC) (Livi et al. 2012b) algo-

rithms. For what concerns the results introduced in this

paper (the grayed ones), we performed an IGM parame-

ters learning stage that has been executed on the vali-

dation set of each considered dataset, using a genetic

algorithm-based optimization procedure. The best per-

forming configuration of those parameters is retained for

the test set evaluation.

Classification systems based on direct graph matching

are much faster than GRALG systems and in general of any

other system based on graph embedding techniques. How-

ever their generalization capability, and stability in terms of

variance of the results, is usually inferior. Indeed, they

totally rely on the capability of the matching algorithm,

without the possibility to discover and filter noisy or irrel-

evant information. Furthermore, beside the mere number of

the recognition rate, the GRALG system discover also an

alphabet of symbols A; which contains information on the

structures which are (qualitatively) recurrent in the input

dataset, and relevant for the problem at hand, which in turn

can be used for understanding what characterizes a class of

patterns. Moreover, it is a general tool for further semantic-

oriented analysis of data. Notwithstanding, in some situa-

tions trading accuracy and robustness for computing time

can be a choice and an advantage, especially considering

the case of very large datasets.

Table 4 Standard deviations of the results of Table 3

Algorithm Datasets

L-L L-M L-H AIDS C-D P G M

GC 0.1755 1.2021 1.4773 2.3614 – – 0.5315 0.9077

PD6W 0.1827 0.6204 1.5121 0.4034 12.7 6.3116 1.0854 0.6541

Table 3 Test set classification results using a classifier based on the k-NN rule

Algorithm Datasets

L-L L-M L-H AIDS C-D P G M

Heuristic-A* Riesen and Bunke (2009a, b) 91.0 77.9 63.0 – 93.3 – – –

Beam(10) Riesen and Bunke (2009a, b) 91.1 78.5 63.9 96.2 93.3 – 76.7 –

BP-M Riesen and Bunke (2009a, b) 91.1 77.6 61.6 97.0 93.3 – 86.3 –

BP-H Fankhauser et al. (2011) 99.6 94.2 89.8 99.2 – 68.0 97.7 68.3

BP-V Fankhauser et al. (2011) 99.6 94.2 89.8 98.9 – 67.0 97.7 67.6

GC 98.8 82.2 76.3 99.2 – – 87.1 67.5

PD6W 99.6 96.6 90.6 99.2 62.7 69.2 97.3 69.7

Table 2 Standard deviations of the results of Table 1

System Datasets

L-L L-M L-H AIDS C-D P G M

GRALGv1 1.1019 3.5646 3.2423 0.0000 7.0000 0.4175 0.5964 0.6586

GRALGv2 0.5598 0.8550 1.8064 0.0000 0.5319 0.3340 0.5233 0.9859

A Granular Computing approach 409

123

5.2.5 Results of graph seriation techniques

Using the seriation-based approaches described in Sect.

3.2.2, we repeated the experiments on the same pool of

datasets. Table 5 shows the achieved results. As it is possible

to observe, the k-NN based system, equipped with a DTW

matching scheme configured with a suited dissimilarity

measure able to cope with each specific vertex label type,

achieves results that are comparable with the other state-of-

the-art methods (see Tables 1, 3). It is worth to underline that

this approach results to be very fast in general, regardless the

specific dataset under analysis. Rather, the seriation stage

resulted to be a little bit more sensitive to the order of the

considered graphs, because of the cubic computational

complexity due to the matrix decomposition algorithm.

Moreover, this technique is deterministic and consequently

there is no need to compute the standard deviation of the

results.

5.3 Discussion on classification settings and results

The main goal that we have tried to accomplish in this

work is the design of an automatic classification system

able to cope with classification problems defined on vir-

tually any labeled graphs space G; which is capable of

describing effectively and discriminatingly the classes in

terms of its recurrent, and significant, substructures. The

approach adopted in the performance evaluation tests was

mainly finalized to the assessment of the embedding pro-

cedure properties, rather than to obtain the highest per-

formances in terms of classification. For this reason, there

have been done no efforts at all for tuning the algorithm

specifically for each dataset in order to maximize the

achieved recognition rate. Another critical decision was the

choice of the R
n classifier adopted in the GRALG system:

the k-NN. Even if it is common the adoption of classifiers

such as support vector machines and neuro-fuzzy networks

(Theodoridis and Koutroumbas 2006; Rizzi et al. 2002),

the k-NN classifier is still a valuable tool in pattern rec-

ognition. In particular, in this case the generalization

capability depends completely on the configuration of the

embedded training and test sets. As a consequence, it can

be used as a direct quality measure in terms of class sep-

arability. Having obtained an high recognition rate can be

translated that the embeddings are well-shaped and they are

capable of clearly describe the classes.

6 Conclusions and future directions

In this paper we have described a general-purpose graph

classification system based on GrC modeling techniques.

The system is able to face problems defined in a labeled

graph space G: For a given classification problem at hand,

once suited parametric dissimilarity measures have been

defined in the vertex and edge label spaces, the system is

completely automatic, since it does not require any manual

parameter tuning, relaying instead on genetic algorithm

optimization procedures. The adopted graph embedding

procedure permits to semantically analyze the input data.

In fact, the alphabet of symbols A contains the significant

substructures extracted from the input training set; specific

subsets of those symbols are assumed to be able to char-

acterize a class of patterns by means of the symbolic his-

tograms representation. We have extensively tested and

compared the performance of the proposed classifier in

terms of classification accuracy on both controlled and

real-world benchmarking datasets. The system showed

comparable (and often better) results with respect to other

state-of-the-art methods.

6.1 Future directions

With this work, we have accomplished the objective of

designing an effective classification system in terms of

generalization capability. The experiments conducted on

synthetic and well-known benchmarking datasets were

focused on the recognition rate performance on the test set.

However, the nature of the method allows further analysis

of the input data, defining symbols-depended local metrics.

In the described system, the alphabet is created using a

clustering algorithm relying on a given dissimilarity mea-

sure, which in our case is a GED-based dissimilarity con-

figured with a set of parameters P: These parameters

strongly influence the matching algorithm, determining the

weights of the considered edit operations. Additionally, the

parameters characterizing the inner dissimilarity functions

defined for vertex and edge labels play an important role.

Table 5 Test set classification results achieved using different seriation-based approaches

Classification System Datasets

L-L L-M L-H AIDS C-D P G M

GRADIS ? SVM Livi et al. (2012c) – – – 98.5 – – – 59.0

RL-GRADIS ? SVM Livi et al. (2012c) – – – 98.0 – – – 67.1

Seriation?k-NN 95.0 85.4 68.0 99.0 50.3 – 97.5 71.1

410 F. M. Bianchi et al.

123

By using different settings of those parameters Pi; i ¼
1; 2; . . .; k; we effectively compare the data using k differ-

ent metrics, i.e., it is possible to evaluate in k different

ways the dissimilarity degree between two graphs.

Changing the IGM parameters Pi influences the clustering

procedure adopted for the frequent substructures search

procedure, allowing the definition of symbols characterized

by ad hoc instances of Pi:

The idea of the local metrics consists in generating an

alphabet of symbols A determined using an heterogeneous

set of matching parameters Pi: To this aim, each symbol

would be described also by the particular instance of Pi:

The symbolic histogram associated to an input graph would

be constructed considering the particular setting of Pi;

associated to the symbols of A: This is what we call ‘‘local

metric’’, and it differs from the herein adopted global

metric where the symbols are extracted from clusters that

are all obtained using the same setup for the IGM algorithm

parameters. Local metrics may result very useful when a

pattern is composed by heterogeneous elements, which

should not be compared using the same dissimilarity, or

when, for instance, the characteristics of a class c1 of the

dataset are better caught using P1; while a class c2 would

be better defined by a metric adopting P2: Consequently, a

future work will consists in implementing a local metric

mechanism in the GRALG system.

Additional effort will be devoted to increasing the per-

formance, in terms of computation time, of the GRALG

classifier synthesis; solutions towards this aim vary from

adopting parallel algorithm implementations of IGM

algorithms (Livi and Rizzi 2012a, b) to the design of

dedicated electronic circuits for specific computationally

intensive system components (Cinti and Rizzi 2011).

References

Bargiela A, Pedrycz W (2003) Granular Computing: an introduction.

Number v. 2002 in Kluwer international series in engineering

and computer science. Kluwer, London. ISBN 9781402072734

Batista L, Granger E, Sabourin R (2010) Applying dissimilarity

representation to off-line signature verification. In: Proceedings of

the 2010 20th international conference on pattern recognition, ICPR

’10. IEEE Computer Society, Washington, DC, pp 1293–1297. doi:

10.1109/ICPR.2010.322. ISBN 978-0-7695-4109-9

Bello R, Falcón R, Pedrycz W, Kacprzyk J (2008) Granular

Computing: at the junction of rough sets and fuzzy sets. Studies

in Fuzziness and Soft Computing. Springer, Berlin. ISBN

9783540769729

Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola

AJ, Kriegel H-P (2005) Protein function prediction via graph

kernels. Bioinformatics 21:47–56. doi:10.1093/bioinformatics.

ISSN 1367-4803

Carli A, Castellani U, Bicego M, Murino V (2010) Dissimilarity-

based representation for local parts. In: Workshop on cognitive

information processing, pp 299–303. June. ISBN 978-1-4244-

6457-9

Carli A, Figueiredo MAT, Bicego M, Murino V (2012) Generative

embeddings based on Rician mixtures: application to kernel-

based discriminative classification of magnetic resonance

images. In: Proceedings of the first international conference on

pattern recognition applications and methods 2012, vol 1,

pp 113–122

Cinti A, Rizzi A (2011) Neurofuzzy min-max networks implemen-

tation on FPGA. In: International joint conference on compu-

tational intalligence (IJCCI). Neural Comput Theories Anal.

ISBN 978-989-8425-84-3

Del Vescovo G, Rizzi A (2007a) Automatic classification of graphs

by symbolic histograms. In: Proceedings of the 2007 IEEE

international conference on granular computing, GRC ’07. IEEE

Computer Society, pp 410–416. doi:10.1109/GRC.2007.46.

ISBN 0-7695-3032-X

Del Vescovo G, Rizzi A (2007b) Online handwriting recognition by

the symbolic histograms approach. In: Proceedings of the 2007

IEEE international conference on granular computing, GRC ’07.

IEEE Computer Society, Washington, DC, pp 686–700. doi:

10.1109/GRC.2007.116. ISBN 0-7695-3032-X

Del Vescovo G, Livi L, Rizzi A, Frattale Mascioli FM (2011)

Clustering structured data with the SPARE library. In: Proceed-

ings of 2011 4th IEEE international conference on computer

science and information technology, vol 9, pp 413–417. ISBN

978-1-61284-834-1

Escolano F, Bonev B, Lozano M (2011) Information-geometric graph

indexing from bags of partial node coverages. In: Jiang X, Ferrer

M, Torsello A (eds) Graph-based representations in pattern

recognition, volume 6658 of LNCS. Springer Berlin, pp 52–61.

doi:10.1007/978-3-642-20844-7_6. ISBN 978-3-642-20843-0.

Fankhauser S, Riesen K, Bunke H (2011) Speeding up graph edit

distance computation through fast bipartite matching. In: Jiang

X, Ferrer M, Torsello A (eds) Graph-based representations in

pattern recognition, volume 6658 of LNCS. Springer Berlin,

pp 102–111. doi:10.1007/978-3-642-20844-7_11. ISBN 978-3-

642-20843-0

Gao X, Xiao B, Tao D, Li X (2008) Image categorization: graph edit

direction histogram. Pattern Recognit 41(10):3179–3191. doi:

10.1016/j.patcog.2008.03.025. ISSN 0031-3203

Gao X, Xiao B, Tao D, Li X (2010) A survey of graph edit distance.

Pattern Anal Appl 13(1):113–129. doi:10.1007/s10044-008-

0141-y. ISSN 1433-7541

Gärtner T (2008) Kernels for structured data. Number v. 72 in Kernels

For Structured Data. World Scientific, Singapore. ISBN

9789812814555

Gibert J, Valveny E, Bunke H (2011) Dimensionality reduction for

graph of words embedding. In: Jiang X, Ferrer M, Torsello A,

(eds) Graph-based representations in pattern recognition, volume

6658 of LNCS. Springer, Berlin, pp 22–31. doi:10.1007/

978-3-642-20844-7_3. ISBN 978-3-642-20843-0

Jain B, Obermayer K (2011) Maximum likelihood for gaussians on

graphs. In: Jiang X, Ferrer M, Torsello A (eds) Graph-based

representations in pattern recognition, volume 6658 of LNCS.

Springer, Berlin, pp 62–71. doi:10.1007/978-3-642-20844-7_7.

ISBN 978-3-642-20843-0

Jain BJ, Srinivasan SD, Tissen A, Obermayer K (2010) Learning

graph quantization. In: Proceedings of the 2010 joint IAPR

international conference on structural, syntactic, and statistical

pattern recognition, SSPR&SPR’10. Springer, Berlin,

pp 109–118. ISBN 3-642-14979-0, 978-3-642-14979-5

Kashima H, Tsuda K, Inokuchi A (2003) Marginalized kernels

between labeled graphs. In: Proceedings of the twentieth

international conference on machine learning. AAAI Press,

pp 321–328

A Granular Computing approach 411

123

http://dx.doi.org/10.1109/ICPR.2010.322
http://dx.doi.org/10.1093/bioinformatics
http://dx.doi.org/10.1109/GRC.2007.46
http://dx.doi.org/10.1109/GRC.2007.116
http://dx.doi.org/10.1007/978-3-642-20844-7_6
http://dx.doi.org/10.1007/978-3-642-20844-7_11
http://dx.doi.org/10.1016/j.patcog.2008.03.025
http://dx.doi.org/10.1007/s10044-008-0141-y
http://dx.doi.org/10.1007/s10044-008-0141-y
http://dx.doi.org/10.1007/978-3-642-20844-7_3
http://dx.doi.org/10.1007/978-3-642-20844-7_3
http://dx.doi.org/10.1007/978-3-642-20844-7_7

Livi L, Rizzi A (2012) The graph matching problem. Pattern Anal

Appl. doi:10.1007/s10044-012-0284-8. ISSN 1433-7541

Livi L, Rizzi A (2012) Parallel algorithms for tensor product-based

Inexact Graph Matching. In: Proceedings of the 2012 interna-

tional joint conference on neural networks (IJCNN). IEEE,

Berlin, pp 2276–2283. June. doi:10.1109/IJCNN.2012.6252681.

ISBN 978-1-4673-1489-3

Livi L, Del Vescovo G, Rizzi A (2012a) Graph recognition by

seriation and frequent substructures mining. In: Proceedings of

the first international conference on pattern recognition applica-

tions and methods, vol 1, pp 186–191, Feb. doi:10.5220/

0003733201860191. ISBN 978-989-8425-98-0

Livi L, Del Vescovo G, Rizzi A (2012b) Inexact Graph Matching

through graph coverage. In: Proceedings of the first international

conference on pattern recognition applications and methods, vol

1, pp 269–272, Feb. doi:10.5220/0003732802690272. ISBN

978-989-8425-98-0

Livi L, Del Vescovo G, Rizzi A (2012c) Combining graph seriation

and substructures mining for graph recognition. Advances in

Intelligent and Soft Computing. Springer, Berlin. http://dx.doi.

org/10.1007/978-3-642-36530-0_7

Martins AFT, Smith NA, Xing EP, Aguiar PMQ, Figueiredo MAT

(2009) Nonextensive information theoretic kernels on measures.

J Mach Learn Res 10:935–975. ISSN 1532-4435

Neuhaus M, Bunke H (2007) Bridging the gap between graph edit

distance and kernel machines. Series in machine perception and

artificial intelligence. World Scientific, Singapore. ISBN

9789812708175

Neuhaus M, Riesen K, Bunke H (2006) Fast suboptimal algorithms

for the computation of graph edit distance. In: Structural,

syntactic, and statistical pattern recognition. LNCS. Springer,

Berlin, pp 163–172

Pekalska E, Duin R (2005) The dissimilarity representation for pattern

recognition: foundations and applications. Series in machine

perception and artificial intelligence. World Scientific, Singa-

pore. ISBN 9789812565303

Pedrycz W (2010) Human centricity in computing with fuzzy sets: an

interpretability quest for higher order granular constructs.

J Ambient Intell Human Comput 1:65–74. doi:10.1007/s12652-

009-0008-0. ISSN 1868-5137

Prı́ncipe JC (2010) Information theoretic learning: Renyi’s entropy

and Kernel perspectives. Information Science and Statistics.

Springer, Berlin. ISBN 9781441915696

Riesen K, Bunke H (2008) IAM graph database repository for graph

based pattern recognition and machine learning. In: Proceedings

of the 2008 joint IAPR international workshop on structural,

syntactic, and statistical pattern recognition, SSPR & SPR ’08.

Springer, Berlin, pp 287–297. doi:10.1007/978-3-540-89689-

0_33. ISBN 978-3-540-89688-3

Riesen K, Bunke H (2009a) Graph classification by means of Lipschitz

embedding. IEEE Trans Syst Man Cybern Part B 39:1472–1483.

doi:10.1109/TSMCB.2009.2019264. ISSN 1083-4419

Riesen K, Bunke H (2009b) Approximate graph edit distance

computation by means of bipartite graph matching. Image Vis

Comput 27:950–959. doi:10.1016/j.imavis.2008.04.004. ISSN

0262-8856

Riesen K, Bunke H (2010) Graph classification and clustering based

on vector space embedding. Series in Machine Perception and

Artificial Intelligence. World Scientific Pub Co Inc, Singapore.

ISBN 9789814304719

Rizzi A, Del Vescovo G (2006) Automatic image classification by a

granular computing approach. In: Proceedings of the 2006 16th

IEEE signal processing society workshop on machine learning for

signal processing, pp 33–38. doi:10.1109/MLSP.2006.275517

Rizzi A, Panella M, Frattale Mascioli FM (2002) Adaptive resolution

min-max classifiers. IEEE Trans Neural Netw 13:402–414. ISSN

1045-9227

Robles-Kelly A, Hancock ER (2005) Graph edit distance from

spectral seriation. IEEE Trans Pattern Anal Mach Intell

27:365–378. doi:10.1109/TPAMI.2005.56. ISSN 0162-8828

Robles-Kelly A, Hancock ER (2007) A Riemannian approach to

graph embedding. Pattern Recognit 40(3):1042–1056

Sakoe H (1978) Dynamic programming algorithm optimization for

spoken word recognition. IEEE Trans Acoust Speech Signal

Process 26:43–49

Schölkopf B, Smola A (2002) Learning with kernels: support vector

machines, regularization, optimization, and beyond. Adaptive

computation and machine learning. MIT Press. ISBN 978026

2194754

Theodoridis S, Koutroumbas K (2006) Pattern recognition. Elsevier/

Academic Press. ISBN 9780123695314

Tun K, Dhar P, Palumbo M, Giuliani A (2006) Metabolic pathways

variability and sequence/networks comparisons. BMC Bioinform

7(1):24. doi:10.1186/1471-2105-7-24. ISSN 1471-2105

Xiao B, Gao X, Tao D, Li X (2008) HMM-based graph edit distance

for image indexing. Int J Imaging Syst Technol 18(2–3):

209–218. doi:10.1002/ima.20146

Yu H, Hancock ER (2006) String Kernels for matching seriated

graphs. In: Proceedings of the 18th international conference on

pattern recognition, volume 4 of ICPR ’06, IEEE Computer

Society, Washington, DC, pp 224–228. doi:10.1109/ICPR.2006.

1081. ISBN 0-7695-2521-0

Zhao Z, Wang L, Liu H, Ye J (2011) On similarity preserving feature

selection. IEEE Trans Knowl Data Eng 99. ISSN 1041-4347.

doi:10.1109/TKDE.2011.222 (pre print)

412 F. M. Bianchi et al.

123

http://dx.doi.org/10.1007/s10044-012-0284-8
http://dx.doi.org/10.1109/IJCNN.2012.6252681
http://dx.doi.org/10.5220/0003733201860191
http://dx.doi.org/10.5220/0003733201860191
http://dx.doi.org/10.5220/0003732802690272
http://dx.doi.org/10.1007/978-3-642-36530-0_7
http://dx.doi.org/10.1007/978-3-642-36530-0_7
http://dx.doi.org/10.1007/s12652-009-0008-0
http://dx.doi.org/10.1007/s12652-009-0008-0
http://dx.doi.org/10.1007/978-3-540-89689-0_33
http://dx.doi.org/10.1007/978-3-540-89689-0_33
http://dx.doi.org/10.1109/TSMCB.2009.2019264
http://dx.doi.org/10.1016/j.imavis.2008.04.004
http://dx.doi.org/10.1109/MLSP.2006.275517
http://dx.doi.org/10.1109/TPAMI.2005.56
http://dx.doi.org/10.1186/1471-2105-7-24
http://dx.doi.org/10.1002/ima.20146
http://dx.doi.org/10.1109/ICPR.2006.1081
http://dx.doi.org/10.1109/ICPR.2006.1081
http://dx.doi.org/10.1109/TKDE.2011.222

	A Granular Computing approach to the design of optimized graph classification systems
	Abstract
	Introduction
	Brief introduction to Granular Computing and modeling
	Graph-based recognition algorithms and systems
	State-of-the-art approaches of IGM
	Graph embedding approaches
	GED-based dissimilarity embedding
	Embedding of sequenced graphs
	GrC based symbolic histograms representation

	Proposed GrC based graph classification system
	High-level explanation of the method
	The adopted core IGM algorithm
	Synthesis of the GRALG classification model
	Synthesis of the optimized alphabet
	Feature selection algorithm

	Incremental Granules search

	Performance evaluation
	Tests on synthetic data
	PCA analysis

	Experiments on IAM datasets
	Description of the datasets
	Vertex and edge label dissimilarities
	Letter LOW, letter MED, and letter HIGH
	AIDS
	GREC
	Mutagenicity
	Protein
	COIL-DEL

	Results of graph embedding algorithms using different classification systems
	Classification results using the k-NN rule
	Results of graph seriation techniques

	Discussion on classification settings and results

	Conclusions and future directions
	Future directions

	References

