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Abstract Within the last two decades, the paradigm of

Computing With Words (CWW) has been gaining more

attention. Mainly, CWW has an exciting vision which tries

to tackle the problem of human intelligence by taking the

human mind as a role model. The human intelligence has

been investigated by various disciplines including psy-

chology, philosophy, neuroscience, linguistics, computer

science, and cognitive sciences. Notably, it is not a

straightforward task to map the human’s brain reasoning

into computer processes. In this paper, we propose to

facilitate such mapping by investigating a key element,

which is to identify the step-by-step formation of percep-

tual judgments. Herein, we first introduce an approach that

employs general type-2 fuzzy logic to dynamically model

the human perceptions based on the human experience.

This approach can be regarded as a step to enable the

CWW vision. We have deployed the proposed approach in

real-world settings and we will present two sets of real-

world experiments which were conducted in the intelligent

apartment (iSpace) in the University of Essex. The first set

of experiments demonstrates the results of the proposed

approach for the adaptive modeling of ambient luminance

perception. In the second set of experiments, we show that

our approach performs better in the rule base evaluation

processing time and in output accuracy with comparison to

an interval type-2 fuzzy logic system.

Keywords General type-2 fuzzy logic � Computing

with words � Modeling perceptions � Human perceptual

judgment

1 Introduction

The mystery of human intelligence which encompasses

complex reasoning, problem solving, decision-making and

knowledge processing has been under the spotlight of

scientists, philosophers and researchers for hundreds of

years. With the advent of the information age, there has

been a need to make the current systems, appliances,

devices, and agents more intelligent, with the role model

being the human mind. Supposedly, exploring the various

aspects of human intelligence would lead to more natural

communication in an everyday life of a human being with

such systems, devices, appliances and agents. However,

little is known about how the information is represented

(Rangel et al. 2008), stored and processed in the human

brain although this has been investigated from a range of

disciplines including psychology, philosophy, neurosci-

ence, linguistics, computer science, and cognitive sciences.

The paradigm of ‘Computing with words’ (CWW), as

coined by Zadeh (1996) in mid 1990s, can be regarded to

have been established to focus on the problem of intelli-

gence. The main inspiration of CWW has been identified to

be the human ability to perform a wide variety of mental

and physical tasks (Zadeh 2001), manipulate perceptions

(Herrera et al. 2009; Mendel 2002), and comprehend nat-

ural language (Zadeh 1994) without the need for exact

measurements and computation. As a matter of fact, all of

these phenomena can be regarded as key points in a daily

communication where human beings use their cognitive,

perceptive and sensorial abilities in either conscious or
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unconscious manner. Correspondingly, there have been

interpretations of computing with words as computing with

perceptions (Mendel and Wu 2010). Within the literature,

CWW is significantly associated with perceptions and

mainly perceptual judgments (Mendel and Wu 2010),

which can be considered as linguistic decisions (Herrera

and Herrera-Viedma 2000) represented by ‘words’ in nat-

ural language. According to Mendel (Mendel 1999),

‘words mean different things to different people’ and

therefore type-2 fuzzy logic should be employed in mod-

eling words to cope with the linguistic uncertainty. Nota-

bly, type-1 fuzzy sets only offer limited scope for modeling

uncertainty and hence they cannot handle high levels of

uncertainty which are usually present in real world appli-

cations. For this reason, interval type-2 fuzzy logic has

been extensively used in a wide range of applications

including (Zarandi and Gamasaee 2012; Acampora et al.

2012) where interval type-2 is shown to perform better than

its type-1 counterparts. In this paper, we will employ

general type-2 fuzzy logic for representing words as we

believe general type-2 fuzzy sets bear greater potential to

model the linguistic uncertainty.

In order to shed some light on the operation of rather

sophisticated human intelligence, we need to identify the

step-by-step formation of perceptual judgments, which we

consider as an important element to contribute to the CWW

paradigm and to facilitate the mapping of the human’s

brain mechanism into computer processes. At this point, it

is necessary to note that we will use the phrase ‘perceptual

judgment’ interchangeably with ‘perception’, even though

there is a considerable difference in the meanings that they

convey. Yet, regarding the CWW paradigm, it is more

appropriate to mention perceptual judgments as we will

refer to them as the natural language representations of

perceptions. Moreover, it is important to acknowledge that

current CWW methodologies must be applied within the

framework of existing computer architectures, all of which

compute with numbers (Mendel 2002). In the same sense,

we are proposing our conception for CWW using existing

computer architectures.

The main objective of this particular work is to tackle

the problem of intelligence while narrowing it down to the

interpretation of human perceptual judgment within a

specific application. To achieve that, we place our focus on

the input–output relationship and employ backwards

thinking for identifying and in turn modeling the human

perception. Then, we apply the concept of granulation on

the output linguistic propositions. Following this further,

we propose to use a general type-2 fuzzy logic approach to

address the problem of modeling perceptions, which are

dynamically adapted depending on the human experience

and represented using general type-2 fuzzy sets. Once the

perception models are ready to use, we deploy them in a

real-world environment with lay users. We also compare

the proposed models with general type-2 fuzzy logic

approach to previously employed models with interval

type-2 fuzzy logic approach.

The paper is structured as follows: Sect. 2 will briefly

identify the problem and the concepts that are related to the

exploitation of the human ability to learn, to generalize and

to judge. We will introduce the proposed architecture for

CWW along with a framework for modeling human per-

ceptual judgment in Sect. 3. Also, we will present a brief

summary of the theory regarding the Linear General Type-

2 (LGT2) fuzzy sets that will be employed for modeling

human perceptions. Section 4 will present the experiments

and results of modeling adaptive perceptual judgments and

will also present the comparison of two fuzzy logic systems

using different type-2 fuzzy logic approaches. The con-

clusions and future work are discussed in Sect. 5.

2 Decomposition of human intelligence and human

judgment

Conceptually, the aim of this research is to mimic the

exquisite human capability in performing a variety of daily

tasks using perceptual judgments. In general, we believe

that the investigation of human intelligence will provide

the means to represent human compatible skills in com-

puters, agents and most subservient subsystems (Roy 2000)

such as cars, airplanes, together with man-made devices

which are operated by humans. By practical terms, the way

we foresee the machines to mimic human-like intelligence

begins with the investigation of the human perceptual

judgment. It is important to highlight that what we try to

address (with the human perceptual judgment) is the

moment when people make up their minds and form

interpretations of the attended phenomena in a natural

language. As put forward by Zadeh (1994), the use of

linguistic values may be viewed as a form of data com-

pression, also referred as granulation that aids mimicking

the way in which humans interpret linguistic values. Fur-

thermore, the fuzzy information granulation employed by

humans provides the basis for CWW and can be viewed to

be a mode of generalization (Zadeh 1997).

Hence, the course of human perceptual judgment is

central to the process of making the information granular

(or generalized), and vice versa. As pointed out by Pinker

(1999), in order to bridge the computational theory of the

mind and psychology, it is essential to discover the form of

mental representations, and the processes that access them.

In fact, the information encapsulated in an internal/mental

representation is all that we can know about the world.

However, little is known about how the mental represen-

tation of the objects, concepts, thoughts are constructed in
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the human brain and therefore, little is known about how

humans generalize the sensory stimulus information. For

this reason, unlike the traditional methods that formalize

the cognition processes through the reception of the stimuli

information to the determination of the environment state,

we propose to take a reverse engineering approach. The

viewpoint of backwards thinking helps to have a better

understanding of the human perceptual judgment and is

inspired from the interchange of the direction of inference

in rule-based systems. By doing this, we believe that we

can model the human perceptions in a much more realistic

way.

Related to the problem of intelligence is the problem of

perception, which is based on a hypothesis or a conclusion,

used to interpret stimuli reaching us (Coren et al. 2004). It

follows that, the nature of perception involves the impre-

cision and uncertainty present in both intra-user and inter-

user information processing. The reason is that neither our

sensors nor the hypothesis or conclusion we reach is

exactly the same for everyone. Thus, the problem of per-

ception contains a sort of experience granulation and

people agree approximately rather than exactly. Further-

more, perception is not mere reception of a sensory stim-

ulus, but a particular way of experiencing and organizing

the stimulus (Geert 1983), by calling on stores of memory

data and requiring classification, comparisons and myriad

decisions (Coren et al. 2004). Therefore, it can be deduced

that there is a need for memory in order to analyze the

perceptions, in other words, our conscious experience. The

last but not the least; perceptual judgment is a complicated

process that has several subprocesses, including the final

step of a discrete choice among available possibilities

(Yang 2008). However, there is not enough evidence

regarding how we form a mental representation of the

outside environment or choose a possibility as a perceptual

judgment. Hence, we propose a backwards thinking

methodology starting from what we know as final actions

or decisions to the potential perceptual judgments as a

result of our granulation of conscious experience.

The need for memory (as mentioned above) is supported

not only by psychology or psycholinguistics (Aitchison

2003; Field 2003), but also by neuroscience. As raised by

Heekeren et al. (2008), one of the fundamental processes in

the making of a perceptual decision is the contribution of

memory. Our past sensory experiences, which are stored in

memory and brought online in working memory, are

combined with current sensory inputs to inform our per-

ceptual decisions. Comparison of accumulated sensory

evidence is a mechanism for perceptual decision-making

(Heekeren et al. 2008). Moreover, human perceptual

decision-making is influenced not only by the sensory

information at hand, but also by factors such as attention,

task difficulty, the prior probability of the occurrence of an

event and the outcome of the decision (Heekeren et al.

2008). The neural architecture for perceptual decision-

making can be viewed as a system that consists of four

distinct but interacting processing modules (Heekeren et al.

2008). According to Heekeren et al. (2008), the first of

these modules accumulates and compares sensory evi-

dence; the second detects perceptual uncertainty or diffi-

culty and signals when more attentional resources are

required to process a task accurately; the third represents

decision variables and includes motor and premotor

structures; and the fourth is involved in performance

monitoring, which detects when errors occur and when

decision strategies need to be adjusted to maximize per-

formance (Heekeren et al. 2008).

Mendel et al. (2010) stresses that CWW is not a

replacement for traditional systems of computation, rather

it is an addition. As was noted before, what CWW adds is

the important capability to compute with information

described in a natural language. Pursuing this further, we

propose to include a new module standing for the memory

in the ideal general framework of CWW where the human

experience has a binding impact on the human perception.

Clearly, experience is represented within the memory and

has an effect on human capability of performing a wide

variety of physical and mental tasks without exact mea-

surements and computations. Besides, the memory has its

own partitions such as long-term memory, short-term

memory or working memory (Pinker 1999; Aitchison

2003; Field 2003). However, the analysis of the dimensions

of memory is out of scope for this paper and initially, we

hypothesize a simplified memory usage. In this paper, we

will introduce the conception of a general-use memory,

which we think is important to include in such systems.

Another angle and application area of CWW is decision-

making, which bears substantial importance as it is a kind of

perceptual judgment process that extends on time and

resources. In other words, perceptual judgments as a con-

sequence of our perceptions and way of reasoning can be

viewed as the preliminary steps that will lead to making up

our minds and giving a decision. According to Rangel et al.

(2008), value-based decision making is pervasive in nature.

In the same sense, human perceptual judgment as a sub-

process of decision-making is supposed to be pervasive when

dealing with values such as stimuli information. Also, we

believe that the perceptual judgment is a matter of deciding

between two opposite sides (e.g. dark or bright, true or false)

of one category, in a fuzzy manner, that is having partial

memberships rather than exact categorization. On the con-

trary, we believe that decision-making might involve more

categories to choose from, not necessarily just two.

Admittedly, making decisions is one of the most basic

tasks that human beings perform daily. As described by

Gold and Shadlen (2007), a decision is a deliberative
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process that results in the commitment to a categorical

proposition. Likewise, the linguistic propositions, which

can be regarded as the heart of the fuzzy logic theory, are

closely related to the judgments that humans make. In

addition, the information granulation (Zadeh 1997, 2001;

Herrera et al. 2009; in other terms generalization) prepares

the grounds for such judgmental processes and hence, they

can be communicated in an approximate manner. In this

paper, we will take the perspective of human perceptual

judgment as a subset of decision-making from the begin-

ning, which is how the stimuli information is mapped into

perceptions in the human mind, as we believe it is the

initiative of the CWW paradigm.

In order to have a better understanding of how to model

human perception, we need to consider the basics such as

the environment, and the sensory apparatus. To put things

into practice, we will pose an analogy between the human

and the embedded agent in an intelligent environment

regarding the information processing. When we are doing

this, we have to make a couple of reasonable assumptions,

which we will justify later. In the next section, we present

the proposed CWW architecture with the additional

abstract memory module that we think will bridge the gap

of experience between the humans and the machines.

3 The proposed CWW architecture and linear general

type-2 (LGT2) fuzzy sets

3.1 The proposed CWW architecture

In a broad sense, the proposed CWW framework, which

will accomplish a human-like reasoning, needs to integrate

memory for learning and adaptation purposes and experi-

ence folding. As illustrated in Fig. 1, the abstract memory

module (Element 4 in Fig. 1) is foreseen to have a double-

way information flow while forming an internal represen-

tation (arrow A in Fig. 1), reasoning within CWW Engine

(arrow B in Fig. 1) and producing the final actions or words

(arrow C in Fig. 1) that are specialized according to the

system/application requirements. It is worthwhile to men-

tion that these information flows have been drawn with the

inspiration from the neural basis of human perceptual

decision-making as described in (Heekeren et al. 2008).

However, we will not go into the details of each particular

module in this paper, since the center of scope is the step-

by-step formation of human perceptual judgment and how

we can mimic this in machine processes. Therefore, we

will briefly bring the steps together which are illustrated in

Fig. 1 and consider them in a nutshell for the reason that

they support our line of research.

Initially, we need to take into account the sensory

information (Element 1 in Fig. 1) from the environment,

which is available through our various sensors such as the

eyes, the ears, the skin, etc. Depending on the task that we

are performing, we attend to one or more of our senses. In

other words, we have a sort of attention filter (Element 2 in

Fig. 1) that we use to focus on the bits of information that

we think is necessary for that specific task. Upon reception

of the attended sensory input, there is the input-judgment

mapping (Element 3 in Fig. 1) using the internal repre-

sentations within the human brain. However, we do not

have sufficient scientific evidence regarding how these

representations are created, stored or processed. Besides,

we cannot know the outcome of this step, which can be

referred as the cognitive result of such mapping, unless it is

expressed in a natural language.

After this level, we cannot proceed with forward

thinking, as there is a gap between the stimuli information

(Element 1 in Fig. 1) and the perceptual judgment (Ele-

ment 5 in Fig. 1), which is ideally represented in a natural

language as words or phrases. On the other hand, using

traditional reasoning or decision-making systems, we can

have access to the inputs and outputs as well as the rules of

the system especially when a human operator is involved

for control purposes. The underlying architecture for such

systems is based on a Fuzzy Logic System (FLS), which is

illustrated in Fig. 2b. As an analogy, it can be noticed that

the abstract CWW Engine conception consists of the

Fig. 1 Proposed CWW architecture
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traditional FLS from the point where the input is taken

(perceptual judgment), and then processed (CWW Engine)

before an output is given. We use the label ‘CWW Engine’

to identify the heart of the overall CWW conception, which

consists of the modules such as the abstract counterparts of

the ones in an FLS i.e. rule base, inference engine and

defuzzifier. This hypothesis is also backed with the argu-

ment of Zadeh (2010) where he puts forward that CWW

should be an addition to the traditional systems of com-

putation. The analogy is visualized in Fig. 2.

Consequently, we consider a backwards thinking, that is,

a reverse engineering viewpoint in order to model the

human perceptual judgment, which is communicated in

words. Pursuing this, we propose that what CWW con-

ception needs to embody is similar to the traditional way of

input–output mapping that uses a rule base for reasoning.

Also, we will apply it on a real-world system (a reading

application where we have access to the inputs and outputs

as well as the rules of the system).

3.2 Dedicated CWW architecture and the backwards

thinking approach

We have developed an application where the human per-

ception of the ambient light level (luminance) is central to

decide on the level of reading light levels in an intelligent

environment. The important thing to note is that the

application uses a rule based system, markedly a type-2

FLS similar to Bilgin et al. (2012a, b), to control the ceiling

lights. The apparatus we use to sense the ambient light

level, which is analogous to the human eye, is a collection

of light sensors that can be referred to as the eyes of the

intelligent embedded agent. The purpose is to model the

human perception of the indoor ambient light levels, which

is in turn used to decide on the ceiling light levels.

Figure 3 illustrates the process of backward thinking to

ultimately have an insight on what words represent as

perceptions (Element 3 in Fig. 3) in the form of light

sensor values (Element 1 in Fig. 3) for this specific case.

The usage of memory is represented in a module (Element

2 in Fig. 3) dedicated for accumulation and comparison of

sensory evidence as supported by the literature (Pinker

1999; Aitchison 2003; Field 2003; Heekeren et al. 2008).

The aftermath of this process in the human brain is a

perceptual judgment (depicted in the rectangle H in Fig. 3)

but there is not enough evidence for us to hypothesize it in

machine processes. For this reason, we opt to use the tra-

ditional FLS (depicted in rectangle M in Fig. 3) to our

advantage as follows. We have access to the real-world

output of the user preference in a numeric format (Element

5 in Fig. 3). This numeric information is indeed the de-

fuzzified collective output of the FLS. After defuzzifica-

tion, we fuzzify the output numeric value to get the

stimulated output linguistic labels using the same output

fuzzy sets designed by the expert of the FLS. We make the

assumption that, this is an adapted preference of the user, in

other words, the user is content with the output light level

and there is no more interaction with the system through

the user interface. Hence, without looking at the collective

fuzzy consequents coming from the rule base, we treat this

fuzzified numeric output value as the word output of CWW

Architecture.

From there, we can make a granulation using the output

linguistic labels and input light sensor values attached to

each and every output using the experience, which is

accumulated in the memory (Element 2 in Fig. 3). First, we

categorize all the input light sensor readings as per output

linguistic label and we obtain a range of crisp input values

for the same output linguistic label. What we do with these

values can be referred to as a (reverse) granulation, as we

will use the output label as a basis to interpret the human

input light level perception. Table 1 illustrates the structure

of the data as experience, which is kept in the memory

module for accumulation and comparison. The ‘Light

Sensor Value’ column shows the light sensor reading xi,

where i ¼ 1. . .Q and Q is the number of unique light sensor

readings. It is important to note that xi is an aggregation

(specifically an average) of 3 individual light sensors

located in various parts of the intelligent environment. The

second column, named as ‘Count of Light Sensor Value’

has a dedicated sub-column for each and every output

linguistic label Labelj, where j = 1…M and M is the

number of output linguistic labels. Last, kji is the corre-

sponding number of occurrences of the light sensor reading

xi per output linguistic label Labelj.

Before proceeding to the details of the modeling pro-

cess, it is important to refer to the theoretical background

which can be found in Bilgin et al. (2012a, b) as we pro-

pose to model the interpretations of the human perceptual

judgment using LGT2 fuzzy sets which will be presented in

the following subsection.

Fig. 2 Analogy between a CWW Engine and b FLS
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3.3 Background on Linear General Type-2 (LGT2)

fuzzy sets

In this subsection, we present theoretical background for

LGT2 fuzzy sets, which we have introduced recently in

Bilgin et al. (2012a, b). We will illustrate the prototype of

the LGT2 fuzzy set which represents a right shoulder

trapezoidal fuzzy membership function, namely ~L. Some

common perspectives to visualize the LGT2 are illustrated

in Fig. 4. The front view as seen in Fig. 4b is similar to the

front view of an interval type-2 fuzzy set. However, the

difference is in the third dimension, which can be visual-

ized in Fig. 4a, c. In fact, for an interval type-2 set, the

secondary degree always equals to 1 whereas for a general

type-2 set it ranges in the interval [0, 1].

As shown in Fig. 4c, the top view of the prototype

projected on x–l~Lðx; uÞ plane is a right triangle. In partic-

ular, it will be a right edged-right triangle for a right

shoulder membership function, whereas it will be a left

edged-right triangle for a left shoulder membership func-

tion. In order to find the secondary degree of any x value,

we have to distinguish a singleton and a non-singleton case.

Fig. 3 Specialized CWW

architecture focusing on the

backwards thinking viewpoint

to model the human perceptual

judgment

Table 1 Structure of the data as experience in memory module for

accumulation and comparison

Light sensor value Count of light sensor value

Label1 Label2 : : Labelj

x1

x2 kji

:

xi

Fig. 4 Visualization of an LGT2 fuzzy set. a 3D view, b front view,

c top view
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3.3.1 Singleton case

For a linear general type-2 fuzzy set ~L, the fuzzification of

a singleton input x = x0 yields a vertical slice. Depending

on the support of the upper membership function and the

support of the lower membership function, we distinguish

between the circumstances where �l~L x0ð Þ ¼ l~L
x0ð Þ and

�l~L x0ð Þ 6¼ l~L
x0ð Þ.

For the first condition (�l~L x0ð Þ ¼ l~L
x0ð ÞÞ, in order to

calculate the secondary degree l~Lðx0; uÞ, we make use of

the concept of similarity of triangles. Equation (1)

expresses the formulation:

l
eL

x0; uð Þ ¼ x0 � x1

x2 � x1

ð1Þ

where ½x0; x1; x2; x3� represent the parameters of the trape-

zoidal type-1 upper membership function as depicted in

Fig. 4b. Note that, in this case, the secondary degree is the

amplitude on the u-l~Lðx; uÞ plane which can be interpreted

as the length of a vertical line as shown in Fig. 5a.

The second condition �l~L x0ð Þ 6¼ l~L
ðx0Þ requires that the

vertical slice is a 2-D shape of either a triangle or a trap-

ezoid as illustrated in Fig. 5b, c. In this case, we calculate

the center of gravity, also known as the centroid, of the

vertical slice. Hence, the secondary degree is found by the

centroid calculation.

l~L x0; uð Þ ¼ f
cg
x0 ð~LÞ ¼

PM
k¼1 uk � l~L x0; ukð Þ
PM

k¼1 uk

ð2Þ

where uk 2 ½l�L
x0ð Þ; �l~L x0ð Þ�, M is the number of discreti-

zation points.

3.3.2 Non-Singleton case

As stated in Bilgin et al. (2012a, b), modeling a word

involves handling of the uncertainty within perceptions

which is why non-singleton input is comparatively more

realistic for modeling a word. Herein, we present the the-

oretical aspects of using the LGT2 approach. For a linear

general type-2 fuzzy set ~L, the fuzzification of a type-1

non-singleton input x ¼ x0ns yields a tilted slice. Regardless

of the shape of the type-1 fuzzy input membership function

X, by using sup-star composition with minimum inference

on X and each of the type-1 upper FOU ~L
� �

and lower

FOUð~LÞ membership functions of the LGT2 fuzzy set, we

find two distinct points Pu and Pl, respectively, on x–u

plane as follows:

�xk;max ¼ supx

Z

xk2X

lX xkð ÞH l
FOU ~Lð Þ xkð Þ

� �

.

x ð3Þ

Pu xu; uuð Þ ¼ �xk;max; l
FOU ~Lð Þ �xk;max

� �

� �

ð4Þ

where k is the discretization index and k = 1…N. If we let

the value of xk at which the supremum occurs be �xk;max,

then xu ¼ �xk;max and uu follows from the right hand side of

the parentheses in Eq. (4). Likewise, Pl can be written as:

�xk;max ¼ supx

Z

xk2X

lX xkð ÞH lFOUð~LÞ xkð Þ
h i.

x ð5Þ

Pl xl; ulð Þ ¼ xk;max; lFOUð~LÞ xk;max

� �

� 	

ð6Þ

Similar to the singleton case, we distinguish between the

circumstances where Pu = Pl and Pu 6¼ Pl. For the first

condition, in order to calculate the secondary degree l~Lðx0; u0Þ
where x0 ¼ xu ¼ xl and u0 ¼ uu ¼ ul (Singleton case) we

make use of the concept of similarity of triangles and the

formulation is the same as in Eq. (1). However, for the second

condition Pu 6¼ Pl, we need to modify the centroid calculation

to find the secondary degree l~Lðx0ns; uÞ, as this case requires

traversing on both x axis and u axis, whereas we used to

traverse only on u. axis in the singleton fuzzification case.

In order to find the corresponding l~L xp; up

� �

for a point

P, which is along the line C defined by the two points Pu

and Pl, we make use of the distance between two points

and the slope m where m ¼ ðul � uuÞ=ðxl � xuÞ. Hence, the

centroid of a tilted slice, which is in turn the secondary

degree of the non-singleton input x0ns, is calculated as

follows:

Fig. 5 Section of the vertical slice showing a the secondary degree

l~Lðx0; uÞ for the condition �l~L x0ð Þ ¼ l~L
x0ð Þ, b the 2-D shape of

l~Lðx0; uÞ for the condition �l~L x0ð Þ 6¼ l~L
x0ð Þ—triangle when �l~L x0ð Þ\1,

c the 2-D shape of l~Lðx0; uÞ for the condition �l~L x0ð Þ 6¼ l~L
x0ð Þ—

trapezoid when �l~L x0ð Þ ¼ 1
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l~L x0ns; u
� �

¼ f
cg
x0ns
ð~LÞ ¼

PM
k¼1 uk � l~L xp; up

� �

PM
k¼1 uk

ð7Þ

where k is the discretization index over the u axis, and

up ¼ uk. Note that we need to calculate the value for xp

using the line equation as follows:

xp ¼ xl þ up � ul

� �

� m ð8Þ

3.4 The modeling process

In the modeling process, we will exploit the efficiency of

LGT2 fuzzy sets and show that they provide a better

granulation for the user perceptual judgment which can be

referred to be a decision between two opposite sides. LGT2

fuzzy sets provide the means to model such opposition with

their simple and compact design, adding more functionality

to the system point of view and offering a human-inter-

pretable perspective of modeling perception. In the light of

the scientific evidence, we will encourage the use of the

two opposite sides for one category. For instance, for the

illumination level, we will granulate the two opposite sides

as ‘dark’ and ‘bright’ for the interpretation of the human

light stimuli. Moreover, the mapping of the output lin-

guistic labels (which can be more than just two in number)

to these two perceptual judgments will easily be handled by

LGT2 fuzzy sets using their characteristic feature for

embedding the qualifiers in the third dimension.

In order to interpret the human ambient luminance

perception, we make an assumption on the input–output

relationship, which we extract from the data where we

found out that the input and output relationship yields an

inversely proportional figure. Then, we granulate the range

of xi to be the interpretation of its corresponding Labelj in

an inverted manner. For example, we hypothesize that

when the level of output ceiling lights was high, the user’s

illumination stimuli information must have been low (and

this triggered the human to switch the light to a high level).

In fact, we argue that the user’s perceptual judgment for the

ambient light level must have been the opposite of the

controlled ceiling light level. It is worthwhile to note that

this hypothesis is based on the input–output relationship

and is application dependent. The formulation for the

interpretation of the input stimuli which is being sensed is

shown in Eq. (9).

StimuliGranuleM�jþ1 ¼ Labelj ð9Þ

where j ¼ 1. . .M and M is the number of output linguistic

labels (M is also the number of input stimuli information

granules). We will refer to StimuliGranule as the repre-

sentation of what has been sensed in response to an output

linguistic label. For example, for a reading application,

sensed illumination level can be a stimuli granule and if

there are five output linguistic labels (M ¼ 5, i.e. very low,

low, medium, high, very high), then the very high output

light level (corresponding to j ¼ 5) must have been stim-

ulated by a very low illumination stimuli granule (corre-

sponding to M � jþ 1 ¼ 1).

As a next step, the range of the light input stimuli that

we have accumulated in the memory as an experience is

analyzed according to the number of occurrences for each

light sensor reading. According to Laming (2004), sensory

experience in general is characterized by self-adjustment to

the prevailing level of stimulation. Using this information,

we hypothesize that the prevailing level of stimulation can

be extracted from the experience by finding the most fre-

quent light sensor values associated with each output label.

Then, we propose to adopt these most prevailing values to

be the base transition points that will mark the support of

the fuzzy sets (as shown in Fig. 6) and in turn will facilitate

the placement of the shoulder membership functions in an

adaptive manner. Consequently, the most crucial step in

our proposed framework is to obtain the most frequent

values as the base transition points for each of the stimuli

granules which we will later generalize into perceptions or

perceptual judgments. This step can be formalized as

choosing xi having maxðkjiÞ for each StimuliGranuleM�jþ1.

P Granule jð Þ ¼ xiðmaxÞX ; where imax is found from maxðkjiÞ
ð10Þ

After having extracted xiðmaxÞ points, we position them

on the horizontal x-axis as shown in Fig. 4, where

‘minimum’ is minðxiÞ and ‘maximum’ is maxðxiÞ present

in the experience over the course of the life-cycle.

Moreover, UðsÞ indicates the start and UðeÞ indicates the

end of the universe of discourse for x. By nature, the base

transition points (denoted as P Granuleð#Þ) are ordered in

line with their meaning. For example, the lower values

Fig. 6 The structural mapping of the base transition points

P Granule #ð Þ for each granule to judgment Jc where c ¼ 1; 2 and

the positioning of the LGT2 fuzzy sets
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indicate the darker perception and the higher ones indicate

the brighter perception. Another crucial step in the

mapping process is to find the stimuli granules that

belong to one of the two opposite sides with a primary

membership degree of ‘1’. According to the theory behind

the LGT2 sets, we use two shoulder type primary

membership functions and position them as seen in Fig. 6

where the identification parameters of the membership

functions are marked with dots and are labeled as

½als;bls;cls;dls� for the left shoulder and ½ars;brs;crs;drs�
for the right shoulder. The mapping of the parameters of

the left shoulder membership function to the stimuli

granules is formulated as follows:

als ¼ bls ¼ UðsÞ ð11Þ
cls ¼ P GranuleðNÞ ð12Þ
dls ¼ P GranuleðM � N þ 1Þ ð13Þ

where N ¼ M�1
2

for odd M, and N ¼ M
2

otherwise.

Moreover, the mapping of the parameters of the right

shoulder membership function to the stimuli granules is as

follows:

ars ¼ P GranuleðNÞ ð14Þ
brs ¼ P GranuleðM � N þ 1Þ ð15Þ
crs ¼ drs ¼ UðeÞ ð16Þ

Also, the following equations are important in

positioning of the both of the membership functions:

cls ¼ ars ð17Þ
dls ¼ brs ð18Þ

In the same way as the primary membership functions, we

continue with the structural mapping of the third dimension

showing the secondary membership functions for the LGT2

fuzzy sets. In theory (Bilgin et al. 2012a, b), the secondary

memberships will be linear functions in the third dimension.

Figure 7 demonstrates the right triangle shaped secondary

membership functions for both of the opposing sides

belonging to one category, e.g. dark and bright for the

ambient light level. In Fig. 7, each triangle represents the

quantification of the third dimension for the corresponding

perceptual judgment Jc where c ¼ 1; 2. The labels for the

input linguistic modifiers (e.g. ‘very’, ‘fairly’, etc.) can be

adopted from the output linguistic propositions and be

manifold with regards to the application requirements. Also,

it is possible to have no modifier (no_modifier) which is also

embedded in the model as seen in Fig. 7.

According to the number of output linguistic labels, M,

where M [ 2, the number of granules to be quantified in

the third dimension of LGT2 will be M�1
2

� �

þ 1 (at most)

for odd M (there is a ‘medium’ label e.g. [very low, low,

medium, high, very high]), where ‘?1’ corresponds to an

additional label for the granulation of the ‘extreme’ cases.

For example, if an input sensor value that is smaller than

the minimum value is stimulated, then the modifier

‘extreme’ can very well represent the perception of this

stimuli information. Similar applies for the values larger

than the maximum value. On the other hand, for even M

(there is no label for ‘medium’ e.g. [very low, low, high,

very high]), the maximum number of granules to be

quantified in the third dimension of LGT2 will be M
2

� �

þ 1.

It is important to note that this is an assumption depending

on the sequencing pattern of the output linguistic labels.

Pursuing this direction, we have two more steps till we

draw the model that will incorporate both inter-user and

intra-user uncertainties. First, we obtain LGT2 fuzzy sets

for each individual user which have no uncertainty on the

primary membership [i.e. zero Footprint Of Uncertainty

(FOU)], and second, we aggregate various LGT2 fuzzy sets

(for the individual users) which form a primary FOU as

shaded in Fig. 8 to represent the inter-user and intra-user

uncertainties.

Figure 8 demonstrates the aggregation of the left

shoulder membership functions (MFs) for individual LGT2

fuzzy sets.

As can be seen, Eq. (11) has been applied in Fig. 8.

Furthermore, the parameters of the aggregated FOU for the

left shoulder MFs are calculated as follows:

cumf ¼ max P GranuleðNÞl
� �

ð19Þ

dumf ¼ max P GranuleðM � N þ 1Þl
� �

ð20Þ

clmf ¼ min P GranuleðNÞl
� �

ð21Þ

dlmf ¼ min P GranuleðM � N þ 1Þl
� �

ð22Þ

where l ¼ 1. . .L and L is the number of LGT2 sets to be

aggregated.

Fig. 7 The structural mapping of the transition points for the

quantification of the third dimension
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Similarly, we apply Eq. (16) and the rest of the

parameters of the aggregated FOU for the right shoulder

MFs are calculated as follows:

aumf ¼ min P GranuleðNÞl
� �

ð23Þ

bumf ¼ min P GranuleðM � N þ 1Þl
� �

ð24Þ

almf ¼ max P GranuleðNÞl
� �

ð25Þ

blmf ¼ max P GranuleðM � N þ 1Þl
� �

ð26Þ

The next step is to aggregate the secondary membership

functions as shown in Fig. 9. Using the same idea as

before, we will calculate the base transition points of the

aggregated left shoulder MF according to Equations (27)

and (28), where w ¼ 1. . .ðN � 1Þ. The purpose of the

aggregated base transition points (marked with dots in

Fig. 9) is to facilitate the quantification of the third

dimension.

final min ¼ min minimumlð Þ ð27Þ

final gw ¼ min P GranuleðwÞl
� �

ð28Þ

For example, as shown in Fig. 9, the final min will be a

transition point between the modifier ‘extremely’ (hence

the linguistic label e.g. extremely dark) and the modifier(1)

(hence the linguistic label e.g. very dark). Furthermore,

final gðN�1Þ will be a transition point between the

modifier(N - 1) (hence the linguistic label e.g. very

dark) and the modifier(N) (hence the linguistic label e.g.

dark (no_modifier)). Similar to Eqs. (27)–(28), the

calculation of the parameters for the base transition

points of the aggregated right shoulder MF can be

formulated as follows where t ¼ M � N þ 2. . .M.

final max ¼ max maximumlð Þ ð29Þ

final gt ¼ max P GranuleðtÞl
� �

ð30Þ

4 Experiments and results

We have performed two sets of real-world experiments

using modified versions of our Fuzzy Task Agent presented

in (Bilgin et al. 2012a, b) in the intelligent apartment,

iSpace (shown in Fig. 11), located at the University of

Essex, Colchester, UK. The iSpace is a purpose-built and

fully-furnished two-bedroom apartment which includes a

spacious open plan kitchen and living area, bathroom,

master bedroom and a study. It has distributed sensors and

actuators that are connected in a homogenous manner over

the iSpace network by the use of UPnP middleware.

Fig. 10 illustrates the common architecture of the devel-

oped applications where we show the communication of

the light sensors, the graphical user interfaces (GUI) and

the ceiling lights over on the iSpace network.

The two sets of experiments are described in four sub-

sections, each of them being a step that prepares a basis for

the following one. First, we will start with single user

experiments where we collect the user experience per

participant and thereby construct the individual LGT2

Fig. 8 Aggregation of primary MFs of individual LGT2 fuzzy sets

with zero FOU to produce an adaptive LGT2 fuzzy set with shaded

FOU

Fig. 9 Aggregation of secondary MFs of individual LGT2 fuzzy sets

to produce an adaptive secondary MF with marked base transition

points

Fig. 10 The common architecture of the applications developed for

this study
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fuzzy sets. We will then detail how to create a collective

model using these data that we have collected. The first two

subsections described below will constitute the first set of

experiments. In the second set of experiments, we will

present a comparison of the rule base evaluation processing

times between the two fuzzy logic systems where we have

conducted the single user experiment using interval type-2

(IT2) and LGT2 fuzzy sets. The rule base evaluation

consists of calculating the reading light output based on the

number of rules, and the processing times that will be

reported are based on the complete rule bases for the two

FLSs. Finally, we will report on the accuracy of the outputs

of both of the systems together with the satisfaction of the

participants.

4.1 Real-world experiments with lay users

The first set of experiments was carried on with 3 partici-

pants. We have collected data on a daily basis from each of

the participants to construct their luminance perception

model. The aim is to customize the system for each user

and let the embedded agent adapt to the user’s preferences

for the reading light level at a specific time of the day. We

have chosen to run the experiments at noontime which

corresponds to the time interval from 10.00 a.m. to 2.00

p.m. (BST). Also, we have chosen this time interval due to

the fact that we have encountered most of the light sensor

value changes and fluctuations during this period.

We have logged the light sensor readings and the corre-

sponding output linguistic labels for users A, S and J. Table 2

illustrates some portion of the data as experienced in the

accumulation and comparison module (Element 2 in Fig. 3).

Due to space constraints, we will only show the light sensor

values for the output linguistic label ‘High’ and the number of

occurrences for each of them. As highlighted in Table 2, the

most frequent input light sensor value for the output linguistic

label ‘High’ is *92.6667, which will be interpreted to be the

prevailing level of stimulation (Laming 2004) for the stimuli

granule ‘Low’, which is found using Eq. (9).

In the same fashion, we extract all the other transition

points from the user experience which have been collected

over 3 days. Figure 12a shows the LGT2 fuzzy sets for the

user A’s perception of the ambient light level where the blue

MF (left shoulder) represents the perception of dark and the

red one (right shoulder) represents the perception of bright.

On the horizontal x-axis, light sensor lux values are shown

and the four points respectively marked with a lozenge (e),

a circle (s), an asterisk (*) and a star (H) correspond to the

transition points where the linguistic qualifiers change in the

third dimension as shown in Fig. 12b and c. As explained

previously, the third dimension is modeled to indicate the

qualifier ‘extremely’ for the values smaller than the mini-

mum stimulated, meaning that the light sensor values

smaller than the ‘minimum’ are perceived as extremely

dark. The same applies to the values larger than ‘maximum’

to be interpreted as extremely bright.

For the second and third participants, users S and J, the

LGT2 model of ambient luminance perception (when the

user is reading) is shown in Figs. 13 and 14.

4.2 General type-2 approach to model inter-user

uncertainty

As noted before, the LGT2 fuzzy sets for individual user’s

models have a primary Footprint of Uncertainty (FOU) as

zero. However, when we put all the three different indi-

vidual user’s models together, we have a collective model

of LGT2 fuzzy sets as shown in Fig. 15 where the adap-

tation of the FOU in the primary MFs is highlighted.

Fig. 11 Users A, S and J participating in experiments in the intelligent apartment iSpace, University of Essex, UK

Table 2 Experiment data for user A’s experience in memory

Light Sensor Value

Count of Light Sensor Value for each Output Linguistic Label

Very High High Medium Low Very Low

… … … … …

90.3334 1

90.6667 1

92.6667 2

93 1

93.3334 1

96.6667 1

97 1

99.3334 1

99.6667 1
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Fig. 12 LGT2 model of ambient luminance perception for user A when reading, a primary MFs; secondary MF for b ‘dark’, c ‘bright’

Fig. 13 LGT2 model of ambient luminance perception for user S when reading a primary MFs; secondary MF for b ‘dark’, c ‘bright’

Fig. 14 LGT2 model of ambient luminance perception for user J when reading a primary MFs; secondary MF for b ‘dark’, c ‘bright’
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Using Eqs. (10)–(30), we have obtained an adaptive

model for the ambient light level perception for various

users when they are reading at noontime, which can be

promoted to be of real-world usage for libraries, or other

public places of similar purpose. As such, the adaptive

modeling of human perceptions can be considered as the

preliminary steps that will enable to bring CWW paradigm

into life. We believe these models will evolve and replace

the expert designed fuzzy sets to allow for a better repre-

sentation of human intelligence.

4.3 zSlices implementation of the LGT2 fuzzy sets

After having created the collective model of perceptions,

we proceed to the second set of experiments where we have

put the theory into practice using the zSlices implementa-

tion (Wagner and Hagras 2010). We have used two inputs,

hence two linguistic variables which are the ambient

luminance perception that has been modeled in the previous

sub-section; and the time of day that has been designed

using expert knowledge. Figures 16, 17, 18 demonstrate the

linguistic labels that have been used for the two linguistic

variables as well as the zSlices implementation of them.

The decision of the number of slices has been based

on the Greater Common Divisor (GCD) calculation

between the secondary degrees of the ambient luminance

perception model in Fig. 15. In other words, we have

calculated the GCD of the secondary degrees considering

both of the linguistic labels for the light, which are dark

and bright. By doing so, we were able to discretize the

third dimension, which is an interval between [0,1], into

equal valued slices that will allow for a fair establish-

ment of zSlices for both sets, as the number of slices

used in the linguistic variables within the whole system

should be equal. Furthermore, we have applied simpli-

fication on this number, which was calculated to be 50

in the beginning, so that we could have a real-time

deployment on embedded devices. Therefore, we kept

the number of slices to be 5 throughout the LGT2 FLS.

However, it should be noted that this simplification

might result in disregarding a linguistic modifier due to

merging of the slices. In fact, we have encountered a

similar case where we had to disregard the modifier

‘extremely’ for the linguistic label ‘bright’ for the

ambient light level linguistic variable. All of the lin-

guistic labels that have been used in the system are

illustrated in 2D view in Fig. 16, and in 3D view with

different colors in Figs. 17 and 18.

Fig. 15 Adaptive LGT2 model of ambient light level luminance for users A, S and J when reading a aggregated primary MFs with the FOUs

shaded; aggregated secondary MFs for b ‘dark’, c ‘bright’
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Fig. 16 2D view of Interval Type-2 fuzzy sets for a ambient

luminance, b time of day
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As visualized in the Figs. 16, 17 and 18, we have used

three different modifiers which are ‘extremely’, ‘very’ and

‘no modifier’. For the ambient luminance perception

model, these modifiers have been drawn from the expert-

designed linguistic labels that are used in the initial FLS.

For the time linguistic variable, the labels have been

designed using expert knowledge where the time of day is

considered as ‘early’ or ‘late’ for 24-h period. The modi-

fiers employed for the time linguistic variable are consis-

tent with the ambient light level linguistic variable; hence

we have also used ‘extremely’, ‘very’ and ‘no modifier’ for

the time input. Altogether, the linguistic labels that are

employed for the ambient light level perception are

‘extremely dark’, ‘very dark’, ‘dark’, ‘bright’ and ‘very

bright’, and for the time input are ‘extremely early’, ‘very

early’, ‘early’, ‘late’, ‘very late’ and ‘extremely late’.

4.4 Comparison of the interval type-2 and LGT2 fuzzy

rule base evaluation processing times

One of the main motivations for employing fuzzy logic

based intelligent embedded agents in an intelligent envi-

ronment is that fuzzy systems are easy to understand and

the rule base is human interpretable. The construction of a

complete rule base is marked with the number of linguistic

variables and their number of linguistic labels. In order to

account for all possibilities, we have constructed complete

rule bases for both systems where we have employed IT2

and LGT2 fuzzy sets. For an IT2 FLS, the linguistic labels

for the ambient light level perception are ‘very low’, ‘low’,

‘medium’, ‘high’ and ‘very high’; and for the time input

are ‘early night’, ‘morning’, ‘noon’, ‘afternoon’, ‘evening’

and ‘late night’. Accordingly, a complete IT2 rule base

consists of 30 rules. Table 3 lists all the rules for a single

user (User A).

On the other hand, for an LGT2 system, the linguistic

labels for the ambient light level perception are ‘dark’ and

‘bright’ that makes up the two fuzzy sets. The modifiers are

designed to be placed in the third dimension and one can

employ as many as needed. They do not appear in the rule

base, as they are encoded within the zSlices. In other

words, they are quantified in the third dimension and do not

constitute another linguistic variable. Also, for the time

input, the two linguistic labels are ‘early’ and ‘late’.

Accordingly, the complete rule base for an LGT2 system

contains 4 rules as seen in Table 4.

Fig. 17 3D view of Interval

Type-2 fuzzy sets for a ambient

luminance, b time of day
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We have calculated the processing time of the two FLSs

considering only the rule base evaluation time in milli-

seconds based on the adaptation phase data for user A. The

results show that the LGT2 FLS drastically outperforms the

IT2 FLS. For example, the evaluation of 30 rules for an IT2

FLS takes up to minimum 168 ms within (approximately)

72-min-runtime. Also, the maximum processing time

within the specified runtime has been recorded to be

250 ms for an IT2 FLS. In contrast, the LGT2 system has

been recorded to take up to maximum of 5 ms for the rule

base evaluation. Consequently, the LGT2 FLS has per-

formed considerably better than the IT2 FLS regarding the

rule base evaluation processing time.

Equally important, the limited computational and mem-

ory capabilities of embedded agents should be considered in

real-world applications since both FLSs use embedded

controllers in an ambient intelligent environment. The

computational overhead inherent to Karnik–Mendel type-

Fig. 18 Linear General Type-2

fuzzy sets for a ambient

luminance where ‘dark’: [0,

298] and ‘bright’: [92. 7, 500],

b time of day where ‘early’: [0,

14] and ‘late’: [10, 24]
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reduction method is directly proportional to the number of

rules (Lynch et al. 2005); hence, decreasing the number of

rules allows for a reduced overhead for real-time systems.

In our experiments, the results show that we have achieved

a more responsive system by using LGT2 fuzzy sets despite

the fact that general type-2 fuzzy systems are computa-

tionally more complex. The chart in Fig. 19 illustrates the

processing times for both IT2 and LGT2 FLSs based on the

data collected from user A. It can also be noted that even

though both systems were run on equal period of runtime,

the LGT2 FLS was able to evaluate the rule base more

frequently, and hence be more responsive. This has caused

the samples that are recorded by the software to be much

more in number as seen on the horizontal axis of Fig. 19a. It

can also be interpreted that the LGT2 FLS has performed

more rule base evaluations due to the reduced overhead.

The spread of the data markers has been zoomed in in

Fig. 19b. As shown, the IT2 FLS requires a wider window

for the processing time with an average of 201.16 ms, and

a standard deviation of 19.61 ms. On the other hand, the

LGT2 FLS provides a significantly smaller window to

operate on with an average of 0.92 ms and a standard

deviation of 0.59 ms. The statistical values are calculated

based on the entire runtime (approximately 72 min) of both

systems. One of the most important things to realize herein

is that the operational time on embedded devices is

essential to estimate in advance so that they can be utilized

in an efficient manner. Therefore, using an LGT2 FLS, as

in this case, would reduce the overhead on the real-time

processing of the embedded controller and would allow for

an effective use of the hardware.

Similarly, the processing times of both systems based on the

data collected from user H and T are presented in Fig. 20a and

b, respectively. It is important to note that the charts in Fig. 20

consist of mixed data from the two phases of learning and

Table 4 Complete LGT2 rule base for a single user (user A)

If Time of Day is Early and Ambient Light Level is Bright then

Ceiling Lights is Low

If Time of Day is Late and Ambient Light Level is Bright then

Ceiling Lights is Medium

If Time of Day is Early and Ambient Light Level is Dark then

Ceiling Lights is Medium

If Time of Day is Late and Ambient Light Level is Dark then

Ceiling Lights is High

Table 3 Complete interval type-2 rule base for a single user (user A)

If Time of Day is AFTERNOON and Ambient Light Level is

HIGH then Ceiling Lights is Medium

If Time of Day is EARLY NIGHT and Ambient Light Level is

HIGH then Ceiling Lights is Medium

If Time of Day is EVENING and Ambient Light Level is HIGH

then Ceiling Lights is Medium

If Time of Day is LATE NIGHT and Ambient Light Level is

HIGH then Ceiling Lights is Medium

If Time of Day is MORNING and Ambient Light Level is HIGH

then Ceiling Lights is Low

If Time of Day is NOON and Ambient Light Level is HIGH then

Ceiling Lights is Very Low

If Time of Day is AFTERNOON and Ambient Light Level is

LOW then Ceiling Lights is High

If Time of Day is EARLY NIGHT and Ambient Light Level is

LOW then Ceiling Lights is High

If Time of Day is EVENING and Ambient Light Level is LOW

then Ceiling Lights is High

If Time of Day is LATE NIGHT and Ambient Light Level is

LOW then Ceiling Lights is Very High

If Time of Day is MORNING and Ambient Light Level is LOW

then Ceiling Lights is Medium

If Time of Day is NOON and Ambient Light Level is LOW then

Ceiling Lights is Medium

If Time of Day is AFTERNOON and Ambient Light Level is

MEDIUM then Ceiling Lights is Medium

If Time of Day is EARLY NIGHT and Ambient Light Level is

MEDIUM then Ceiling Lights is High

If Time of Day is EVENING and Ambient Light Level is

MEDIUM then Ceiling Lights is High

If Time of Day is LATE NIGHT and Ambient Light Level is

MEDIUM then Ceiling Lights is High

If Time of Day is MORNING and Ambient Light Level is

MEDIUM then Ceiling Lights is Medium

If Time of Day is NOON and Ambient Light Level is MEDIUM

then Ceiling Lights is Low

If Time of Day is AFTERNOON and Ambient Light Level is

VERY HIGH then Ceiling Lights is Low

If Time of Day is EARLY NIGHT and Ambient Light Level is

VERY HIGH then Ceiling Lights is Medium

If Time of Day is EVENING and Ambient Light Level is VERY

HIGH then Ceiling Lights is Low

If Time of Day is LATE NIGHT and Ambient Light Level is

VERY HIGH then Ceiling Lights is Medium

If Time of Day is MORNING and Ambient Light Level is VERY

HIGH then Ceiling Lights is Very Low

If Time of Day is NOON and Ambient Light Level is VERY

HIGH then Ceiling Lights is Very Low

If Time of Day is AFTERNOON and Ambient Light Level is

VERY LOW then Ceiling Lights is High

If Time of Day is EARLY NIGHT and Ambient Light Level is

VERY LOW then Ceiling Lights is High

If Time of Day is EVENING and Ambient Light Level is VERY

LOW then Ceiling Lights is High

If Time of Day is LATE NIGHT and Ambient Light Level is

VERY LOW then Ceiling Lights is Very High

Table 3 continued

If Time of Day is MORNING and Ambient Light Level is VERY

LOW then Ceiling Lights is Medium

If Time of Day is NOON and Ambient Light Level is VERY LOW

then Ceiling Lights is High
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adaptation and also, the run times are not necessarily equal.

This is why; the processing times for both systems are reported

to be closer in value. However, it should be noted that both

systems start with an empty rule base and as the users interact

with the system, the rules are created and added to the rule base

according to the user preferences. Hence, it is expected to have

similar processing times as and when the number of rules is

closer or equal for both IT2 FLS and LGT2 FLS. It can also be

deduced from the charts in Fig. 20 that the FLSs might not

produce as many outputs depending on the changes in the

environment such as the light sensor values. As seen, the sys-

tems undergo the majority of the learning phase at the early

stages. Afterwards, the adaptation phase starts to dominate the

operation of the FLS. Still, the trends convey that the processing

times for an LGT2 FLS outperform those of an IT2 FLS.

4.5 Comparison of the ITS FLS and LGT2 FLS

on output accuracy and user satisfaction

After reducing the number of rules and the computational

overhead, we need to consider the accuracy of both fuzzy

systems together with the user satisfaction. For this pur-

pose, we have deployed both FLSs in the intelligent

apartment iSpace, University of Essex, UK.

For this experiment, we have applied two major phases

as for learning and adaptation. First of all, the systems need

to learn the user preferences. In other terms, FLSs need to

learn the rule base consisting of the user preferences

through interacting with the participants who use a graph-

ical user interface to communicate their choices (Fig. 10).

We have run the IT2 and LGT2 fuzzy systems separately to

allow the users to create a complete rule base consisting of

30 rules and 4 rules, successively for each FLS. The second

phase was employed for adaptation purposes. Both FLSs

were run and the users were questioned on which system

they preferred considering their comfort. By doing so, we

were able to investigate the user satisfaction during the

adaptation phase. In addition, we have performed compar-

ison on the recorded output values in order to find out the

performance accuracy of both FLSs.

We have conducted this experiment with three partici-

pants (Fig. 21). The rule bases collected from all
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Fig. 19 a Comparison of the rule base evaluation processing time

between IT2 and LGT2 fuzzy system for a 72-min run in adaptation

phase for user A. b Zoomed in spread of IT2 FLS processing times

within runtime
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Fig. 20 Rule base evaluation processing times for learning and early

adaptation phases of IT2 FLS and LGT2 FLS based on data collected

from a user H, b user T
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participants for both FLSs are displayed in Tables 3, 4, 5,

6. All of the participants have found the LGT2 FLS to be

more responsive and accurate in a lighting scenario.

Furthermore, the accuracy of the both FLSs is compared

and demonstrated in graphs (Figs. 22, 23) where we have

taken the unique output values generated by both FLSs in a

sorted manner for users H and T, respectively. As can be

seen, LGT2 FLS is able to deliver a wider and more

importantly a smoother range of ceiling light values. In

other words, the changes in the output values of LGT2 FLS

are much gentler and hence the LGT2 FLS provides more

comfortable reading experience for the user for this specific

application. In general, it can also be concluded that

Fig. 21 Participants (users H

and T) reading and assessing the

accuracy of both fuzzy systems

in the intelligent apartment

iSpace, University of Essex, UK

Table 5 Complete IT2 rule base for users H and T

Time of day Ambient light level Ceiling lights

User H User T

AFTERNOON HIGH Very Low Very Low

EARLY NIGHT HIGH Medium Very Low

EVENING HIGH Low Very Low

LATE NIGHT HIGH Low Very Low

MORNING HIGH Very Low Very Low

NOON HIGH Very Low Very Low

AFTERNOON LOW Low Very Low

EARLY NIGHT LOW Very Low Very Low

EVENING LOW Low Very Low

LATE NIGHT LOW Very Low Very Low

MORNING LOW Very Low Very Low

NOON LOW Very Low Very Low

AFTERNOON MEDIUM Very Low Very Low

EARLY NIGHT MEDIUM Very Low Very Low

EVENING MEDIUM Very Low Very Low

LATE NIGHT MEDIUM Very Low Very Low

MORNING MEDIUM Very Low Very Low

NOON MEDIUM Very Low Very Low

AFTERNOON VERY HIGH Low Very Low

EARLY NIGHT VERY HIGH Very Low Very Low

EVENING VERY HIGH Very Low Very Low

LATE NIGHT VERY HIGH Medium Very Low

MORNING VERY HIGH Very Low Very Low

NOON VERY HIGH Very Low Very Low

AFTERNOON VERY LOW Medium Medium

EARLY NIGHT VERY LOW Very Low Medium

EVENING VERY LOW Medium Medium

Table 5 continued

Time of day Ambient light level Ceiling lights

User H User T

LATE NIGHT VERY LOW Low Medium

MORNING VERY LOW High Low

NOON VERY LOW High Medium

Table 6 Complete LGT2 rule base for users H and T

Time of day Ambient light level Ceiling lights

User H User T

Early Bright Very Low Very Low

Late Bright Low Very Low

Early Dark High Medium

Late Dark Medium Medium
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interval type-2 FLSs are likely to show more intermittent

behavior regarding the output compared to a general type-2

FLS.

5 Conclusions and future work

It is a very challenging task to bridge the gap between

the computer processes and the human’s brain reasoning.

Today, one may consider the proximity of the human

intelligence to today’s machine intelligence to be still far

from reach. However, a recently established research area

in the field of fuzzy logic, which is the paradigm of

computing with words (CWW), encourages the

researchers to consider the human mind as a role model.

In this study, we have detailed the problem of human

intelligence from a perspective of CWW paradigm and

proposed a novel way to realistically interpret the human

perceptions in machine processes. We have taken the

human experience into account in order to achieve a

more natural representation of human perception, which

is one of the key elements to mimic the human mind.

Also, we have detailed how to model the human per-

ceptual judgment using LGT2 fuzzy sets and the back-

wards thinking approach that has been inspired from

exhaustive inter-disciplinary literature review mainly on

psycholinguistics and neuroscience. Hence, we have

demonstrated the benefits of LGT2 fuzzy sets in a real-

world application. We have shown that we are able to

not only quantify the third dimension in words, therefore

serve the purpose of CWW, but also measure the quan-

tification of the third dimension to indicate how profound

the human perceptual judgments are.

Furthermore, we have compared the performance of two

FLSs employing IT2 and LGT2 fuzzy sets. By using LGT2

FLS, we were able to significantly reduce the number of

Fig. 23 Unique output values for ceiling lights based on user T learning and adaptation data for a IT2 FLS, b LGT2 FLS

Fig. 22 Unique output values for ceiling lights based on user H learning and adaptation data for a IT2 FLS, b LGT2 FLS
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rules. Looking at the rule base evaluation processing times,

it can be deduced that an LGT2 FLS can be more

responsive and produce a much faster response despite the

fact that general type-2 fuzzy systems are computationally

more complex. Also, by looking at the generated outputs

from both systems for different users, it can be concluded

that LGT2 FLSs are likely to show more smooth behavior

regarding the output compared to an interval type-2 FLS.

And finally, the users have assessed both FLSs without

being informed about the system specifications and agreed

that LGT2 FLS provides a much more comfortable reading

experience.

As part of future research, we will continue exploring

the different aspects of human reasoning and will extend on

the work involving the other modules of the proposed

CWW framework which have not been referred to in this

paper.
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