
METHODOLOGIES AND APPLICATION

A comparison of meta-heuristic search for interactive software
design

C. L. Simons • J. E. Smith

Published online: 3 April 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Advances in processing capacity, coupled with

the desire to tackle problems where a human subjective

judgment plays an important role in determining the value

of a proposed solution, has led to a dramatic rise in the

number of applications of Interactive Artificial Intelli-

gence. Of particular note is the coupling of meta-heuristic

search engines with user-provided evaluation and rating of

solutions, usually in the form of Interactive Evolutionary

Algorithms (IEAs). These have a well-documented history

of successes, but arguably the preponderance of IEAs

stems from this history, rather than as a conscious design

choice of meta-heuristic based on the characteristics of the

problem at hand. This paper sets out to examine the basis

for that assumption, taking as a case study the domain of

interactive software design. We consider a range of factors

that should affect the design choice including ease of use,

scalability, and of course, performance, i.e. that ability to

generate good solutions within the limited number of

evaluations available in interactive work before humans

lose focus. We then evaluate three methods, namely greedy

local search, an evolutionary algorithm and ant colony

optimization (ACO), with a variety of representations for

candidate solutions. Results show that after suitable

parameter tuning, ACO is highly effective within interac-

tive search and out-performs evolutionary algorithms with

respect to increasing numbers of attributes and methods in

the software design problem. However, when larger num-

bers of classes are present in the software design, an evo-

lutionary algorithm using a naı̈ve grouping integer-based

representation appears more scalable.

Keywords Interactive search �Meta-heuristics � Software

design � Search-based software engineering

1 Introduction

The application of automated search to a range of software

development activities has attracted significant research

attention. Indeed, Search-Based Software Engineering

(SBSE) (Harman 2007, 2011) is now a well-established

discipline. SBSE historically focused on software testing

where solutions can be represented fairly naturally and

metrics such as structural and functional test coverage can

be automatically calculated to serve as quality functions.

However, in the upstream stages of the software design,

such as the object-oriented modeling of design classes, the

choice of evaluation functions is much less well defined.

To give one example, Bowman et al. (2010) cite 6 different

possible metrics relating to the structural integrity of the

design with respect to design coupling and cohesion. Here

the precise balance of factors affecting the subjective

judgments of the human software engineer is less well

understood—hence the oft-heard references to the ‘‘art’’ of

software design. Indeed, this is precisely the sort of sce-

nario in which Interactive Evolutionary Algorithms (IEAs)

have been shown to perform well [see e.g. the survey in

Takagi (2001), and more recent work such as Takagi

and Ohsaki (2007); Caleb-Solly and Smith (2007);

Brintrup et al. (2008); Pauplin et al. (2010)]. Our earlier

work demonstrates that we can indeed successfully use

Communicated by G. Acampora.

C. L. Simons (&) � J. E. Smith

Department of Computer Science and Creative Technologies,

University of the West of England, Bristol BS16 1QY, UK

e-mail: chris.simons@uwe.ac.uk

J. E. Smith

e-mail: james.smith@uwe.ac.uk

123

Soft Comput (2013) 17:2147–2162

DOI 10.1007/s00500-013-1039-1

meta-heuristics to provide computational support for an

interactive software design process, evolving object-ori-

ented class models that met designers’ criteria—both sub-

jective (Simons et al. 2010) and aesthetic (Simons and

Parmee 2012).

As with most papers in the field, such interactive design

search uses an Evolutionary Algorithm (EA) (Eiben and

Smith 2003) because of their long history of successful

applications. However, as the name of the field of SBSE

suggests, potentially any search algorithm could be used,

although in practice research effort has also tended to

concentrate on meta-heuristics, in particular EAs. It is

appropriate that we challenge adoption of a technology

based on history, and examine whether other search

methods might be better suited to some, if not all, inter-

active design search tasks. Indeed the same argument has

been made for SBSE in general: ‘‘We must be wary of the

unquestioning adoption of evolutionary algorithms merely

because they are popular and widely applicable or because,

historically, other researchers have adopted them for SBSE

problems; none of these are scientific motivations for

adoption’’ (Harman 2011).

One major contribution of this paper is to identify a

number of factors that we believe are crucial to making an

informed choice for an underlying search engine for

interactive search (Sect. 4). Then, to make the comparison

concrete, we describe the experimental methodology fol-

lowed and three case studies of early lifecycle software

design tasks (Sect. 5). Results of comparing the different

algorithms according to the factors identified are presented

in Sect. 6, and finally in Sect. 7, we conclude by making

some recommendations for possible users of interactive

search tools.

2 Background

2.1 Search-based software engineering

Search-based software engineering is an approach that

applies meta-heuristic search techniques such as simulated

annealing, tabu search and genetic algorithms to address

software engineering (SE) problems. It is motivated by the

observation that many aspects of the SE process can be

formulated as optimization problems, and as such are

amenable to automated search. However, due to the size

and computational complexity of such SE problems, exact

optimization techniques such as linear programming or

dynamic programming are impractical. In most cases the

search suffers from combinatorial explosion, and the ‘‘fit-

ness’’ landscapes are thought to exhibit discontinuities and

multiple optima. Because of this, researchers and practi-

tioners alike have widely used meta-heuristic search

techniques such as EAs not only to gain insight into SE

problems but also to arrive at near optimal or ‘good-

enough’ software solutions.

Early attempts to apply optimization to SE problems

harnessed EAs to evolve software sequences of test cases

based on executable program branch coverage as fitness

functions (e.g. Xanthakis et al. 1992; Smith and Fogarty

1996; Jones et al. 1996) and microprocessor design veri-

fication tests (Smith et al. 1997). Later, the term ‘‘Search

Based Software Engineering’’ (SBSE) was coined around

the turn of the millennium by Harman and Jones (2001). In

the last decade, the number of applications of SBSE has

increased greatly and reports can be found across the

spectrum of the SE lifecycle. Examples include require-

ments analysis and scheduling (Ren et al. 2011), design

tools and techniques (Bowman et al. 2010; Simons et al.

2010), software testing (McMinn 2004), automated bug

fixing (Weimer et al. 2010), and software maintenance

(O’Keeffe and Cinneide 2008). Harman (2011) provides a

useful overview, while a comprehensive repository of

SBSE publications is maintained by Zhang (2012).

2.2 Object-oriented software design

The first stage in software design is to identify and evaluate

the concepts, rules and information relevant to the design

problem domain under investigation. Using the object-

oriented paradigm, these elements of the design problem

domain are represented using the ‘class’ construct, wherein

individual instances of classes are known as objects. These

classes and objects are the key ‘building blocks’ of a

software system and so have crucial relevance to sub-

sequent downstream software implementation and testing.

Various manual approaches to the identification and eval-

uation of appropriate classes have been proposed, such as

the use of abstraction for classical categorization (Booch

1994) and class responsibility assignment (Wirfs-Brock

and McKean 2003). However, this remains a cognitively

demanding and challenging task for the software engineer

to perform, not least because of the many competing

requirements of a design problem.

The Unified Modeling Language (UML) (Booch et al.

1999; Object Management Group 2012) is the standard

modeling language of the object-oriented paradigm, and is

widely used by software designers. According to Booch

et al. ‘‘the UML is a graphical language for visualizing,

specifying, constructing and documenting the artifacts of a

software-intensive system’’. Using the UML, classes are

placeholders or groupings of attributes (i.e. data that need

to be stored, computed and accessed), and methods (i.e.

units of execution by which objects communicate with

other objects, human users, or programs, etc.). Each class,

attribute and method is a discrete model element. Thus

2148 C. L. Simons, J. E. Smith

123

early lifecycle software design involves identifying attri-

butes and methods from the design problem, and then

finding an appropriate partitioning of these attributes and

methods into classes. We will henceforth refer collectively

to methods and attributes as ‘‘elements’’, and candidate

partitions into classes as ‘‘designs’’. To ensure that each

class is meaningful as a relevant concept to human

designers, we impose the constraint that each class contains

at least one attribute and at least one method. A small class

diagram showing UML notation of a design with three

classes is shown in Fig. 1. Each class thus denotes a con-

cept or abstraction relevant to the design problem domain.

Where appropriate, there exist relationships (or couples)

between classes where one class depends upon another to

fulfill its capabilities; this is denoted by solid arrows with

an open arrow-head indicating the direction of couple. It is

important to note that there is no ordering among the

partitions (classes) of the notation.

2.3 Formulating class modeling as a search problem

In formulating software design as a search problem, the

class construct can be represented in a number of ways (see

Sect. 3). Common to all of these is that to enable efficient

search, it is necessary to assign a quality measure to

evaluate candidate solutions. A large number of quantita-

tive metrics have been identified, many referring in dif-

ferent ways to the structural integrity of a design with

respect to ‘‘coupling’’ (the extent to which one class

depends on others to fulfill its capabilities) or ‘‘cohesion’’

(the extent to which a class has clear purpose) e.g. Harrison

et al. (1998), Briand et al. (1999), Al Dallal and Briand

(2010). It is generally held by software engineers that a

good software design should exhibit low coupling and high

cohesion, but these are potentially competing measures.

Indeed, this is a typical example of how many design

decisions can be balancing acts, trading-off one quality

measure against another. This has led some authors to use

multi-objective, quantitative approaches to search e.g.

Bowman et al. (2010), Harman and Tratt (2007). However,

our work has taken a different approach: rather than

attempt to define coupling/cohesion metrics which capture

what a user is looking for, and then explicitly manage the

quantitative multi-objective trade-off, we have used a

multi-objective IEA where the designer is responsible for

assigning qualitative fitness to a candidate solution

(Simons et al. 2010). To relieve the burden of interaction

fatigue on users, we have also investigated the use of a

surrogate fitness function that learns a model of qualitative

‘‘elegance’’ from the users’ decisions (Simons 2011;

Simons and Parmee 2012), so that not all solutions need be

manually evaluated.

2.4 Interactive meta-heuristic search

Interactive EAs were popularized in Dawkins’ ‘biomorphs’

program (1990), but build on a well-established field in

Artificial Intelligence. They have been successfully applied

in a wide range of applications to facilitate user-personal-

ization without the need for time consuming explicit

knowledge-acquisition process (Takagi 2001). Typically

the user is presented with a number of solutions, and rates

them according to the extent to which they match the user’s

desiderata. Thus this process implicitly captures the user’s

multi-objective decision making processes. Well known

early applications include face-recognition (Caldwell and

Johnston 1991), the evolution of computer graphics (Sims

1991a, b), and hearing aids (Ohsaki et al. 1998). High-

profile recent successes include tuning Cochlear Implants

(Legrand et al. 2007).

A common feature of IEAs is their reliance on human

guidance and judgment to direct and control the search,

which creates both potential weaknesses and strengths. On

one hand, human assessment tends to have a component of

subjectivity and non-linearity of focus over time. Thus

including a human in-the-loop introduces a need for rapid

convergence to prevent the interactive process from

becoming tedious for the human participant. At the same

time the ability to maneuver the search interactively can

potentially be exploited as a powerful strategy for adapting

an otherwise naive EA.

There have been a number of studies addressing the

issues related to minimizing fatigue both, physical and

psychological, that can result from prolonged interaction

times and the possible stress of the evaluation process.

Discretizing continuous values to using five or seven levels

was shown to facilitate decision making when allocating

fitness values, without the quantization noise significantly

compromising convergence (Ohsaki et al. 1998), and this

Class1

Attribute1
Attribute2
Attribute3

Method1()

Class2

Attribute4

Method2()
Method3()

Class3

Attribute5
Attribute6

Method4()
Method5()
Method6()

Fig. 1 Small example class design in UML notation

A comparison of meta-heuristic search for interactive software design 2149

123

limit on capacity for processing information has been

comprehensively discussed in Miller (1956) where he

suggests organizing the information into several dimen-

sions and successively into a sequence of ‘‘chunks’’ could

help stretch this limit on bandwidth.

Alternative ways of reducing time taken to discover

good solutions is by considering larger population sizes and

using a screening mechanism whereby only a few indi-

viduals showing good fitness are displayed to the user.

Several methods have been proposed to approximate fitness

by, for example, clustering individuals (Lee and Cho 1999;

Boudjeloud and Poulet 2005) or using multiple fuzzy state-

value functions to approximate the trajectory of human

scoring (Kubota et al. 2006). An interactive concept-based

search using a multi-objective evolutionary algorithm was

proposed by Avigad et al. (2005) which combined a model-

based fitness of sub-concept solutions (using a sorting and

ranking procedure) with human evaluation. The efficacy of

combining qualitative (user-provided) and quantitative

(computer-generated) objectives was also demonstrated in

Brintrup et al. (2008). Within SBSE, design elegance has

been exploited as a model and surrogate fitness function

that then is dynamically combined with quantitative

objectives to produce elegant software designs (Simons and

Parmee 2012).

Surprisingly, the literature does not seem to contain

many examples of the use of alternatives to EAs as the

underlying heuristic for interactive search. Rather,

approaches rely on using either a meta-heuristic with a

defined quality function and periodically using user inter-

action to guide search by reformulating a fitness function or

preference weighting, or simply to change the search

characteristics via changes to the algorithm parameters.

Examples of the former include multi-objective Iterated

Local Search (Geiger 2008) and Tabu Search (Kopfer and

Schonberger 2002) and of the latter include Ant Colony

Optimization (ACO) (Uğur and Aydin 2009). Interestingly,

however, there is one report of interactive search with

Particle Swarm Optimization used to design temperature

profiles for a batch beer fermenter (Madar et al. 2005).

In a further interactive approach, a user-centric memetic

algorithm has been proposed by Badillo et al. (2013) who

report that interactive memetic algorithms are capable of

taking advantage of good quality human feedback, not merely

as a carrier of subjective information, but also as a source of

problem-aware perturbations that can drive/focus the algo-

rithm to specific regions of the search space. In other words, an

interactive memetic algorithm can behave in a proactive

manner i.e. it attempts to anticipate the user’s behavior and

then exhibit some degree of creativity. Memetic algorithms

have also been applied to adaptive agent-based machine

learning (Acampora et al. 2011) and for solving the ontology

alignment problem (Acampora et al. 2012).

3 Choice of meta-heuristic search algorithms

There are of course many meta-heuristics in the literature,

and it would not be feasible to compare all within the space

of a paper. Our selection of meta-heuristics for consider-

ation has been driven by the following considerations.

Firstly, the ultimate setting is in the context of an

interactive search—therefore rapid identification of prom-

ising solutions is important. The many conflicting desid-

erata and subjective choices make it unlikely that users will

want to spend time interacting with a system that is ‘‘fine-

tuning’’, preferring to do this by hand. It also means that

population-based approaches are more likely to be suited to

the multi-objective nature. For these interlinked reasons,

although we consider a simple Local Search algorithm for

the sake of completeness, we do not consider more com-

plex approaches, such as Tabu Search and Simulated

Annealing.

Secondly, viewing class-modelling as a partitioning task

creates a combinatorial search space, ruling out some

algorithms which are primarily designed for continuous

domains or rely explicitly on computing fitness landscape

gradients.

Thirdly, previous work by ourselves and others (Simons

and Parmee 2010; Bowman et al. 2010) suggests that the

software design search space is discrete, scattered and

highly multi-modal. EAs have been used with some suc-

cess for general ‘‘grouping’’ problems (Falkenauer 1998;

Tucker et al. 2006), but there is still considerable debate

over the best choice of representation to avoid massive

redundancy in the phenotype/genotype mapping, and this

remains a major unsolved problem (Lewis and Pullin

2011). Inherently the problem stems from the fact that, for

example, if two elements i and j should be co-located

within a class, then not only is the choice of label for that

class irrelevant, but also adapting an EA to account for this

representational constraint is non-trivial and at best creates

a highly specialized algorithm. Given that the evolving

population represents a probability distribution function of

the assignment of elements to classes, one possibility might

be to use an Estimation of Distribution Algorithm (EDA)

(Lozano et al. 2006). For a graphical model that correctly

captured the grouping above, then trivially the probabilistic

model could evolve to look like P(i = k|j = l) = dkl,

where dij = 1 if i = j and 0 elsewhere. However, currently

EDAs, like other probabilistic model builders, use greedy

search to construct models, so the search will at best be as

effective as a greedy local search (GLC) algorithm in the

space of partitions, hence we consider EAs, but not EDAs.

However, Ant Colony Algorithms (ACOs) (Dorigo and

Stutzle 2004) have been used very successfully for prob-

lems with an inherent grouping component such as the

Vehicle Routing Problem (VRP) (Toth and Vigo 2001)

2150 C. L. Simons, J. E. Smith

123

since the pheromone trail (broadly equivalent to the prob-

abilistic graphical model in an EDA) can effectively con-

tain a set of partial paths to be selected and traversed by

ants without need for class labels, hence avoiding the

whole issue of redundancy.

The search capability can be further enhanced if search

specific generative heuristics can be exploited, and the

population based nature of ACOs can be exploited for

multi-objective problems (Lopez-Ibanez and Stutzle 2012;

Cheng et al. 2012).

3.1 Representations

Two representations are used in this paper; both incorpo-

rate the object-oriented software design elements (i.e.

methods, attributes) described in the previous section. Let

c denote the maximum number of classes in the design

solution, and d the number of design elements. In the first

representation, which we shall call ‘‘naı̈ve grouping’’ (NG),

a candidate solution g is represented as a sequence of

d integers from the set {1,…,c}. Each integer in the

sequence represents an individual software design element,

so an assignment gi = j is interpreted as putting element

i into class j. The search space is of size cd, but there is

considerable redundancy in the representation since the

specific label applied to a class is irrelevant, so there are d!

equivalent representations of each design.

The second representation, which we shall call

‘‘Extended Permutation’’ (XP), is inspired by the Travel-

ling Salesman Problem (TSP) and Vehicle Routing Prob-

lem (VRP) (Toth and Vigo 2001). Candidate solutions are

represented as permutations of a set of (d ? c-1) ele-

ments, whereas above elements {1,…,d} represent the

attributes and classes, and the final c-1 elements represent

‘‘end of class’’ markers. These are interpreted as akin to a

‘‘return to depot’’ in a VRP instance. Let i, j and k denote

the positions in the permutation where the first three end-

of-class markers occur, so that 0 \ i \ j \ k \ d ? c-1,

and gi, gj, gk [d, where gi denotes the value of the ith

position in the permutation representing solution g. The

first class in the candidate design then contains the ele-

ments {g1,…,gi - 1}, the second the elements {gi ? 1,…,

gj - 1}, the third {gj ? 1,…,gk - 1}, and so on.

This representation shares the redundancy of the NG,

and adds to it by imposing a spurious order within each

class that has no equivalent in the design space.

3.2 Fitness measures

To reflect the interactive nature of the meta-heuristic

search, a combination of fitness measures is used. The

measure of the structural integrity chosen is inspired by the

‘‘Coupling Between Objects’’ (CBO) measure (Harrison

et al. 1998). Each candidate solution is decoded into a set

of classes, and the CBO is calculated as the proportion of

all uses of attributes by methods that occur across class

boundaries. This is expressed as a maximization function

fCBO = (1.0 - CBO) 9 100, so that fCBO = 100.0 for a

completely de-coupled design (all uses occur inside clas-

ses) and 0.0 for a completely coupled design.

However, it is also necessary to reflect the interaction of

the designer within search. We have previously found that

the elegance of the software design has proven to be a

useful interactive measure (Simons and Parmee 2012), and

proposed a number of quantitative elegance metrics relat-

ing to the evenness of distribution of attributes and meth-

ods among classes within the design. Building on this, two

elegance metrics have been chosen as surrogates for human

qualitative elegance evaluation, namely:

• Numbers Among Classes (NAC) the standard deviation

of the numbers of attributes and methods among the

classes of a design. This was truncated to the range

[0,R] and a fitness to be maximised calculated as

denoted fNAC. = 100 * (R - NAC)/R. The higher this

value, the more symmetrical the appearance of attri-

butes and methods among the classes in the design.

• Attribute to Method Ratio (ATMR) the standard devi-

ation of the ratio of attributes to methods for each of the

classes in a design. A fitness fATMR was calculated in the

same way as above. The higher this value, the more

even and symmetrical the appearance of this ratio

across individual classes of the software design.

3.3 Evolutionary algorithm

The EA chosen for comparison uses deterministic binary

tournaments for parent selection and a generational

replacement model ensures the search is comparable to ACO.

Random uniform mutation with either One-Point or Uniform

crossover is applied to the NG representation. For the XP

representation, we used Order-based crossover (Davis 1991)

and ‘‘Edge Recombination’’ (Mathias and Whitley 1992).

The former preserves the relative order of elements (as

per scheduling type problems) and the latter preserves

adjacency information (as per TSP or VRP). These are

standard operators from the literature. Full descriptions

would take excessive space in this paper, but may be found

in the freely available slides for genetic algorithms in the

website supporting Eiben and Smith (2003).

We have previously shown that for many permutation-

based problems the choice of mutation operator depends on

both the problem instance and the state of the search (e.g.

Krasnogor and Smith 2001; Serpell and Smith 2010 for

adjacency-, and Smith et al. 2009 for order-based prob-

lems). Therefore, fixed mutation rates for the EA are

A comparison of meta-heuristic search for interactive software design 2151

123

interpreted as either the locus-wise probability of randomly

resetting an allele value (NG) or as the probability of

applying a single mutation event of type ‘Swap’, ‘Insert’ or

‘Invert’ chosen at random (XP). In both cases we also

examined the utility of self-adaptation to provide robust

optimization performance, and reduce the number of

parameters required. Following the schemes in (Smith

2001; Stone and Smith 2002; Serpell and Smith 2010), a

single extra gene is used to encode for one of a set of

possible mutation rates. During mutation, first the encoded

value is randomly reset with a fixed probability (the strat-

egy_adaptation_rate), then a mutation event occurs in each

locus with the encoded probability. This algorithm is

described in pseudo-code in Fig. 2.

Depending on the representation chosen Recombine()

calls one of the crossover operators listed above. For fixed

mutation probabilities the parameter strategy_adapta-

tion_rate is set to zero. For the XP representation the

function Mutation() calls one of Swap, Insert or Insert

mutation, chosen at random; for NG it calls random uni-

form mutation.

3.4 Ant colony optimization

Ant colony optimizations have been used successfully for

permutation-type problems (Toth and Vigo 2001; Dorigo

et al. 2006) where the pheromone trails map naturally onto

path-based problems such as the TSP and VRP. Therefore,

it was natural to use the XP representation described above.

The ACO used in this paper is inspired by Dorigo and

Stutzle (2004) and is described in pseudo-code in Fig. 3.

In the Initialize_Pheromone_Trails component, all trail

pheromone values are initially set to 1.0. In subsequent

iterations of the ACOMetaheuristic, pheromone values are

not constrained, other than to ensure they remain C0.0. In

the Construct_Ant_Solutions component, each ant creates a

solution path by visiting elements (attributes, methods or

‘‘end of class’’) to traverse arcs (i, j) of the graph in turn,

choosing each element probabilistically according to the

value of pheromone trails sij (laid down by previous ants)

whose ‘attractiveness’ is controlled by raising it to the

power of an attractiveness parameter, a. In the De-

amon_Actions component, each solution path created is

evaluated for fitness i.e. fCBO, fNAC and fATMR. Lastly, in the

Update_Pheromones component, pheromone trail values

are firstly evaporated

sij ð1� qÞsij

where qe (0, 1] is a parameter. After pheromone evapora-

tion has been applied to all arcs, an amount of pheromone

is added to the arcs in proportion to previously determined

fitness values. The amount of pheromone is controlled by

an update parameter l, to which the fitness value is raised

prior to update.

3.5 Greedy local search

In keeping with the focus on re-using of-the-shelf com-

ponents, GLS is implemented as (1 ? 1) version of the EA

code with mutation replaced by systematic (rather than

randomized) search of the NG values or the 2-opt neigh-

borhood for the XP representation.

Fig. 2 EA meta-heuristic in

pseudo-code

2152 C. L. Simons, J. E. Smith

123

4 Factors affecting choice of search engine

We identify a number of factors that we believe should be

considered when choosing the meta-heuristic as part of

creating an interactive tool. Some of these factors lead

themselves to be easily quantified, other less so. Without

wishing to second guess the uses to which interactive

optimization can be turned, we do not attempt to rank these

according to importance. Rather, we present them using

examples of software design problems to illustrate the

issues involved.

4.1 Scalability

When we consider scalability, we mean not just how well

do the algorithms scale to solve larger problems, but how

well can they assist the human in the process of designing

large software solutions. Typically this process will involve

partitioning the problem in some way to reduce its

dimensionality. Key factors therefore include how well the

algorithms support the user in first identifying good partial

solutions, and then ‘‘freezing’’ those partial solutions.

Clearly this depends on the complexity of the mapping

from candidate solution (as presented to the user for

evaluation) back to representation (as used by the search

engine). For a software design, it is fairly simple to imagine

an interactive box whereby a user can select a class to

‘‘freeze’’. For an EA, or Local Search based method, this

requires some method for permanently recording the

information that certain genes should not be affected by

mutation/perturbation and should be co-transmitted under

recombination. However, some meta-heuristics explicitly

perform this partitioning process and so intrinsically record

this information. Thus this ‘‘freezing’’ process can be

instantiated by simply ‘‘fixing’’ some elements of the

graphical model in an EDA or setting the relevant phero-

mone levels to an arbitrary high value in an ACO.

The other aspect of scalability for interactive meta-

heuristic search is of course how well a given algorithm

scales without the freezing process. Given the limits on

human attention, this relates to the ability to discover high

quality solutions in relatively few evaluations as the

dimensionality of the problem increases. It is probably

pointless to attempt to draw any firm conclusions about the

relative scalability of different methods, as this is of course

entirely problem and parameter dependent, although recent

theoretical results (Birattari et al. 2007) suggest how to

avoid poor scalability in ACO which was previously

thought to be a problem. However, the need to make rapid

advances in fitness rather than evaluating randomly created

solutions points to either the use of local search, or to small

populations in EAs or ACOs. EAs are known to work well

with small populations (e.g. CMA-ES for continuous

optimization), this is less well examined for ACOs. One

major factor that should be considered is the number of

human interactions required, and the availability (or

otherwise) of surrogate fitness function that can reduce this.

4.2 Robustness

Meta-heuristic robustness relates to a number of factors

e.g.

• Appropriateness of representation how sensitive and

appropriate is the representation? For example, might a

permutation representation cause problems of

degeneracy?

• Support for search how well do the algorithms support

for single- and multi-objective search?

• Parameter choice is algorithm performance effective

across a range of parameters?

• Parameter tuning/self-adaptation can parameters be

automatically tuned and/or controlled?

4.3 ‘Off-the-shelf’ availability

A number of frameworks and toolkits for implementing

EAs are readily and freely available, in all of the major

programming languages and environments. Most of these

can be adapted to run with a parent population of size one

in order to implement local search. Well known toolkits

such as Evolving Objects (Keijzer et al. 2002) and ECJ

(Luke et al. 2012) implement a range of different data types

and provide sufficient different mutation and recombina-

tion operators to give the user considerable flexibility in

their choice of problem representation. Similarly, a number

of implementations of the ACO meta-heuristics for opti-

mization (rather than data mining) are available in C and

C?? programming languages via the ACO website

(2012). Although a range of different algorithm variants are

supported and versions for different problems are available,

all assume the use of a permutation representation for

Fig. 3 ACO meta-heuristic in pseudo-code

A comparison of meta-heuristic search for interactive software design 2153

123

solutions. This restriction of the available ACO imple-

mentations, and the fact that most papers in this field deal

with a path-type representation, would appear to rule out

the straightforward use of ACOs for some problems. After

consideration, all of the meta-heuristic approaches con-

sidered in this paper were implemented by the authors

taking specifications from the literature. Assuming a rea-

sonable knowledge of software engineering, the available

implementations could be adapted to other problems (for

example the heuristic rules used to initialize and augment

the pheromone trails) but the level of documentation and

support is not as comprehensive as might be expected from

the relative maturity and popularity of the field—which

should not be read to reflect the scientific merit.

4.4 Constraint handling

A crucial factor in the choice of meta-heuristic is the ease

(or difficulty) with which the algorithm can handle any

domain-specific constraints. For the software design prob-

lem, there is one crucial constraint as described earlier:

each class must contain at least one method and one

attribute. This constraint has a significant impact on the

grouping of elements (attributes and methods) to classes,

and the ease (or difficulty) with which the meta-heuristic

copes with this is a key factor in its choice.

5 Methodology

5.1 Strategy

A key factor in the comparison of the meta-heuristic

algorithms is the availability of plausible and representa-

tive test design problems for early lifecycle software

design. Unfortunately, benchmark software design prob-

lems do not appear readily in either the research literature

or industrial repositories. Therefore, three real-life software

design problems have been selected for use. These have

been chosen to provide an appropriate range of problem

domain, and scale. While it is not possible to precisely

assess how representative these might be of the software

design field as a whole, both the second and third problems

have been drawn from fully enterprise scale industrial

software developments, and are decidedly non-trivial in

size and complexity. Details of the three design problems

are given in the following section, and full problem spec-

ifications are available on line (Simons 2012a, b, c).

To permit large scale comparisons we took a two-stage

approach. Firstly, to establish the sensitivity of a meta-

heuristic’s performance to parameter values, the number of

constraints, and how they are handled, we focussed on

coupling between objects, optimizing fCBO and comparing

with manually produced designs. In this stage we used all

combinations of the parameter values in Table 1.

Secondly, using the ‘‘best’’ parameter sets established

for each method, we simulated multi-objective interactive

search by introducing the surrogate elegance metrics

into a weighted-sum approach and optimising: fMO = a.

fCBO ? b. fNAC ? c. fATMR. Empirical calibration revealed

that with this linear model a weight of a = 0.8 was

required for CBO, emphasising the importance of design

structural integrity. To reflect the inherently noisy nature of

human evaluation, we then chose b uniformly from the

interval (0, 1-a) and set c = 1.0-a-b.

All runs use a fixed number of classes—the same as in

the manual design solution to provide comparability. To

ensure repeatability of results, we made 50 runs for each

test, i.e., each combination of algorithm, problem, encod-

ing, and parameter values. Each run is allowed to continue

until either one million solutions were evaluated, or a

software design with fitness 100.0 was discovered. For

each run we recorded the values of fCBO, fNAC, and fATMR

for best solution found and the number of solutions eval-

uated before this best solution is first discovered. These are

denoted MBF and AES, respectively.

Wherever results are analyzed by comparison of means,

the ‘‘General Linear Model’’ of IBM SPSS Statistics tool

version 19 is used with algorithm choice, population size

and design problems as fixed factors, then applying

ANOVA followed by post hoc testing using Tukey’s

‘‘Honestly Significantly Different’’ test. In what follows,

statements that effects are significant or not, should be read

to mean that they are statistically significant with over

95 % confidence according to these tests.

5.2 Software design problems

Three software design problem domains are used as vehi-

cles for investigation. The first is a generalized abstraction

of a Cinema Booking System (CBS), which addresses, for

example, making an advance booking for a showing of a

film at a cinema, and payment for tickets on attending the

cinema auditorium. A specification of the use cases of CBS

design problem is available at Simons (2012a). The second

problem is an extension to a student administration system

to record and manage outcomes relating to the Graduate

Development Program (GDP). This system was created by

the in-house information systems department at the Uni-

versity of the West of England, UK in 2008. A specifica-

tion of the use cases used in the development is available

from Simons (2012b). The third software design problem

domain is based on an industrial case study—select cruises

(SC)—relating to a cruise company selling nautical

adventure holidays. The resulting computerized system

handles quotation requests, cruise reservations, payment

2154 C. L. Simons, J. E. Smith

123

and confirmation via paper letter mailing. A specification

of the use cases of Select Cruises design problem is

available at Simons (2012c). Manual designs created by the

appropriate software engineers for the three problems are

available at Simons (2012d). Numbers of attributes,

methods, classes, uses and fCBO, fNAC and fATMR (R = 6.0)

for the manual designs are given in Table 2.

6 Single objective results

We begin this section with an assessment of the sensitivity

of the two population based methods to their parameters. In

general constraints can be handled directly (i.e. via repair

mechanisms, specialized operators, or decoders) or indi-

rectly via penalty functions (Eiben and Smith 2003). The

former can be more efficient, but require problem specific

alteration of the algorithms [ibid]. Therefore initially con-

straints were handled indirectly, by setting the fitness to

zero for all solutions containing classes that had zero

methods and/or zero attributes. This is followed by an

analysis of a relatively minor change to each method so

that new candidate solutions were regenerated (by fol-

lowing pheromone trials or via recombination and muta-

tion) if they contained invalid classes—effectively a very

crude direct method. We end by directly comparing the

results from the ‘‘best’’ parameter sets of three meta-

heuristics.

6.1 Greedy local search

Table 3 shows the results obtained with GLS under the two

encodings. For all problems with XP, and for the SC

problem with NG representation, some runs failed to find

valid solutions, and the second column of fitnesses, and the

AES column reflect only those runs funding valid solu-

tions. Whether considering all, or only successful runs, the

quality of solutions found by GLS algorithm is significantly

higher on the NG landscape than on the XP one. There is

also a far higher variance in the quality of local optima

found on the XP landscape. GLS finds solutions with lower

coupling than the manual design—but this perhaps merely

emphasis the multi-objective nature of human design. It is

worth commenting that the comparative values of AES on

the two landscapes: values are typically an order of mag-

nitude longer on NG than XP landscape, although of course

this does not necessarily mean that good quality solutions

are not discovered early on the way. We can understand

this by noting that although both representations contain a

certain amount of redundancy, there is considerably more

for XP, so there are far more local optima in the XP

landscape. Looking at the progress of sample runs, the

number of solutions evaluated to reach given fitness values

for XP and NG are 142/182 (fitness 50, CBS) and 480/839

(fitness 75 CBS), 491/491 (fitness 50, GDP) and 861/853

(fitness 75, GDP). These figures suggest that there is not a

large difference in the initial rate of progress, but the GLS-

Table 1 Search parameters for

meta-heuristic algorithms
Parameter Values trialled

Stochastic local search Perturbation method NG: allele-wise mutation

XP: random one of insert/invert/swap mutation

Evolutionary algorithm Selection method Tournaments to select parents, size 2 and 5

Generational replacement with elitism

Crossover probability 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

Crossover operator NG: uniform, one point

XP: order-based, edge recombination

Mutation probability Self-adaptive: 1/*(0.001, 0.002, 0.01, 0.02, 0.01,

0.2, 1, 2, 5, 10)

Fixed: 0.001, 0.01, 0.05, 0.1, 0.25, 0.5

Strategy adaptation rate 0 (fixed)

0.1 (self adaptive)

Population size 25, 100

Ant colony optimisation Trail attractiveness (a) 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

Pheromone update (l) 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5

Pheromone decay (q) 0.0, 0.01, 0.1, 0.25, 0.5, 1.0

Ant colony size 25, 100

Table 2 Values of measures of manual software designs

Atts Meths Classes Uses CBO fCBO fNAC fATMR

CBS 15 16 5 39 0.154 84.6 86.31 96.69

GDP 43 12 5 121 0.297 70.3 56.80 56.38

SC 52 30 16 126 0.452 54.8 74.67 69.20

A comparison of meta-heuristic search for interactive software design 2155

123

NG subsequently explores for longer, finding higher qual-

ity solutions. On the SC problem the sample run of GLS-

NG evaluated 372,006 solutions before finding a valid one

and then a further 2,674 before finding one with fitness 50,

i.e., comparable to the manual design. This suggests that as

the number of classes increasing, the resulting constraints

become a major factor in search effectiveness.

Overall, the high failure rates and variability of end

results suggests that GLS-XP is unsuited to interactive

search. The failure of some GLS-NG runs on SC shows

that a specialized initialization operator is needed, and the

subsequent long time to find a human-comparable design

on SC, suggests that even if one is available, the GLS

algorithm may be unsuitable for interactive search.

6.2 Evolutionary algorithms

Analysis of the results from EAs with both representations

confirmed that the fixed mutation rate which gave the

highest fCBO values depended on both the problem (hence

representation length) and on number of factors which

affect the exploration–exploitation balance (population

size, crossover operator and probability), and sub-optimal

choices greatly deteriorated performance.

However, on a more positive note, results also clearly

showed that for every problem-representation pairing, the

use of self-adaptation leads to the discovery of solutions

with significantly higher fitness than any of the fixed

mutation rates, without any significant penalty in terms of

the number of evaluations taken. Furthermore, when using

self-adaptive mutation neither the choice of tournament

size nor of crossover probability (within the range 0.2–0.8)

made any significant difference to the fCBO values. Since

self-adaption not only yields superior results but also

increases the EAs’ robustness by reducing the number

parameters required, for brevity we only report these

results henceforth.

Figure 4 shows mean best coupling achieved with self-

adapting mutation, 60 % probability of applying crossover

for four crossovers and two population sizes. For the CBD

and GDP problems there is no significant difference

between population sizes, with either representation. Lar-

ger populations are beneficial for SC—not statistically

significantly so for NG, but significantly so for XP. Anal-

ysis of run-logs suggests that this relates to the initializa-

tion problem as with GLS.

From the perspective of the robustness of the algorithms,

there is a positive outcome in that the same settings do well

across all three problems and on almost every run the EAs

discover solutions with higher fCBO than the equivalent

human crafted solution. Only on the largest scale SC

problem did EAs using the permutation representation fail

to beat the human-crafted values.

Immediately apparent, and confirmed by statistical

analysis, is that the NG (One point and Uniform recom-

bination) representation leads to the discovery of better

solutions than XP (Edge or Order recombination). For the

SC problem, the difference is typically 50 %. Factoring out

the effect of problem instance, there is not a significant

difference between Uniform and One Point recombination

for the NG representation. However, with the permutation-

based XP, use of the Order crossover discovers higher

quality solutions than Edge Recombination. Note that the

latter preserves and transmits information about the fre-

quency of co-occurrence of edges between nodes in good

solutions—exactly the same information that the phero-

mone table encodes explicitly in the ACO algorithm.

Figure 5 shows progress of one typical run for each

population size and problem with Order (XP) and Uniform

(NG) crossover. As can be seen the smaller populations

make more rapid progress in the initial stages and all

algorithms continue to discover improved solutions long

into their runs.

6.3 Ant colony optimization

An illustration of sensitivity of the mean best fCBO values

achieved for each design problem is shown in Fig. 6, for a

value of q of 0.1 and a colony of 25 ants. To summarize the

effects overall:

Table 3 Mean best coupling (MB) and average number of evaluations to best solution (AES) for greedy local search

Manual fCBO Encoding MB fCBO -all N valid MB fCBO -valid AES

CBS 84.6 NG 87.25 (3.16) 50 87.25 (3.16) 62,669

XP 62.35 (35.7) 38 82.04 (5.35) 5,272

GDP 70.3 NG 87.35 (4.05) 50 77.35 (4.05) 76,088

XP 57.61 (36.46) 37 77.85 (13.80) 13,428

SC 54.8 NG 60.89 (27.1) 42 72.49 (4.07) 598,493

XP 0.0 (0.0) 0 – –

Results shown for all, and for just successful runs. Standard Deviation is shown in parentheses

2156 C. L. Simons, J. E. Smith

123

• a: performance increases with a from 0 to 1.0–1.5 but

tails off thereafter;

• l: performance increases with l from zero to 3.0;

• q: little effect for CBS and GDP, but for SC perfor-

mance increases as q increases from 0 to 1.0;

• numbers of ants appear to have little discernible affect

for CBS and GDP, but some effect on SC.

Figure 6 shows mean values, but the complexity of the

response surface was confirmed by a multiple linear

regression analysis, where the goodness of fit was greatly

improved by extending the model to include quadratic and

two-way interactions between a, l and q for the three

design problems.

In terms of the time taken to reach the best design

solution, analysis shows that some degree of pheromone

decay (i.e. q[0) is necessary to achieve a plateau of fast

performance (at higher values of a and l). This plateau

effect is visible with a q value of 0.01, but continues with

increasing q to 1.0. This suggests that a degree of phero-

mone decay is crucial in exploiting the search space by

making the algorithm able to ‘forget’ design solutions of

poor fitness, especially if they are infeasible (i.e. do not

contain at least one attribute and one method) (Fig. 7).

Therefore, considering mean best coupling and number

of evaluations together—the balance between exploration

and exploitation—a value of a of 1.0–1.5 appears to be

effective when combined with some degree of pheromone

decay (q C 0.1) and high values of pheromone update

(l = 3.0) to balance the decay. Taking these values, Fig. 4

shows a typical ACO single run mean best fCBO. It is

observed that using 25 ants achieves mean best fCBO

quicker than using 100 ants, although for CBS and GDP,

using 100 ants achieves a superior fCBO after further

evaluations.

Although ACO sensitivity to parameter values is unde-

sirable from a robustness perspective, the ‘‘sweet spot’ is

the same for all three problems. With these settings, mean

best fCBO values of 86.17, 93.39 and 47.20 for CBS, GDP

and SC respectively compare favorably those of the manual

design for CBS and GDP, although noticeably less so for

SC, which prompts further analysis.

6.4 Comparative analysis

Table 4 shows a comparison of the performance of the

‘‘best’’ version of the three search algorithms as identified

above. The standard deviations are all in the range [0.5,5]

except for GLS-XP (35–36) and GLS-NG on SC (27).

Values in bold indicate the rankings per-problem according

to the groups where the results are statistically significantly

Fig. 4 Mean best coupling fCBO

achieved with EA using self-

adaptive mutation, Px = 0.6.

Edge and order crossover are for

XP representation, uniform and

one point for NG

Fig. 5 Progress of typical EA

runs. Note logarithmic scale of

x-axis

A comparison of meta-heuristic search for interactive software design 2157

123

different. Given the budget of one million evaluations, it

should be viewed as an indication of the ability of the

algorithms to search landscapes induced by different rep-

resentations for this problem. Since we have shown else-

where that coupling is a correlated with human design

judgment, if algorithms do not do well here, then there is

little point subjecting humans to interacting with them. In

most cases the metaheuristics create solutions with lower

coupling than manual designs. Although GLS-NG does

well on CBS and GDP, its low reliability on the SC appears

to make it unsuitable for interactive applications.

These results reveal an interesting pattern. Although

the NG landscape appears to be far more amenable to

search by GLS or the EA, the results for the ACO are

better (although not significantly so for 50 runs) despite

the fact that the ACO is searching the far more multi-

modal and redundant working on the XP landscape. The

exception to this is the SC problem. There are two pos-

sible reasons for this: the first is that the problem has

more variables and that ACO does not scale. The second

is that since it has more classes (16 as opposed to the 5

each for CBS and GSP) there are a far higher proportion

of infeasible solutions, and the problem lies with the

constraint handling.

6.5 Constraint handling

To investigate the worse behavior on the SC problem we

ran ACO and EA-NG to produce designs with 5 classes

rather than 16. In each case mean best fCBO values of over

90 were observed—showing that the difficulty is one of the

proportion of the search space that is infeasible, rather than

its size.

As described above, after an offspring solution (EA) or

new solution path (ACO) is generated, a check is made to

ensure that it contains at least one method and one attri-

bute. In the indirect approach used so far, infeasible solu-

tions are assigned a fitness 0.0. Although direct methods

for constraint handling have been reported to be more

effective (Eiben and Smith 2003), they would normally

require highly specialized operators, sophisticated repair

mechanisms which would mitigate against the use of these

meta-heuristics as general purposes engines for interactive

search. We therefore implemented the simplest form of

‘‘direct’’ approach in the EA and ACO—each newly cre-

ated solution is checked, and regenerated until a feasible

one is created. In the ACO the number of repeated is

capped at 50.

Results with the ACO show that for the CBS and GDP

problems the indirect approach leads to statistically sig-

nificantly better results on the CBS, GDP and 5-class

version of the SC problems, while for the 16-class SC the

difference is not statistically significant. The differences

between the numbers of evaluations to best solution are

also not statistically significant. We hypothesize that direct

Fig. 6 Sensitivity of fCBO

values to parameters. 25 ants,

q = 0.1

Fig. 7 Progress of typical ACO

runs. Note logarithmic scale of

x-axis

Table 4 Comparison of mean best coupling (fCBO)

Manual GLS

(XP)

EA

(XP)

ACO GLS

(NG)

EA

(NG)

CBS 84.6 62.35, 5 82.10,

1=
90.00,

1=
87.25,

1=
88.80,

1=

GDP 70.3 57.61, 5 77.46, 4 96.20,

1=
87.35,

1=
88.07,

1=

SC 54.8 0.0, 5 42.68, 4 49.76, 3 60.89, 2 67.74, 1

Values in bold are statistically significant rankings

2158 C. L. Simons, J. E. Smith

123

method performs less well because enforcing validity in

early generations increases the probability of creating

redundant versions of effectively the same design, which

will confuse the process whereby the pheromone table

adapts to model the structure of the underlying problem.

In contrast to this, as shown in Table 5, the beneficial

results from implementing the direct mechanism in the EA

are dramatic, especially as the scale of the problem, and

hence the proportion of infeasible solutions increases,

although notably, the less redundant NG representation still

gives the best results.

7 Interactive search simulation

The results in Sect. 6 concerned the ability of the meta-

heuristics to reliably locate good solutions for the software

design problem given a large amount of evaluations. While

this is useful to rule out some methods (e.g. GLS), the

overall ranking of algorithms is only really relevant if a

surrogate fitness model is available, since in practice

humans can only evaluate a few dozens of solutions before

fatigue and lack of engagement sets in. Thus we next

compare the performance in a more time-limited scenario,

leveraging our previous work to calculate fitness as a sto-

chastic weighted sum of coupling and two elegance metrics

to simulate the effect of user evaluation. Since we would

not ask users to evaluate infeasible solutions, and initial

experimentation showed that the effect of redundancy was

much less with the smaller population sizes appropriate to

visual display, we used direct constraint handling, i.e.

infeasible solutions are re-created until valid.

Table 6 shows the results of running the three meta-

heuristics ACO, EA-NG and EA-XP with population size

10, run for a maximum of 250 evaluations. The results

shown are for the best individual found according to the

fMO metric averaged over 50 runs. The negative fATMR

values for ACO generating solutions to SC arise from the

way that the maximization function was calculated using a

scale factor of R = 6.0: the algorithm repeatedly identified

solutions with low coupling and high NAC elegance, but

high variability between classes of the attribute-methods

ratio amongst classes in the solutions found. The superior

performance listed for on almost every metric of the ACO

algorithm, is confirmed by ANOVA followed by Tamh-

ane’s post hoc test (since the variances are not equal).

While the coupling values obtained in a limited number

of evaluations are inferior to the manual designs, the ele-

gance values are comparable, and of course even 250

evaluations reflects less human effort than undertaking the

manual design process. However, this does suggest that if it

was intended to use fMO as a surrogate fitness measure, it

would be worth investigating a non-linear, or piece-wise

linear function of fCBO to place more emphasis on mini-

mizing coupling.

8 Analysis

8.1 Scalability

In contrast to GLC, both population-based search algo-

rithms (EAs and ACO) afford a good degree of scalability

with respect to the numbers of elements (attributes and

methods) present in the interactive software design

problem. For the CBS and GDP design problems, both

EAs and ACO discover design solutions of superior fit-

ness compared to the hand-crafted, manual design, for

both single-objective search and multi-objective interac-

tive search simulation. Indeed, with high numbers of

elements, ACO outperforms the EAs. However, the ACO

struggled to achieve superior fitness with the scale of the

SC design problem. Further analysis revealed that the

crucial factor affecting scalability is the proportion of

infeasible solutions in the search space, which reflects the

constraint that each class must have at least one method

and attribute. In the results above we have examined SC

with 16 classes, to permit comparison with the manual

design. However, the constraint could be relaxed by

allowing completely empty classes. This would provide a

means of designing solutions with variable numbers of

classes, so avoiding the need to pre-specify this important

aspect of the design structure.

With respect to ‘freezing’ of partial design solutions,

both population-based search algorithms offer the oppor-

tunity to permanently record individual classes, or groups

of classes. While the mechanisms for freezing (and

unfreezing) parts of a design would require a major spe-

cialized adaptation of the EA, it is easily achieved in an

ACO by simply setting the relevant pheromones to an

arbitrary high value. Although not directly investigated

here due to simulation difficulties, this may nevertheless be

a fruitful tactic in any future interactive studies.

Table 5 Comparison of mean best coupling (fCBO) with indirect and

direct constraint handling

EA-indirect-

XP

EA-direct-XP EA-indirect-

NG

EA-direct-

NG

CBS 82.10 (3.21),

4
87.95 (1.31),

1=
88.80 (2.49),

1=
88.55 (2.58),

1=

GDP 77.46 (2.75),

4
83.10 (2.48),

3
88.07 (3.69),

1=
88.36 (3.44),

1=

SC 42.68 (5.79),

4
73.26 (2.09),

1=
67.73 (5.41),

3
71.92 (3.77),

1=

Values in bold are statistically significant rankings

A comparison of meta-heuristic search for interactive software design 2159

123

8.2 Robustness

In line with previous findings (Stone and Smith 2002;

Serpell and Smith 2010), results of EAs show that self-

adapting mutation enables a good degree of robustness,

making the algorithm insensitive to crossover probabilities

or selection pressure. Conversely, it is evident that ACO is

sensitive to parameter values, although once tuned, the

same set of parameter values (a = 1.0–1.5, l = 3.0,

q = 0.1) produces good results across all three software

design problems. While the ACO graph representation

appears more robust to varying numbers of elements in the

software design solutions, the EA with integer-based naı̈ve

grouping representation appears more robust to varying

numbers of classes.

8.3 ‘Off-the-shelf’ availability

As described in Sect. 4.3, key factors affecting the appli-

cation of ‘off-the-shelf’ frameworks and toolkits for EAs

and ACO appear to be (1) their ability to easily adapt to the

specifics of the search problem at hand, and (2) available

documentation and support. In the case of the software

design problem, the specific constraint of the ‘at least one

attribute and one method’ is not well catered for by the EA

or ACO frameworks. In one sense this is not entirely sur-

prising as software development frameworks are neces-

sarily generic. In addition, available documentation,

especially for ACO, is not sufficiently comprehensive. An

additional although perhaps less important factor might be

the choice of programming language provided by the

framework. For example, ACO frameworks such as ACO

(2012) focus on the C and C?? programming language

which may or may not meet the portability and interoper-

ability requirements of GUI-driven interactive meta-heu-

ristic search engine.

8.4 Constraint handling

Handling the constraint of each class containing at least

one attribute and at least one method is a significant con-

straint affecting the performance of all the meta-heuristic

search algorithms investigated. A number of tactics to deal

with constraint present themselves. Firstly, the constraint

can simply be ignored in search but invalid design solu-

tions attract zero fitness. Secondly, the search algorithm

can be adapted and specialized to prevent the construction

of invalid design solutions. Thirdly, the search algorithm

can also be adapted to repeat construction of a design

solution until a valid solution appears. Much of the

investigation in this paper centers on the use of the first

tactic, which appears to be effective. Indeed, perhaps sur-

prisingly, results of Sect. 6.5 indicate that introducing

constraint handling into the ACO algorithm produces

inferior results from the point of view of an interactive

design simulation. We hypothesize that this arises from the

redundancy of the XP representation, and preliminary

experimentation with decreasing population sizes for the

MO search seemed to confirm our hypothesis.

9 Conclusions

This paper seeks to challenge the largely historical adop-

tion of evolutionary computing as the basis of an engine for

interactive search in early lifecycle software design. GLC,

evolutionary algorithms and ACO have been compared and

the performance of the population-based algorithms has

been found superior to single-parent GLC. Indeed, exper-

imental results show that population-based search produces

software design solutions of fitness values superior to those

of the hand-crafted design solutions.

Given a large computational budget—for example if a

surrogate fitness model was available so only occasional

user evaluation were required—the EA with the integer NG

representation comes out as the clear favorite in terms of

optimization performance. It is far more robust to param-

eter settings and the methods used for constraint handling.

However, if a wholly interactive search is required, thus

small populations that can easily be visualized side-by-

side, and a more limited computational budget, then a very

different picture emerges. In this case the use of an ACO,

with each ant forced to recreate its solution path until valid,

emerges as finding higher quality solutions, and in around

Table 6 Comparison of mean (std. dev.) results for best solutions

found in simulation of interactive behaviour

Problem Metric EA-NG EA-XP ACO

CBS fMO 40.06 (5.79) 45.73 (5.61) 60.35 (3.88)

fCBO 49.80 (7.28) 56.55 (7.57) 48.26 (12.2)

fNAC 76.57 (6.32) 46.82 (10.49) 99.30 (0.08)

fATMR 92.21 (4.13) 93.36 (3.89) 97.34 (0.56)

AES 210 (45) 199 (54) 140 (69)

GDP fMO 31.73 (4.10) 44.20 (6.94) 57.16 (3.21)

fCBO 39.50 (5.13) 55.10 (8.68) 59.12 (11.15)

fNAC 65.27 (11.57) 4.46 (10.26) 95.18 (0.77)

fATMR 70.82 (12.65) 69.91 (13.26) 94.64 (0.55)

AES 230 (24) 222 (31) 127 (74)

SC fMO 13.36 (2.03) 15.04 (3.44) 31.29 (3.41)

fCBO 16.5 (2.55) 18.55 (4.25) 39.25 (11.93)

fNAC 79.85 (2.98) 73.328 (14.88) 84.75 (2.01)

fATMR 78.92 (4.62) 76.57 (6.09) -14.14 (91.32)

AES 224 (38) 210 (51) 110 (73)

Bold type indicates statistically significant best per row, i.e., problem-

metric combination

2160 C. L. Simons, J. E. Smith

123

half the time of the EAs. Moreover, the simple modifica-

tions that would be required to allow user-friendly modi-

fications such as the ability to ‘‘freeze’’ certain classes, or

coalesce others also point to the use of interactive ACOs

for larger problems.

References

(2012) ACO Meta-heuristic. http://www.aco-metaheuristic.org/aco-

code/. Accessed 20 May 2012

Acampora G, Cadenas JM, Loia V, Ballester EM (2011) Achieving

memetic adaptability by means of agent-based machine learning.

IEEE Trans Indust Informat 7(4):557–569

Acampora G, Loia V, Salerno S, Vitiello A (2012) A hybrid

evolutionary approach for solving the ontology alignment

problem. Int J Intell Sys 27(3):189–216

Xanthakis S et al (1992) Application of genetic algorithms to software

testing. In: Proceedings of the 5th Int’l Conf Softw Eng (ICSE

92), pp 625–636

Luke S et al (2012) ECJ 20: a java-based evolutionary computation

research system. http://cs.gmu.edu/*eclab/projects/ecj/. Acces-

sed 20 May 2012

Al Dallal J, Briand LC (2010) An object-oriented high-level design-

based class cohesion metric. Info Softw Tech 52(12):1346–1361

Avigad G, Moshaiov A, Brauner N (2005) Interactive concept-based

search using MOEA: the hierarchical preference case. Intl J

Comput Intell 2(3):182–191

Badillo AR, Ruiz JJ, Cotta C, Fernandez-Leiva AJ (2013) On user-

centric memetic algorithms. Soft Comput 17(2):285–300

Birattari M, Pellegrini P, Dorigo M (2007) On the invariance of ant

colony optimization. IEEE Trans Evol Comput 11(6):732–742

Booch G (1994) Object-oriented analysis and design, 2nd edn.

Benjamin/Cummings Publishing, Redwood City

Booch G, Rumbaugh J, Jacobson I (1999) The unified modeling

language user guide. Addison-Wesley, Boston

Boudjeloud L, Poulet F (2005) Visual interactive evolutionary

algorithm for high dimensional data clustering and outlier

detection. PAKDD, Lecture Notes in Artificial Intelligence,

pp 428–431

Bowman M, Briand LC, Labiche Y (2010) Solving the class

responsibility assignment problem in object-oriented analysis

with multi-objective genetic algorithms. IEEE Trans Softw Eng

36(6):817–837

Briand LC, Daly JW, Wust JK (1999) A unified framework for

coupling measurement in object-oriented systems. IEEE Trans

Softw Eng 25(1):91–121

Brintrup A, Ramsden J, Takagi H, Tiwari A (2008) Ergonomic chair

design by fusing qualitative and quantitative criteria using

interactive genetic algorithms. IEEE Trans Evol Comput 12(3):

343–354

Caldwell C, Johnston VS (1991) Tracking a criminal suspect through

‘‘Face-Space’’ with a genetic algorithm. In: Proceedings of the 4th

International Conference on Genetic Algorithms, pp 416–421

Caleb-Solly P, Smith J (2007) Adaptive surface inspection via

interactive evolution. Image Vision Comput 25(7):1058–1072

Cheng J, Zhang G, Li Z, Li Y (2012) Multi-objective ant colony

optimization based on decomposition for bi-objective travelling

salesman problems. Soft Comput 16(4):597–614

Davis L (ed) (1991) Handbook of genetic algorithms. Van Nostrand

Reinhold, New York

Dawkins R (1990) The blind watchmaker. Penguin Books,

Harmondsworth

Dorigo M, Stutzle T (2004) Ant colony optimisation. MIT Press,

Cambridge

Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.

IEEE Comput Intel Mag 1(4):28–39

Eiben AE, Smith JE (2003) Introduction to evolutionary algorithms.

Springer. Supporting website with slides for operator descrip-

tions at http://www.bit.uwe.ac.uk/%7Ejsmith/ecbook/slides/.

Accessed Feb 2013

Falkenauer E (1998) Genetic algorithms and grouping problems.

Wiley, New York

Geiger MJ (2008) Proposition of the interactive pareto iterated local

search procedure—elements and initial experiments. Submitted

on 4 September 2008. http://arXiv.org

Harman M (2007) The current state and future of search based

software engineering. In: Proceedings of Future of Software

Engineering. FOSE ‘07, pp 342–357

Harman M (2011) Software engineering meets evolutionary compu-

tation. Computer 44(10):31–39

Harman M, Jones BJ (2001) Search-based software engineering. Info

Softw Tech 43(14):833–839

Harman M, Tratt L (2007) Pareto optimal search-based refactoring at

the design level. In: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO’07), pp 1106–1113

Harrison R, Councell S, Nithi R (1998) An investigation into the

applicability and validity of object-oriented design metrics. Emp

Softw Eng 3(3):255–273

Jones BF, Sthamer H–H, Eyres DE (1996) Automatic structural

testing using genetic algorithms. Softw Eng J 11(5):299–306

Keijzer M, Merelo JJ, Romero G, Schoenauer GM (2002) Evolving

objects: a general purpose evolutionary computation library.

Artif Evol 23(10):829—888. http://eodev.sourceforge.net/.

Accessed May 2012

Kopfer H, Schonberger J (2002) Interactive solving of vehicle routing

and scheduling problems: basic concepts and qualification of

tabu search approaches. In: Proceedings of the 35th Annual

Hawaii International Conference on System Sciences

(HICSS’02), pp 1425–1434

Krasnogor N, Smith JE (2001) Emergence of profitable search

strategies based on a simple inheritance mechanism. In:

Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO ‘01), pp 432–439

Kubota N, Nojima Y, Kojima F, Fukuda T (2006) Multiple fuzzy

state-value functions for human evaluation through interactive

trajectory planning of a partner robot. Soft Comput 10(10):

891–901

Lee J-Y, Cho S-B (1999) Interactive genetic algorithm with wavelet

coefficients for emotional image retrieval. In: Proceedings of the

5th International Conference on Soft Computing and Informa-

tion/Intelligent Systems, vol 2, pp 829–832

Legrand P, Bourgeois-Republique C, Pean V, Harboun-Cohen E,

Levy-Vehel J, Frachet B, Lutton E, Collet P (2007) Interactive

evolution for cochlear implants fitting. Gen Prog Evol Mach

8(4):301–318

Lewis R, Pullin E (2011) Revisiting the restricted growth function

genetic algorithm for grouping problems. Evol Comput 19(4):

693–704

Lopez-Ibanez M, Stutzle T (2012) An experimental analysis of design

choices for multi-objectives ant colony optimisation algorithms.

Swarm Intel 6(3):207–232

Lozano P, Larranga P, Inz I, Bengoetxea E (eds) (2006) Towards a
new evolutionary computation: advances in estimation of

distribution algorithms. Springer, Berlin

Madar J, Abonyi J, Szeifert F (2005) Interactive particle swarm

optimisation. In: Proceedings of the 5th International Conference

on Intelligent Systems Design and Applications (ISDA’05),

pp 314–319

A comparison of meta-heuristic search for interactive software design 2161

123

http://www.aco-metaheuristic.org/aco-code/
http://www.aco-metaheuristic.org/aco-code/
http://cs.gmu.edu/~eclab/projects/ecj/
http://www.bit.uwe.ac.uk/%7Ejsmith/ecbook/slides/
http://arXiv.org
http://eodev.sourceforge.net/

Mathias K, Whitley D (1992) Genetic operators, the fitness landscape

and the traveling salesman problem. In: Proceedings of Parallel

Problem Solving from Nature (PPSN’92), pp 219–228

McMinn P (2004) Search-based software test data generation: a

survey. Softw Test Verif Reliab 14(2):105–156

Miller G (1956) The magical number seven, plus or minus two: some

limits on our capacity for processing information. Psych Rev

63(2):81–97

O’Keeffe M, Cinneide MO (2008) Search-based refactoring for

software maintenance. J Sys Softw 81(4):502–516

Object Management Group (2012) Unified modelling language

resource page. http://www.uml.org/. Accessed 12 April 2012

Ohsaki M, Takagi H, Ohya K (1998) An input method using discrete

fitness values for interactive GA. J Intel Fuzzy Syst 6(1):

131–145

Pauplin O, Caleb-Solly P, Smith J (2010) User-centric image

segmentation using an interactive parameter adaptation tool.

Pattern Recogn 43(2):519–529

Ren J, Harman M, Di Penta M (2011) Cooperative co-evolutionary

optimisation of software project assignments and job scheduling.

In: Proceedings of the 3rd International Symposium of Search

Based Software Engineering (SSBSE 2011), Lecture Notes in

Computer Science, vol 6956, pp 127–141

Serpell M, Smith JE (2010) Self-adaption of mutation operator and

probability for permutation representations in genetic algo-

rithms. Evol Comput 18(3):1–24

Simons CL (2011) Interactive evolutionary computing in early

lifecycle software engineering design. PhD Thesis, University

of the West of England, Bristol

Simons CL (2012a) Use case specifications for cinema booking

system. http://www.cems.uwe.ac.uk/*clsimons/CaseStudies/

CinemaBookingSystem.htm. Accessed 20 May 2012

Simons CL (2012b) Use case specifications for graduate development

program. http://www.cems.uwe.ac.uk/*clsimons/CaseStudies/

GraduateDevelopmentProgram.htm. Accessed May 2012

Simons CL (2012c) Use case specifications for select cruises. http://

www.cems.uwe.ac.uk/*clsimons/CaseStudies/SelectCruises.htm.

Accessed May 2012

Simons CL (2012d) Manual software designs for problem domains.

http://www.cems.uwe.ac.uk/*clsimons/CaseStudies/Manual

Designs.pdf. Accessed May 2012

Simons CL, Parmee IC (2010) Dynamic parameter control of

interactive local search in UML software design. In: Proceedings

of the 2010 International Conference on Systems, Man and

Cybernetics (SMC’10), pp 3399–3904

Simons CL, Parmee IC (2012) Elegant object-oriented software

design via interactive evolutionary computation. IEEE Trans

Systems Man Cybern Part C 42(6):1797–1805

Simons CL, Parmee IC, Gwynllyw R (2010) Interactive, evolutionary

search in upstream object-oriented class design. IEEE Trans

Softw Eng 36(6):798–816

Sims K (1991a) Interactive evolution of dynamical systems. First

European Conference on Artificial Life, MIT Press

Sims K (1991b) Artificial evolution for computer graphics. Comp

Graph (Siggraph ‘91 Proceedings) 25(4): 319–328

Smith JE (2001) Modelling GAs with self-adaptive mutation rates. In:

Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO’01), pp 599–606

Smith JE, Fogarty TC (1996) Evolving software test data: GAs learn

self- expression. In: Fogarty TC (ed) Evolutionary computing.

Springer, Berlin, pp 137–146

Smith JE, Bartley M, Fogarty TC (1997) Microprocessor design

verification by two-phase evolution of variable length tests. In:

Proceedings of the 1997 IEEE Conference on Evolutionary

Computation, pp 453–458

Smith JE, Clark A, Staggemeir A (2009) A genetic approach to

statistical disclosure control. In: Proceedings of the 11th Annual

Conference on Genetic and Evolutionary Computing (GE-

CCO’09), pp 1625–1632

Stone C, Smith JE (2002) Strategy parameter variety in self-

adaptation of mutation rates. In: Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO ‘02),

pp 586–593

Takagi H (2001) Interactive evolutionary computation: fusion of the

capabilities of EC optimization and human evaluation. Proc

IEEE 89(9):1275–1298

Takagi H, Ohsaki M (2007) Interactive evolutionary computation-

based hearing-aid fitting. IEEE Trans Evol Comput 11(3):

414–427

Toth P, Vigo D (2001) The vehicle routing problem. SIAM,

Philadelphia

Tucker A, Crampton J, Swift S (2006) RGFGA: an efficient

representation and crossover for grouping genetic algorithms.

Evol Comput 13(4):477–499

Uğur A, Aydin D (2009) An interactive simulation and analysis

software for solving TSP using ant colony optimization

algorithms. Adv Eng Softw 40(5):341–349

Weimer W, Forrest S, Le Goues C, Nguyen T (2010) Automatic

program repair with evolutionary computing. Comm ACM

53(5):109–116

Wirfs-Brock R, McMean A (2003) Object design: roles, responsibil-

ities, and collaborations. Addison-Wesley, Boston

Zhang Y (2012) Repository of publications on search-based soft-

ware engineering. http://crestweb.cs.ucl.ac.uk/resources/sbse_

repository/. Accessed April 2012

2162 C. L. Simons, J. E. Smith

123

http://www.uml.org/
http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/CinemaBookingSystem.htm
http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/CinemaBookingSystem.htm
http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/GraduateDevelopmentProgram.htm
http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/GraduateDevelopmentProgram.htm
http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/SelectCruises.htm
http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/SelectCruises.htm
http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/ManualDesigns.pdf
http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/ManualDesigns.pdf
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

	A comparison of meta-heuristic search for interactive software design
	Abstract
	Introduction
	Background
	Search-based software engineering
	Object-oriented software design
	Formulating class modeling as a search problem
	Interactive meta-heuristic search

	Choice of meta-heuristic search algorithms
	Representations
	Fitness measures
	Evolutionary algorithm
	Ant colony optimization
	Greedy local search

	Factors affecting choice of search engine
	Scalability
	Robustness
	‘Off-the-shelf’ availability
	Constraint handling

	Methodology
	Strategy
	Software design problems

	Single objective results
	Greedy local search
	Evolutionary algorithms
	Ant colony optimization
	Comparative analysis
	Constraint handling

	Interactive search simulation
	Analysis
	Scalability
	Robustness
	‘Off-the-shelf’ availability
	Constraint handling

	Conclusions
	References

