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Abstract We introduce a new methodology for measur-

ing the degree of similarity between two intuitionistic

fuzzy sets. The new method is developed on the basis of a

distance defined on an interval by the use of convex

combination of endpoints and also focusing on the property

of min and max operators. It is shown that among the

existing methods, the proposed method meets all the well-

known properties of a similarity measure and has no

counter-intuitive examples. The validity and applicability

of the proposed similarity measure is illustrated with two

examples known as pattern recognition and medical

diagnosis.

Keywords Intuitionistic fuzzy sets � Similarity measures �
Distance measure � Pattern recognition

1 Introduction

In the last few decades, several extensions of fuzzy sets

(Zadeh 1965) have been proposed and developed by many

researchers. Among various generalizations of fuzzy sets

such as L-fuzzy sets (Goguen 1967), interval-valued fuzzy

sets (Turksen 1986) and vague sets (Bustince and Burillo

1996), intuitionistic fuzzy sets (IFS) have gained more

attention from researchers. This attention is due to the

consistency of IFS in modeling many real life situations

where hesitation exists, such as fuzzy decision making

(Szmidt and Kacprzyk 1996), fuzzy pattern recognition

(Pedrycz 1997) and market prediction. As a significant

content in fuzzy mathematics, the research on the similarity

measure between IFSs has received more attention. Simi-

larity measures have been widely applied in many fields

such as multicriteria decision-making (Szmidt and Ka-

cprzyk 2005), group decision (Xu and Chen 2007), grey

relational analysis (Wei and Lan 2008), pattern recognition

(Li and Cheng 2002), image processing (Pal and King

1981), and cluster analysis (Yao and Dash 2000). Since the

similarity measures of IFSs have been applied to many

real-world situations, it is naturally required to have an

efficient similarity measure with no counter-intuitive

examples.

In recent years, some definitions of similarity measures

for IFSs have been proposed. Atanassov (1999), Szmidt

and Kacprzyk (2000) proposed several methods for mea-

suring the degree of similarity between IFSs based on the

well known Hamming distance, Euclidean distance and

their normalized counterparts. Based on the extension of

the Hausdorff distance and Lp metric, Hung and Yang

(2007) proposed some methods to calculate the degree of

similarity between IFSs. The methods of Chen, Hong and

Kim, Fan and Zhangyan, Yanhong et al., Dengfeng and

Chuntian, Mitchell, Zhizhen and Pengfei who put forward

the concept of similarity measure for IFSs have been

summarized and discussed by Li et al. (2007). Recently,

Wang and Xin (2005), Huang et al. (2005), Hung and Yang

(2007), and Ye (2011) have established several methods

which are described briefly later in Sect. 4.

Later, it will be observed that all the papers discussed

above may not work as desired because they cannot

meet all or most of the well-known properties of a simi-

larity measure. With this point of view and the need to

overcome the shortcomings of the existing methods, we
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develop a new similarity measure that contains more

information of IFSs. Indeed, the proposed similarity mea-

sure is defined based on the convex combination of the

endpoints of the interval which restricts the membership

degree of an IFS. Moreover, to avoid all the cons cases that

the existing methods have, the proposed method focuses

also on the property of min and max operators.

The present paper is organized as follows: Background

on the intuitionistic fuzzy sets (IFSs) is presented in Sect.

2. In Sect. 3, a new distance is defined on the interval

numbers based on convex combination of endpoints and

then it is extended to IFSs by deriving a distance measure.

Then, the desired similarity measure is established by

combining the mentioned distance measure and a mapping

defined based on min and max operators. Section 4 is

devoted to review briefly the existing similarity measures

for IFSs and they are compared with the desired method. In

Sect. 5, two examples known as pattern recognition and

medical diagnosis are brought to illustrate the validity and

applicability of the new method. Conclusion is drown in

Sect. 6 Finally, the detailed discussions of the main results

which are stated in the last part of Sect. 3 can be found in

‘‘Appendix’’.

2 Preliminaries

In this section, we briefly describe the basic definitions and

notions of IFSs and similarity measure for IFSs.

Throughout this article, we use X = {x1, x2,..., xn} to

denote the discourse set.

Definition 1 (See Zadeh 1965) A fuzzy set (FS) AFS in X

is defined as AFS ¼ fhx; lAðxÞi : x 2 Xg; where lA : X !
½0; 1� is the membership function of the fuzzy set AFS

and lA(x) is the degree of membership of x 2 X in AFS.

Definition 2 (See Atanassov 1999) An intuitionistic

fuzzy set (IFS) AIFS in X is defined as AIFS ¼
fhx; lAðxÞ; mAðxÞi : x 2 Xg; where lA : X ! ½0; 1� and mA :

X ! ½0; 1� are such that 0 B lA(x) ? mA(x) B 1 for all x 2
X: The number lA(x) and mA(x) represent respectively the

degree of membership and nonmembership of x in AIFS.

We denote all the IFSs in X by IFS(X).

Definition 3 (See Atanassov 1999) The complement of

AIFS, denoted by AIFS
c , is defined as lAcðxÞ ¼ mAðxÞ and

mAcðxÞ ¼ lAðxÞ:

Remark 1 (See e.g. Li et al. 2007) From the above defi-

nitions, it is obvious that the membership degree of any

AIFS has been restricted by the interval [lA(x), 1 -

mA(x)], where ½lAðxÞ; 1� mAðxÞ� � ½0; 1�: If lA(x) = 1 -

mA(x), this implies that we know x precisely. In this case

AIFS degenerates into a fuzzy set. If lA(x) = 0 and

mA(x) = 1 (or lA(x) = 1 and mA(x) = 0), AIFS degenerates

into a crisp set.

Definition 4 (See Atanassov 1999) Let AIFS;BIFS 2
IFSðXÞ: We define AIFS � BIFS if and only if lA(x) B lB(x)

and 1 - mA(x) B 1 - mB(x), for each x 2 X:

The main properties of a similarity measure on IFSs,

S : IFSðXÞ � IFSðXÞ ! ½0; 1�

sometimes considered as axiomatic requirements, are as the

following: (see e.g. Li et al. 2007)

(P1) SðAIFS;BIFSÞ 2 ½0; 1�;
(P2) S(AIFS,BIFS) = 1 if and only if AIFS = BIFS;

(P3) S(AIFS, BIFS) = S(BIFS, AIFS);

(P4) S(AIFS, CIFS) B S(AIFS, BIFS) and S(AIFS, CIFS) B

S(BIFS, CIFS) if AIFS � BIFS � CIFS;

(P5) S(AIFS, AIFS
c ) = 0 if AIFS is a crisp set.

3 New similarity measure for IFSs

In this portion, we describe the construction of a new

similarity measure for IFSs using the convex combination

of the endpoints of the interval which restricts the mem-

bership degree of an IFS.

Let us consider the interval value [lA(xi), 1 - mA(xi)] of

AIFS 2 IFSðXÞ: We define for any xi 2 X;

vjðAIFSðxiÞÞ ¼ 1� j

m

� �
lAðxiÞ þ

j

m
ð1� mAðxiÞÞ;

j ¼ 0; 1; :::;m;

ð1Þ

where the convex combination of lower and upper bound

values of the membership degree of AIFS(xi) indicates that

vj(AIFS(xi)) stands for any point (if m!1) in the interval

[lA(xi), 1 - mA(xi)].

Taking into account the above formulae, a distance

between two IFSs AIFS;BIFS 2 IFSðXÞ is defined by the

following expression

dIFSðAIFS;BIFSÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

1

mþ 1

Xm

j¼0

½vjðAIFSðxiÞÞ � vjðBIFSðxiÞÞ�2
 !vuut :

ð2Þ

Theorem 1 Let X = {x1, x2,...,xn} denote the universe of

discourse. Then the mapping dIFS : IFSðXÞ � IFSðXÞ !
Rþ [ f0g given by (2) is metric, that is, for any IFSs

AIFS, BIFS and CIFS, it holds

(i) dIFSðAIFS;BIFSÞ 2 ½0; 1�;
(ii) dIFS(AIFS, BIFS) = dIFS(BIFS, AIFS);
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(iii) dIFS(AIFS,BIFS) = 0 if and only if AIFS = BIFS;

(iv) dIFS(AIFS, CIFS) B dIFS(AIFS, BIFS) ? dIFS(BIFS, CIFS).

Proof Proof of properties (i), (ii) and (iv) is obvious.

To prove the property (iii), we proceed as follows.

Without loss of the generality, we suppose that

X = {x1 = x}. By the definition (2) of the distance

measure dIFS, it can be seen that

dIFSðAIFS;BIFSÞ ¼ 0;

iff vjðAIFSðxÞÞ ¼ vjðBIFSðxÞÞ; j ¼ 0; 1; . . .;m;

iff 1� j

m

� �
lAðxÞ þ

j

m
ð1� mAðxÞÞ ¼ 1� j

m

� �
lBðxÞ

þ j

m
ð1� mBðxÞÞ; j ¼ 0; 1; . . .;m:

For the index j there are two cases to consider: (i) j = 0 and

(ii) j = m. In the former case we obtain lA(x) = lB(x), and

in the latter case we get 1 - mA(x) = 1 - mB(x). This

implies that AIFS ¼ fhx; lAðxÞ; mAðxÞig ¼ fhx; lBðxÞ; mB

ðxÞig ¼ BIFS: h

Now, we are in a position to introduce a new similarity

measure between IFSs.

Theorem 2 Let H:[0, 1]? [0, 1] be a strictly monotone

decreasing real function, and dIFS be the distance of IFSs,

given by (2). Then for any AIFS, BIFS [ IFS(X)

Sd
IFSðAIFS;BIFSÞ ¼

HðdIFSðAIFS;BIFSÞÞ � Hð1Þ
Hð0Þ � Hð1Þ ; ð3Þ

is a similarity measure of IFSs AIFS and BIFS.

Proof We need to show that SIFS
d satisfies the properties

(P1)–(P5).

Without loss of the generality, suppose that

X = {x1 = x}.

Proof of properties (P1) and (P3) is obvious.

To prove the property (P2), we obtain from the

definition of SIFS
d that

Sd
IFSðAIFS;BIFSÞ ¼ 1; iff dIFSðAIFS;BIFSÞ ¼ 0:

Now, from the property (iii) in Theorem 1 and the latter

term, it results that

Sd
IFSðAIFS;BIFSÞ ¼ 1; iff AIFS ¼ BIFS: ½Proved�

The proof of (P4) is given as follows. If AIFS � BIFS �
CIFS; then from Definition 4 we obtain

lAðxÞ� lBðxÞ� lCðxÞ;
1� mAðxÞ� 1� mBðxÞ� 1� mCðxÞ;

and so for any j = 0, 1,..., m,

vjðAIFSðxÞÞ� vjðBIFSðxÞÞ� vjðCIFSðxÞÞ:

We see immediately that for any j = 0, 1, ..., m,

½vjðAIFSðxÞÞ � vjðBIFSðxÞÞ�2� ½vjðAIFSðxÞÞ � vjðCIFSðxÞÞ�2;
½vjðBIFSðxÞÞ � vjðCIFSðxÞÞ�2� ½vjðAIFSðxÞÞ � vjðCIFSðxÞÞ�2;

which result in

dIFSðAIFS;BIFSÞ� dIFSðAIFS;CIFSÞ;
dIFSðBIFS;CIFSÞ� dIFSðAIFS;CIFSÞ:

Since the function H(.) is strictly monotone decreasing, it is

easily verified that

Sd
IFSðAIFS;CIFSÞ� Sd

IFSðAIFS;BIFSÞ;
Sd

IFSðAIFS;CIFSÞ� Sd
IFSðBIFS;CIFSÞ: ½Proved�

In order to prove the property (P5), we assume that AIFS is

a crisp set, that is, AIFS ¼ fhx; 1; 0ig (or AIFS ¼ fhx; 0; 1ig).
In this regard, the complement set AIFS

c is defined as Ac
IFS ¼

fhx; 0; 1ig (or Ac
IFS ¼ fhx; 1; 0ig). Hence, dIFS(AIFS,AIFS

c ) = 1

which implies that SIFS
d (AIFS,AIFS

c ) = 0. h

Remark 2 Due to Theorem 2, one can develop different

formulas to calculate the similarity measures between IFSs

by choosing different strictly monotone decreasing real

function H : ½0; 1� ! ½0; 1�; for instance, HðxÞ ¼ 1� x;

HðxÞ ¼ e�x;HðxÞ ¼ 1
1þx

; and H(x) = 1 - x2.

Hereafter, we consider H : ½0; 1� ! ½0; 1� given by

H(x) = 1 - x. Hence, the corresponding similarity mea-

sure of IFSs AIFS and BIFS is defined as follows:

Sd
IFSðAIFS;BIFSÞ ¼ 1� dIFSðAIFS;BIFSÞ

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

1

mþ 1

Xm

j¼0

½vjðAIFSðxiÞÞ � vjðBIFSðxiÞÞ�2
 !vuut :

ð4Þ

Now, we are interested here to introduce a mapping on

IFS(X) 9 IFS(X) into [0, 1] which satisfies all the

properties (P1)–(P5).

Theorem 3 Let AIFS;BIFS 2 IFSðXÞ: The mapping Smix
IFS :

IFSðXÞ � IFSðXÞ ! ½0; 1�; given by,

Smix
IFSðAIFS;BIFSÞ

¼
Pn

i¼1ðminflAðxiÞ;lBðxiÞgþminf1�mAðxiÞ;1�mBðxiÞgÞPn
i¼1ðmaxflAðxiÞ;lBðxiÞgþmaxf1�mAðxiÞ;1�mBðxiÞgÞ

;

ð5Þ

satisfies the properties (P1)–(P5) for any IFSs AIFS and

BIFS.

Proof Without loss of the generality, suppose that

X = {x1 = x}. Proof of properties (P1) and (P3) is

obvious.
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To prove the property (P2), we obtain from the

definition of SIFS
mix that SIFS

mix(AIFS,BIFS) = 1 if and only if
minflAðxÞ;lBðxÞgþminf1�mAðxÞ;1�mBðxÞg
maxflAðxÞ;lBðxÞgþmaxf1�mAðxÞ;1�mBðxÞg ¼ 1; if and only if min

{lA(x), lB(x)} = max{lA(x), lB(x)} and min{1 - mA(x),

1 - mB(x)} = max{1 - mA(x), 1 - mB(x)}. This implies

that AIFS ¼ fhx;lAðxÞ; mAðxÞig ¼ fhx;lBðxÞ; mBðxÞig ¼ BIFS

and hence

Smix
IFSðAIFS;BIFSÞ ¼ 1; iff AIFS ¼ BIFS: ½Proved�

The proof of (P4) is given as follows. If AIFS � BIFS �
CIFS; then from Definition 4 the following results can be

deduced.

lAðxÞ� lBðxÞ� lCðxÞ; ð6Þ
1� mAðxÞ� 1� mBðxÞ� 1� mCðxÞ: ð7Þ

The monotonicity conditions of (6) and (7) ensure that

lAðxÞ ¼ minflAðxÞ; lCðxÞg;
1� mAðxÞ ¼ minf1� mAðxÞ; 1� mCðxÞg;

ð8Þ

lCðxÞ ¼ maxflAðxÞ; lCðxÞg;
1� mCðxÞ ¼ maxf1� mAðxÞ; 1� mCðxÞg;

ð9Þ

and

lAðxÞ ¼ minflAðxÞ; lBðxÞg;
1� mAðxÞ ¼ minf1� mAðxÞ; 1� mBðxÞg;

ð10Þ

lBðxÞ ¼ maxflAðxÞ; lBðxÞg;
1� mBðxÞ ¼ maxf1� mAðxÞ; 1� mBðxÞg:

ð11Þ

Once again from (6), we have

lAðxÞ þ ð1� mAðxÞÞ
lCðxÞ þ ð1� mCðxÞÞ

� lAðxÞ þ ð1� mAðxÞÞ
lBðxÞ þ ð1� mBðxÞÞ

:

By the use of (8)–(11) together with the latter relation, the

following result is immediate

minflAðxÞ; lCðxÞg þminf1� mAðxÞ; 1� mCðxÞg
maxflAðxÞ; lCðxÞg þmaxf1� mAðxÞ; 1� mCðxÞg

� minflAðxÞ; lBðxÞg þminf1� mAðxÞ; 1� mBðxÞg
maxflAðxÞ; lBðxÞg þmaxf1� mAðxÞ; 1� mBðxÞg

;

that is,

Smix
IFSðAIFS;CIFSÞ� Smix

IFSðAIFS;BIFSÞ:

By a similar reasoning and with the help of

lAðxÞ þ ð1� mAðxÞÞ
lCðxÞ þ ð1� mCðxÞÞ

� lBðxÞ þ ð1� mBðxÞÞ
lCðxÞ þ ð1� mCðxÞÞ

;

which is ensured by the validity of (6), we find that

minflAðxÞ; lCðxÞg þminf1� mAðxÞ; 1� mCðxÞg
maxflAðxÞ; lCðxÞg þmaxf1� mAðxÞ; 1� mCðxÞg

� minflBðxÞ; lCðxÞg þminf1� mBðxÞ; 1� mCðxÞg
maxflBðxÞ; lCðxÞg þmaxf1� mBðxÞ; 1� mCðxÞg

;

that is,

Smix
IFSðAIFS;CIFSÞ� Smix

IFSðBIFS;CIFSÞ: ½Proved�

In order to prove the property (P5), we assume that AIFS is

a crisp set, that is, AIFS ¼ fhx; 1; 0ig (or AIFS ¼ fhx; 0; 1ig).
In this regard, the complement set AIFS

c is defined as Ac
IFS ¼

fhx; 0; 1ig (or Ac
IFS ¼ fhx; 1; 0ig). Hence, Smix

IFSðAIFS;A
c
IFSÞ¼

minflAðxÞ;lAc ðxÞgþminf1�mAðxÞ;1�mAc ðxÞg
maxflAðxÞ;lAc ðxÞgþmaxf1�mAðxÞ;1�mAc ðxÞg¼

minf1;0gþminf1;0g
maxf1;0gþmaxf1;0g¼0: h

It should be noted that we do not claim here the mapping

SIFS
mix is a proper similarity measure for IFSs, especially from

a point of view of decision making.

Although, in some cases we do not make any difference

among quite different situations, for example, for AIFS =

{hx, 1, 0i} and quite different IFSs BIFS = {hx, 0.4, 0.4i}
and CIFS = {hx, 0.3, 0.3i} we get SIFS

mix(AIFS, BIFS) =

SIFS
mix(AIFS, CIFS) = 0.5, but making use of the mapping SIFS

mix

as a part of the following similarity measure SIFS enhances

the distinguishability of the new similarity measure SIFS.

Taking into account the mappings SIFS
d and SIFS

mix given by

(4) and (5), respectively, we can obtain a similarity mea-

sure on IFSs as follows.

Theorem 5 Let AIFS, BIFS [ IFS(X). If SIFS
d :IFS(X) 9

IFS(X)? [0,1] and SIFS
mix:IFS(X) 9 IFS(X)? [0,1] are the

mappings given by (4) and (5), respectively. Then, the

mapping SIFS:IFS(X) 9 IFS(X)? [0,1] given by

SIFSðAIFS;BIFSÞ ¼
1

2
ðSd

IFSðAIFS;BIFSÞ þ Smix
IFSðAIFS;BIFSÞÞ;

ð12Þ

is a similarity measure of IFSs AIFS and BIFS.

Proof We are required to show that SIFS satisfies the

properties (P1)–(P5). Due to Theorem 2 and Theorem 3, it

follows that SIFS
d and SIFS

mix satisfy the properties (P1)–(P5)

and therefore we get immediately the properties (P1)–(P5)

are fulfilled for SIFS, too. h

Here, we would like to give the reasons why SIFS should

be considered?

1. The formulae of the proposed similarity measure given

by (12) requires no complicated computation.

2. By the fact that ‘‘the more the information that the

similarity measure focuses on, the more powerful its

distinguishability’’, we adopted the convex combination

of the endpoints of the interval ½lAIFS
; 1� mAIFS

� as follows

vjðAIFSðxiÞÞ ¼ 1� j

m

� �
lAðxiÞ þ

j

m
ð1� mAðxiÞÞ;

j ¼ 0; 1; . . .;m;

to define SIFS
d as a term of SIFS. From mathematical

point of view, the larger the value of the parameter

m, the more precise the degree of similarity of IFSs.
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This follows from the fact that SIFS is a monotonically

increasing function as the parameter m increases (See

Theorem 7 in ‘‘Appendix’’).

3. The existence of some cons cases might be resulted

from the circumstance that the membership-degree

interval [l, 1 - m] has equal endpoints. To avoid such

cons cases, we make use of SIFS
mix given by (5) to

enhance the distinguishability of SIFS.

4. From the comparison, one can easily observe that SIFS

has no counter-intuitive cases, specially for sufficiently

large value of m, that the existing similarity measures

have. Furthermore, SIFS satisfies all the well-known

properties (P1)–(P5).

4 Comparisons of similarity measures on IFSs

Here, to illustrate and compare our proposed similarity

measure SIFS with the existing similarity measures, we

recall all the methods analyzed by Li et al. (2007), and the

other methods suggested by Wang and Xin (2005), Huang

et al. (2005), Hung and Yang (2007), and Ye (2011).

Consider two IFSs AIFS;BIFS 2 IFSðXÞ, where X =

{x1, x2,...,xn}. The similarity measures analyzed by Li et al.

(2007) are briefly described as follows:

• Chen’s measure

SCðAIFS;BIFSÞ ¼ 1�
Pn

i¼1 jSAðxiÞ � SBðxiÞj
2n

; ð13Þ

where SA(xi) = lA(xi) - mA(xi) and SB(xi) = lB(xi) -

mB(xi).

• Hong and Kim’s measure

SHðAIFS;BIFSÞ

¼ 1�
Pn

i¼1ðjlAðxiÞ � lBðxiÞj þ jmAðxiÞ � mBðxiÞjÞ
2n

:

ð14Þ

• Fan and Zhangyan’s measure

SLðAIFS;BIFSÞ ¼ 1�
Pn

i¼1 jSAðxiÞ � SBðxiÞj
4n

�
Pn

i¼1ðjlAðxiÞ � lBðxiÞj þ jmAðxiÞ � mBðxiÞjÞ
4n

:

ð15Þ

• Yanhong et al. measure

SOðAIFS;BIFSÞ

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ððlAðxiÞ�lBðxiÞÞ2þðmAðxiÞ� mBðxiÞÞ2Þ

2n

s
:

ð16Þ

• Dengfeng and Chuntian’s measure

SDCðAIFS;BIFSÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 jwAðxiÞ � wBðxiÞjp

n

p

r
;

ð17Þ

where wAðxiÞ ¼ lAðxiÞþ1�mAðxiÞ
2

and wBðxiÞ ¼ lBðxiÞþ1�mBðxiÞ
2

.

• Mitchell’s measure

SHBðAIFS;BIFSÞ ¼
1

2
ðqlðAIFS;BIFSÞ þ qmðAIFS;BIFSÞÞ;

ð18Þ

where ql(AIFS, BIFS) = SDC(lA(xi), lB(xi)) and qm(AIFS,

BIFS) = SDC(1 - mA(xi), 1 - mB(xi)).

• Zhizhen and Pengfei’s measures

Sp
eðAIFS;BIFSÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ð/lðxiÞ þ /mðxiÞÞp

n

p

s
; ð19Þ

where /lðxiÞ ¼ jlAðxiÞ�lBðxiÞj
2

and /mðxiÞ ¼
jð1�mAðxiÞÞ�ð1�mBðxiÞÞj

2
.

Sp
s ðAIFS;BIFSÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðus1ðxiÞ þus2ðxiÞÞp

n

p

r
; ð20Þ

where us1ðxiÞ ¼ jmA1ðxiÞ�mB1ðxiÞj
2

, us2ðxiÞ ¼ jmA2ðxiÞ�mB2ðxiÞj
2

,

mA1ðxiÞ ¼ ðlAðxiÞþmAðxiÞÞ
2

, mB1ðxiÞ ¼ ðlBðxiÞþmBðxiÞÞ
2

, mA2ðxiÞ
¼ ð1�mAðxiÞþmAðxiÞÞ

2
, mB2ðxiÞ ¼ ð1�mBðxiÞþmBðxiÞÞ

2
, mAðxiÞ ¼

ð1�mAðxiÞþlAðxiÞÞ
2

, mBðxiÞ ¼ ð1�mBðxiÞþlBðxiÞÞ
2

:

S
p
hðAIFS;BIFSÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðg1ðiÞ þ g2ðiÞ þ g3ðiÞÞp

3n

p

r
;

ð21Þ

where, g1(i) = /l(xi) ? /m(xi), (see Se
p), or g1ðiÞ ¼

us1ðxiÞ þ us2ðxiÞ, (see Ss
p), g2(i) = |wA(xi) - wB(xi)|,

(see SDC), g3(i) = max{lA(i), lB(i)} - min{lA(i), lB(i)},

where, lAðiÞ ¼ ð1�mAðxiÞ�lAðxiÞÞ
2

, lBðiÞ ¼ ð1�mBðxiÞ�lBðxiÞÞ
2

.

• Hung and Yang’s measures

S1
HYðAIFS;BIFSÞ ¼ 1� dHðAIFS;BIFSÞ; ð22Þ

S2
HYðAIFS;BIFSÞ ¼

e�dHðAIFS;BIFSÞ � e�1

1� e�1
; ð23Þ

S3
HYðAIFS;BIFSÞ ¼

1� dHðAIFS;BIFSÞ
1þ dHðAIFS;BIFSÞ

; ð24Þ

where dHðAIFS;BIFSÞ ¼ 1
n

Pn
i¼1 maxfjlAðxiÞ � lBðxiÞj;

jmAðxiÞ � mBðxiÞjg.

The other existing similarity measures are described by

the following forms:
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• Wang and Xin’s measure (2005)

SWXðAIFS;BIFSÞ ¼ 1� 1

n

Xn

i¼1

jlAðxiÞ � lBðxiÞj þ jmAðxiÞ � mBðxiÞj
4

�

þmaxfjlAðxiÞ � lBðxiÞj; jmAðxiÞ � mBðxiÞjg
2

�
;

ð25Þ

• Huang et al. measures (2005)

SH1ðAIFS;BIFSÞ

¼ 1� 1

n

Pn
i¼1 2ðjlAðxiÞ � lBðxiÞj þ jmAðxiÞ � mBðxiÞjÞ

2þ ðjlAðxiÞ � lBðxiÞj þ jmAðxiÞ � mBðxiÞjÞ
;

ð26Þ

SH2ðAIFS;BIFSÞ

¼ 1� 2
Pn

i¼1ðjlAðxiÞ � lBðxiÞj þ jmAðxiÞ � mBðxiÞjÞ
2nþ

Pn
i¼1ðjlAðxiÞ � lBðxiÞj þ jmAðxiÞ � mBðxiÞjÞ

;

ð27Þ

• Hung and Yang’s measure (2007)

S
p
HYðAIFS;BIFSÞ ¼ 1� 1

n

Xn

i¼1

ðjlAðxiÞ � lBðxiÞjp

þ jmAðxiÞ � mBðxiÞjpÞ
1
p; ð28Þ

• Ye’s measure (2011)

SC
Y ðAIFS;BIFSÞ ¼

1

n

Xn

i¼1

lAðxiÞlBðxiÞ þ mAðxiÞmBðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

AðxiÞ þ m2
AðxiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

BðxiÞ þ m2
BðxiÞ

p :

ð29Þ

With the help of some counter-intuitive examples, we

will show that the similarity measures mentioned above are

not fit so well (see Tables 1, 2). Meanwhile, our proposed

method bears no such drawbacks. This superiority can be

easily found from the last rows of Table 2. Keeping in

mind that each similarity measure may have different

counter-intuitive examples, but it suffices to give one

example for each formula in Table 1.

Table 1 Similarity measures

and their counter-intuitive

example

Counter-intuitive example Similarity measure

Example 1

AIFS ¼ fhx; 0; 0ig;BIFS ¼ fhx; 0:5; 0:5ig
Eq. (13): Sc(AIFS,BIFS) = 1 (unreasonable)

Example 2

AIFS ¼ fhx; 0:3; 0:3ig;BIFS ¼ fhx; 0:4; 0:4ig
CIFS ¼ fhx; 0:3; 0:4ig;DIFS ¼ fhx; 0:4; 0:3ig

Eq. (14): SH(AIFS, BIFS) = SH(CIFS, DIFS) (unreasonable)

Example 3

AIFS ¼ fhx; 1; 0ig;BIFS ¼ fhx; 0; 0ig
CIFS ¼ fhx; 0:5; 0:5ig

Eq. (14): SH(AIFS, BIFS) = SH(CIFS, BIFS) (unreasonable)

Example 4

AIFS ¼ fhx; 0:4; 0:2ig;BIFS ¼ fhx; 0:5; 0:3ig
CIFS ¼ fhx; 0:5; 0:2ig

Eq. (15): SL(AIFS, BIFS) = SL(AIFS, CIFS) (unreasonable)

Same as Example 2 Eq. (16): SO(AIFS, BIFS) = SO(CIFS, DIFS) (unreasonable)

Same as Example 1 Eq. (17): SDC(AIFS, BIFS) = 1 (unreasonable)

Same as Example 2 Eq. (18): SHB(AIFS, BIFS) = SHB(CIFS, DIFS) (unreasonable)

Same as Example 2 Eq. (19): Se
p(AIFS, BIFS) = Se

p(CIFS, DIFS) (unreasonable)

Same as Example 4 Eq. (20): Ss
p(AIFS, BIFS) = Ss

p(AIFS, CIFS) (unreasonable)

Example 5

AIFS ¼ fhx; 0:3; 0:7ig;BIFS ¼ fhx; 0:4; 0:6ig
CIFS ¼ fhx; 0:2; 0:8ig

Eq. (21): Sh
p(AIFS, BIFS) = Sh

p(AIFS, CIFS) (unreasonable)

Same as Example 4 Eq. (22): SHY
1 (AIFS, BIFS) = SHY

1 (AIFS, CIFS) (unreasonable)

Same as Example 4 Eq. (23): SHY
2 (AIFS, BIFS) = SHY

2 (AIFS, CIFS) (unreasonable)

Same as Example 4 Eq. (24): SHY
3 (AIFS, BIFS) = SHY

3 (AIFS, CIFS) (unreasonable)

Same as Example 2 Eq. (25): SWX(AIFS, BIFS) = SWX(CIFS, DIFS) (unreasonable)

Same as Example 2 Eq. (26): SH1(AIFS, BIFS) = SH1(CIFS, DIFS) (unreasonable)

Same as Example 2 Eq. (27): SH2(AIFS, BIFS) = SH2(CIFS, DIFS) (unreasonable)

Same as Example 2 Eq. (28): SHY
p (AIFS, BIFS) = SHY

p (CIFS, DIFS) (unreasonable)

Same as Example 3 Eq. (29): SY
C(AIFS, BIFS) = SY

C(CIFS, BIFS) (unreasonable)

90 B. Farhadinia

123



5 Applications of SIFS in practice

In this section, to illustrate the efficiency of the proposed

similarity measure and to compare its results with that of

some methods, we apply SIFS with m = 5 to two examples

borrowed from Liu (2005), Vlachos and Sergiadis (2007)

and Ye (2011).

Example 1 (Pattern recognition) Let X = {x1, x2, x3}.

Consider three known patterns C1, C2 and C3 which are

represented by the following IFSs, respectively,

C1 ¼ fhx1; 1:0; 0:0i; hx2; 0:8; 0:0i; hx3; 0:7; 0:1ig;

C2 ¼ fhx1; 0:8; 0:1i; hx2; 1:0; 0:0i; hx3; 0:9; 0:0ig;

C3 ¼ fhx1; 0:6; 0:2i; hx2; 0:8; 0:0i; hx3; 1:0; 0:0ig:

The aim here is to classify an unknown pattern

Q ¼ fhx1; 0:5; 0:3i; hx2; 0:6; 0:2i; hx3; 0:8; 0:1ig;

in one of the above-mentioned classes C1, C2 and C3.

In order to proceed, we use the criteria

max
1� i� 3

fSIFSðCi;QÞg;

where SIFSðC1;QÞ ¼ 0:7708; SIFSðC2;QÞ ¼ 0:7739;
SIFSðC3;QÞ ¼ 0:8378;

give rise to that the pattern Q should be classified in C3.

This result is exactly matching with that obtained in (Liu

2005) and (Ye 2011).

Example 2 (Medical diagnosis) Suppose that the universe of

discourse is to be a set of symptoms X = {x1 (Tempera-

ture), x2 (Headache), x3 (Stomach pain), x4 (Cough), x5

(Chest pian)}. Consider a set of diagnosis Q = {Q1(Viral

fever), Q2(Malaria), Q3(Typhoid), Q4(Stomach problem),

Q5(Chest problem)} whose elements are represented by the

following IFSs, respectively,

Q1 ¼ fhx1; 0:4; 0:0i; hx2; 0:3; 0:5i; hx3; 0:1; 0:7i;
hx4; 0:4; 0:3i; hx5; 0:1; 0:7ig;

Q2 ¼ fhx1; 0:7; 0:0i; hx2; 0:2; 0:6i; hx3; 0:0; 0:9i;
hx4; 0:7; 0:0i; hx5; 0:1; 0:8ig;

Q3 ¼ fhx1; 0:3; 0:3i; hx2; 0:6; 0:1i; hx3; 0:2; 0:7i;
hx4; 0:2; 0:6i; hx5; 0:1; 0:9ig;

Q4 ¼ fhx1; 0:1; 0:7i; hx2; 0:2; 0:4i; hx3; 0:8; 0:0i;
hx4; 0:2; 0:7i; hx5; 0:2; 0:7ig;

Q5 ¼ fhx1; 0:1; 0:8i; hx2; 0:0; 0:8i; hx3; 0:2; 0:8i;
hx4; 0:2; 0:8i; hx5; 0:8; 0:1ig:

The aim here is to assign a patient

P ¼ fhx1; 0:8; 0:1i; hx2; 0:6; 0:1i; hx3; 0:2; 0:8i;
hx4; 0:6; 0:1i; hx5; 0:1; 0:6ig;

Table 2 The demonstration table of counter-intuitive examples being visible in bold

1 2 3 4 5 6

AIFS ¼ fhx; lA; mAig fhx; 0:3; 0:3ig fhx; 0:3; 0:4ig fhx; 1; 0ig fhx; 0:5; 0:5ig fhx; 0:4; 0:2ig fhx; 0:4; 0:2ig
BIFS ¼ fhx; lB; mBig fhx; 0:4; 0:4ig fhx; 0:4; 0:3ig fhx; 0; 0ig fhx; 0; 0ig fhx; 0:5; 0:3ig fhx; 0:5; 0:2ig

SC 1 0.9 0.5 1 1 0.95

SH 0.9 0.9 0.5 0.5 0.9 0.95

SL 0.95 0.9 0.5 0.75 0.95 0.95

SO 0.9 0.9 0.3 0.5 0.9 0.93

SDC 1 0.9 0.5 1 1 0.95

SHB 0.9 0.9 0.5 0.5 0.9 0.95

Se
p 0.9 0.9 0.5 0.5 0.9 0.95

Ss
p 0.95 0.9 0.5 0.75 0.95 0.95

Sh
p 0.93 0.933 0.5 0.67 0.93 0.95

SHY
1 0.9 0.9 0 0.5 0.9 0.9

SHY
2 0.85 0.85 0 0.38 0.85 0.85

SHY
3 0.82 0.82 0 0.33 0.82 0.82

SWX 0.9 0.9 0.25 0.5 0.9 0.95

SH1 0.8182 0.8182 0.3333 0.3333 0.8182 0.9048

SH2 0.8182 0.8182 0.3333 0.3333 0.8182 0.9048

SHY
p 0.8586 0.8586 0 0.2929 0.8586 0.9

SY
C 1 0.96 0 0 0.9971 0.9965

SIFS, m = 6 0.8758 0.8591 0.4495 0.5000 0.8897 0.9315

SIFS, m = 7 0.8764 0.8591 0.4512 0.5030 0.8903 0.9317

SIFS, m = 8 0.8768 0.8591 0.4524 0.5053 0.8908 0.9318
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to one of the above-mentioned diagnosis Q1, Q2, Q3, Q4

and Q5.

We now proceed by considering the criteria

max
1� i� 5

fSIFSðP;QiÞg;

where SIFSðP;Q1Þ ¼ 0:7654; SIFSðP;Q2Þ ¼ 0:7580;

SIFSðP;Q3Þ ¼ 0:7187; SIFSðP;Q4Þ ¼ 0:4482;

SIFSðP;Q5Þ ¼ 0:3809:

This gives rise to that the proper diagnosis for the patient P

is Q1(Viral fever). Here the result is exactly matching with

that obtained in Vlachos and Sergiadis (2007) and Ye

(2011).

6 Conclusion

This article presents a new similarity measure for intui-

tionistic fuzzy sets by making use of the convex combi-

nation of endpoints of the membership-degree interval and

also focusing on the property of min and max operators.

Among the existing methods, the proposed method seems

to be more suitable for real cases and more valuable

because of considering more information of IFSs. The

proposed similarity measure enriches the theories and

methods for measuring the degree of similarity between

intuitionistic fuzzy sets.
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Appendix

In this section we prove the main results stated in the last

part of Sect. 3. First we prove a key theorem.

Theorem 6 Let AIFS;BIFS 2 IFSðXÞ: The parametric

distance dIFS : IFSðXÞ � IFSðXÞ ! ½0; 1� given by (2) is

monotonically decreasing as the parameter m increases.

Proof Without loss of the generality, we assume that

X = {x1 = x} and AIFS;BIFS 2 IFSðXÞ are respectively

represented by the intervals [a1, a2] and [b1, b2] where

a1 = lA(x), a2 = 1 - mA(x), b1 = lB(x), b2 = 1 - mB(x).

With the latter in mind, we can now restate dIFS(AIFS, BIFS)

in parametric form as follows

d
ðmÞ
IFSðAIFS;BIFSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mþ 1

Xm

j¼0

½vjðAIFSðxÞÞ � vjðBIFSðxÞÞ�2
vuut ;

where vjðAIFSðxÞÞ ¼ 1� j

m

� �
a1 þ

j

m
a2; j ¼ 0; 1; :::;m;

vjðBIFSðxÞÞ ¼ 1� j

m

� �
b1 þ

j

m
b2; j ¼ 0; 1; :::;m:

As a first step toward the general case, we first show that

d
ð1Þ
IFSðAIFS;BIFSÞ� d

ð2Þ
IFSðAIFS;BIFSÞ;

for any AIFS;BIFS 2 IFSðXÞ: By the definition of the

parametric distance dIFS
(m), one gets

ðdð1ÞIFSðAIFS;BIFSÞÞ2 � ðdð2ÞIFSðAIFS;BIFSÞÞ2

¼ 1

2
½ða1 � b1Þ2 þ ða2 � b2Þ2� �

1

3
½ða1 � b1Þ2

þ ðða1 þ
a2 � a1

2
Þ � ðb1 þ

b2 � b1

2
ÞÞ2 þ ða2 � b2Þ2�:

In this and subsequent results, it is notationally convenient

to set

a ¼ a1 � b1;

b ¼ a2 � b2:

With the use of the above notations, the following result is

obtained

aþ k
b� a

m
¼ a1 þ k

a2 � a1

m

� �
� b1 þ k

b2 � b1

m

� �
;

k ¼ 0; 1; :::;m:

Thus, with the above setting in mind, we find that

ðdð1ÞIFSðAIFS;BIFSÞÞ2 � ðdð2ÞIFSðAIFS;BIFSÞÞ2

¼ 1

2
½a2 þ b2� � 1

3
a2 þ aþ b� a

2

� �2

þb2

" #

¼ 1

6
3a2 þ 3b2 � 2a2 � 2

aþ b
2

� �2

�2b2

" #

¼ 1

6
a2 þ b2 � 2

aþ b
2

� �2
" #

¼ 1

12
ða� bÞ2� 0;

completing the proof of dIFS
(1) (AIFS, BIFS) C dIFS

(2) (AIFS, BIFS).

We are now ready to prove the general case where the

parameter m is a natural number.

For given m and from definition of the parametric

distance dIFS
(m), we have
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completing the proof of dIFS
(m)(AIFS, BIFS) C dIFS

(m?1)(AIFS,

BIFS). h

Corollary 1 Let AIFS;BIFS 2 IFSðXÞ: The parametric

similarity measure S
dðmÞ
IFS : IFSðXÞ � IFSðXÞ ! ½0; 1� given

by (4) is a monotone increasing function of the parameter

m.

Proof The proof is concluded by taking definition of SIFS
d(m)

and Theorem 6 into account. h

Theorem 7 Let AIFS;BIFS 2 IFSðXÞ: If Sd
IFS : IFSðXÞ �

IFSðXÞ ! ½0; 1� and Smix
IFS : IFSðXÞ � IFSðXÞ ! ½0; 1� are

the mappings given by (4) and (5), respectively. Then, the

sequence of parametric similarity measures S
ðmÞ
IFS : IFSðXÞ �

IFSðXÞ ! ½0; 1� given by (12) which can be restated as

S
ðmÞ
IFSðAIFS;BIFSÞ ¼

1

2
ðSdðmÞ

IFS ðAIFS;BIFSÞ þ Smix
IFSðAIFS;BIFSÞÞ;

is a convergent sequence on [0,1].

Proof Since the parametric similarity measure S
dðmÞ
IFS :

IFSðXÞ � IFSðXÞ ! ½0; 1� given by (4) is a monotone

increasing function of the parameter m (by Corollary 1

and since SIFS
mix is not dependant on the choice of m), we

deduce that the parametric similarity measure S
ðmÞ
IFS :

IFSðXÞ � IFSðXÞ ! ½0; 1� is a monotone increasing func-

tion of the parameter m, too. This incorporating

with the boundedness of SIFS
(m) (by the property (P1)

where SIFS
(m)(AIFS,BIFS) B 1 for any AIFS;BIFS 2 IFSðXÞ)

will immediately lead to the convergence property

of SIFS
(m). h

The earlier result shows that to have a more precise

comparison we need to choose m sufficiently large. This

finding is confirmed and illustrated by the graph in Fig. 1

where the curves C1–C6 show the behavior of SIFS
(m)

applied to each pair of IFSs given in columns 1–6 of

Table 2, respectively, as the parameter m increases from 1

to 50.

ðdðmÞIFSðAIFS;BIFSÞÞ2 � ðdðmþ1Þ
IFS ðAIFS;BIFSÞÞ2 ¼

1

mþ 1
a2 þ aþ b� a

m

� �2

þ � � � þ aþ ðm� 1Þ b� a
m

� �2

þb2

" #

� 1

mþ 2
a2 þ aþ b� a

mþ 1

� �2

þ � � � þ aþ ðm� 1Þ b� a
mþ 1

� �2

þ aþ ðmÞ b� a
mþ 1

� �2

þb2

" #
¼ 1

ðmþ 1Þðmþ 2Þ

ðmþ 2Þ a2 þ ðm� 1Þaþ b
m

� �2

þ ðm� 2Þaþ 2b
m

� �2

þ � � � þ aþ ðm� 1Þb
m

� �2

þb2

" #(

�ðmþ 1Þ a2 þ ðmÞaþ b
mþ 1

� �2

þ ðm� 1Þaþ 2b
mþ 1

� �2

þ � � � þ 2aþ ðm� 1Þb
mþ 1

� �2

þ aþ ðmÞb
mþ 1

� �2

þb2

" #)

¼ 1

ðmþ 1Þðmþ 2Þ a2 þ b2 þ ðmþ 2Þ
m2

½ððm� 1Þaþ bÞ2 þ ððm� 2Þaþ 2bÞ2 þ � � � þ ðaþ ðm� 1ÞbÞ2�
�

� 1

ðmþ 1Þ ½ððmÞaþ bÞ2 þ ððm� 1Þaþ 2bÞ2 þ � � � þ ð2aþ ðm� 1ÞbÞ2 þ ðaþ ðmÞbÞ2�
�

¼ 1

ðmþ 1Þðmþ 2Þ
ðmþ 2Þ

m2
ð½ðm� 1Þ2 þ ðm� 2Þ2 þ � � � þ 1�a2 þ ½1þ 22 þ � � � þ ðm� 1Þ2�b2 þ 2½1ðm� 1Þ

�

þ 2ðm� 2Þ þ � � � þ ðm� 1Þ1�abÞ � 1

ðmþ 1Þ ð½m
2 þ ðm� 1Þ2 þ � � � þ 1�a2 þ ½1þ 22 þ � � � þ ðm� 1Þ2 þ m2�b2

þ 2½1ðmÞ þ 2ðm� 1Þ þ � � � þ ðmÞ1�abÞg ¼ 1

ðmþ 1Þðmþ 2Þ
mþ 2

6m
a2 þ mþ 2

6m
b2 � mþ 2

3m
ab

� �

¼ 1

ðmþ 1Þ6m
ða� bÞ2� 0;
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the convergence property of SIFS
(m)

applied to IFSs given in Table 2
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