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Abstract Incomplete data are often encountered in data

sets used in clustering problems, and inappropriate treat-

ment of incomplete data can significantly degrade the

clustering performance. In view of the uncertainty of

missing attributes, we put forward an interval representa-

tion of missing attributes based on nearest-neighbor

information, named nearest-neighbor interval, and a hybrid

approach utilizing genetic algorithm and fuzzy c-means is

presented for incomplete data clustering. The overall

algorithm is within the genetic algorithm framework,

which searches for appropriate imputations of missing

attributes in corresponding nearest-neighbor intervals to

recover the incomplete data set, and hybridizes fuzzy

c-means to perform clustering analysis and provide fitness

metric for genetic optimization simultaneously. Several

experimental results on a set of real-life data sets are pre-

sented to demonstrate the better clustering performance of

our hybrid approach over the compared methods.

Keywords Fuzzy clustering � Hybrid approach �
Incomplete data � Nearest-neighbor interval

1 Introduction

As an important data processing technique, fuzzy cluster-

ing partitions the data set into overlapping groups to

describe an underlying structure within the data (Hoppner

et al. 1999), and in the literature of fuzzy clustering, the

fuzzy c-means (FCM) algorithm (Bezdek 1981) is a mile-

stone and widely used method (Wei and Fahn 2002;

Bandyopadhyay 2005). Like most fuzzy clustering tech-

niques, FCM is designed for handling complete data with

their class memberships using the idea of fuzzy set theory.

In practice, however, it is not unusual to encounter situa-

tions where a data set contains vectors that are missing one

or more of the attributes, as a result of failures in data

collection, measurement errors, random noise, missing

observations, etc. Therefore, some strategies should be

employed to handle incomplete data so that FCM is

applicable to such incomplete data sets.

In order to reduce the effects of the presence of missing

values for clustering, many approaches have been proposed

to deal with this problem in pattern recognition. The

expectation–maximization (EM) algorithm (Dempster et al.

1977) was a useful approach to modeling and estimation of

missing attributes, and was used in probabilistic clustering

(Mclachlan and Basford 1988). Subsequently, several

methods were proposed for handling missing values in

FCM (Miyamoto et al. 1998). One basic strategy is to

substitute the missing values by the weighted averages of

the corresponding attributes, while another approach is to

ignore the missing values and calculate the distances from

the non-missing data records. Therefore, these are the two

main ideas used to partition incomplete data sets later:

imputation, which replaces missing values with estimates

that are obtained based on non-missing data, and discard-

ing/ignoring, which is a non-recovery method that ignores

incomplete data or only missing attributes. The latter

method is applicable only when a small amount of data is

missing, and the elimination brings a loss of information.

And since in many cases data sets contain relatively large

amount of missing data, it is more constructive to consider
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imputation (Farhangfar et al. 2007). In 2001, Hathaway and

Bezdek (2001) proposed four strategies to continue the

FCM clustering of incomplete data, in which whole data

strategy (WDS) and partial distance strategy (PDS) are

discarding/ignoring methods, and optimal completion

strategy (OCS) and nearest prototype strategy (NPS)

belong to the imputation methods. Besides, based on the

Gath and Geva algorithm, Timm et al. (2004) proposed a

fuzzy clustering algorithm by taking into account the rea-

sons why attributes were missing. Hathaway and Bezdek

(2002) developed an approach for clustering incomplete

relational data on the basis of incomplete dissimilarity, in

which the data were completed using triangle inequality-

based approximation schemes. Honda and Ichihashi (2004)

partitioned the incomplete data sets into linear fuzzy

clusters by extracting local principal components, and the

methods needed no preprocessing of data such as imputa-

tion or elimination of incomplete data. Moreover, neural

network was another technique that can train incomplete

data for clustering (Lim et al. 2005), and statistical

representation of missing attributes was studied (Li et al.

2010b). In view of the uncertainty of missing attributes,

interval representation of missing attributes based on

nearest neighbor information had been proposed and

combined into fuzzy clustering in our previous research

(Li et al. 2010a), in which the incomplete data set was

transformed into an interval-valued one so that the FCM

clustering algorithm for interval-valued data could be

employed to solve the incomplete data clustering problem.

The convex hyper-polyhedrons formed by interval proto-

types could present to some extent the shape of clusters and

sample distribution of the data set; however, the algorithm

performance was sensitive to the upper and lower bounds

of the interval representation of missing attributes.

In this paper, we continue to focus on the interval rep-

resentation of missing attributes, and a hybrid genetic

algorithm–fuzzy c-means approach (IGA–FCM) for

incomplete data clustering is proposed. Firstly, through the

partial distance recommended by Dixon (1979) and used in

PDS–FCM (Hathaway and Bezdek 2001), nearest-neighbor

information of incomplete data can be obtained, and

missing attributes are represented by intervals, named

nearest-neighbor interval. Secondly, based on the interval

representation of missing attributes, an imputation-based

algorithm for incomplete data clustering is proposed. The

algorithm involves genetic algorithm (GA) (Davis 1991)

which searches for optimal imputations of missing attri-

butes in the corresponding nearest-neighbor intervals to

recover the incomplete data set, whereas FCM obtains

compact clusters and provides fitness metric for the genetic

search. The excellent optimization ability of genetic algo-

rithm can decrease the algorithm sensitivity to the upper

and lower bounds of the interval representation, and

optimized imputations of missing attributes can be

obtained. While the interval representation, as a suitable

way to represent the uncertainty of missing attributes, can

reduce the search space of GA to subsets that contain

nearest neighbors of incomplete data so as to avoid that the

improper information misleads the genetic search. There-

fore, more satisfying clustering results are likely to be

gotten on the basis of the appropriate imputations of

missing attributes.

The rest of the paper is organized as follows: The next

section presents a short description of the FCM algorithm

based on clustering objective function minimization. Sec-

tion 3 provides the nearest-neighbor interval representation

of missing attributes and the hybrid IGA–FCM algorithm,

whereas Sect. 4 presents clustering results of several UCI

data sets and a comparative study of our hybrid algorithm

with other methods for handling missing values in FCM.

Finally, conclusions are drawn in Sect. 5.

2 Fuzzy c-means algorithm

The fuzzy c-means (FCM) algorithm partitions a set of

complete data X ¼ fx1; x2; . . .; xng � R
s into c-(fuzzy)

clusters that are characterized by prototypes V ¼ ½v1;

v2; . . .; vc� 2 R
s�c. The algorithm performs clustering by

minimizing the following objective function

JðU;VÞ ¼
Xc

i¼1

Xn

k¼1

um
ik xk � vik k2

2; ð1Þ

taking the constraint

Xc

i¼1

uik ¼ 1; for k ¼ 1; 2; . . .; n; ð2Þ

into account. Here, xk ¼ ½x1k; x2k; . . .; xsk�T is an object

datum, and xjk is the jth attribute value of xk; vi is the ith

cluster prototype, vi 2 R
s; uik represents the degree of xk in

the ith cluster, 8i; k : uik 2 ½0; 1�, and let the partition

matrix U ¼ uik½ � 2 R
c�n; the parameter m influences the

fuzziness of the partition, m 2 ð1;1Þ; and �k k2 stands for

the Euclidean norm.

The necessary conditions for minimizing (1) with the

constraint of (2) are the update equations as follows

(Bezdek 1981):

vi ¼
Pn

k¼1 um
ikxkPn

k¼1 um
ik

; for i ¼ 1; 2; . . .; c ð3Þ

and

uik ¼
Xc

t¼1

xk � vik k2
2

xk � vtk k2
2

 ! 1
m�1

2
4

3
5
�1

;

for i ¼ 1; 2; . . .; c and k ¼ 1; 2; . . .; n:

ð4Þ
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The procedure of FCM is to optimize the clustering

objective function (1) by alternating optimization (AO),

that is, the minimization steps (3) and (4) are repeated until

the change in memberships and/or prototypes drops below

a certain threshold e.

3 Hybrid IGA–FCM approach for incomplete data

clustering

3.1 Nearest-neighbor interval determination

As an important issue for incomplete data clustering,

missing attribute handling has great effects on clustering

performance. Recently, nearest-neighbor (NN) based

techniques have been used to impute missing values in

pattern recognition. A simple NN imputation was to sub-

stitute missing attribute by the corresponding attribute of

the nearest neighbor (Stade 1996). And in the widely used

k-nearest-neighbor imputation (Acuna and Rodriguez

2004), missing attribute was filled by the mean value of the

attributes in the k nearest neighbors. Subsequently, other

than the traditional Euclidean distance, the pseudo-simi-

larity between data was introduced in searching for nearest

neighbors, and the effect of pseudo-nearest-neighbor sub-

stitution on Gaussian distributed data sets was studied

(Huang and Zhu 2002). All the nearest-neighbor based

approaches mentioned above can solve incomplete data

clustering problem well, however, the numerical imputa-

tions developed are unsuitable to represent the uncertainty

of missing attributes.

In this paper, we present a nearest-neighbor interval

representation of missing attributes by introducing the

partial distance (Dixon 1979) between incomplete data and

other samples in data set. Let ~X ¼ f~x1;~x2; . . .;~xng be an s-

dimensional incomplete data set which contains at least one

incomplete datum with some (but not all) missing attri-

butes, the distance between incomplete datum ~xb and

instance ~xl (incomplete or complete) is given by

Dbl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sPs
j¼1 Ij

Xs

j¼1
ð~xjb � ~xjlÞ2Ij

s
; ð5Þ

where ~xjb and ~xjl are the jth attribute of ~xb and ~xl

respectively, and

Ij ¼
1 ; if both ~xjb and ~xjl are nonmissing

0; otherwise

(
;

for l; b ¼ 1; 2; . . .; n; and j ¼ 1; 2; . . .; s:

ð6Þ

And in the extreme case that ~xb and ~xl have nonmissing

values only in different attributes, for example, ~xb ¼
�; 2; �; 4½ �T and ~xl ¼ ½3; �; 5; ��T, where ~x1b, ~x3b and ~x2l, ~x4l

are missing, the distance between the two data will be set to

infinity, and this is helpful to ensure the rationality of

nearest neighbor searching. Thus, by using the partial

distance (5), the nearest neighbors can be found in a way

that uses all available information, including both complete

data and non-missing attributes of incomplete data.

In this paper, we consider the case that attributes are

missing completely at random (MCAR). In view of the

uncertainty of missing attributes, for an incomplete datum

~xb, we search for its q nearest neighbors to form the interval

representation of its missing attribute ~xjb. Let x�jb and xþjb be

the minimum and maximum of the neighbors’ jth attribute

values respectively, therefore, missing attribute ~xjb can get

its interval representation as ½x�jb; xþjb�.
In MCAR problems, it is likely that some attribute j

(j ¼ 1; 2; . . .; s) misses a relatively large proportion of its

values. For an incomplete datum ~xb who losses its attribute

~xjb, let us consider an extreme case that none of the attri-

bute j in the q nearest neighbors of ~xb is non-missing. Then,

in this case, the nearest-neighbor interval of ~xjb will be

[0,1] (the data set is normalized before clustering), that is,

the interval range is maximum, which is equivalent to take

no nearest-neighbor information into account. So, to avoid

the case mentioned above and involve nearest neighbor

information into missing attribute representation, we search

for q nearest neighbors of ~xb whose attribute j are non-

missing to make possible an estimate of the interval rep-

resentation of ~xjb.

Clearly, the proposed interval representation integrates

informative neighboring relationship into the missing

attribute representation, and can introduce pattern similar-

ities in the incomplete data set into the subsequent missing

attributes estimation and clustering analysis.

3.2 Hybrid IGA–FCM approach

Genetic algorithms (GAs) (Goldberg 1989; Davis 1991;

Deb 2001) are popular search and optimization strategies

inspired on the Darwinian theory of evolution. And

recently, various hybrid GAs have been proposed to solve

optimization or classification problems. In 2006, a simple

GA was hybridized with the Wang and Mendel (WM)

model to evolve the fuzzy rule base (Chang and Liao

2006). And GAs could also be integrated with K-means

clustering algorithm and fuzzy decision tree to forecast the

future sales (Chang et al. 2009) and construct a decision-

making system for data classification (Chang et al. 2010).

Besides, Bandyopadhyay and Saha (2008) presented a

symmetry-based genetic clustering algorithm that could

automatically evolve the number of clusters as well as the

proper partition, and Mukhopadhyay et al. (2009) proposed

a multiobjective genetic algorithm-based fuzzy clustering
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algorithm for clustering categorical data sets. And in this

paper, we hybridize GA with fuzzy c-means algorithm to

solve the problem of incomplete data clustering.

As proposed by Hathaway and Bezdek (2001), when

solving the incomplete data clustering problem, missing

attributes can be imputed in the way that leaded to the

smallest possible value of the clustering objective function.

And this is the basic idea of optimal completion strategy

fuzzy c-means algorithm (OCS–FCM) mentioned above,

which optimizes missing attributes in the entire attribute

space by using gradient optimization. Inspired by this work

and based on the aforementioned interval representation of

missing attributes, we propose a hybrid IGA–FCM algo-

rithm for incomplete data clustering, which is an imputa-

tion method. With the interval representation of missing

attributes, the imputations of missing attributes can be

limited to appropriate ranges, that is, the subsets that

contain nearest neighbors of incomplete data rather than

the entire attribute space. And this characteristic makes

evolutionary algorithms, such as genetic algorithm, good

candidates for estimating the appropriate imputations of

missing attributes. Thus, in this paper, missing attributes

are viewed as variables to recover the incomplete data set,

and our hybrid framework combines FCM that performs

clustering analysis on the recovered data set and provides

fitness metric for genetic optimization, and genetic algo-

rithm that guides the search of missing attributes in the

corresponding nearest-neighbor intervals to make the

clustering objective function achieve its minimum. Finally,

clustering results of FCM based on the optimized imputa-

tions of missing attributes can be obtained.

In the following, we will describe the design of our

genetic algorithm, as well as the procedure of the proposed

hybrid IGA–FCM approach for incomplete data clustering.

3.2.1 Genetic representation

In the genetic clustering applications, binary and real

parameter representations are commonly used (Liu et al.

2004; Mukhopadhyay et al. 2009). Compared with the

binary-coded GAs, real representations are believed more

practical due to their consistency with the real world’s

number system and, thus, are convenient for further pro-

cessing (Su et al. 2009). In this paper, the chromosome is

composed of a sequence of real valued numbers that rep-

resent the imputations of missing attributes in corre-

sponding nearest-neighbor intervals.

Let E be the population and M be the population size,

and for a set of s-dimensional incomplete data ~X ¼
~x1;~x2; . . .;~xnf g with h missing attributes, the pth individual

chromosome of the population at generation t has h com-

ponents, i.e.,

EpðtÞ ¼ ep;1; ep;2; . . .; ep;h

� �
; ð7Þ

where ep;gð1� p�M; 1� g� hÞ is the gth missing attri-

bute imputation in the pth individual. Note that the coding

scheme only encodes the missing attributes, which is

helpful to reduce the computational cost of genetic algo-

rithm. For convenience, we sort and renumber the nearest-

neighbor intervals of missing attributes by their appearance

order in the data set, and Fig. 1 gives an example on a four-

dimensional data set, in which missing attributes are

denoted by *. Therefore, in the genetic process, each ele-

ment ep;g (1� p�M; 1� g� h) in chromosome EpðtÞ
should satisfy its interval constraint, that is, ep;g 2 ½e�g ; eþg �.

The initial population of solutions can be generated

randomly in the corresponding nearest-neighbor intervals,

that is

Epð1Þ ¼ ½ep;1; ep;2; . . .; ep;h�
¼ randðe�1 ; eþ1 Þ; randðe�2 ; eþ2 Þ; . . .; randðe�h ; eþh Þ
� �

;
for p ¼ 1; 2; . . .;M:

ð8Þ

And this initial population of solutions is allowed to

evolve to achieve optimized individual using a set of

genetically motivated operations.

3.2.2 Fitness function

For a set of incomplete data ~X ¼ f~x1;~x2; . . .;~xng with h

missing attributes, using each of the chromosome EpðtÞ ¼
½ep;1; ep;2; . . .; ep;h�ð1� p�MÞ, we can then obtain a

recovered complete data set X ¼ fx1; x2; . . .; xng, therefore,

FCM can be directly applicable.

In the proposed hybrid algorithm framework, the use of

FCM can perform clustering analysis on the recovered data

sets and provide fitness metric for genetic optimization

simultaneously. Here, we use the reciprocal of clustering

objective function as fitness function to evaluate the opti-

mality of each chromosome EpðtÞ (1� p�M) at generation t:

fitnessðEpðtÞÞ ¼
1

Pc
i¼1

Pn
k¼1 um

ik xk � vik k2
2

: ð9Þ

It is easy to see that the chromosome is evaluated

according to clustering objective function (1), and with the

guide of these fitness values, the genetic mechanism will

search for optimized missing attribute imputations in the

corresponding nearest-neighbor intervals to make the

clustering objective function achieve its minimum.

3.2.3 Genetic operators

In genetic algorithm, selection, crossover, and mutation

are the basic operators that provide an effective search
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123



technique and improve a population of potential solutions

iteratively. And the genetic operators adopted here are as

follows:

(i) Selection: This operation is a mechanism related to

individual fitness, in which chromosomes from the parent

population are selected according to their selection prob-

ability to replicate and form offspring chromosomes.

Generally speaking, common selection schemes include

roulette wheel selection (Michalewicz 1994), tournament

selection and rank-based selection (Blickle and Thiele

1996). And the most used selection mechanism is the

roulette wheel selection, by which the individuals are

selected by spinning a roulette wheel with its slots sized

according to their fitness values (Silva et al. 2000). Our GA

employs roulette wheel strategy for implementing the

selection scheme, and after ascending sorting the individ-

uals according to their fitness values, the selection proba-

bility of each individual is defined as follows (Zhu et al.

2004)

PselectionðEpðtÞÞ ¼
2p

MðM þ 1Þ ; for p ¼ 1; 2; . . .;M:

ð10Þ

(ii) Crossover: The mechanics of the crossover

operation is to change the genetic materials of the

individuals by swapping some information between a

pair of chromosomes. In natural evolution, a pair of

parent chromosomes may generate several offspring, and

there also exists competition among the offspring.

Inspired by this phenomenon, a crossover operator

based on competition and optimal selection (Leung

et al. 2003; Ren and San 2007) is used here.

Let the parent chromosomes be EpðtÞ ¼ ½ep;1; ep;2; . . .; ep;h�
and Ef ðtÞ ¼ ½ef ;1; ef ;2; . . .; ef ;h� (1� p; f �M; p 6¼ f ) at

generation t, and four offspring as follows are generated at

first:

offsp1 ¼
EpðtÞ þ Ef ðtÞ

2
; ð11Þ

offsp2 ¼
ðEmax þ EminÞð1� wÞ þ ðEpðtÞ þ Ef ðtÞÞw

2
; ð12Þ

offsp3 ¼ Emaxð1� wÞ þmaxðEpðtÞ;Ef ðtÞÞw; ð13Þ

offsp4 ¼ Emin 1� wð Þ þmin Ep tð Þ;Ef tð Þ
� �

w; ð14Þ

where crossover factor w 2 0; 1½ � denotes the weight to be

determined by users; Emax ¼ ½eþ1 ; eþ2 ; . . .; eþh �, Emin ¼
½e�1 ; e�2 ; . . .; e�h �; and vectors maxðEpðtÞ;Ef ðtÞÞ and

minðEpðtÞ;Ef ðtÞÞ are formed by the maximum and mini-

mum of corresponding elements in EpðtÞ and Ef ðtÞ
respectively. Subsequently the two offspring with higher

fitness values can be chosen to substitute the parent chro-

mosomes in new population. Obviously, the value of w has

no effect on offsp1, which always generates offspring at the

center of the parent chromosomes EpðtÞ and Ef ðtÞ. As for

the other three offsprings, when w! 1, offsp2 ! offsp1,

while (13) and (14) result in searching around the maxi-

mum and minimum genes of EpðtÞ and Ef ðtÞ; and when

w! 0, the crossover operation tends to develop offsprings

at the center and boundary of nearest-neighbor intervals

Emin and Emax. Thus, the smaller the value of w is, the more

important the Emin and Emax are to the generation of off-

springs. And when w ¼ 0:5, the importance degree of the

boundary of nearest-neighbor intervals (Emin and Emax) and

parent chromosomes (EpðtÞ and Ef ðtÞ) are equal. So, the

solutions may spread all over the nearest-neighbor inter-

vals, and the above crossover operator can generate supe-

rior offspring than arithmetic crossover or heuristic

crossover (Leung et al. 2003).

(iii) Mutation: The operation randomly alters some

individuals with a small probability, which provides a

means to increase the population diversity. And the simple

uniform mutation is used here, that is, a randomly selected

chromosome EpðtÞ (1� p�M) is replaced by Epðt þ 1Þ, in

which each element ep;j (1� j� s) of the vector is a random

number in the corresponding nearest-neighbor interval

e�j ; e
þ
j

h i
.

Fig. 1 An example of

renumbered nearest-neighbor

intervals on a four-dimensional

data set
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(iv) Elitist strategy: A common selection operator

is the fitness-proportional selection, which does not

guarantee the selection of any particular individual,

including the fittest (Bai et al. 2009). To overcome this

drawback, the elitist strategy proposed by Bai et al.

(2009) is employed here, which requires that the best

two individuals will be selected and a copy of them will

not be disrupted by crossover or mutation. And this

elitist strategy can effectively avoid the loss of the best

solutions.

3.2.4 Termination condition

In general, the termination condition of GA is often spec-

ified as a maximal number of generations, or as a given

value of the fitness function that is deemed to be sufficient.

In our implementation, we employ the former criteria.

3.2.5 Algorithm procedure of hybrid IGA–FCM algorithm

For a set of s-dimensional incomplete data ~X ¼
f~x1;~x2; . . .;~xng with h missing attributes, the procedure of

the hybrid IGA–FCM algorithm for incomplete data clus-

tering can be described as follows:

Step 1 For each incomplete instance ~xb (1� b� n)

whose attribute ~xjb (1� j� s) is missing, find its

q nearest neighbors with non-missing attribute j

according to the partial distance (5), and

determine the interval representation x�jb; x
þ
jb

h i

of ~xjb. Renumber the nearest-neighbor intervals

by their appearance order and get e�g ; e
þ
g

h i

(1� g� h).

Step 2 Choose m, c and e for clustering, where e [ 0 is a

small positive constant; Set the genetic population

size M, maximal number of generations G, and

crossover probability Pc, mutation probability Pm.

Initialize the genetic population by (8).

Step 3 When the genetic generation index is t

(t ¼ 1; 2; . . .;G), recover the incomplete data

set ~X using each chromosome EpðtÞ (1� p�M)

and get complete data set X, perform FCM on X.

Step 4 Calculate the fitness value of each chromosome

using (9), and ascending sort the individuals by

their fitness values. Save the best two individuals.

Step 5 Perform roulette wheel selection according to the

selection probability defined as (10). Select M � 2

individuals and preserve the best two ones.

Step 6 Except for the best two individuals, perform

crossover based on competition and optimal

selection according to the crossover probability

pc, and generate four offspring by (11)–(14), and

then choose the two offspring with higher fitness

values to substitute the parent chromosomes.

Step 7 Except for the best two individuals, perform

uniform mutation according to the mutation

probability pm.

Step 8 If genetic generation index t ¼ G, then stop and

get the optimized imputations of missing attri-

butes (the best individual) and the corresponding

clustering results; otherwise set t ¼ t þ 1 and

return to Step 3.

To give a brief example of the process we went through,

let us consider a simple two-dimensional data set shown in

Fig. 2a. In this example, the incomplete data set contains

18 complete data, which are depicted as points in the

figure, and the incomplete data ~xg ¼ ½~xg1; ?�T and ~xf ¼
½?;~xf 2�T are represented as a vertical dashed line with

horizontal component ~xg1 and a horizontal dashed line with

vertical component ~xf 2 respectively. Since the incomplete

data set only contains 20 data, the number of nearest

neighbors is set to q ¼ 3. Thus, according to the partial

distance (5), the nearest-neighbor intervals of missing

values ~xg2 and ~xf 1 can be obtained and renumbered

as e�1 ; e
þ
1

� �
¼ 0:2424; 0:3182½ � and e�2 ; e

þ
2

� �
¼ 0:5556;½

0:7778� respectively, which contains the imputations of the

missing values in appropriate ranges rather than the whole

lines. Then, let the numbers of clusters c ¼ 2, the genetic

population size M ¼ 30, iteration number G ¼ 50, cross-

over factor w ¼ 0:3, crossover probability Pc ¼ 0:6,

mutation probability Pm ¼ 0:1, and initialize the genetic

population by (8). Thus, aiming at minimizing the clus-

tering objective function, the optimized imputations of ~xg2,

~xf 1 in the constraint of nearest-neighbor intervals (as shown

in Fig. 2b) and the corresponding clustering results can be

obtained through the genetic evolution presented in this

section.

In Fig. 2b, the two solid lines represents the nearest-

neighbor intervals of the two missing values, and the

imputations obtained by the imputation-based IGA–FCM

(~xg2 ¼ 0:2446, ~xf 1 ¼ 0:7633) and OCS–FCM (~xg2 ¼
0:1703, ~xf 1 ¼ 0:8648), NPS–FCM (~xg2 ¼ 0:1702, ~xf 1 ¼
0:8649) are represented by s, 4 and h respectively.

And it is quite noticeable that the imputations gotten by

OCS–FCM and NPS–FCM algorithms are out of the

range of nearest-neighbor intervals, and the imputations

obtained by the proposed IGA–FCM algorithms are

more rational from the nearest-neighbor perspective,

and this is naturally helpful to improve the clustering

performance.
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4 Numerical experiments

4.1 Data sets

In the experiments presented below, we tested the perfor-

mance of hybrid IGA–FCM algorithm on three well-known

data sets: IRIS, Wine and New-Thyroid, which are taken

from the UCI machine repository (Blake and Merz 1998),

and often used as standard databases to test the perfor-

mance of clustering algorithms.

The IRIS data contains 150 four-dimensional attribute

vectors, depicting four attributes of iris flowers, which

include petal length, petal width, sepal length and sepal

width. The three IRIS classes involved are Setosa, Versi-

color and Virginica, each containing 50 vectors. Setosa is

well separated from the others, while Versicolor and

Virginica are not easily separable due to the overlapping of

their vectors. Hathaway and Bezdek (1995) presented the

actual cluster prototypes of the IRIS data:

V� ¼

5:00 5:93 6:58

3:42 2:77 2:97

1:46 4:26 5:55

0:24 1:32 2:02

2
664

3
775 ð15Þ

The Wine data set is the results of a chemical analysis of

wines grown in the same region but derived from three

different cultivars. The analysis determined the quantities

of 13 constituents found in each of the three types of wines.

It contains 178 data points.

The New-Thyroid data set comprises 215 patients from

the same hospital, and for each of the samples, there are

five attributes. The individuals are divided into three

groups based on diagnosis results where there are 150

healthy individuals, 35 patients suffering from hyperthy-

roidism, and 30 from hypothyroidism.

In this paper, the scheme for artificially generating an

incomplete data set ~X is to randomly select a specified

percentage of components and designate them as missing,

thus the data missingness can be considered as MCAR. The

random selection of missing attribute values is constrained

so that (Hathaway and Bezdek 2001)

1. each original attribute vector ~xk retains at least one

component;

2. each attribute has at least one value present in the

incomplete data set ~X.

4.2 Experimental results

To test the clustering performance, the clustering results of

IGA–FCM and those of whole data strategy (WDS), partial

distance strategy (PDS), optimal completion strategy

(OCS), and nearest prototype strategy (NPS) versions of

FCM (Hathaway and Bezdek 2001) are compared. As in

our previous research (Li et al. 2010a), for the last four

versions of FCM as well as standard FCM adopted in the

hybrid IGA–FCM algorithm, the initialization of these

algorithms is partition matrix U 0ð Þ that satisfies (2), and the

corresponding stopping criterion is U lð Þ � U l�1ð Þ�� ��\e. In

addition, the missing attributes are randomly initialized in

OCS–FCM and NPS–FCM.

For the three data sets, choose fuzzification parameter

m ¼ 2, the numbers of clusters c ¼ 3, convergence thresh-

old e ¼ 10�5, and number of nearest neighbors q ¼ 5. And

set the genetic population size M ¼ 30, iteration number

G ¼ 50, crossover probability Pc ¼ 0:6, mutation proba-

bility Pm ¼ 0:1, crossover factor w ¼ 0:3 to emphasize the

effect of the boundary of nearest-neighbor intervals.

To eliminate the variation in the results from trial to

trial, Tables 1, 2, and 3 present the mean number of mis-

classifications obtained over ten trials on incomplete IRIS,

Wine and New-Thyroid data sets, and the same incomplete

data set is used in each trial for each of the five approaches,
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Fig. 2 a The incomplete two-dimensional data set, b the nearest-neighbor intervals and imputations obtained by imputation-based algorithms
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so that the results can be correctly compared. In Tables 1,

2, and 3, the optimal solutions in each row are highlighted

in bold, and the suboptimal solutions are underlined.

The imputation error can be calculated by

X�M � ~XM

�� ��2

F
¼
Xn

k¼1

Xs

j¼1

x�jk � ~xjk

���
���
2

ð16Þ

where ~XM ¼ f~xjkjthe value of ~xjk is missingg, ~xjk 2 ~XM is

the imputation gotten by imputation-based algorithms, and

x�jk is the actual attribute value of ~xjk in complete data sets,

X�M ¼ x�jk

n o
. In addition, as the WDS–FCM and PDS–

FCM algorithms cannot provide imputations of missing

values, their imputation errors are unavailable.

However the actual cluster prototypes of the IRIS data

are already known, Fig. 2 shows the mean prototype error

calculated by (Hathaway and Bezdek 2001)

V � V�k k2
F¼
Xs

j¼1

Xc

i¼1

ðvji � v�jiÞ
2; ð17Þ

where V� is the actual cluster prototypes of the IRIS data as

shown in (15).

4.3 Discussion

From Tables 1, 2, and 3 and Fig. 3, it is easy to see that for

0 % missing data, all approaches reduce to regular FCM.

And for other cases, different methods for handling missing

attributes in FCM lead to different clustering results. In

terms of misclassification error, a commonly used clus-

tering criterion, the proposed hybrid IGA–FCM approach

can always perform better than the compared methods on

the three data sets. And as for the imputation error, IGA–

FCM can always get the smallest values expect for the

15 % case of incomplete IRIS data sets and 20 % case of

incomplete Thyroid data sets, where IGA–FCM gives

suboptimal solutions. Besides, for incomplete IRIS data

sets, the cluster prototypes obtained by IGA–FCM are

closer to the actual ones, based on the curves in Fig. 3. The

above experimental results imply that the nearest-neighbor

interval representation captures the essence of pattern

similarities in the original data sets, and hybrid IGA–FCM

has the ability to estimate more accurate imputations of

missing attributes in the nearest-neighbor intervals, which

is naturally helpful to get more satisfying clustering results.

As for the efficiency of the algorithms, the proposed IGA–

FCM algorithm is slower than the compared algorithms,

and because cluster analysis is an off-line data analysis

approach, the convergence rate is not as important as the

evaluation indexes mentioned above.

Furthermore, as one can observe, the WDS, PDS, OCS,

and NPS versions of FCM can perform well in some cases

on the three data sets, whereas in the other cases the

methods cannot generate satisfying results. As an example,

consider the PDS–FCM approach, in the cases that the IRIS

data misses 5 and 20 %, the Wine data misses 15 % and

the New-Thyroid data misses 15 and 20 % of their attri-

butes, PDS–FCM can obtain the second smallest mis-

classification errors, while in the other cases PDS–FCM

fails to generate satisfying results. And it is similar for the

other three approaches, that is, WDS–FCM, OCS–FCM

and NPS–FCM. It illustrates that these compared methods

may be applicable to some certain missing cases of the data

sets, and fail to exhibit robustness as the proposed IGA–

FCM algorithm.

In the compared approaches, WDS–FCM simply deletes

all the incomplete data, whereas PDS–FCM ignores miss-

ing attributes belonging to the discarding/ignoring meth-

ods. These two approaches (eliminating and ignoring) do

not make full use of data set information and cause loss of

information, which could degrade the clustering perfor-

mance. The other two compared methods, NPS–FCM and

OCS–FCM, are imputation methods as IGA–FCM. The

former one, NPS–FCM, replaces each missing attribute by

the corresponding attribute of the nearest prototype in each

iteration. In addition, OCS–FCM optimizes the missing

attributes by gradient optimization in the entire attribute

space, in terms of the ranges of missing attributes; this

approach is equivalent given that no nearest-neighbor

information is taken into account but all the interval rep-

resentations of missing attributes in IGA–FCM are [0,1].

Both of the two approaches do not take the attribute dis-

tribution information of the data sets into account, which

affects the missing attribute estimation and the subsequent

Table 1 Averaged results of ten trials using incomplete IRIS data set

% Missing Mean number of iterations to termination Mean number of misclassification Mean imputation error

WDS PDS OCS NPS IGA WDS PDS OCS NPS IGA OCS NPS IGA

0 24.0 26.4 23.7 24.6 50.0 16.0 16.0 16.0 16.0 16.0 0 0 0

5 24.9 24.6 30.3 25.6 50.0 16.3 16.9 17.3 16.9 16.3 0.3762 0.3720 0.3148

10 24.5 23.9 34.1 29.9 50.0 17.1 16.8 16.3 16.7 16.2 0.9111 0.9163 0.8328

15 24.8 22.7 37.9 30.1 50.0 16.4 16.8 16.8 16.4 15.8 2.0695 1.3369 1.4555

20 25.4 25.8 39.8 30.8 50.0 16.4 16.2 16.6 16.2 16.1 2.2760 3.8582 2.0533
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clustering analysis. In comparison, IGA–FCM adopts

nearest-neighbor intervals to represent missing attributes,

which can limit missing attribute estimation to appropriate

ranges so as to avoid that the improper information mis-

leads the missing attribute estimation. Moreover, compared

with the gradient optimization used in OCS–FCM, GA

employed in IGA–FCM has excellent optimization ability.

Thus, with appropriate imputations of missing attributes

that consider nearest-neighbor information, improved

clustering results can be obtained by the proposed IGA–

FCM algorithm.

Figure 4 shows the variations of objective function

values (9) for the optimal and suboptimal individuals in 50

generations when clustering the IRIS data set with 5 % of

its data missing (tested on a dual-core 2.53 GHz PC with

4 GB of RAM). We can see that, in the genetic process, the

optimal and suboptimal solutions tend to be consistent

gradually and can finally achieve convergence.

5 Conclusion

In this paper, we have presented a hybrid genetic algo-

rithm–fuzzy c-means approach for the problem of incom-

plete data clustering. The proposed algorithm has two main

characteristics. Firstly, based on the partial distance
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Fig. 4 The genetic iteration trend lines for the optimal and

suboptimal individuals

Table 2 Averaged results of ten trials using incomplete Wine data set

% Missing Mean number of iterations to termination Mean number of misclassification Mean imputation error

WDS PDS OCS NPS IGA WDS PDS OCS NPS IGA OCS NPS IGA

0 28.0 20.0 22.0 22.0 50.0 9.0 9.0 9.0 9.0 9.0 0 0 0

5 21.6 23.1 27.6 26.5 50.0 10.3 10.0 10.0 9.9 9.6 2.8380 2.8538 2.4241

10 25.5 23.2 39.3 28.1 50.0 12.7 10.2 10.7 10.1 9.2 5.8875 5.8695 5.0264

15 37.1 22.4 37.7 29.7 50.0 21.8 12.4 13.2 12.5 10.9 8.7404 8.6543 7.9555

20 42.9 22.1 46.7 32.3 50.0 45.1 12.0 12.7 11.9 10.8 11.0539 11.0553 10.8624

Table 3 Averaged results of ten trials using incomplete New-Thyroid data set

% Missing Mean number of iterations to termination Mean number of misclassification Mean imputation error

WDS PDS OCS NPS IGA WDS PDS OCS NPS IGA OCS NPS IGA

0 97.0 79.0 81.0 175.0 50.0 20.0 20.0 20.0 20.0 20.0 0 0 0

5 88.1 105.2 198.9 159.3 50.0 35.8 40.7 38.9 32.2 29.0 0.6790 0.6121 0.5758

10 97.8 132.9 111.4 108.5 50.0 32.3 41.3 43.2 44.9 27.3 1.7632 1.6584 1.4727

15 83.8 106.0 153.9 102.3 50.0 57.1 29.5 45.9 54.4 25.2 2.9275 2.7455 2.6579

20 117.7 104.7 127.4 94.0 50.0 64.9 37.1 49.2 49.0 34.3 4.5956 3.6984 4.0785
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Fig. 3 Comparison of averaged prototype error of 10 trials using

incomplete IRIS data by five algorithms
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between incomplete data and other samples in data set,

missing attributes are represented by nearest-neighbor

intervals that can capture the essence of pattern similarities

in data sets. Accordingly, the missing attribute estimation

can be limited to the subsets that contain nearest neighbors

of incomplete data rather than the entire attribute space,

which can avoid the effect of improper information on

missing attribute estimation effectively. Secondly, based

on the interval representation of missing attributes, the

proposed algorithm hybridizes GA and FCM, and opti-

mizes missing attribute imputations in corresponding

nearest-neighbor intervals, and clustering results of

incomplete data set can be obtained simultaneously.

Experiments on several famous UCI data sets have dem-

onstrated the performance of the proposed hybrid algo-

rithm; the proposed algorithm is clearly superior to the

compared methods in terms of clustering performance,

which shows that the hybrid IGA–FCM algorithm effec-

tively solves the incomplete data clustering problem.
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