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Abstract Parallelization is becoming a more important

issue for solving difficult optimization problems. Island

models combine phases of independent evolution with

migration where genetic information is spread out to

neighbored islands. This can lead to an increased diversity

within the population. Despite many successful applica-

tions, the reasons behind the success of island models are

not well understood. We perform a first rigorous runtime

analysis for island models and construct a function where

phases of independent evolution as well as communication

among the islands are essential. A simple island model

with migration finds a global optimum in polynomial time,

while panmictic populations as well as island models

without migration need exponential time, with very high

probability. Our results lead to new insights into the use-

fulness of migration, how information is propagated in

island models, and how to set parameters such as the

migration interval. This is a novel contribution to the the-

oretical foundation of parallel EAs. Further, we provide

empirical results that complement the theoretical results,

investigate the robustness with respect to the choice of the

migration interval and compare various migration topolo-

gies using statistical tests.

Keywords Parallel evolutionary algorithms � Island

model � Migration � Distributed evolutionary algorithms �
Spatial structures � Multi-deme model � Runtime analysis

1 Introduction

Evolutionary algorithms (EAs) are one of the most pow-

erful tools to heuristically solve optimization problems for

which no efficient methods are known. There is an ample

number of successful applications in many different fields.

EAs are generally able to find good solutions in a reason-

able amount of time, but as they are applied to harder and

bigger problems, there is an increase in the time required to

find adequate solutions. As a consequence, there have been

multiple efforts to make EAs faster, and one of the most

promising choices is to use the parallel implementations

(Cantú Paz 1997; Cantú-Paz and Goldberg 1999; Tomas-

sini 2005). Due to multi-core architectures in the current

CPUs and GPUs, these efforts are highly relevant today

(Alba 2005; Luque and Alba 2011). Parallel implementa-

tions can tap on to these resources to exploit the full

computational power of current machines. Parallelization

also plays an important role in computational grids,

including cloud computing. Using many machines in par-

allel is the method of choice when faced with a problem

where solutions need to be obtained in real time.

Parallelization can be used in various ways. The most

obvious way is to perform operations like function evalu-

ations in parallel. This makes sense as function evaluations

are often the computationally most expensive operations.
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This kind of parallelization does not alter the behavior of

the underlying sequential algorithm.

Another popular approach is to parallelize evolution

itself. Instead of evolving one large population, the popu-

lation is split into smaller subpopulations. These subpop-

ulations evolve independently for certain periods of time

and they periodically exchange solutions through a process

called migration. This model is known as island model, the

subpopulations are called islands. Other common names

are multi-deme models, the subpopulations being referred

to as demes, distributed EAs, or coarse-grained parallel

EAs.

Using such a coarse-grained parallelization can have

several advantages. First of all, parallelization in this

approach requires very little overhead, compared to par-

allelizing function evaluations, because the amount of

communication between different machines is very low.

Furthermore, the effort of managing a small population can

be much lower than the effort of managing a large, pan-

mictic population. Some operations require time that grows

larger than linear with the population size. It is also more

likely that a small population fits into a cache than a big

one. In fact, for evolutionary algorithms speed-ups, in the

size of the population or even superlinear speed-ups have

been reported (Alba 2002; He and Yao 2006). The latter

means that the total execution time across all machines is

lower for the parallel algorithm than that for its sequential

counterpart.

Besides this obvious advantage to speed-up computa-

tion, also other effects motivate parallelization. One of

them is diversity. In coarse-grained approaches, the sub-

populations evolve independently for certain periods of

time. While specific diversity preserving mechanisms such

as deterministic crowding or fitness sharing can be prov-

ably effective for panmictic populations (Friedrich et al.

2009), this mechanism is directly built-in for these parallel

EAs.

Despite the wide-spread use of parallel EAs, the theo-

retical understanding of the dynamics in a parallel EA is

very limited. Even the role of basic parameters is not well

understood (Skolicki and De Jong 2005). Leading

researchers in the field have, therefore, called out for more

fundamental research on parallel EAs (Luque and Alba

2011; Skolicki and De Jong 2005).

In the most recent text book by Luque and Alba (2011,

p. 25), developing theoretical issues for parallel GAs

(pGAs) is mentioned as a promising research line:

Improving the formal explanations on the influence of

parameters on the convergence and search of pGAs

will endow the research community with tools

allowing to analyze, understand, and customize a GA

family for a given problem.

One theoretical research area is the consideration of

takeover times (Rudolph 2000, 2006; Giacobini et al. 2003,

2005a, b; Luque and Alba 2010). In this setting, one con-

siders evolutionary algorithms that only perform selection

and migration, without genetic variation operators such as

mutation or crossover. The population is initialized with a

single best individual and several worse individuals. The

takeover time is then defined as the time until all individ-

uals represent copies of the best individual. A good survey

is given in Luque and Alba (2011, Chapter 4). While

takeover times are a useful indicator for the spread of

information in a parallel EA, this line of research does not

answer how real evolutionary algorithms behave when all

genetic components—selection, migration and variation—

come together.

Astonishingly, though parallel EAs have been known for

decades, there is no rigorous theoretical analysis that

considers the runtime of a complete coarse-grained parallel

evolutionary algorithm with a non-trivial migration topol-

ogy and, hence, goes beyond takeover times. In the paper at

hand, we provide such an analysis. We demonstrate the

usefulness of parallel models with migration from a theo-

retical perspective and investigate the role of parameters

such as the migration topology and the migration interval.

To this end, we construct a problem where parallel EAs

provably perform better than the panmictic populations.

The problem provides a structure such that phases of

independent evolution as well as communication between

islands are necessary to find a global optimum. We also

want the performance difference to be as large as possible

to demonstrate how drastic the results can be. We consider

a simple island model with a mild amount of migration and

compare it against a panmictic population of the same size.

Furthermore, we compare the island model against a par-

allel algorithm with separated subpopulations without

communication. This is done to exclude that the good

performance of the island model is simply due to multiple

independent runs of the same algorithm.

For the considered problem, the following holds:

• Panmictic populations need exponential time to find an

optimal solution with overwhelming probability.

• Separate subpopulations need exponential time to find

an optimal solution with overwhelming probability.

• An island model with properly configured migration

needs only polynomial time to find an optimal solution

with overwhelming probability.

The negative results hold with such a high probability that

also restart strategies cannot help to find a global optimum

in less than exponential time. Further, the island model is

only effective if migration is parametrized correctly. We

also show that inappropriate parameter settings lead to

exponential running times. If the migration interval is too
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small, the island model behaves like a panmictic popula-

tion. It is then prone to genetic drift and quick loss of

diversity. If the migration interval is too large, many

islands get stuck in local optima.

Our results and analyses give insight into the dynamic

behavior of island models. This allows for immediate

conclusions about a proper choice of the migration interval.

These conclusions do not only apply to the considered

problem. Many arguments generalize to other problems.

For example, in Sect. 5.1 we examine how long the period

of independent evolution must be so that islands can gain

diversity in between migrations and evolve in different

directions. We also find how small the migration interval

can be before an island model behaves like a panmictic EA

(see Sect. 6).

The methods developed in this work will prove useful in

further studies of parallel EAs and pave the way for a

theoretical foundation with direct implications for practice.

Our theoretical results are complemented by detailed

experimental studies that help to find the optimal migration

interval and the best topology for the problem at hand.

1.1 Related work

We review theoretical work on parallelization. Offspring

populations can be considered a basic form of paralleliza-

tion. Jansen et al. (2005) were the first to analyze the

expected running time of a (1?k) EA, i.e., a variant of the

(1?1) EA comparing the parent against the best out of k
offspring created independently. They analyzed the

expected number of generations needed to find a global

optimum for well-known test functions as ONEMAX and

LO. They also constructed example functions with expo-

nential performance gaps between the (1?1) EA and the

(1?k) EA. This shows that offspring populations can be

either helpful or detrimental, depending on the problem at

hand. In terms of the number of function evaluations, they

proved that on ONEMAX and LO offspring populations can

only increase the expected number of function evaluations.

Furthermore, they presented an adaptive scheme for

choosing the offspring population size and accompanied

this by experimental results.

Offspring populations were also considered by

Jägersküpper and Storch (2007), with a focus on comma

strategies. They considered the (1,k) EA which takes over

the best offspring as new current search point, even if it is

worse than its parent. Their results show that a minimum

offspring population size of k ¼ Xðlog nÞ is needed to

optimize any function with a unique global optimum in less

than exponential time.

Parallelization, in the form of offspring populations, has

also been considered for evolution strategies in continuous

spaces by Teytaud and Teytaud (2010).

Watson and Jansen (2007) defined a ‘‘royal road function’’

for crossover, i.e., a function where crossover is essential.

Their function contains a clear building-block structure. To

get the diversity needed to evolve and recombine all building

blocks, they used a simple island model with a topology and

dubbed it single-receiver model. There is a single island that

receives immigrants from all other islands. The other islands

run independently as they do not receive any immigrants.

Due to this independence, they were able to prove that

crossover leads to polynomial expected optimization times.

Note, however, that their topology is rather uncommon for

island models as all islands but the receiver do not receive

any immigrants themselves.

This work (Lässig and Sudholt 2010a) has initiated a

series of publications by the authors and others. One strand

of research deals with speed-ups in parallel evolutionary

algorithms. This includes island models as well as simple

evolutionary algorithms with offspring populations. The

speed-up is defined as the quotient of the sequential time

(number of function evaluations across all islands/off-

spring) and the parallel time (number of generations of the

parallel system). In Alba’s (2002) taxonomy, this corre-

sponds to an orthodox weak speed-up.

In Lässig and Sudholt (2010c), the authors presented a

general method for analyzing such speed-ups. It is based on

the fitness-level method, also known as method of f -based

partitions (Wegener 2002). The idea is to partition the

search space into disjoint sets (fitness levels) A1; . . .;Am

that are strictly ordered with respect to their fitness: all

individuals in a lower fitness level are strictly worse than

all individuals in a higher fitness level. Thereby, an elitist

EA is said to be on fitness level i if the best individual in

the system is in Ai. An upper bound on the expected run-

ning time is obtained by estimating the expected time until

a current elitist has been improved by variation.

Compared to a single EA, an island model running sev-

eral such EAs can increase the probability of finding a better

fitness level. This can significantly reduce the expected time

until a better fitness level is found. There are several factors

which are the key in this argument. The topology of the

network is important as well as the probability of trans-

mitting an elitist to a neighbored island. The quicker the

spread of information, the quicker the number of elitists in

the whole system increases. This number has a direct impact

on the upper bound gained by the fitness-level method. So, a

dense topology with a high probability of transmitting

elitists leads to the best upper bounds on the expected

parallel time—and hence the speedup (Lässig and Sudholt

2010c). This reasoning also applies to offspring populations

as they can be regarded as a complete topology.

In Lässig and Sudholt (2010c), a general upper bound as

well as bounds tailored to different topologies have been

established: an unidirectional ring, a two-dimensional grid
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or torus graph, and the complete topology. Results

in Lässig and Sudholt (2010c), applied to pseudo-Boolean

example functions, show that drastic speedups are possible.

The magnitude of the speedup depends on the topology as

indicated above: the bounds for the complete topology are

better than those for the torus, and those for the torus are

better than those for rings. Similar results have recently

been shown for problems from combinatorial optimization:

sorting (as maximizing sortedness), shortest paths, and

Eulerian cycles (Lässig and Sudholt 2011).

In Lässig and Sudholt (2011), we presented a simple and

powerful scheme for adapting the number of islands in an

island model. The idea is to double or halve this number,

depending on whether the current generation has led to an

improvement of the best fitness value or not. This is similar

to the scheme presented in Jansen et al. (2005). Our

scheme was proven to lead to optimal speedups in many

cases: decreasing the expected parallel running time,

without (asymptotically) increasing the expected sequential

running time. The same scheme also works for the choice

of the offspring population size.

Neumann et al. (2011) considered the impact of

migration when crossover is used to recombine immigrants

with individuals present on the target island. They gave an

example from pseudo-Boolean optimization where such an

island model with crossover drastically outperforms pan-

mictic algorithms, independent islands, as well as island

models without crossover.

Similar results were shown for instances of the VERTEX

COVER problem. With Watson and Jansen’s single-receiver

model as topology, an island model with crossover finds

global optima for the considered instance class with high

probability (Neumann et al. 2011).

1.2 Outline

The structure of the paper is as follows: in Sect. 2, the overall

scenario under investigation is described and the example

problem LOLZ is introduced in Sect. 3. In Sect. 4, we prove

that panmictic EAs are not able to optimize the function

LOLZ in reasonable time. The same holds for separate

subpopulations. This can be reasoned directly from the

results for panmictic populations. A more elaborate analysis

of parallel EAs with properly configured migration directly

follows in Sect. 5, which contains our main result, along with

side results that are of independent interest as well as a dis-

cussion about possible extensions of the main result. The

positive result for the island model requires a particular

choice of the migration interval. In Sect. 6, we consider the

performance of the island model if the migration interval is

set incorrectly. We prove that both too small and too large

values can render the island model as ineffective as pan-

mictic populations or independent runs, respectively.

We then turn from theory to experimental studies.

Section 7 deals with reproducing the theoretical results. In

Sect. 8, we compare several classical topologies as well as

random topologies, across a broad range of migration

intervals. Statistical tests in Sect. 9 help to rank topologies

according to their performance. We conclude in Sect. 10.

2 Definitions

First we restrict ourselves to specific types of algorithms

under investigation. One restriction is that we do not consider

crossover in our algorithms. The usefulness of crossover for

panmictic populations has been discussed elsewhere (see,

e.g., Jansen and Wegener 2005; Sudholt 2005; Kötzing et al.

2011). In particular, Watson and Jansen (2007) already pre-

sented an example in which an island model with crossover

succeeds in optimizing a function with a clear building-block

structure. They coined their algorithm single-receiver multi-

deme model as there is only one island that receives migrants

from all other islands. This migration topology is rather

trivial as there is no mutual interaction between the islands.

The focus in our work is different: we want to get insight into

the exchange of information in more realistic migration

topologies. Moreover, we do not want the good performance

of the algorithm to arise from the use of recombination, but

rather from a slow dissemination of information and phases

of independent evolution.

As a baseline for our comparison of algorithms, we

consider the (l?1) EA (Algorithm 1) that has already been

considered in similar studies (Friedrich et al. 2009; Witt

2006). It is a simple steady-state algorithm that in each

generation selects a parent uniformly at random and gen-

erates an offspring by mutation. The offspring replaces one

of the worst individuals in the population, unless it is

inferior to all individuals in the population. Throughout this

work, n denotes the number of bits.

Let P ¼ P1 _[P2 _[ � � � _[Pk be a partition of the whole

population in multiple subpopulations, also referred to as

islands. Further assume that there is a so-called migration
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topology, given by a directed graph. Islands represent

vertices of the topology and directed edges indicate

neighborhoods between the islands. Algorithm 2 represents

a parallel EA, where k subpopulations Pi; i ¼ 1; 2; . . .; k

evolve independently as in the (l?1) EA from Algorithm 1,

except for special migration steps.

Every s steps migrants from each island, in this case

copies of the island’s best individual, are sent to all islands

that are connected in the migration topology via a directed

edge. The incoming migrants are included into the island

using the same selection as in the panmictic (l?1) EA: for

each subpopulation, the best immigrant replaces a worst

individual on the island, unless the former is inferior to all

individuals on the island. The value s is called migration

interval. The special case of s ¼ 1, i.e., no migration, is

called the parallel EA with independent subpopulations. In

case all subpopulations have size 1, we call it the parallel

(1?1) EA with migration.

In the following, we derive upper and lower bounds on

the number of generations for each algorithm. Note that the

number of operations in one generation of the panmictic

(l?1) EA is constant, while in a parallel model, the total

number of operations in one generation is usually much

larger. Comparing a sequential algorithm like the pan-

mictic (l?1) EA with a parallel one in terms of the number

of generations is, hence, unfair. We keep this in mind, but

nevertheless stick to the number of generations as perfor-

mance measure. In our upcoming results, the impact of the

computational effort in one generation is negligible, since

the comparison with respect to the number of generations

will be between polynomial and exponential values.

The running time bounds are asymptotic (with respect to

the problem size n) and they are stated using common

notations for asymptotic growth as described in Cormen

et al. (2001). In addition, our bounds hold with a very high

probability. We say that an event happens with over-

whelming probability (w.o.p.) if its probability is at least

1� expð�XðneÞÞ for some constant e [ 0. In other words,

the probability of the event not happening decreases

exponentially with growing n. An important observation

that will be used often implicitly in our proofs is the fol-

lowing. Assume we have a polynomial number (denoted by

polyðnÞ) of ‘‘typical’’ events in a run of an algorithm that

all occur w.o.p. The events need not be independent.

Taking the union bound for the complementary events, the

probability that all typical events happen is still at least

1� polyðnÞ � expð�XðneÞÞ ¼ 1� expð�XðneÞ þ log nÞ ¼
1� expð�XðneÞÞ and, hence, overwhelming.

3 The function LOLZ

We now formally define the problem investigated in the

following. The construction is based on the well-known

leading ones function LO that simply counts the number of

leading ones in the bit string. We give a formal definition

for some bit string y ¼ y1y2. . .yjyj of length jyj and also

define a symmetric counterpart LZ that counts the number

of leading zeros:

LOðyÞ ¼
Xjyj

i¼1

Yi

j¼1

yj and LZðyÞ ¼
Xjyj

i¼1

Yi

j¼1

ð1� yjÞ:

If we take the sum of these functions, LOðxÞ þ LZðxÞ, as

fitness function, this corresponds to the length of the largest

prefix where all bits have the same value. An evolutionary

algorithm is encouraged to either establish a prefix of ones

or a prefix of zeros. At some point, this decision becomes

irreversible: once every individual in the population has a

prefix that is long enough, many bits have to be flipped in

one generation to switch from one prefix-value to the other.

By symmetry, the probability of gathering leading ones

equals the probability of gathering leading zeros. We now

make the function asymmetric by capping the maximum

fitness values in case of leading zeros: LZðxÞ is replaced by

minfz;LZðxÞg where z indicates the maximum number of

zeros. This means that once the number of leading zeros

exceeds z, the fitness cannot be increased by adding more

leading zeros and the solution is a local optimum. From a

global perspective, gathering leading zeros is, hence, a bad

choice. To achieve drastic effects on performance, we use a

composition of several blocks of this type to define the

function LOLZ (leading ones, leading zeros) as described

below. The number of blocks is denoted by b, each block

contains ‘ bits and the variables n; z; b, and ‘ are parameters

of the function. Figure 1 shows a sketch of the block

structure.
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Definition 1 Let z; b; ‘ 2 N such that b‘� n and z\‘.

For a bit string x ¼ x1. . .xn we abbreviate xi‘þ1. . .xðiþ1Þ‘ by

xðiÞ and let

LOLZn;z;b;‘ðxÞ

¼
Xb

i¼1

Yði�1Þ‘

j¼1

xj � LOðxðiÞÞ þmin z;LZðxðiÞÞ
� �h i

:

The block structure is implemented in a way that the

blocks have to be optimized one by one, from left to right;

only if the ith block has been turned to the all-ones sub-

string, the product for summand iþ 1 can be positive. Also

note that each bit always contributes a value of 0 or 1 to the

fitness. Unless the algorithm gets stuck with a block of

leading zeros, the fitness corresponds to the number of

leading bits that have been set correctly so far. In other

words, unless stuck in a local optimum, the fitness can

always be increased by fixing bits from left to right. All

individuals with a prefix of b‘ leading ones represent global

optima.

The intuition behind the function is as follows: in a

panmictic population, the whole population tends to move

towards one specific type of prefix. Hence, for each block,

there is a probability of about 1=2 that the whole popula-

tion starts gathering leading zeros in the block, thus getting

stuck in a local optimum that is hard to overcome. The

probability of always making the correct decision is close

to 2�b, so it decreases exponentially with the number of

blocks. Independent subpopulations without communica-

tion also tend to get stuck as even multiple independent

populations cannot make up for the very small success

probability of 2�b if b is not too small.

Contrarily, an island model with a well-chosen migra-

tion interval and a suitable migration topology can help.

First, the islands make independent decisions whether to

gather leading ones or leading zeros. After some time, the

islands that have chosen leading zeros will get stuck and

the other islands will exhibit a larger fitness. If a migration

happens at this point, the islands that have made the right

decision are able to take over islands which are stuck in

worse local optima. This way, information about the

‘‘good’’ decision can be spread throughout the islands, so

that the islands that are stuck in local optima can be re-

activated to participate in the search on new blocks. If the

parameters and the migration topology are set right, we

have a good chance of finding the global optimum in the

end.

Before starting the analysis of the mentioned algorithms,

we elaborate on the randomness of bits. In our function, the

bits need to be fixed from left to right. Let i� be the largest

fitness in the population. This means all fitness evaluations

so far only depended on the bits 1; . . .; i� þ 1. The bits at

positions i� þ 2; . . .; n are unbiased in a sense that there has

been no preference for bit values. Instead, these bits have

been initialized uniformly at random and have been subject

to random mutations. As a result, these bits are still ran-

dom, i.e., the probability that a bit i� þ j, 2� j� n� i� has

value 1 in any specific individual is exactly 1=2. A formal

proof for the function LO is given in Droste et al. (2002).

This observation will prove to be useful for showing that

subpopulations make independent decisions when starting

a new block.

4 Panmictic and independent populations fail

We first consider panmictic populations and prove that the

panmictic (l?1) EA cannot optimize LOLZ efficiently,

w.o.p. As mentioned before, a panmictic population tends

to gather leading bits of the same value. With respect to an

individual x we call a block i the current block if it is the

first block that does not contain only ones in x. We say that

x is of type 1 if its current block starts with a one; other-

wise, x is of type 0.

The next lemma makes the following statement: if the

population size is not too large and some individuals of

equal type have reached a new (better) fitness level, there is

a constant probability (‘‘Xð1Þ’’ in asymptotic notation) that

these individuals take over the population, so that the

population only contains individuals of this type.

Lemma 1 Assume the best fitness in the population is k

and all individuals of fitness k are of type s, for some

s 2 f0; 1g. Further assume that l� cn=ðlog nÞ for an

arbitrary constant c [ 0 and n� 2. Then with probability

Xð1Þ the panmictic (l?1) EA reaches a population where

all individuals are of type s and have fitness exactly k.

Proof Assuming there are i individuals of type s and

fitness k, a ‘‘good event’’ Gi is given if one of the i type-s

individuals is chosen and none of the bits are mutated.

Using ð1� 1=nÞn� 1=4 for n� 2 and recalling that every

individual is selected with probability 1=l,

Fig. 1 Sketch of the function LOLZ. The red area indicates the region where leading ones and leading zeros are treated symmetrically
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P Gið Þ�
i

l
� 1� 1

n

� �n

� i

4l
:

For every individual with fitness j the following holds. If

mutation does not flip the bits at positions j and jþ 1, the

offspring cannot have a larger fitness than its parent. The

reason is that the bit at position jþ 1 does not match the

prefix in the corresponding block in the parent. This then

also holds for the offspring. Note that bits j and jþ 1 must

be in the same block as we assume fitness j and the first bit

of each block contributes to the fitness.

We therefore define a ‘‘bad event’’ Bi as the event that

mutation flips at least one of the two mentioned bits.

Clearly,

P Bið Þ�
2

n
:

The probability that a good event occurs next is

P Gi before Bið Þ

¼ P Gi jBi [ Gið Þ ¼ P Gið Þ
P Gið Þ þ P Bið Þ

� i=ð4lÞ
i=ð4lÞ þ 2=n

¼ 1� 2=n

i=ð4lÞ þ 2=n

� 1� 2=n

i=ð4lÞ ¼ 1� 8l
in
:

A desired population is created if l� 1 successive good

events occur, before any bad event happens. The

probability for this is at least

P Gð Þ ¼
Yl�1

i¼1

P Gi j Gi [ Bið Þ�
Yl�1

i¼1

1� 8l
in

� �
:

For l� cn= log n, using 1� x� e�2x for x� 1=2 (see,

e.g., Abramowitz and Stegun 1964, 4.2.37), the product is

at least

Yl�1

i¼1

1� 8c

i log n

� �
�
Yl�1

i¼1

exp � 16c

i log n

� �

¼ exp
16c

log n
�
Xl�1

i¼1

1

i

 !
� exp

16c

log n
� ðln lþ 1Þ

� �

¼ Xð1Þ;

where in the last inequality, we have used
Pl�1

i¼1
1
i �

lnðl� 1Þ þ 1 (Mitzenmacher and Upfal 2005, p. 34).

Now, we know that each time the best fitness is

improved, there is a constant probability that one type of

individual gets extinct. To prove that w.o.p., this happens at

least once in each block, we need a lower bound on the

number of improvements for each block. Note that although

the lemma is formulated for LO, it also holds for LZ and it

will be straightforward to apply the lemma to LOLZ.

Lemma 2 Consider the panmictic (l?1) EA at an arbi-

trary stage while optimizing LO. Let a be an arbitrary

function of n and consider the time until the fitness of the best

individual has increased from its current value by at least a.

With probability 1� e�XðaÞ the fitness of the best individual

increases at least a=3 times before the end of this time period.

Proof Let k be the current best fitness in the population.

Note that when the algorithm increases the fitness of the best

individual, the new best individual must have the first k þ 1

bits set to 1. However, it may happen that further bits are also

set to one. These bits are then called free-riders in Droste et al.

(2002). By our previous arguments from Sect. 3, the bits

k þ 2; k þ 3; . . .; n are uniform. The probability of having ‘

free-riders is, hence, 2�ð‘þ1Þ. Following Droste et al. (2002),

we model the free-riders by considering a random 0–1 bit

string of arbitrary length with the following interpretation.

The random number of bits between the ði� 1Þth and the ith

0-bit corresponds to the random number of free-riders during

the ith improvement. During a=3 improvements, we have a

total number of at least 2a=3 free-riders if and only if there are

at most a=3 zeros among the first a positions. We can apply

Chernoff bounds (see, e.g., Mitzenmacher and Upfal 2005) to

the random 0–1 bit string as it consists of independent 0–1-

variables. This yields that the described event happens with

probability at most e�a=36. Hence, with probability 1� e�XðaÞ

after a=3 improvements the total fitness gain is less than a.

The following lower bound on the running time increases

exponentially with z, the maximum number of zeros, that

determines how far the local optima are away from all better

solutions. The probability bound depends on z and b, the

number of blocks. In case, say, b ¼ ‘ ¼
ffiffiffi
n
p

and z ¼ ‘=2,

the result gives a lower bound of nXð
ffiffi
n
p
Þ that holds w.o.p.

Theorem 1 Consider the panmictic (l?1) EA with

l� cn=ðlog nÞ for an arbitrary constant c [ 0 on

LOLZn;z;b;‘ with z ¼ xðlog bÞ, b‘� n, and z\‘. With

probability at least 1� expð�XðzÞÞ � 2�b the (l?1) EA

does not find a global optimum within nz=3 generations.

Proof To prove the theorem, we argue that—apart from a

very small error probability—each time a new block is opti-

mized, only one type of individual survives before the

threshold of z fixed bits is reached. By symmetry, this implies

that type 1 only survives with probability 1=2. As the deci-

sions for each block are independent, the probability that type

1 survives in all b blocks is 2�b. In the case type 1 gets extinct,

we argue that then at least z=2 bits have to be flipped in one

generation. This yields the claimed bound on the running time.

Now we only need to argue that extinction happens for

each block with high probability. We consider the

(l?1) EA at the first point of time where at least z=2 bits

in the current block have been fixed. By Lemma 2 the
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(l?1) EA makes at least z=6 improvements before the first

z bits of the current block have been fixed. Lemma 1 states

that after all these improvements there is a constant

probability that one type of individuals gets extinct. Hence,

the probability that the extinction does not happen during

z=6 trials is expð�XðzÞÞ.
Adding up all above-mentioned error probabilities

yields that extinction happens in all b blocks with

probability at least

1� b � expð�XðzÞÞ ¼1� expð�XðzÞ þ ln bÞ
¼1� expð�XðzÞÞ

since by assumption, z ¼ xðln bÞ. We conclude that with

probability 1� expð�XðzÞÞ � 2�b the algorithm reaches a

population where every individual is of type 0 with at least z=2

leading zeros. A necessary condition for creating any accepted

type-1 individual is to flip at least z=2 leading zeros in the

current block. The probability for this event in one generation

is n�z=2. The probability that this happens within nz=3 gener-

ations is still at most nz=3 � n�z=2 ¼ n�z=6. So, with probability

at least 1� expð�XðzÞÞ � n�z=6 � 2�b ¼ 1� expð�XðzÞÞ
�2�b the (l?1) EA needs at least nz=3 generations.

Now we justify that migration is necessary. If the

subpopulations do not communicate at all, each of them

behaves like a panmictic population. As the negative

result for Theorem 1 holds w.o.p., it is easy to show that

also multiple independent panmictic populations fail,

w.o.p.

Now Theorem 2 follows directly from Theorem 1 and

taking the union bound for all subpopulations.

Theorem 2 Consider the parallel EA with s 2 N inde-

pendent subpopulations of size l� cn=ðlog nÞ each, c [ 0

an arbitrary constant, on LOLZn;z;b;‘ with z ¼ xðlog bÞ,
b‘� n, and z\‘. With probability at least

1� s expð�XðzÞÞ � s2�b the (l?1) EA does not find a

global optimum within nz=3 generations.

If z; b� nXð1Þ and the number of subpopulations is

polynomial, this gives an exponential lower bound holding

w.o.p.

5 Island model with migration succeeds

In contrast to the two algorithms considered so far, the

island model with a suitable parametrization can optimize

the function LOLZ efficiently. This even holds for the

parallel (1?1) EA with migration in which each island

behaves like the simple (1?1) EA between migrations. We

use l to denote the number of subpopulations to compare

the algorithm to the panmictic (l?1) EA.

We believe that island models using larger populations

on each island, instead of population size 1, show a similar

behavior as long as the population size is not too large.

However, proving this formally is difficult as already the

analysis for the parallel (1?1) EA is long and quite tech-

nical. Considering population dynamics on each island

adds to this complexity, and estimating the probability and

magnitude of fitness improvements becomes much harder.

We therefore only consider the parallel (1?1) EA in the

following and leave the study of larger island populations

for future work.

5.1 How islands communicate and evolve

independently

The main proof idea is that each island makes an inde-

pendent decision for the first block. With high probability

at least one island starts gathering leading ones. The first

migration typically happens after more than z leading ones

have been collected. As all type-1 individuals are strictly

better than all type-0 individuals, the former islands take

over the latter islands. If the migration topology is not too

sparse, we still have many islands that have made the right

decision and carry on toward the next block. This process is

repeated for the following blocks with the information

about the right decision in a block being communicated to

other islands. This way, with high probability, some island

makes it to the end of the last block and finds a global

optimum.

We first define migration topologies that allow a suffi-

ciently large spread of information. The idea is as follows.

Whenever there is a small set of islands that have made

correct decisions so far, we want the topology to spread this

‘‘good’’ information to sufficiently many neighbored

islands. This is ensured if each small set of vertices in the

topology has a sufficiently large set of neighbors. If this

holds, we can later show that the ‘‘good’’ information will

not die out, with high probability.

Definition 2 Consider a migration topology G ¼ ðV ;EÞ.
For a vertex set V 0 � V let NðV 0Þ ¼ fv j 9u 2 V 0 : ðu; vÞ 2
Eg denote the neighborhood of V 0. We call G well-

expanding if there is a constant e [ 0 such that the fol-

lowing holds. For every subset V 0 � V with jV 0j � jV je we

have jNðV 0Þj � ð2þ eÞjV 0j.

We remark without giving a formal proof that the

d-dimensional hypercube graph is well-expanding if d� 3.

In addition, note that a graph is well-expanding if it has

minimum degree at least ð2þ �ÞjVje. On the other hand,

sparse graphs such as the ring or torus graphs are not well-

expanding. However, we will see in Sect. 5.4 how our

results can be adapted to hold for any (strongly) connected

migration topology.
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One aspect of our proof idea deserves a more detailed

explanation. To find the global optimum with high proba-

bility, it is essential that in each block, all islands make

independent decisions. After the ‘‘right’’ decision for one

block has been communicated to the surrounding islands,

the islands should make independent decisions for the next

block, so that again some islands make a good decision.

However, these decisions are not independent. Observe that

during the migration, all bits of a bit string are transmitted,

including information about ‘‘random’’ bits that have not

yet had an impact on the fitness in any individual. These

bits are still unbiased in a sense that the probability of one

particular bit having value 0 equals the probability that it

has value 1. However, it is very likely that these bits are

correlated among different individuals. In the extreme case

of a complete topology, a unique best individual might take

over the whole population such that all bits in all individ-

uals are the same.

The following observation provides a solution to this

dilemma. While there might be strong dependencies

immediately after migration, when the islands continue to

evolve independently they regain independence among

‘‘random’’ bits. This is made precise for one bit by

Lemma 3. A similar argument has been derived indepen-

dently in Doerr et al. (2007).

Lemma 3 Let x0; x1; . . .; xt be a sequence of bit strings

where xjþ1 results from xj by flipping each bit in xj inde-

pendently with probability 1=n. Then for t� n ln n, every

x� 2 f0; 1gn
, and every bit i

P xt
i ¼ x�i

� �
� 1

2

				

				 ¼
1

2
1� 2

n

� �t

:

Proof Let pk :¼ t
k

� �
1
n

� �k
1� 1

n

� �t�k
be the probability

that bit i is flipped exactly k times during t mutations. Let

peven :¼
P

k even pk and podd :¼
P

k odd pk, then peven þ
podd ¼ 1 and

peven � podd ¼
Xt

k¼0

ð�1Þkpk

¼
Xt

k¼0

ð�1Þk
t

k

� �
1

n

� �k

1� 1

n

� �t�k

¼
Xt

k¼0

t

k

� �
� 1

n

� �k

1� 1

n

� �t�k

¼ 1� 2

n

� �t

;

where the last equality follows from the binomial theorem.

We have P xt
i ¼ x�i

� �
2 fpeven; poddg, depending on the

value of x�i . As peven � 1=2 ¼ 1=2� podd,

P xt
i ¼ x�i

� �
� 1

2

				

				 ¼
peven � podd

2
¼ 1

2
1� 2

n

� �t

:

5.2 Progress estimates

Another crucial component in our proof is a good esti-

mation of the bit positions where migrations take place. If

a migration happens too early, an individual that has

gathered many leading zeros might take over neighboring

islands and, hence, spread ‘‘wrong’’ information. We also

want one migration to happen in every block. We have

based LOLZ on the function LO (and of course LZ) since

the progress on LO is highly concentrated around the

expectation. Droste et al. (2002) prove that with proba-

bility 1� expð�XðnÞÞ the optimization time of the

(1?1) EA on LO is within an interval ½c1n2; c2n2� for two

constants c1\c2. We need a much stronger bound, though

migrations must happen in a rather small area of the bit

string. Moreover, the variances accumulate for every

block and the cumulated variance for all blocks must still

be small.

Note that the progress of the (1?1) EA on LO (and

LZ) is fairly uniform. To increase the current fitness, the

first bit with the wrong bit value has to be flipped. This

probability is always 1=n. The progress over a longer

period of time is hence determined by a sum of inde-

pendent and almost identical random variables. We say

‘‘almost identical’’ for a good reason. If the current fitness

is i, the first i bits must not be flipped to yield an

improvement. Hence, the probability for improving the

current fitness mildly depends on the current fitness. It

varies from 1=n for i ¼ 0 to 1=n � ð1� 1=nÞn�1 	 1=ðenÞ
for i ¼ n� 1. The expected optimization time of the

(1?1) EA on LZ is very close to ðe� 1Þ=2 � n2 (Böttcher

et al. 2011; Sudholt 2010).

Having to keep leading bits implies that the (1?1) EA

experiences a slowdown as more and more leading bits are

gathered. In between two migrations, the progress tends to

decrease over time. This effect is sketched in Fig. 2. In

contrast to an ideal setting where the progress in each block

is the same, the slowdown complicates the analysis.

We next present a time bound for the time until a certain

progress has been made. This time bound holds with high

probability and it depends on the initial number i of leading

bits. The lemma significantly improves upon the tail

bounds in Droste et al. (2002) and is of independent

interest.

Lemma 4 For a 2 N and 0� iþ a� n let Ti;a denote the

elapsed random time until the (1?1) EA on LO has

Design and analysis of migration in parallel evolutionary algorithms 1129

123



increased its fitness from i to at least iþ a. With proba-

bility 1� expð�Xða2eÞÞ we have

Ti;a� nð1� 1=nÞ�i�aða=2þ a1=2þeÞ and

Ti;a� nð1� 1=nÞ�iða=2� a1=2þeÞ:

Proof The claim is obvious for a ¼ Oð1Þ, hence, we

assume in the following that a grows with n. We only

prove the first bound; the second bound can be proven in

exactly the same fashion.

The event Ti;a� nð1� 1=nÞ�i�aða=2þ a1=2þeÞ is equiv-

alent to the event that the fitness has not increased by a

after nð1� 1=nÞ�i�aða=2þ a1=2þeÞ generations. This

implies that one of the following events has occurred:

1. the (1?1) EA has made less than a=2þ a1=2þe=2

improvements in time nð1� 1=nÞ�i�aða=2þ a1=2þeÞ
or

2. the (1?1) EA has encountered less than a=2�
a1=2þe=2 free riders during at least a=2 improvements.

The probability of the second event is maximal if we

consider exactly a=2 improvements. Modeling the number

of free riders by a random 0–1-string as in Lemma 2,

Chernoff bounds yield that the probability for the second

event is at most expð�Xða2eÞÞ.
As the probability of an improvement from a LO-value

at most iþ a is at least 1=n � ð1� 1=nÞiþa
, the expected

number of improvements made within nð1� 1=nÞ�i�a

ða=2þ a1=2þeÞ generations is at least a=2þ a1=2þe. For

d :¼ a�1=2þe=2,

1� Dð Þ a
2
þ a1=2þe

� �

¼ a
2
þ a1=2þe � a1=2þe

4
� a2e

2
� a

2
þ a1=2þe

2
:

ð1Þ

Hence, the probability that this random number is less than

a=2þ a1=2þe=2 is, by an application of Chernoff bounds, at

most expð�XðaD2ÞÞ ¼ expð�Xða2eÞÞ.

The above time bounds to obtain a specific progress can

be turned into bounds on the progress in a specific amount

of time. Using Lemma 4 and standard calculations, the

corollary below can be shown. The proof simply verifies

that if the progress bounds are violated, this implies that

one of the time bounds from Lemma 4 is violated.

The condition t ¼ Oðn5=3Þ is necessary to make up for

the difference between the factors ð1� 1=nÞ�i
and

ð1� 1=nÞ�i�a
in the bounds from Lemma 4.

Corollary 1 Let RiðtÞ be the progress (i.e. fitness

increase) of the (1?1) EA on LO in t generations when

starting with a fitness value of i. Let 0\e\1=2 and t� cn

for a sufficiently large constant c [ 0 and t ¼ Oðn5=3Þ.
With probability 1� expð�Xððt=nÞ2eÞÞ we have

RiðtÞ�
2t

n
� 1� 1

n

� �i

þ3
2t

n

� �1=2þe

and

RiðtÞ�
2t

n
� 1� 1

n

� �i

�3
2t

n

� �1=2þe

:

Proof We start with the upper bound on RiðtÞ. Define

a :¼ 2t
n � 1� 1

n

� �iþ3 2t
n

� �1=2þe
. We argue that if RiðtÞ[ a

then this implies

Ti;a\t� n 1� 1

n

� ��i

ða=2� a1=2þeÞ:

By Lemma 4, the probability for the latter event is

expð�Xða2eÞÞ ¼ expð�Xððt=nÞ2eÞÞ. As P Að Þ�P Bð Þ if

A) B this is also an upper bound for the former event and

the claim follows.

Fig. 2 Sketch of the progress of the island model between migra-

tions. The arrows depict the progress every island typically makes,

unless it gets stuck in a local optimum. The shaded areas depict

locations where migration can be problematic as it can decrease

diversity. The top figure shows an idealized setting where the progress

is the same for each block. The bottom figure accounts for the

slowdown experienced as the bits in the prefix must be maintained.

The progress gets smaller with every block
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We only need to verify that the inequality

t� nð1� 1=nÞ�iða=2� a1=2þeÞ holds. Plugging in a for

the first term, we have

n 1� 1

n

� ��i a
2
� a1=2þe

� �

¼ t þ n 1� 1

n

� ��i
3

2

2t

n

� �1=2þe

�a1=2þe

" #

and the desired inequality follows if we can show

a1=2þe� 3
2

2t
n

� �1=2þe
. Using ðxþ yÞc� xc þ yc for x; y� 0

and 0� c� 1,

a1=2þe ¼ 2t

n
� 1� 1

n

� �i

þ3
2t

n

� �1=2þe
 !1=2þe

� 2t

n
þ 3

2t

n

� �1=2þe
 !1=2þe

� 2t

n

� �1=2þe

þ3
2t

n

� �ð1=2þeÞ2

� 3

2

2t

n

� �1=2þe

where the last inequality holds, since ð1=2þ eÞ2\1=2þ e
and t=n� c for a large enough constant c [ 0.

The lower bound on RiðtÞ is proved in a similar fashion.

Define a :¼ 2t
n � 1� 1

n

� �i�3 2t
n

� �1=2þe
. We argue that if

RiðtÞ\a then this implies

Ti;a [ t� n 1� 1

n

� ��i�a

ða=2þ a1=2þeÞ:

By Lemma 4 the probability for the latter event is

expð�Xða2eÞÞ ¼ expð�Xððt=nÞ2eÞÞ. As P Að Þ�P Bð Þ if

A) B this is also an upper bound for the former event and

the claim follows.

We only need to verify that the inequality

t� nð1� 1=nÞ�i�aða=2þ a1=2þeÞ holds. Plugging in a for

the first term, we have

n 1� 1

n

� ��i�a a
2
þ a1=2þe

� �

¼ t 1� 1

n

� ��a

þn 1� 1

n

� ��i�a

� 3

2

2t

n

� �1=2þe

þa1=2þe

" #
:

Bernoulli’s inequality yields 1� 1
n

� �a� 1� a
n, hence,

1� 1

n

� ��a

� 1

1� a=n
¼ 1þ a=n

1� a=n
� 1þ 2a

n
:

In addition, reusing the previous calculations from the

upper bound the expression in square brackets is bounded

from above by �1=4 � a1=2þe. Together, along with

2t=n� a=3 and t ¼ Oðn5=3Þ implying n ¼ Xðn3=2Þ,

n 1� 1

n

� ��i�a a
2
þ a1=2þe

� �

� t � 1þ 2a
n

� �
� n

4
1� 1

n

� ��i�a

a1=2þe

� t þ 2t

n
� a� n

4
1� 1

n

� ��i�a

a1=2þe

� t þ a2

3
� Xða2þeÞ

� t

since t� cn for a sufficiently large constant c [ 0.

These progress estimates are now used to locate the bit

positions in the population at the time a migration happens.

For simplicity, we consider the island model on the function

LO and argue later how this transfers to the function LOLZ.

Lemma 5 Consider the parallel (1?1) EA with migra-

tion on the function LO with s ¼ Xðn1þXð1ÞÞ, s ¼ Oðn5=3Þ,
and l� polyðnÞ subpopulations. At the time of the kth

migration, k 2 N, for every individual x in the population

we have with overwhelming probability

2ks
n
� 6k2s2

n3
� 3k

2s
n

� �1=2þe

�LOðxÞ� 2ks
n
þ 4k

2s
n

� �1=2þe

provided k � 2s
n þ 4k 2s

n

� �1=2þe� n.

Proof For the upper bound, we observe 2s
n

� �1=2þe� nXð1Þ.

The probability that the initial population contains an

individual with fitness larger than 2s
n

� �1=2þe
is bounded by

l � 2�nXð1Þ
. Hence, w.o.p., all initial individuals have fitness

less than 2s
n

� �1=2þe
.

According to Corollary 1 the probability that during s
generations following a migration, one individual with

fitness i makes progress larger than 2s
n � 1� 1

n

� �iþ3 2s
n

� �1=2þe

is expð�2s=nÞ and, hence, exponentially small. The same

holds for the weaker progress bound 2s
n þ 3 2s

n

� �1=2þe
which

is independent of i. The probability that during k migra-

tions, there is one individual making a larger progress is

kl expð�2s=nÞ and still exponentially small. Hence, after k

migrations, all individuals will have fitness at most

2s
n

� �1=2þe

þk � 2s
n
þ 3k

2s
n

� �1=2þe

� k � 2s
n
þ 4k

2s
n

� �1=2þe

:
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For the lower bound, we pessimistically assume an initial

fitness of 0. By Corollary 1 the probability that the progress

is less than 2s
n � 1� 1

n

� �i�3 2s
n

� �1=2þe
is exponentially small if

i is the fitness after the previous migration. We use a

pessimistic estimate of i for all individuals in the population

and all considered migrations. Due to the upper bound of

this lemma, the fitness is always bounded above by

k � 2s
n þ 4k 2s

n

� �1=2þe� 3ks=n. Hence, w.o.p., all individuals

in all k migrations make progress at least

k � 2s
n
� 1� 1

n

� �3ks=n

�3k
2s
n

� �1=2þe

:

By Bernoulli’s inequality, 1� 1
n

� �3ks=n� 1� 3ks=n2,

which yields the lower bound

k � 2s
n
� 6k2s2

n3
� 3k

2s
n

� �1=2þe

:

5.3 Proof of the main result

Now we are prepared to prove the main result of this

section. To obtain the following upper bound, we assume

that the migration counter t in Algorithm 2 is initialized

with a value of s=2 instead of 0. This restricts the migra-

tions to take place in the middle of each block. Alterna-

tively, we could achieve the same effect by enlarging the

first block in our function LOLZ by ‘=2 bits. This modi-

fication would not affect the negative results for the other

algorithms. However, we would like to keep the fitness

function as simple as possible and, therefore, decide to

modify the migration counter instead.

Due to the slowdown effect described earlier, we also

need to assume that the number of blocks is rather small

and all blocks are not too long. Otherwise, at some point,

migration is likely to happen too early in one of the blocks,

as shown in Fig. 2. Restricting the number and length of

the blocks, we only consider the first bits of the bit string,

where the slowdown is not significant.

Theorem 3 Consider the parallel (1?1) EA with

migration on a well-expanding migration topology with

s ¼ n5=3 and l subpopulations for l� polyðnÞ and

l� nXð1Þ. Let the function LOLZn;z;b;‘ be parametrized

according to ‘ ¼ 2s=n ¼ 2n2=3, z ¼ ‘=4 ¼ n2=3=2, and

b� n1=6=16. If the migration counter starts at s=2 ¼ n5=3=2

then with overwhelming probability the algorithm finds a

global optimum within Oðb‘nÞ ¼ Oðn2Þ generations.

Proof Call an individual x stuck in some block i if i is the

current block for x and the first z bits in block i are set to 0.

Call an individual good if it is not stuck in any block. We

first prove that each time a migration happens the following

conditions hold w.o.p.:

1. all individuals are either stuck or have more than z

leading ones in their current block and

2. for all individuals, the last z bits of the current block

are not part of the leading ones.

Moreover, we will prove that in every block at least one

migration happens. We will use Lemma 5 to prove this, but

first we have to argue in how far the progress bounds

proven for LO transfer to the function LOLZ.

The progress on LO equals the progress on LZ by

symmetry of bit values. Recall that LOLZ consists of

blocks of the function LOþ LZ, loosely speaking. A lower

bound on the progress on LO is clearly also a lower bound

for the progress on the function LOþ LZ. In a sense, the

first bit is guaranteed to be a free rider. Hence, the progress

on LOþ LZ is dominated by the progress on LO increased

by 1. Considering blocks of LOþ LZ, all lower bounds on

the progress still hold and our upper bounds for LO are

only off by the number of blocks, provided that the

individual does not get stuck.

Now the conditions follow if for each good individual,

the ith migration happens when the number of leading ones

in its current block is larger than z ¼ ‘=4 and smaller than

‘� z ¼ 3=4 � ‘. Due to the modified migration counter and

the previous lemmas, the real value of leading ones is by a

term s=n smaller than that stated in Lemma 5. At the ith

migration, choosing e :¼ 1=4, this value is at least (recall-

ing ‘ ¼ 2s=n and using i� k)

2is
n
þ s

n
� 6i2s2

n3
� 3i

2s
n

� �3=4

� i‘þ ‘
2
� 6k2n1=3 � 3k 2n2=3

� �3=4

and the desired lower bound follows if the sum of the

negative terms is less than �‘=4 ¼ �n2=3=2. Recalling

k� n1=6=16, we verify that

6k2n1=3 þ 3 � 23=4 � kn1=2

� 6

162
n2=3 þ 3 � 23=4

16
n2=3\

n2=3

2
:

Similarly, using Lemma 5 and adding a value of 1 for each

block, w.o.p., the position i‘þ ‘=2 is exceeded by at most

iþ 4i
2s
n

� �3=4

�k þ 4 � 23=4kn1=2

� n2=3

16
þ 4 � 23=4

16
n2=3\

n2=3

2
:

Now we use these conditions to prove that with high

probability, one good individual finds a global optimum.
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We first argue that the decisions for every block are

made nearly independently. To apply Lemma 3 with a

large enough t-value for the number of mutations, we make

use of condition 2: after migration in each individual at

least z bits have to be fixed to advance to the next block.

When considering a single island, these last z bits are still

unbiased, and hence uniform. A single island then behaves

like the (1?1) EA, which allows us to apply Lemma 4. By

Lemma 4, at least XðnzÞ generations are needed to fix the

last z bits of the block, w.o.p. In one generation without

migration, an individual on an island is replaced by an

offspring that results from a mutation if all bits that

currently contribute to the fitness are not flipped. This

happens with probability at least ð1� 1=nÞn�1� 1=e.

Hence, during XðnzÞ generations, the bits in the following

blocks are mutated at least XðnzÞ times in expectation. By

Chernoff bounds, the number of mutations is w.o.p., at

least cnz for some small constant c [ 0. Invoking

Lemma 3 with t ¼ cnz ¼ cn5=3=2, the difference between

the distribution of bits in the following blocks under the

real and the uniform distribution is exponentially small.

Assuming that these bits are exactly uniform only intro-

duces an exponentially small error. Hence, keeping this in

mind, we continue our considerations and assume that the

bits in the following blocks are uniform.

The first condition implies that at the time of a migration

all good individuals have a strictly larger fitness than all

individuals that are stuck in some block. Hence, after

migration, all good individuals will propagate ‘‘goodness’’

to their neighbors, i.e., all neighbors of good individuals in

the topology will also contain a good individual after

migration.

By assumption the topology is well-expanding, so there

is a constant c[ 0 such that every subset of size s� lc

vertices has at least ð2þ cÞs neighbors. W. l. o. g. c� 1=2

since making c smaller only relaxes the condition. We

claim that w.o.p. after each migration there are at least lc

good individuals in the population. In the first block,

evolution is independent for all islands. By symmetry, we

have a probability of at least 1=2 that during the first

migration, an individual will be good. (We say ‘‘at least’’

1=2 since there is a tiny chance of a stuck individual

becoming good again before the first migration.) The

probability that fewer than lc good individuals emerge is

expð�XðlcÞÞ by Chernoff bounds.

The complementary probability is overwhelming, since

l� nXð1Þ and, hence, lc� nXð1Þ. Assume that we have

li� lc good individuals after migration in the ith block.

During phases of independent evolution each individual

remains good with probability at least 1=2. Again, by

Chernoff bounds at least liþ1� li=ð2þ cÞ individuals

remain good when optimizing the ðiþ 1Þ-st block, w.o.p.

If liþ1� lc, we are fine. Otherwise, during migration in the

ðiþ 1Þ-st block all neighbors of good individuals are taken

over by good individuals. Due to well-expansion, the

number of good individuals increases to at least li again,

hence liþ1� lc in any case.

Repeating these arguments for all blocks and summing

up all error probabilities, one good individual reaches the

end of the last block and thus finds a global optimum w.o.p.

Note that although Theorem 3 is formulated for the

fixed value s ¼ n5=3, it can be adapted towards other values

for the migration interval as long as the conditions from

Lemma 5 are met and the relation s ¼ 2‘=n is maintained.

5.4 Extensions: crossover and sparse topologies

We believe that the positive result for the island model can

also be extended toward crossover in the following way. If

1-point or 2-point crossover is applied to migrants when

entering a new island, there is a good chance that the block

structure will be preserved. So, the probability of crossover

being disruptive is rather small and good individuals still

have a good chance of taking over neighbored islands. A

rigorous proof, however, remains a topic for future work.

Theorem 3 only holds for well-expanding topologies.

Intuitively, we would expect sparse topologies like the ring

graph to work even better for LOLZ as communication is

slowed down and diversity is increased, in comparison to

dense topologies. The reason why the previous theorem is

restricted is because we rely on good information being

spread quickly. If we only have one migration per block,

this can only be guaranteed if the migration topology is

well-expanding. However, our arguments can be trans-

ferred quite easily if we consider LOLZ with larger blocks.

The blocks are chosen so large that several migrations take

place in each block. If d migrations happen within each

block, a good type-1 individual can take over all islands

reachable via at most d-directed edges of the topology. If

d� nXð1Þ, this implies that a sufficient number of islands is

taken over by good individuals in each block. By these

arguments, we can show the following theorem, analo-

gously to Theorem 3. Recall that a directed graph is

strongly connected if every two vertices are connected via

a directed path.

Theorem 4 Consider the parallel (1?1) EA with

migration on an arbitrary strongly connected migration

topology with s ¼ n5=3 and l subpopulations for

l� polyðnÞ and l� nXð1Þ. Let LOLZn;z;b=d;d‘ be parame-

trized according to ‘ ¼ 2s=n ¼ 2n2=3, z� ‘=2 ¼ n2=3,

d� nXð1Þ, and bd� n1=6=16. If the migration counter starts

at s=2 ¼ n5=3=2 then with overwhelming probability, the
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algorithm finds a global optimum within Oðb‘nÞ ¼ Oðn2Þ
generations.

We only remark that instead of scaling up the block

size by d the same effect can be achieved by divid-

ing the migration interval and the value of z by d, each,

and adapting the technical constraints as well as the

value of e used in the calculations in the proof of

Theorem 3.

6 Wrong parameter settings

We have seen that the island model works well if the

migration interval is set to a very precise value. An obvious

question is whether this delicate choice is really neces-

sary—or whether the island model is robust with respect to

the parameter choice. To see this, we will perform a

detailed experimental study in Sect. 7 and give some the-

oretical arguments in the following.

There are several possible reasons why a wrong

migration interval can prove harmful, see the sketch in

Fig. 3. If the migration interval is too small, migration

happens frequently. This can be harmful in case migration

happens in some block before the symmetry of leading

ones vs. leading zeros is broken. Then there is a high

chance that the wrong information is propagated to other

islands and genetic drift rapidly decreases diversity.

Another reason for failure is that the island model does

not get enough time for islands to regain their indepen-

dence, if migration happens just before a new block is

reached.

Theorem 3 not only required the migration interval to be

in the correct order but also required to be synchronized

with the block structure. If this is not the case, it is likely

that migration will happen at a ‘‘wrong’’ point of time. This

can have the same consequences as for too small migration

intervals, see Fig. 3. Finally, the migration interval might

be too large, hence leaving the island model in a situation

similar to independent islands.

We analyze the two cases of too small and too large

migration intervals. The case that the migration interval is

not synchronized with the block structure will only be

investigated experimentally in Sect. 7. The following the-

orem shows that if the migration interval is too small, the

performance of the island model is similar to that of a

panmictic population. The diameter diamðGÞ of a graph G

denotes the length of the longest shortest path between any

two vertices in a graph.

Theorem 5 Consider the parallel (1?1) EA with l ¼
polyðnÞ islands on a topology T with diameter diamðTÞ.
If s ¼ Oðn=ðl � diamðTÞÞÞ then the parallel (1?1) EA

needs at least nz=3 generations with probability

1� b � 2�Xðz=ðlog lÞÞ � 2�b.

Proof We reuse arguments from the proof of Theorem 1.

First, we prove that with probability 2�Xðz= log lÞ we have at

least z=ð16 log lÞ improvements of the best fitness in each

block, when the maxfLO;LZg-value in the block is

between z=2 and z.

Whenever the best fitness is improved, the amount of

increase is determined by potential free riders. The proba-

bility of having more than ðlog lÞ þ 1 free riders is at most

2ðlog lÞþ1 ¼ 1=ð2lÞ. Even if all l islands were to find

improvements of the best fitness in the same generation, the

probability that there is one island improving the best fitness

with ðlog lÞ þ 1 free riders is at most l � 1=ð2lÞ ¼ 1=2. The

maximum number of free riders is thus stochastically

dominated by a random variable ððlog lÞ þ 1Þ � X where X

is a geometrically distributed random variable with param-

eter 1=2. Arguing with ‘‘blocks’’ of ðlog lÞ þ 1 free riders

instead of single bits, we apply the same reasoning as in the

proof of Lemma 4. With probability 2�Xðl= log lÞ we have

that there are at most 3=8 � z=ððlog lÞ þ 1Þ blocks of free

riders in 1=8 � z=ððlog lÞ þ 1Þ generations where the best

fitness increases. Then the total fitness increase is at most

3=8 � zþ 1=8 � z=ððlog lÞ þ 1Þ� z=2. As 1=8 � z=ððlog lÞ
þ1Þ� z=ð16 log lÞ, this proves the claim that at least

z=ð16 log lÞ fitness increases are necessary to increase the

maxfLO;LZg-value from z=2 to z.

Assume that this ‘‘typical’’ event occurs for each block.

Consider the following event, which we call a landslide

takeover. The idea is that the event spreads a unique

best solution throughout the whole topology. Assuming

a generation t� where at least one island improves

upon the current best fitness, a landslide takeover is

given when

– no other island improves upon its fitness within the

following s � diamðTÞ generations and

– in generation t� only one island finds an improvement.

Note that a landslide takeover implies that the single

improvement will take over all islands as diamðTÞ migra-

tions suffice to propagate this solution to all islands of the

topology.

Recall from the proof of Lemma 1 and the estimation of

‘‘bad events’’ that the probability of making an improve-

ment by mutation is at most 2=n. The probability of a

landslide takeover is at least

1� 2

n

� �ðs l diamðTÞÞþl

� 1� 4s l diamðTÞ
n

:

The probability that in z=ð16 log lÞ generations no

landslide takeover occurs is at most
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1� 4s l diamðTÞ
n

� �z=ð16 log lÞ
� exp � s l diamðTÞz

4n log l

� �

� exp � z

4 log l

� �

� 2�Xðz= log lÞ:

With the converse probability, a landslide takeover takes

place. Summing up all error probabilities for each block,

with probability at least 1� b � 2�Xðz= log lÞ in each block, a

landslide takeover takes place before the length of the

current prefix on the current block exceeds z. Under this

condition, all islands will have the same prefix. With

probability 1� 2�b a 0-prefix will be propagated at least

once. Repeating the lower-bound arguments from the proof

of Theorem 1 proves the claim.

We now consider the situation where the migration

interval is too large, i.e., by some factor larger than the

‘‘ideal’’ value. This means that islands are left alone while

making decisions for several blocks one after another. This

decreases the probability that an island makes a correct

decision on all encountered blocks, before the next

migration happens. If, additionally, the expansion of the

topology is limited, then the islands that do manage to

make all these decisions correctly cannot transmit this

information to sufficiently many islands. Then the ‘‘good

information’’ slowly dies out over time. This reasoning is

made precise in the following theorem. The limited

expansion is expressed by means of the maximum degree

of the topology, i.e., the maximum number of islands

connected to any island.

Theorem 6 Consider the parallel (1?1) EA with

migration on a migration topology with l subpopulations

for l� polyðnÞ and l� nXð1Þ and maximum degree D� 1.

Let the function LOLZn;z;b;‘ be parametrized according to

b‘� n, ‘� nXð1Þ, 1� z\‘, and b� 1. If s� e‘n � logð8Dþ
8Þ then with probability at least 1� 2�XðneÞ � 2�Xðb= logðDÞÞ

for some constant e [ 0 the algorithm reaches a situation

where every island is stuck in a local optimum.

Proof Assume each island still has to optimize at least

logð8Dþ 8Þ further blocks. Note that l � 2�XðneÞ ¼ 2�XðneÞ

by our condition on l. The expected progress made on a

single island in s generations between migrations is

close to a value in between 2‘ � logð8Dþ 8Þ and

2e‘ � logð8Dþ 8Þ, depending on the initial length of the

prefix.

Applying Corollary 1 with t ¼ s yields the following,

for an appropriate choice of 0\e\1=2 and regardless of

the initial prefix length i. With probability 1� 2�XðneÞ in

the s generations between migrations each island will have

made progress by at least logð8Dþ 8Þ ¼ 3þ logðDþ 1Þ
blocks, or be stuck in a local optimum. This implies that at

least 2þ logðDþ 1Þ complete blocks have been covered.

By the same corollary, again regardless of the initial prefix

length i the number of optimized blocks in s generations is

at most 6 logð8Dþ 8Þ with probability 1� 2�XðneÞ.
Using Lemma 3 and taking into account an error prob-

ability of 2�XðnÞ for each island, we can assume that the

decisions made on at least 1þ logðDþ 1Þ ¼ logð2Dþ 2Þ
blocks are independent for all islands. Each island makes all

these decisions correctly with probability at most

1=ð2Dþ 2Þ.

Fig. 3 A sketch of possible wrong choices of the migration interval.

The top figure shows a too small migration interval, with migration

happening at problematic locations and possibly decreasing diversity.

The migration interval in the center is in the right order of magnitude,

but it is not synchronized with the block structure. The migration

interval at the bottom is too large, so that islands have to make the

correct decision for several blocks
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We focus on the expected number of good islands, i.e.,

islands that are not stuck. Let Xt denote this number just

before the tth migration and Yt denote this number right

after the tth migration. We trivially have Y0� l. By the

above observations, we have

E Xtþ1 j Ytð Þ� Yt=ð2Dþ 2Þ:

As each island can transmit to at most D further islands, we

have Ytþ1�ðDþ 1ÞXtþ1 and hence

E Ytþ1 j Ytð Þ� Yt=2:

Iterating this argument, E Yt j Y0ð Þ� Y0 � 2�t� l � 2�t. As

this holds for every Y0, for the unconditional expectation

E Ytð Þ� l � 2�t. This implies P Yt� 1ð Þ� 2�t, i.e., the

probability of having at least one good island decreases

exponentially with t.

We have already shown that during s generations at

most 6 logð8Dþ 8Þ blocks are optimized. Putting t :¼
bb=ð6 logð8Dþ 8ÞÞc ¼ Xðb= logðDÞÞ and noting that all

error probabilities sum up to 2�XðneÞ proves the theorem.

7 Experimental reproduction

We complement our theoretical studies with the results of

simulations. So far, the consideration of topologies was

limited to certain characteristics such as the diameter or the

maximum degree of the topology. Our experiments also

consider the structure of the topologies. In particular, we

compare common topologies such as rings, torus graphs, a

hypercube and a complete graph with random topologies

with various degrees for all vertices.

Our basic setup for all experiments is the optimization

of LOLZn;z;b;‘ for dimension n ¼ 1;000 and z ¼ 10. Recall

that our theoretical result from Theorem 3 was limited to a

small number of blocks, hence not making use of the

complete bit string. For experiments, we think that it makes

more sense to use all bits. This does not strictly comply

with the theoretical part, but it serves as a good test on how

robust the island model is. We therefore use b ¼ 10 blocks

of length ‘ ¼ 100 each. The population size for the pan-

mictic (l?1) EA was chosen as l ¼ 32. All parallel EAs

use l ¼ 32 islands with subpopulations of size 1, each.

In our first experiment we considered four common

topologies for the island model: a ring, a torus (i. e. a two-

dimensional grid with edges wrapping around on all sides)

with side lengths 4
 8, a five-dimensional hypercube, and

the complete graph Kl. All edges are bidirectional. The

migration interval was fixed to s ¼ 50;000, which meets

the condition ‘ ¼ 2s=n from Theorem 3. In accordance

with Theorem 3 we initialize the migration counter such

that the first migration takes place in generation

s=2 ¼ 25;000. This is when roughly the first half of the first

block has been optimized.

All algorithms were stopped when either the global

optimum had been found or each individual had at least z

leading zeros in the block currently to be optimized, which

means that at least z bits would have to be flipped in one

mutation to get out of this local optimum. This event has a

negligibly small probability of less than n�z ¼ 10�30. The

expected time until a local optimum is left is at least 1030,

so it makes sense to stop beforehand.

In our first experiments, we simulate 1;000 runs for each

algorithm and record the success rate, i.e., the fraction of

runs that were stopped in a global optimum. We also record

the mean number of generations until an algorithm has

been stopped as well as the mean best fitness value in the

final population. The latter corresponds to the mean num-

ber of leading bits that have been fixed in the best indi-

vidual. The results are shown in Table 1.

For the panmictic (l?1) EA no run was successful. The

mean final fitness value was 114, hence, on average, the

algorithm got stuck already in the second block, after only

92;367 generations. Independent subpopulations led to a

higher success rate of 0:038 and the algorithm stopped with

a higher mean best final fitness of 550. Note that the per-

formance of the parallel EA with independent subpopula-

tions is determined by the best out of l ¼ 32 independent

runs of a (1?1) EA. Here independent runs clearly out-

perform a panmictic population.

The island model performed far better than the two

previous algorithms for all topologies. Surprisingly, the

most sparse topologies, the ring and the torus, performed

best. With a torus every run was successful and so was

almost every run on the ring. For the hypercube the success

rate decreased to 0:651 and for the complete graph Kl it

was even only 0:327.

To get a more detailed impression of the dynamics

within a run, we repeated 100 runs for each algorithm and

observed the number of ‘‘good’’ individuals over time. An

Table 1 Success rate, mean best fitness value after stopping and

mean number of generations until runs were stopped for the consid-

ered algorithms

Algorithm Success

rate

Final

fitness

#

Generations

Panmictic (l ? 1) EA 0.0 114 92,367

Independent

subpopulations

0.038 550 377,472

Island model on ring 0.995 999 709,704

Island model on torus 1.0 1000 655,858

Island model on

hypercube

0.651 907 647,339

Island model on Kl 0.327 651 344,759
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individual is called good if it has leading ones in its current

block (i.e., the first block not completely filled with 1-bit).

Note that goodness may change when a new block is

reached. Unless we have to deal with correlated bit values,

the probability of a good individual being good in the next

block is 1=2. Figure 4 shows the number of good indi-

viduals over time, averaged over 100 runs for all algo-

rithms. For runs that were stopped with a global optimum,

the number of good individuals in the final generation was

used to compute the average. We stopped recording once

all runs were stopped.

The number of good individuals decreases quickly for

the panmictic (l?1) EA as well as for independent sub-

populations. For all island models during migration, the

number of good individuals increases as good individuals

take over neighbored islands without good individuals.

This effect is particularly pronounced for the torus, while

the fluctuations are smallest for the hypercube. The number

of good individuals is, in general, higher for the torus than

for the hypercube, with the ring and Kl in between.

Note that the dense topologies hypercube and complete

graph performed worse than expected from Theorem 3.

Recall that in our setting, we have violated the precondi-

tions for this theorem, so strictly speaking its statement

does not apply here. What we can learn is that the slow-

down of the progress on LOand similar functions seems to

make a difference for dense topologies (recall Fig. 2). The

proof of Theorem 3 required migration to happen roughly

in the middle of each block. In the light of the slowdown, it

is unlikely that this property can be maintained if the whole

bit string is used. It is not clear any more that s ¼ ‘n=2 is a

best choice for the migration interval—or whether slightly

larger values are better. For every migration interval, there

is a chance that migration might happen at the ‘‘wrong’’

point in time, so that the wrong information is communi-

cated to other islands. Sparse topologies are less prone to

this potential loss of diversity than dense topologies.

8 Comparison of topologies

Now we investigate whether other migration intervals lead

to better results, particularly for dense topologies, and how

the choice of the migration interval is related to the choice

of the migration topology. We start with the classical

topologies from Sect. 7 and later consider random graphs.

8.1 Classical topologies

In a series of computationally expensive experiments, we

recorded the success rate in 100 runs for a broad range of

migration intervals, increasing s in steps of 500 from 500 to

700;000 (CPU time: 319.6 h ring, 351.7 h torus, 298.3 h

hypercube, 295.2 h Kl on dual-core Opteron 270 proces-

sors with 2.0 GHz, 8GB RAM DDR 400). All other

parameters were chosen as in Sect. 7; in particular, the

migration counter was always started at 25;000.1 The result

is shown in Fig. 5.

For all topologies the success rate is relatively high for

the values of s around s ¼ 50; 000 (albeit it is not maximal

for Kl). For larger migration intervals s� 250;000 the

success rate starts to decrease continuously. This can be

explained with the fact that between two migrations, the

number of good individuals decreases roughly by factors of

1=2 with each new block. Such a decrease is in accordance

with the result from Theorem 6.

Sparse topologies like ring and torus seem to be robust

with respect to the migration interval as for s� 100;000 the

success rates are close to 1. This is in accordance with

Theorem 5 as small migration intervals were shown to be

most harmful for topologies with small diameter.
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Fig. 4 Average number of good individuals in 100 runs for the panmictic (l?1) EA, separate subpopulations, and the island model with

s = 50,000

1 Recall that this is a provably good value for s ¼ 50;000 by

Theorem 3. For other migration intervals, there generally is no

provably good value, so for s 6¼ 50;000 the choice of 25,000 is

somewhat arbitrary.
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The curve for Kl is particularly interesting due to its

fluctuations. These fluctuations appear to be random at first

sight, but due to the large number of 100 runs and strong

correlations between neighbored s-values the empirical

data is, in fact, reliable. What we observe seems to be the

result of a number theoretic question. Let us temporarily

disregard the slowdown and assume that the typical pro-

gress between migrations is always a fixed value, D. Of

course D strongly depends on the migration interval. The

success rate is low if D is such that iD mod ‘� z for some

1� i� b. Whenever this happens, there is a chance of

losing diversity during migration due to genetic drift. The

more often this happens, the lower the success rate. Hence,

those migration intervals seem to be best where

iD mod ‘� z rarely happens. If we consider the slowdown

and the randomness of the progress between migrations, we

get conditions that are messier, but in similar spirit.

For large migration intervals the success rate for all

algorithms is best for Kl. This is again in accordance with

our theoretical results as for large migration intervals

topologies with a large degree perform best, see Theo-

rem 6. In contrast, sparser topologies do not utilize the rare

migration events that efficiently. The ‘‘good’’ information

dies out quickly for sparse topologies, if the migration

interval is large.

For Kl we would have expected that the best s, i.e., the

s-value with the largest success rate is around s ¼ 50;000.

Figure 5 shows that this is not the case—values around

multiples of 50;000 and especially 250;000 seem to be

better. This makes sense as with s ¼ k � 50;000, k 2 N,

migration tends to take place in the middle of every kth

block. The reason why large migration intervals are good

for Kl might be that the number of good individuals is very

high after each migration. The risk that all these individuals

get stuck in one or a few blocks is hence very low, even if

no migration takes place in the meantime. If only one

individual manages to remain good, the next migration can

turn all individuals into good individuals again.

On the other hand, low migration intervals are a disad-

vantage for Kl. Each migration has some risk for dense

topologies because if it is conducted at the wrong place, all

individuals can get stuck immediately. The reason is that if

the best individual during such a migration step has leading

zeros in its current block—which should be the case with

probability about 1/2 unless the threshold of z fixed leading

bits has been reached—then the complete population is

dominated by individuals of this kind afterwards and the

progress of the optimization stops. Hence, up to some

point, the success rate is increasing, if the number of these

risky migrations is reduced.
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Fig. 5 Success rates, moving averages for 20 data points, and final

fitness values for different topologies and migration intervals. The

number of runs was 100 for each setting. The final fitness was

normalized with a factor 0.001 to fit the interval [0, 1]
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Figure 6 shows the moving averages of the success

probability from Fig. 5 in one plot. Here one can see well

that the hypercube, ring and torus show a similar behavior

regarding the success probability, where the torus performs

best except for very small migration intervals. The

behavior of the algorithm with the migration structure Kl is

very different and the best choice for very high migration

intervals.

8.2 Random topologies

After investigating some classical graph structures as

migration topologies we also apply random structures. The

computational setup for the investigations is exactly the

same as for the classical graph structures. We now inves-

tigate random graphs where each node v has directed or

undirected edges to x different neighboring nodes for

x 2 f1; 3; 8g. These neighbors were chosen uniformly at

random, without replacement. In one setup, the same

migration topology is used during the complete run of the

algorithm (static). In another setup, a new topology was

generated for each migration. As the running time of the

experiments shows, the additional work for generating a

new topology for each migration event is negligible con-

cerning CPU time. For all experiments, the running time

was around 300 h, comparable to the classical topologies.

As for the classical migration structures, we first look at

the success rate, the mean best fitness value after stopping

and the mean number of generations until the algorithms

are stopped, Table 2. One can see that the results for all

random topologies are much better than for panmictic

populations, independent subpopulations, and the island

model on the hypercube and Kl. Only in the setting of

static directed graphs with outdegree 1 we get a rather poor

success rate of 0.73.

Figure 7 shows the development of the number of good

individuals for the migration structures as described above.

From the table and the figure one can already clearly see

that the dynamic setup seems to be better than the static

one. Dense topologies are better than sparse topologies—

looking at the number of generations to the optimum and

also looking at the final number of good individuals.

The results in Fig. 8 have been computed analogously to

Fig. 5, but we omitted to plot again the success probability

and mean final fitness for each migration interval. Instead,

we focus only on the moving averages of the directed

migration topologies, combining them in one plot. The

figure shows two trends well. First, dense topologies result

in higher success probabilities for a larger bandwidth of

migration intervals. Second, the dynamic strategy of using

newly generated migration topologies for each migration

has a similar effect. As already seen in Fig. 7, the second

effect gets more and more negligible for more dense

topologies. This can be explained by the fact that in a dense

random graph, the distance between any two specific nodes

is typically quite small.

Looking at the same scenario for undirected graphs,

Fig. 9, the same trends can be detected. Here, the same

algorithms for the generation of the topology was used as

for directed graphs. But then in a second step all edges of

the resulting graph have been made undirected (by mir-

roring the adjacency matrix at the main diagonal—in both

directions). The investigated undirected graphs result in

higher success probabilities and mean final objective val-

ues. This was expected because making a directed graph

undirected by just removing the direction of the edges is

basically the same as choosing a higher degree for each

node in a connected setup.

Finally, in Fig. 10, we compare the two worlds—the

classical migration topologies and the random graphs—by

Table 2 Success rate, mean

best fitness value after stopping

and mean number of

generations until runs were

stopped for different directed

random topologies

Algorithm Success rate Final fitness # Generations

Dynamic directed graph with outdegree 1 0.98 994 742,409

Dynamic directed graph with outdegree 3 1.0 1000 675,777

Dynamic directed graph with outdegree 8 1.0 1000 620,872

Static directed graph with outdegree 1 0.73 935 715,287

Static directed graph with outdegree 3 1.0 1000 674,675

Static directed graph with outdegree 8 1.0 1000 625,579
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comparing the best performing examples. The torus graphs

had the best success probabilities for migration intervals

which are of practical interest. For the randomized

migration topologies, this was the case for the directed and

undirected dynamic topologies with eight connections.

Figure 10 shows that the random graphs seem to provide a

better performance.

9 Statistical validation

Finally, we aim at ranking the different migration topolo-

gies for different ranges of the migration interval. This is

done using statistical tests for success rates. As the

underlying probability distributions are binomial distribu-

tions, we use t-tests for the comparison of two such dis-

tributions as described in Wineberg and Christensen
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(2009). Separate tests are made for each choice of the

migration interval and for each pair of migration topolo-

gies. Figure 11 shows the resulting p-values of two-sided

tests. Low p-values indicate that the two algorithms have

different underlying success probabilities. In case p is

large, no conclusion can be made.

9.1 Classical topologies

First we only look at the classical topologies, Fig. 11.

For very large migration intervals s[ 450;000 all topolo-

gies show a similar behavior as migration hardly ever

happens. For almost all other values the torus is signifi-

cantly better than the hypercube. The same holds for the

ring up to s ¼ 200;000. Except for very small values

s� 4;000, in which the ring is better, the torus is better than

the ring if s is roughly in between 100;000 and 300;000.

Comparing Kl to all other classical topologies, the ring

works better for small migration intervals s up to about

130;000 generations. For about 220;000 to 450;000 gen-

erations the opposite is the case. The torus shows a similar

behavior, but outperforms Kl for a larger range of small s-

values, and for larger values Kl is not always better than

the torus. The performance of the hypercube (compared to

Kl) is slightly worse—this is consistent with the previous

comparisons of ring, torus, and hypercube.

We conclude that the ring is the best classical choice for

very small migration intervals s� 4; 000. In this range,

migration tends to be harmful as in situations where less than z

leading bits have been fixed, the ‘‘wrong’’ decision might be

communicated to neighbored islands. Here the sparsest

topology performs best. Contrarily, for large migration

intervals, roughly s� 200;000, the most expanding topology

Kl performs best as here a good decision can spread to many

islands that are stuck in local optima. The torus seems to be the

best compromise for s-values in between, which are most

interesting from a practical point of view. The hypercube was

never found to be the best topology in our setting.

9.2 Random topologies

Next, we consider the random topologies as introduced

in Sect. 8 in our significance analysis. Considering the

comparison of each combination of the random topologies

(directed vs. undirected, 1 to 8 connections, dynamic vs.

static topology generation) would end up in 66
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Fig. 11 Plot of the p values of two-sided t tests comparing success

rates of two algorithms. Values below 0.01 indicate that the

underlying success probabilities are different on a significance level

of 0.01. These values are marked with bars outside the p scale. A bar
at the bottom indicates that the first algorithm has a higher success

probability than the second (judging from which success rate was

higher); a bar at the top indicates the opposite

b
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combinations. Hence, we focus on a few interesting cases,

which are visualized in Fig. 12.

Figure 12a–c compares the directed dynamic case

(generation of new directed topologies for each migration

event) for different densities of the topology. The plots

show that except for very small migration intervals the

dense topology performs better.

As Fig. 12d shows, generating new topologies for each

migration is for sparse topologies significantly better than

using the same topology for all migration events at least for

migration intervals up to about 105: This advantage of the

dynamic paradigm gets lost for more dense topologies.

Figure 12e shows that this is already the case if each node

has three directed neighbors.

A general observation in the significance tests between

directed and undirected topologies of the same density level

and without diversifying the dynamic/static parameter is that

undirected topologies perform significantly better if the

topology is not too dense. Figure 12f shows the case with one

directed or undirected neighbor. This observation is what one

would expect because an undirected edge yields the same

behavior as having two directed edges between two nodes.

Finally we compare the best performing classical

topology with the best performing randomized setup. We

focus on the most reasonable migration intervals that yield

the best performance in both classes of topologies. The best

classical topology for this range is the torus graph and the

best randomized topology is the directed dynamic topology

with outdegree 8 (we could also consider the undirected

dynamic topology). As Fig. 13 shows, specifically in the

interesting range for the migration interval, the random

topology performs better than the torus graph. The torus

graph only has an advantage for very small migration

intervals, because for very small migration intervals, the

sparsest topologies are the best choice.

10 Conclusions

This work has initiated a novel approach toward under-

standing the parallel evolutionary algorithms. Our rigorous
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Fig. 12 Plot of the p values of two-sided t tests comparing success

rates of two algorithms on random topologies. The test setup is the

same as for Fig. 11
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directed dynamic with outdegree 8; same setup as for Fig. 11
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analyses help to understand how island models with

migration work and when they excel over panmictic or

independent populations.

We have demonstrated for the LOLZ function that par-

allelism and just the right amount of migration between

subpopulations can be essential. Comparing Theorems 1, 2,

and 3, for the same function LOLZn;z;b;‘ with b ¼ n1=6=16

blocks, block length ‘ ¼ 2n2=3; maximum number of zeros

z ¼ n2=3=2 and l ¼ n= log n we obtain exponential lower

bounds for the panmictic (l?1) EA and the parallel EA

with polynomially many independent subpopulations of

size l each as well as a polynomial upper bound for the

parallel (1?1) EA with migration on l subpopulations. All

bounds hold with overwhelming probability. The positive

result for the parallel (1?1) EA with migration can easily

be extended to all strongly connected migration topologies.

Our analyses have revealed insight into how information

is spread throughout spatially structured parallel EAs. We

have learned how populations can gain information by com-

munication and how information can be lost during periods

of independent evolution. This can lead to an increased

diversity, which is essential for multimodal problems.

The study of wrong parameter settings has exemplified

how a too rapid takeover can be harmful. We have proved

that if migration happens too frequently, the island model

is subjected to genetic drift in the same way as a panmictic

population. If migration happens too rarely, ‘‘good’’

information can slowly die out, depending on the maxi-

mum degree of the topology.

Complementing the theoretical results on the function

LOLZ where migration was proven to be essential, our

empirical results show that island models with migration

every 50; 000 generations clearly perform better than

panmictic populations and independent subpopulations

without migration on LOLZ, in terms of success rates and

final fitness values. Sparse migration topologies lead to a

better performance than dense topologies. This result is

remarkable since Theorem 3 only makes a statement about

dense topologies. Our empirical results suggest that a

similar or even a stronger statement might hold for sparse

topologies. Interestingly, most random topologies per-

formed better than the classical, structured topologies

hypercube and complete graph.

An extensive study of different migration intervals,

along with statistical tests, revealed that sparse migration

topologies are better for small migration intervals, while

dense topologies are better for larger migration intervals.

This holds for classical topologies as well as for random

topologies. The number of connections per vertex is

essential for performance. Undirected edges lead to more

dense graphs than directed edges, when the same number

of connections is used.

For random topologies we have also seen that it does not

make a difference whether the same random topology is

used through the whole run (static model) or whether the

topology is generated anew in each migration (dynamic

model). Only for very sparse graphs such as those with just

one connection per vertex, the static model performed

worse.

With our theoretical and empirical results we have made

progress in understanding how island models work, when

and why they excel over other models, and how design

choices affect diversity. Our formal proofs only hold for

LOLZ, but its main characteristic—decisions about input

variables need to be fixed sequentially—can also be found

in more realistic problems. Examples are shortest path

problems (Baswana et al. 2009) and test input generation

for the branch coverage of C programs with nested struc-

tures (McMinn 2012). Along the way we have also gath-

ered insights that apply generally, to broader classes of

problems. These insights allow for making informed

decisions about algorithm design such as choosing the right

migration interval and a proper migration topology.
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