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Abstract This paper proposes a multi-objective artificial

physics optimization algorithm based on individuals’

ranks. Using a Pareto sorting based technique and incor-

porating the concept of neighborhood crowding degree,

evolutionary individuals in the search space are evaluated

at first. Then each individual is assigned a unique serial

number in terms of its performance, which affects the

mass of the individual. Thereby, the population evolves

towards the direction of the Pareto-optimal front. Syn-

chronously, the presented approach has good diversity,

such that the population is spread evenly on the Pareto

front. Results of simulation on a number of difficult test

problems show that the proposed algorithm, with less

evolutionary generations, is able to find a better spread of

solutions and better convergence near the true Pareto-

optimal front compared to classical multi-objective evo-

lutionary algorithms (NSGA, SPEA, MOPSO) and to

simple multi-objective artificial physics optimization

algorithm.

Keywords Multi-objective optimization � Rank �
Artificial physics optimization � Neighborhood �
Crowding degree

1 Introduction

In many real-world search and optimization tasks, it is very

common to face problems having two or more objectives

that are normally conflict with each other and yet need to be

optimized simultaneously. Such problems are called

‘‘multi-objective’’ problems. Due to the multi-criteria nature

of multi-objective optimization problems, ‘‘optimality’’ of a

solution has to be redefined, giving rise to the concept of

Pareto optimality where ‘‘trade-off’’ solutions representing

the best possible compromises among the objectives are

sought, rather than seeking optimization of a single objec-

tive. Traditional approaches for generating such solutions

normally aggregate all objectives and then optimize the

single composite objective with mathematical programming

techniques. However, they have drawbacks of low effec-

tiveness and are sensitive to the order of weights or

objectives. Population-based optimal algorithms have the

ability to handle a set of solutions in a simultaneous manner

and can deal with problems of different types. These

characteristics are very suitable for multi-objective opti-

mization problems. Since Schaffer implemented the first

multi-objective evolutionary algorithm (vector evaluated

genetic algorithm, VEGA) in the mid-eighties of the last

century, more and more population-based optimal para-

digms have been introduced into multi-objective optimiza-

tion area. Among these, the multi-objective evolutionary

algorithms (MOEAs) and the multi-objective particle

swarm optimization (MOPSO) algorithms have become

increasingly popular over the last decade.

Recently, there has been an increased interest in the

study of MOEAs. Well known MOEAs include Multi-

Objective Genetic Algorithm (MOGA) (Fonseca and

Fleming 1993), Non-dominated Sorting Genetic Algorithm

(NSGA) (Srinivas and Deb 1994) and its extension
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(NSGA-II) (Deb et al. 2000), Niched-Pareto Genetic

Algorithm (NPGA) (Horn et al. 1994), Strength Pareto

Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999)

and its improved algorithm (SPEA2) (Zitzler and Thiele

2002), Pareto Archive Evolution Strategy (PAES) (Knowles

and Corne 1999) and Pareto Envelope-based Selection

Algorithm (PESA) (Corne et al. 2000), etc. The perfor-

mance of most MOEAs has been assessed using benchmark

problems; several of them have shown good performance.

Characteristics of typical MOEAs, showing successful

applications, can be summed up as follows:

1. Pareto-dominated relationship is used to evaluate

fitness values of individuals;

2. Elitist mechanism is incorporated through the use of an

archive containing non-dominated solutions previously

found; and

3. Archive set is pruned using certain strategies when the

number of non-dominated solutions is greater than its

size.

At the same time, there are some drawbacks of MOEAs:

1. They have high computational costs though they

maintain good diversity of population; and

2. Some approaches strongly depend on corresponding

parameters of algorithms, which can usually be

adjusted with problem knowledge that may not be

available.

In order to solve the problems mentioned above,

researchers have proposed many improved MOEAs

(Fernández et al. 2010; Antonio López et al. 2010; Molina

et al. 2009; Fabre et al. 2009, 2010; Martı́nez and Carlos

2010). On the other hand, they are finding other meta-

heuristics that can be incorporated into multi-objective

optimization. Particle Swarm Optimization (PSO) seems

particularly suitable for multi-objective optimization

mainly because of the high speed of convergence for sin-

gle-objective optimization (Zeng et al. 2004). The typical

MOPSO algorithms include (Coello et al. 2002) and its

upgrade (Carlos 2004; Hu et al. 2002) based on dynamic

neighborhood; Fieldsend and Singh (2002) based on elitist

mechanism and the perturbation factor; Sierra and Coello

(2005) based on crowding distance and e-dominated

(Abido et al. 2007). These MOPSO algorithms mainly

adopt successful experiences of MOEAs indicated above to

deal with multi-objective problems. However, PSO algo-

rithms have drawbacks such as premature convergence,

and the tendency to easily get trapped in local best, which

are inevitable in solving multi-objective problems. In some

improved MOPSO algorithms (Durillo et al. 2009; Nebro

et al. 2009; Toscano-Pulido et al. 2007; Santana-Quintero

et al. 2006; Nedjah 2010), other algorithms or mutation

strategies are adopted to address this problem, which

normally adds complexity and computational cost to

algorithms.

Artificial physics optimization (APO) is a novel sto-

chastic population-based optimization algorithm for global

optimization problems (Xie and Zeng 2009, 2010; Xie

et al. 2009, 2010). Because of its high performance in

terms of high speed of convergence and good diversity, we

have introduced it in multi-objective optimization area

(Wang and Zeng 2010; Wang et al. 2011). As expected,

MOAPO algorithm has a better performance compared

with some classical MOEAs and MOPSO algorithm with

respect of several benchmark functions, especially in terms

of addressing population diversity. When APO algorithm is

applied in multi-objective optimization, mass dealing is a

key technique. Mass is an important parameter of the APO

algorithm. Responding to virtual forces, an individual in

APO moves toward other particles with larger ‘‘masses’’

(better fitness values) and away from lower mass particles

(worse fitness values). In order to differentiate from the

algorithm proposed in this paper, we call our original

algorithms (Wang and Zeng 2010; Wang et al. 2010, 2011)

the simple MOAPO algorithm (SMOAPO). We adopt

aggregate functions to transform multiple objectives into a

single problem so that we can calculate the mass of each

individual easily; the mass obtained by this method can

represent the performance of the individual to some extent.

However, it does not embody the characteristics of MOPs

sufficiently. Thus, we present a rank-based MOAPO

(RMOAPO) algorithm to solve this problem. In this algo-

rithm, we deal with the mass function by assigning dif-

ferent ranks to individuals by evaluating the Pareto

dominant relationships between individuals and their

crowding degree.

The remainder of this paper is organized as follows:

Section 2 introduces some basic concepts to make this

paper self-contained. In Sect. 3 we provide a brief

description of the APO algorithm. Section 4 presents our

approach of RMOAPO. Section 5 describes the simulation

test and its analysis. Finally, conclusions are derived, and

recommendations made for further research.

2 Basic concept in multi-objective optimization

problems

Without loss of generality, a minimized constraint multi-

objective problem can be defined as follows:

Min f Xð Þ :¼ f1ðXÞ; f2ðXÞ; . . .; fkðXÞ½ �
s:t:

giðXÞ� 0; i ¼ 1; 2; . . .;m
hjðXÞ ¼ 0; j ¼ 1; 2; . . .; p

where X [ Rn is the vector of the decision variables,

fi(X), i = 1, 2, …, k is the objective function, gi(X) B 0,
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i = 1, 2, …, m and hj(X) = 0, j = 1, 2, …, p are

inequality and equality constraints, respectively.

In the case of multiple objectives, there may not exist

one solution which is the best (global minimum or maxi-

mum) with respect to all objectives. Consequently, we

normally look for ‘‘trade-offs’’, rather than a single solution

when dealing with multi-objective optimization problems.

The notion of ‘‘optimality’’ is, therefore, different. The

most commonly adopted notion of optimality in multi-

objective optimization problems is Pareto optimality. In

order to understand Pareto optimality more easily, another

important concept of ‘‘dominance relation’’ should be

introduced.

Definition 1 (Dominance relation) For two arbitrary

solutions p, q [ Rn, p is said to dominate q (denoted as

p � q) if it is better than or equal to q on all objectives (i.e.,

Vi [ {1, …, k}:pi B qi) and at least better than q for one

objective (i.e., Aj [ {1, …, k}:pj \ qj), where k is the

number of sub-objectives. Here p is non-dominated while

q is dominated and ‘‘�’’ denotes a dominance relationship.

Definition 2 (Pareto optimal set) The Pareto-optimal set

(denoted as P*) is the set of all possible Pareto-optimal

solutions (i.e., P * = {x * [ X|:Ax [ X and f(x) � f(x*)}).

The set of optimal solutions in the decision space X is in

general denoted as the Pareto set, and we will denote its image

in the objective space as the Pareto front (denoted as PF*).

It is obvious that the target of solving MOPs is to find a

set of solutions, which are as close as possible to the Pareto

optimal set.

3 Artificial physics optimization algorithm

Artificial physics was originally proposed by Spear et al.

(2005) to solve distributed control in robot systems. In the

basic AP framework, the robots are treated as physical

individuals possessing a position, mass, velocity and

momentum. Their motion is controlled by the second

Newton’s force law F = ma. Virtual forces created drive

the individuals to move, just as real masses move in

response to an externally applied force. The continuous

moving of an individual in search space is described as

displacement DX in some little discrete time-slice Dt. That

is, DX = V � Dt. Here, the velocity variable is decided by

DV = (F/m) � Dt, where F is the combination force exerted

by other individuals. Hence, the velocity of an individual at

moment t is V(t) = V(t - 1) ? (F/m) � Dt and its position

at moment t is X(t) = X(t - 1) ? V(t) � Dt. Parameter

Fmax is used to restrict the maximum force exerted on the

individual, which restricts the maximum acceleration.

Similarly, individual velocity is restricted by Vmax.

Then Xie and Zeng studied the original artificial physics

and tried to simulate the emergence of swarm intelligence

from the viewpoint of artificial physics. They successfully

introduced artificial physics into optimization and proposed

the original artificial physics optimization (APO) algo-

rithms (Xie and Zeng 2009, 2010; Xie et al. 2009, 2010). In

these algorithms, each entity is treated as a physical indi-

vidual with attributes of mass, position and velocity. The

relationship between an individual’s mass and its fitness (to

be optimized) is constructed. The better the objective

function value, the bigger is the mass, and the higher is the

magnitude of attraction. The individuals move towards the

better fitness region, which can be mapped to individuals

moving towards others with bigger masses. Because the

virtual forces drive each individual motion, the bigger mass

determines the higher magnitude of attraction. In addition,

the individual attracts ones with worse fitness while repels

those with better fitness. Especially, the individual with the

best fitness attracts all others, whereas it is never repelled

or attracted by others. The attractive-repulsive rule can be

treated as the search strategy in the optimization algorithm

used to lead the population to search the better fitness

region of the problem.

In APO algorithm, the mass function of individual i, the

force exerted on individual i via individual j and the total

virtual force exerted on individual i via all other individ-

uals in kth dimension are calculated by Eqs. (1)–(3).

mi ¼ e
f ðxbestÞ�f ðxiÞ

f ðxworstÞ�f ðxbestÞ; 8i ð1Þ

Fij;k ¼
Gmimjðxj;k � xi;kÞ; ðf ðxiÞ[ f ðxjÞÞ
�Gmimjðxj;k � xi;kÞ; ðf ðxiÞ� f ðxjÞÞ

�

8i 6¼ j and i 6¼ best

ð2Þ

Fi;k ¼
Xn

j ¼ 1

i 6¼ j

Fij;k 8i 6¼ best ð3Þ

where f(xbest) denotes the function value of the best indi-

vidual, f(xworst) denotes the function value of the worst

individual and f(xi) denotes the function value of individual

i. Here G is the ‘‘gravitational constant’’. The distance from

individual i to individual j in kth dimension is denoted by

xj,k - xi,k and Fii,k = 0.

After calculating the total force, velocity and position of

individual i at generation t ? 1 are updated by Eqs. (4) and

(5), respectively.

vi;kðt þ 1Þ ¼ wvi;kðtÞ þ kFi;k=mi ð4Þ

xi;kðt þ 1Þ ¼ xi;kðtÞ þ vi;kðt þ 1Þ ð5Þ

where vi,k(t) and xi,k(t) are velocity and position, respec-

tively, of individual i in kth dimension at tth generation.

k is a random variable generated within (0, 1) with normal
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distribution. w is an inertia weight within (0, 1). Movement

of each individual is restricted within the domains of

Xi [ [X min, X max] and Vi [ [V min, V max].

From Eqs. (4) and (5), we can find that the evolutionary

equation of the APO algorithm is very similar with that of

PSO algorithm. There are some analogous characteristics

common between these two algorithms. Firstly, both are

population-based algorithms. Secondly, both work by

iterative updating of velocity and position, and their actions

are discrete. Finally, individuals in both algorithms have

integrated space position information; in other words, the

individual has global orientation. The difference between

them is as follows: At first, the individual of APO algo-

rithm has the attribute of mass, while the particle of PSO is

without mass. Then there is no personal best value in APO

algorithm, whereas in PSO algorithm, particle action is

only relevant to particle personal best value and global best

value.

In PSO algorithm, the motion of each particle is guided

by its own historical best position and the best particle in

the population. So the whole population has the ability of

moving to a better search region. However, when a particle

falls in an acceptable local best solution, it will likely

attract other particles to fall into this local best value rather

than explore the remaining unexplored solution space. This

leads to a limited search space. As a result, the algorithm

yields bad diversity and easily falls into local best value.

From the attractive-repulsive rule mentioned above, we

know that an individual in APO algorithm is attracted not

only by the global best individual, but also by other indi-

viduals in the population. If we consider this attractive-

repulsive force as interaction between individuals or

cognition and social learning of the individual, information

obtained by the individual in APO algorithm is more

comprehensive. Thus, the APO algorithm can avoid falling

into local best value. Results of previous research reported

in literature (Xie and Zeng 2009) to (Xie et al. 2010) have

showed that compared with PSO algorithm and other tra-

ditional evolutionary algorithms, APO algorithm has better

stability, diversity and robustness.

APO algorithm has been applied in single-objective

optimization problems. Because of its good performance,

we had originally introduced it in multi-objective optimi-

zation problems in our previous research works (Wang and

Zeng 2010; Wang et al. 2010, 2011). Adopting aggregate

functions, we transform multiple objectives into a single

objective so that we can calculate the mass of each indi-

vidual easily. The above-cited studies have shown that

SMOAPO has an effective performance. Especially, it has

better diversity compared with PSO algorithm and tradi-

tional evolutionary algorithms. However, mass function in

those algorithms show the performance of each individual

in the population to some extent, i.e., in other words, the

methods of mass calculation adopted in those algorithms

cannot embody the characteristics of MOPs sufficiently.

Therefore, we present another APO algorithm for MOPs

called RMOAPO, in which individuals’ ranks based on

Pareto-optimal concept are used to sort all individuals in

the population. In addition, crowding degree is adopted to

differentiate individuals with the same rank. As a result,

each individual in population has a different rank according

to the Pareto dominance relationship and information of

crowding degree. Thus mass function value of each indi-

vidual can be calculated in terms of its rank in population.

This strategy incorporates characteristics of MOPs suffi-

ciently and also keeps the diversity of population.

4 RMOAPO algorithm

Assuming population P(t) generated in tth generation

comprises N individuals, ni(t) denotes the number of indi-

viduals in P(t) dominating individual i. Then the rank of

individual i during the tth generation is denoted as

ri(t) = 1 ? ni(t). Obviously, there will exist many indi-

viduals with the same rank during the tth generation. Then

we adopt the crowding degree in a neighborhood to solve

this problem. Here the neighborhood is denoted as a region

within a given radius e of the corresponding individual.

According to the concept of individuals’ ranks and the

crowding degree of the individual within its neighborhood,

we assign ranks to the individuals from 1 to N (here N is

population size).

The idea of RMOAPO algorithm is summarized as

follows:

Individuals in the population are sorted in ascending

terms of their respective ranks based on Pareto-optimal

concept mentioned above. When there are several indi-

viduals with the same rank, we rank these individuals

according to their crowding degree within their respective

neighborhoods. Thus, a relationship between crowding

degree and individual’s rank is required. To meet this, we

construct the rule: the lower is the crowding degree, the

smaller is the rank, while the higher the crowding degree,

the greater the rank. Sometimes, there exist several indi-

viduals with the same rank and the same crowding degree.

To solve this problem, we can adjust the radius and assign

ranks to these individuals according to the crowding degree

within the adjusted radius. It is seldom the case but

sometimes there may be individuals with the same rank in

terms of Pareto-optimal concept, and the same crowding

degree even after the radius has been adjusted. Then ran-

dom selection method is used to solve this problem. For

example, if there are three non-dominated solutions A,

B and C generated in the tth generation, according to the

concept of ranking based on Pareto optimality, we know
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they are with the same rank. Now we want to assign natural

numbers 1, 2 and 3 to them. So we have to know how many

individuals are included in each individual’s neighborhood.

If the numbers of individuals within these neighborhoods

are unequal, we can assign the three natural numbers to

them in terms of the rule mentioned above. If there are 5

individuals in the neighborhood of individual A, 7 indi-

viduals in the neighborhood of individual B and 3 indi-

viduals in the neighborhood of individual C, then we can

rank these three individuals as follows: rankA(t) = 2,

rankB(t) = 3 and rankC(t) = 1. However, if the number of

individuals in two neighborhoods, say A and B, is the same,

and it is 3 in C, then we have to adjust the radius of the

neighborhood. Now we reduce the radius of the neigh-

borhood to half at first and then check the number of

individuals in A and B. Now we assume that this results in

A having 4 and B having 3 individuals after the adjustment

of radius. After this there exist rankA(t) = 3, rankB(t) = 2

and rankC(t) = 1. Undoubtedly, sometimes the number of

individuals in neighborhoods of A and B may be equal even

after adjustment of radius. In this case, natural numbers 2

and 3 will be assigned to rankA(t) and rankB(t) randomly.

Ranks of dominated individuals are assigned according to

the same rule. If there are n1 non-dominated solutions

generated in the tth generation, the rest will be ranked from

n1 ? 1. We move non-dominated individuals away from

the population provisionally and deal with non-dominated

individuals of the remainder of the population with the

same method. The procedure is iterated until each indi-

vidual in the original population has a different rank. The

mass function in RMOAPO algorithm is modified as

follows:

miðtÞ ¼ e
�rankiðtÞ

N ð6Þ

Compared with SMOAPO, the mass function in

RMOAPO algorithm can better embody the characteris-

tics of MOPs.

In RMOAPO algorithm, radius r of the neighborhood is

an important parameter which affects the algorithm greatly.

Usually, it is decided by the decision maker according to the

minimum expected distance between individuals in the

Pareto-optimal set. However, in the real application, we

cannot attach much importance to this information because

we are not able to predict the Pareto-optimal set. On the

other hand, if we want to decide the rank of an individual

according to the number of individuals in its neighborhood,

it will be difficult to evaluate the performance of the indi-

viduals, because there are too many individuals with no

individuals in their neighborhoods when the radius of the

neighborhood is set to be too small. Taking all the above into

account, we set radius r of the neighborhood as in Eq. (7).

r ¼
Pn

i¼1 MaxjEijð Þ2
� �1

2

archivesize� 1
ð7Þ

where max |Ei| is the maximum of Euclidean distance

between individuals in the ith dimension of initial popu-

lation and archive size is the size of the non-dominated

solution set (which is the so-called archive).

When individuals with the same rank also have the same

crowding degree, we have to adjust the size of radius of

neighborhood. In other words, in order to evaluate these

individuals’ performance we must enlarge or reduce the

radius of neighborhood. If the number of individuals in the

neighborhood with the same rank is not more than 2, we

change the radius to one-and-a-half times the original

because it is meaningless to reduce the radius in this case;

when there are more than 2 individuals in the neighborhood

having the same rank, we reduce the radius to half. Then

the crowding degree will be checked again after adjustment

of radius.

The procedure of RMOAPO algorithm is summarized as

follows:

Step 1: Initialize coordinates xi,k and vi,k by random

sampling within [xk
min, xk

max] and [vk
min, vk

max], respectively.

In addition, radius r of neighborhood is calculated accor-

ding to Eq. (7).

Step 2: The function value of each individual

i(i = 1, …, N) with each objective is calculated such that

the number of individuals dominating individual i, ni, can

be stored. Synchronously, non-dominated individuals are

selected and stored in archive set. Rank assigned to non-

dominated individuals is 1 while ranks assigned to the rest

of individuals are ni ? 1.

Step 3: Sort all individuals in population in ascending

order, according to ranks based on Pareto optimal men-

tioned above.

Step 4: For individuals with the same rank, the number

of individuals in their neighborhoods r is checked and then

they are sorted in ascending order according to the number

of individuals in their respective neighborhoods. Individ-

uals with the same number of individuals in their neigh-

borhoods are marked as flag(i) = 1.

Step 5: If there exist individuals marked flag(i) = 1,

radius r of neighborhood i is adjusted to r0 according to the

method mentioned above. Moreover, if the number of

individuals in neighborhoods r0 of these individuals is the

same, their ranks are assigned randomly.

Step 6: Assign a serial number to each individual in the

population in terms of the sorting result mentioned above.

In other words, natural numbers 1 to N are assigned to each

individual in the population as rank ranki(t) of the tth

generation.
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Step 7: Calculate each individual’s mass with Eq. (6), as

well as the total force exerted on each individual with Eqs.

(2) and (3). Besides, velocity and position of each indi-

vidual are updated with Eqs. (4) and (5).

Step 8: The function value of each individual

i(i = 1, …, N) with each objective is calculated such

that the number of individuals dominating individual i,

ni
’(i = 1, …, N), can be stored. Synchronously, non-dom-

inated individuals are selected and non-dominated indi-

viduals are assigned rank 1 while ranks assigned to the rest

of individuals are ni
0 ? 1. Each non-dominated solution is

compared with solutions stored in archive set and it is

stored in archive set if the solution is equally good. While

this non-dominated solution dominates some individuals in

archive set, dominated individuals are deleted from archive

set. Meanwhile, the non-dominated solution is put into

archive set. When the number of individuals to be stored in

archive set is more than the size of archive, the individual

with the least number of individuals dominated by it is

moved from archive set.

Step 9: Exit when the maximum number of iterations is

achieved, otherwise return to Step 3.

5 Analysis to simulation test

For quantitative assessment of the performance of a multi-

objective optimization algorithm, two issues are normally

taken into consideration. One is minimization of the dis-

tance of the Pareto front produced by our algorithm from

the true Pareto front, assuming we know its location. The

other is maximization of the spread of solutions found, so

that we can have a distribution of vectors as smooth and

uniform as possible. Based on this notion, we adopted one

metric to evaluate each aspect. Generational Distance (GD)

addresses the first issue while Spacing (SP) (Carlos 2004)

addresses the second issue. In addition, for compare the

quality of the solution set of RMOAPO algorithm with

those of other well-known algorithms, we use the Cw
metric (Zitzler and Thiele 1999), which compares the

convergence rate of two non-dominated sets.

The metric GD returns a value representing the average

distance of solutions in the Pareto front obtained by a

multi-objective optimization algorithm (PFknown) from the

true Pareto front (PFtrue). It is defined as follows:

GD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 d2
i

p
n

ð8Þ

where n is the number of non-dominated solutions obtained

by the proposed algorithm and di is the Euclidean distance

(in objective space) between each vector in PFknown and the

nearest member of PFtrue. It should be clear that a zero

result indicates that all elements generated are in the Pareto

optimal set, while any other value indicates how far

PFknown deviates from PFtrue. As this metric denotes the

average distance from PFtrue, a smaller value means greater

proximity.

Another metric SP judges how well solutions in PFknown

are distributed. It is defined as:

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

i¼1

d � di

� �2

s

di ¼ min
j

Xm

k¼1

f i
kðxÞ � f j

k ðxÞ
�� ��

 !

i; j ¼ 1; . . .; n and j 6¼ i

ð9Þ

where n is the number of solutions on PFknown and �d is the

mean of all di. A zero value for this metric indicates that all

members of PFknown are equidistant. A smaller value rep-

resents a better diversity of PFknown.

In order to explain which algorithm has a better solution

set, we use the third metric C to compare the convergence

rate of two non-dominated sets A and B:

C A;Bð Þ ¼
b
!2 Bj9 a!2 A : a!� b

!
or a!¼ b

!n o��� ���
jBj

ð10Þ

where a~� b~ denotes a~ dominates b~. The value of

C(A, B) = 1 means that all the members of B are weakly

dominated by the members of A. One can also conclude

that C(A, B) = 0 means that none of the members of B is

weakly dominated by the members of A. Usually C(A, B) is

not equal to 1 - C(A, B), and both C(A, B) an C(B, A) must

be considered for comparisons.

We show the performance of RMOAPO algorithm with

ZDT and DTLZ test suites and compare them against some

well known techniques in multi-objective problems litera-

ture. We choose five popular benchmark functions of

ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 (Table 1) and three

complex benchmark functions of DTLZ1, DTLZ2 and

DTLZ4 (Table 5).

6 Tests with ZDT suite

Firstly, we show the performance of RMOAPO algorithm

with ZDT test suite. The variable dimensions in decision

space of each benchmark functions are 30. Normally these

five benchmark functions are used to test MOPs with dif-

ferent characteristics. The first test problem ZDT1 has a

convex Pareto front. In the second problem ZDT2, the

Pareto front is concave. The third problem ZDT3 is usually

used to test the capability of dealing with discontinuous

Pareto front. The fourth benchmark function ZDT4 is the

most difficult in the ZDT series functions. It has 219
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different local Pareto fronts. It is usually adopted to test the

capability of solving multi-modal MOPs with abundant

local Pareto fronts. The last benchmark function ZDT6 is

used to test a multi-objective optimization algorithm’s

capability of handling asymmetric Pareto front. The

experimental environment is explained as follows: The size

of population is set to 100, which is equal to the archive’s

size. The maximum generation is set to 100. Gravitational

constant G is set to 10. The inertia weight w is decreased

from 0.9 to 0.4 with linearity. We run each function 30

times to get the statistic values and show the 15th graphical

result for comparing.

Besides designing the experiments on RMOAPO algo-

rithm, we compare it with three famous MOEAs (i.e.,

NSGA, SPEA, MOPSO) and SMOAPO algorithm. We

choose NSGA and SPEA because they are not only the

classic MOEAs but also their results can be obtained from

an open resource (Zilter and Laumanns 2008). It is a pity

that we have not been able to obtain the result of NSGA-II,

which is an excellent MOEA. Another compared approach,

MOPSO, has been proposed in extant literature (Yang et al.

2008). Fortunately the author provided the results to us.

The experiment environment in existing literature (Yang

et al. 2008) is set as follows: The size of population is set to

100 and it is the same as the size of archive set. The

maximum generation is set to 5,000. The cognitive and

social parameters are fixed as c1 = c2 = 2.05 and inertia

weight w is decreased from 0.9 to 0.4 with linearity. The

experiment environment of SMOAPO algorithm is the

same as that of RMOAPO algorithm.

Figure 1 shows graphical result produced by our

RMOAPO in the first test function chosen. It is easy to

notice that PFknown of ZDT1 obtained by RMOAPO algo-

rithm is almost on PFtrue. From comparison of results of the

five algorithms in Tables 2 and 3, it can be seen that per-

formance of RMOAPO is the best with respect to SP. With

respect to GD, it is slightly below the MOPSO algorithm.

This is mainly because MOPSO algorithm has a much

greater generation than RMOAPO algorithm. We can see

from Table 4 that the non-dominated set produced by

RMOAPO algorithm has a huge value of metric C(A, B) and

a little value of metric C(B, A). So the non-dominated

solutions obtained by RMOAPO algorithm dominate most

solutions obtained by the other four algorithms.

Figure 2 shows graphical result produced by our

approach in the second test function. It is obvious that

RMOAPO algorithm has a good performance. From sta-

tistical values of function ZDT2, we can draw the con-

clusion that on this problem RMOAPO algorithm

outperforms the other four algorithms not only for the

metric of GD but also for SP. With the respect to the metric

C, RMOAPO algorithm also has a good performance.

Table 1 Test problems of ZDT suite

Problem Variable bounds Objective functions

ZDT1 x ¼ ðx1; x2; . . .; xmÞ
xi 2 ½0; 1�
i ¼ 1; 2; . . .;m

m ¼ 30

f1ðx1Þ ¼ x1

f2ðxÞ ¼ g 1�
ffiffiffiffiffiffiffi
f1=g

q	 


gðx2; . . .; xmÞ ¼ 1þ 9
Xm

i¼2
xi=ðm� 1Þ

ZDT2 x ¼ ðx1; x2; . . .; xmÞ
xi 2 ½0; 1�
i ¼ 1; 2; . . .;m

m ¼ 30

f1ðx1Þ ¼ x1

f2ðxÞ ¼ g 1� f1=g

� �2
	 


gðx2; . . .; xmÞ ¼ 1þ 9
Xm

i¼2
xi=ðm� 1Þ

ZDT3 x ¼ ðx1; x2; . . .; xmÞ
xi 2 ½0; 1�
i ¼ 1; 2; . . .;m

m ¼ 30

f1ðx1Þ ¼ x1

f2ðxÞ ¼ gð1�
ffiffiffiffiffiffiffi
f1=g

q
� ðf1=gÞ sinð10pf1Þ

gðx2; . . .; xmÞ ¼ 1þ 9
Xm

i¼2
xi=ðm� 1Þ

ZDT4 x ¼ ðx1; x2; . . .; xmÞ
x1 2 ½0; 1�
xi 2 ½�5; 5�
i ¼ 2; . . .;m

m ¼ 30

f1ðx1Þ ¼ x1

f2ðxÞ ¼ gð1�
ffiffiffiffiffiffiffi
f1=g

q
Þ

gðxÞ ¼ 1þ 10ðm� 1Þ þ
Xm

i¼2
ðx2

i � 10 cosð4pxiÞÞ

ZDT6 x ¼ ðx1; x2; . . .; xmÞ
xi 2 ½0; 1�
i ¼ 1; 2; . . .;m

m ¼ 30

f1ðx1Þ ¼ 1� expð�4x1Þ sin6ð6px1Þ

f2ðxÞ ¼ g 1� f1=g

� �2
	 


gðx2; . . .; xmÞ ¼ 1þ 9
Xm

i¼2
xi=ðm� 1Þ

� �0:25
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Figure 3 shows graphical result produced by RMOAPO

algorithm in the third test function. It can be seen that

PFknown by RMOAPO algorithm is almost on PFtrue. The

metric values showed in Tables 2 and 3 indicate that our

approach has a better GD compared with NSGA, SPEA

and SMOAPO algorithms, but it is worse than MOPSO

algorithm. With respect to SP, RMOAPO algorithm is

almost equivalent to those of SPEA, MOPSO and SMO-

APO algorithms, which are much better than NSGA. With

the respect to the metric C, RMOAPO algorithm is very

close to those of SMOAPO algorithm and MOPSO, which

are much better than NSGA.

From Fig. 4 we can see that PFknown of ZDT4 obtained

by our approach has an excellent proximity to PFtrue.

However, it is outperformed by MOPSO algorithm with

respect of diversity. Although PFknown by SMOAPO

algorithm is better than SPEA and NSGA, it is worse than

RMOAPO algorithm. With the respect to the metric C,

RMOAPO algorithm is much better than NSGA and it is

also better than SMOAPO algorithm and SPEA. However,

it is worse than MOPSO.

From Fig. 5 we can observe that PFknown of ZDT6

obtained is far from PFtrue because PFtrue of ZDT6 is

uneven while all algorithms in this paper adopt strategies to

keep PFknown spreading evenly. As the metric of C here has

little meaning, we don’t list it in Table 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
APO ZDT1

f1

f2

true

MOAPO

Fig. 1 Non-dominated solutions with RMOAPO on ZDT1

Table 2 Statistics values for the metric of GD

Functions GD RMOAPO SMOAPO NSGA SPEA MOPSO

ZDT1 Mean 0.0360 0.0524 0.1715 0.1034 0.0022

Best 0.0270 0.0365 0.1453 0.0893 0.0016

Worst 0.0463 0.0628 0.2140 0.1181 0.0048

Median 0.0433 0.0487 0.2140 0.1064 –

Std 0.0051 0.0081 0.0155 0.0066 –

ZDT2 Mean 0.0176 0.0459 0.2668 0.1088 0.0509

Best 0.0083 0.0105 0.2159 0.0889 0.0276

Worst 0.0353 0.0562 0.3100 0.1340 0.0667

Median 0.0353 0.0105 0.3019 0.0961 –

Std 0.0058 0.0104 0.0232 0.0124 –

ZDT3 Mean 0.0429 0.0833 0.1417 0.1537 0.0052

Best 0.0324 0.0451 0.1044 0.1294 0.0047

Worst 0.0815 0.1008 0.1620 0.2001 0.0060

Median 0.0348 0.0451 0.1263 0.1546 –

Std 0.0094 0.0151 0.0137 0.0163 –

ZDT4 Mean 0.0730 0.0955 2.3950 0.7068 0.014

Best 0.0180 0.0667 0.8817 0.1856 0

Worst 0.1655 0.1305 5.1436 1.4667 0.0408

Median 0.0629 0.1305 2.4916 0.8156 –

Std 0.0241 0.0350 0.8727 0.3744 –

ZDT6 Mean 0.2131 0.4256 1.0846 0.3939 0.5886

Best 0.1322 0.2311 0.7630 0.2323 0.2222

Worst 0.3033 0.6546 1.9086 0.6023 0.8558

Median 0.2059 0.6546 1.0412 0.5040 –

Std 0.0341 0.2107 0.2437 0.1028 –
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As we have seen from these experiments, we can con-

clude that we have built a competitive algorithm using

ranks of individuals based on Pareto-dominated concept

and the crowding degree between individuals. Moreover,

evolutionary generations in our approach are far less than

the compared algorithms, except for SMOAPO, which

reduces computing and time costs. Hence, our approach is

specifically superior for dealing with MOPs whose Pareto

fronts have the characteristics of convex, concave, dis-

connect, multi-modal and numerous local optimal.

7 Experiments with DTLZ test suite

Next we show the performance of RMOAPO algorithm

with three complex problems (Table 5) of DTLZ test suite.

Normally these three benchmark functions are complex

and used to test MOPs with different characteristics. The

first test problem DTLZ1 is an M-objective problem with a

linear Pareto-optimal front. Its Pareto-optimal solution

corresponds to xM = 0 and the objective function values lie

on the linear hyper-plane:
PM

m¼1 fm ¼ 0:5. A value of

k = 5 is suggested here. In the above problem, the total

number of variables is n = M ? k - 1. The difficulty in

this problem is to converge to the hyper-plane. The search

space contains (11k - 1) local Pareto-optimal fronts, each

of which can attract the algorithm. In the second problem

DTLZ2 the Pareto-optimal solutions corresponds to

xM = 0.5 and all objective function values must satisfy

the equation of
PM

i¼1 ðfiðxÞÞ2 ¼ 1. Here, a value of

k = |xM| = 10 is suggested. The total number of variables

Table 3 Statistics values for the metric of SP

Functions SP RMOAPO SMOAPO NSGA SPEA MOPSO

ZDT1 Mean 0.0060 0.0102 0.0409 0.0218 0.0120

Best 0.0041 0.0063 0.0300 0.0155 0.0084

Worst 0.0118 0.0239 0.0603 0.0295 0.0203

Median 0.0047 0.0069 0.0512 0.0227 –

Std 0.0016 0.0051 0.0071 0.0031 –

ZDT2 Mean 0.0049 0.0069 0.0725 0.0374 0.0151

Best 0.0035 0.0038 0.0337 0.0217 0.011

Worst 0.0111 0.0113 0.1525 0.0573 0.020

Median 0.0053 0.0083 0.0830 0.0349 –

Std 0.0015 0.0024 0.0269 0.0085 –

ZDT3 Mean 0.0235 0.0233 0.0425 0.0222 0.0305

Best 1.005e-4 0.0057 0.0276 0.0166 0.0276

Worst 0.1611 0.0971 0.0770 0.0295 0.0341

Median 5.4351e-4 0.0285 0.0379 0.0211 –

Std 0.0448 0.0266 0.0112 0.0033 –

ZDT4 Mean 0.1817 0.2472 0.2820 0.7068 0.0114

Best 0.0173 0.0029 9.5013-e9 0.1856 0.0055

Worst 1.0517 1.3377 0.5634 1.4667 0.0410

Median 0.2103 0.0239 0.1651 0.8156 –

Std 0.2949 0.3857 0.1176 0.3744 –

ZDT6 Mean 0.4823 0.7106 0.4156 0.3066 0.4571

Best 0.3632 0.3013 0.3001 0.0239 0.2848

Worst 0.8637 0.8426 0.7441 0.6417 0.5994

Median 0.8637 0.3924 0.4041 0.4898 –

Std 0.0701 0.0754 0.0935 0.0712 –

Table 4 Numerical results for the metric of C, here we assume A as

the non-dominated set produced by RMOAPO algorithm and B as that

produced by the other algorithm

Functions C SMOAPO NSGA SPEA MOPSO

ZDT1 C(A, B) 0.89 0.96 0.93 0.56

C(B, A) 0.17 0.10 0.11 0.59

ZDT2 C(A, B) 0.86 0.98 0.93 0.79

C(B, A) 0.21 0.09 0.11 0.29

ZDT3 C(A, B) 0.67 0.98 0.76 0.53

C(B, A) 0.59 0.10 0.31 0.64

ZDT4 C(A, B) 0.74 0.99 0.71 0.47

C(B, A) 0.31 0.09 0.36 0.68
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is n = M ? k - 1. The third problem DTLZ4 is usually

used to investigate a multi-objective optimization algo-

rithm’s ability to maintain a good distribution of solutions.

The parameter a = 100 is suggested here. And here

k = |xM| = 10 is suggested. There are n = M ? k - 1

decision variables in the problem.

The experimental environment of RMOAPO algorithm

is explained as follows: The size of population is set to 100,

which is equal to the archive’s size. The maximum gener-

ation is set to 100 so that the algorithm has a low computing

cost. Gravitational constant G is set to 10. The inertia

weight w is decreased from 0.9 to 0.4 with linearity. Each

function chosen is run 30 times to get the statistics values

and the 15th graphical result of each function is shown.

We compare RMOAPO algorithm with three other

multi-objective optimization algorithms (i.e., NSGA-II,

MOPSO and SMOAPO). In the experiment of NSGA-II,

the environment is set as follows: We use a population of

size 100, a crossover probability of 0.8, a mutation prob-

ability of 1=n (where n is the number of variables). We run

NSGA-II for 200 generations. As we have not been able to

obtain DTLZ’s results of MOPSO, we have to code the

algorithms according to its pseudocode in Yang et al.

(2008) by ourselves. The size of population is set to 100

and it is the same as the size of archive set. The maximum

generation is set to 500 so that its solutions are comparable.

The cognitive and social parameters are fixed as c1 = c2 =

2.05 and inertia weight w is decreased from 0.9 to 0.4 with
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Fig. 2 Non-dominated solutions with RMOAPO on ZDT2
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Fig. 3 Non-dominated solutions with RMOAPO on ZDT3
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Fig. 4 Non-dominated solutions with RMOAPO on ZDT4
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Fig. 5 Non-dominated solutions with RMOAPO on ZDT6
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linearity. The experimental environment of SMOAPO

algorithm is the same as that of RMOAPO algorithm. It is

also run 30 times to obtain the statistics values.

Figure 6 depicts graphically the result produced by our

RMOAPO in the DTLZ1 problem. It is easy to notice that

PFknown of DTLZ1 obtained by RMOAPO algorithm is

almost on PFtrue. From comparison of results of the above

three algorithms in Tables 6, 7, it can be seen that the

performance of RMOAPO is very close to NSGA-II with

respect to the metric of SP. However, NSGA-II algorithm

has a much greater generation than RMOAPO algorithm.

With respect to GD, it is better than the other three algo-

rithms. We can see from Table 8 that the non-dominated

set produced by RMOAPO algorithm has a great value of

metric C(A, B) and a little value of metric C(B, A). So the

non-dominated solutions obtained by RMOAPO algorithm

dominate most solutions obtained by the other three

algorithms.

Figure 7 depicts graphically the result produced by our

approach in the DTLZ2 problem. It is obvious that

RMOAPO algorithm has a good performance. From the

GD and SP metrics of the function DTLZ2, we can draw

the conclusion that on this problem RMOAPO algorithm

outperforms the other three algorithms for both the metrics.

With the respect to the metric C, RMOAPO algorithm also

has a good performance on this problem.

Figure 8 depicts graphically the result produced by

RMOAPO algorithm in the DTLZ4 function. It can be seen

that PFknown by RMOAPO algorithm is almost on PFtrue.

The metric values showed in Tables 6, 7 indicate that our

approach has a better SP compared with the other three

Table 5 Three test problems of DTLZ test suite

Problem Variable bounds Objective functions

DTLZ1 x ¼ ðx1; x2; . . .; xnÞ
xi 2 ½0; 1�
i ¼ 1; 2; . . .; n

n ¼ 6

f1ð x!Þ ¼ 1

2
x1ð1þ gð x!ÞÞ

f2ð x!Þ ¼ 1

2
ð1� x1Þð1þ gð x!ÞÞ

gð x!Þ ¼ 100½j x!j þ
X

xi2 x!ðx1 � 0:5Þ2 � cosð20pðxi � 0:5ÞÞ�

DTLZ2 x ¼ ðx1; x2; . . .; xnÞ
xi 2 ½0; 1�
i ¼ 1; 2; . . .; n

n ¼ 11

f1ð x!Þ ¼ ð1þ gð x!ÞÞ cosðx1
p
2
Þ

f2ð x!Þ ¼ ð1þ gð x!ÞÞ sinðx1
p
2
Þ

gð x!Þ ¼
X

xi2 x!ðx1 � 0:5Þ2

DTLZ4 x ¼ x1; x2; . . .; xnð Þ
xi 2 ½0; 1�
i ¼ 1; 2; . . .; n

n ¼ 11

f1ð x!Þ ¼ ð1þ gð x!ÞÞ cosðxa
1

p
2
Þ

f2ð x!Þ ¼ ð1þ gð x!ÞÞ sinðxa
1
p
2
Þ

gð x!Þ ¼
X

xi2 x!ðx1 � 0:5Þ2

a ¼ 100
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Fig. 6 Non-dominated solutions with RMOAPO on DTLZ1

Table 6 Statistics values for the metric of GD

Functions GD RMOAPO SMOAPO NSGA-II MOPSO

DTLZ1 Mean 0.1391 0.1838 0.2489 0.3553

Best 0.1203 0.1376 0.2097 0.2952

Worst 0.2447 0.2619 0.3144 0.3649

Median 0.1412 0.1513 0.3034 0.3573

Std 0.0065 0.0087 0.0046 0.0055

DTLZ2 Mean 0.0212 0.0433 0.0248 0.0469

Best 0.0097 0.0112 0.0102 0.0179

Worst 0.0336 0.0537 0.0348 0.0632

Median 0.0311 0.0363 0.0295 0.0487

Std 0.0043 0.0053 0.0037 0.0051

DTLZ4 Mean 0.0194 0.0231 0.0207 0.0386

Best 0.0083 0.0092 0.0089 0.0139

Worst 0.0276 0.0357 0.0251 0.0349

Median 0.0191 0.0304 0.0173 0.0283

Std 0.0036 0.0039 0.0034 0.0047
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algorithms. With respect to GD, RMOAPO algorithm is

almost equivalent to those of NSGA-II and SMOAPO

algorithms, which are better than MOPSO. We can see

from Table 8 that RMOAPO algorithm has a better per-

formance with the respect to the metric C.

Since the efficiency is an important matter in multi-

objective optimization, we use the mean of CPU time

consuming to evaluate the efficiency of each algorithm

compared. It shows in Table 9.

From Table 9 we can see RMOAPO algorithm has a

better efficiency compared with NSGA-II and MOPSO.

However the CPU time consumed by RMOAPO algorithm

is longer than that of SMOAPO. That is mainly because the

masses of individuals in SMOAPO algorithm produced by

the method of aggressive function, which is more simple

than that in RMOAPO algorithm. However, this method of

mass obtaining in SMOAPO algorithm can not embody the

characteristics of multi-objective optimization problems

adequately.

We can draw a conclusion from these two test suites that

our approach has a comparable performance on dealing

with many complex multi-objective optimization problems.

It can converge to the true Pareto front with fewer gener-

ations than NSGA, SPEA, NSGA-II, MOPSO etc. so that it

has a lower computing cost. Moreover, RMOAPO algo-

rithm has a good diversity and a comparable efficiency.

Table 7 Statistics values for the metric of SP

Functions SP RMOAPO SMOAPO NSGA-II MOPSO

DTLZ1 Mean 0.0067 0.0093 0.0064 0.0107

Best 0.0036 0.0071 0.0031 0.0079

Worst 0.0094 0.0115 0.0083 0.0171

Median 0.0061 0.0089 0.0058 0.0095

Std 0.0023 0.0047 0.0019 0.0034

DTLZ2 Mean 0.0046 0.0073 0.0068 0.0087

Best 0.0032 0.0046 0.0041 0.0053

Worst 0.0097 0.0125 0.0113 0.0176

Median 0.0058 0.0096 0.0095 0.0104

Std 0.0021 0.0031 0.0026 0.0037

DTLZ4 Mean 0.0029 0.0038 0.0035 0.0053

Best 0.0017 0.0015 0.0021 0.0032

Worst 0.0092 0.0091 0.0073 0.0103

Median 0.0053 0.0085 0.0037 0.0068

Std 0.0036 0.0039 0.0023 0.0042

Table 8 Numerical results for the metric of C, here we assume A as

the non-dominated set produced by RMOAPO algorithm and B as that

produced by the other algorithm

Functions C SMOAPO NSGA-II MOPSO

DTLZ1 C(A, B) 0.98 1 1

C(B, A) 0.17 0.11 0.09

DTLZ2 C(A, B) 0.78 0.81 0.87

C(B, A) 0.31 0.26 0.24

DTLZ4 C(A, B) 0.75 0.79 0.82

C(B, A) 0.43 0.37 0.23
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Fig. 7 Non-dominated solutions with RMOAPO on DTLZ2
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Fig. 8 Non-dominated solutions with RMOAPO on DTLZ4

Table 9 Comparison of CPU time consuming (s)

Functions RMOAPO SMOAPO NSGA-II MOPSO

DTLZ1 9.7518 9.4246 17.2397. 18.6546

DTLZ2 8.9512 8.7183 19.8137 20.8769

DTLZ4 8.2471 7.9752 18.7792 20.8213

950 Y. Wang, J. Zeng

123



8 Conclusions

We have presented a RMOAPO algorithm to deal with

MOPs. In this approach individuals’ ranks in terms of Pareto-

dominated concept are used to evaluate the performance of

each individual. In addition, crowding degree within the

individual’s neighborhood is checked as another index to

evaluate the performance of individuals with the same

Pareto-dominated rank. Moreover, the radius of the neigh-

borhood is adjusted if there are several individuals with the

same crowding degree. Besides, random selection method is

used if individuals exist as ‘‘equal optimal’’ after being

sorted by means of the method mentioned above. Thus each

individual in the population has a unique rank, which indi-

cates the performance of an individual. Then the mass of

each individual is calculated using its rank. Afterwards

combined virtual force exerted on each individual can be

calculated with its mass. As a result, velocity and position of

each individual are updated. Simulation results on ZDT and

DTLZ series functions have showed RMOAPO algorithm

has a competitive performance with less generations com-

pared with some famous MOEAs and SMOAPO algorithm.

As the APO algorithm has strong global search ability,

while strategies of ranking based on Pareto-dominated

concept and crowding degree within neighborhood embody

the characteristics of MOPs, we can obtain satisfactory

results when handling the MOPs whose Pareto fronts have

the characteristics of convex, concave, disconnect, multi-

modal and numerous local optimal. However, during the

test procedure, we have also observed that our approach is

not suitable for MOPs with an uneven Pareto front. In the

future, more research is required in this area in order to

extend the suitable regions of our approach. Moreover, we

plan to test functions with high dimensions and large-scale

MOPs. Synchronously, we will analyze the convergence of

RMOAPO algorithm theoretically.
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