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Abstract Track-before-detect (TBD) algorithms are used

for tracking systems, where the object’s signal is below the

noise floor (low-SNR objects). A lot of computations and

memory transfers for real-time signal processing are nec-

essary. GPGPU in parallel processing devices for TBD

algorithms is well suited. Finding optimal or suboptimal

code, due to lack of documentation for low-level pro-

gramming of GPGPUs is not possible. High-level code

optimization is necessary and the evolutionary approach,

based on the single parent and single child is considered,

that is local search approach. Brute force search technique

is not feasible, because there are N! code variants, where

N is the number of motion vectors components. The pro-

posed evolutionary operator—LREI (local random extrac-

tion and insertion) allows source code reordering for the

reduction of computation time due to better organization of

memory transfer and the texture cache content. The starting

point, based on the sorting and the minimal execution time

metric is proposed. The unbiased random and biased sort-

ing techniques are compared using experimental approach.

Tests shows significant improvements of the computation

speed, about 8 % over the conventional code for CUDA

code. The time period of optimization for the sample code

is about 1 h (1,000 iterations) for the considered recursive

spatio-temporal TBD algorithm.
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1 Introduction

Tracking systems are very important for surveillance

applications (Blackman and Popoli 1999). Tracking of the

missiles, ships, airplanes, near-Earth asteroids (NEO), and

ground surface objects are typical applications. There are

numerous tracking filters that are used successfully, such as

Benedict–Bordner (Brookner 1998), Kalman (1960), and

EKF (Blackman and Popoli 1999). More advanced tracking

filters, such as Bayesian filter (Stone et al. 1999) and

derivatives are also applied, if non-linear effects and non-

Gaussian noises occur (Stone et al. 1999).

Most tracking systems use the detection and tracking

scheme (Fig. 1) (Blackman and Popoli 1999). The object

is tracked when is properly detected. The signal level of

the object should be over the background noise floor. The

threshold signal processing algorithms are applied for the

object detection and further the estimation of the position.

The distance between signal level, related to object and

background, is variable due to variable characteristic of the

signal of the object, measurement conditions, and proper-

ties of the acquisition system in the real applications.

Application of the tracking filter that is used as a predictor

allows the improvement of the detection ratio (Blackman

1986; Blackman and Popoli 1999).

The predicted values reduce the detection area using the

gate technique (Bar-Shalom 1992; Blackman 1986;

Blackman and Popoli 1999; Brookner 1998), which is

computationally important. Moreover, the restoration of

the object’s state (position, velocity) is possible when a
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signal is weak. The implementation of tracking systems for

high SNR (signal-to-noise ratio) cases is rather simple. The

multiple target tracking systems are more sophisticated,

because advanced assignment algorithms are necessary for

the track maintenance (assignment of observations to the

proper trajectories). Tracking filters and assignment

algorithms improve tracking for a lower SNR cases

(Bar-Shalom 1992; Blackman and Popoli 1999).

1.1 Outline of the paper

Very interesting, from the application point-of-view, is the

case where the object signal is low, even below the noise

floor (SNR \ 1). The signal hidden in a noise is not

detectable using a fixed or adaptive threshold algorithms.

Fortunately, such signals are detected and tracked using

the opposite scheme: Track-before-detect (TBD) that is

considered briefly in Sect. 2. The spatio-temporal TBD

code implementation techniques and computation cost are

emphasized in Sect. 2. Markov matrix (sparse matrix)

computations are implemented by the set of MAC opera-

tions, because regular matrix multiplication is inefficient.

The advantages and limitations of the parallel processing of

TBD algorithms using GPGPU (General-Purpose Graphics

Processing Unit) are considered in Sect. 3. GPGPU code

optimization is necessary for the processing time reduction

of TBD algorithm. The proposed optimization technique

for reordering of the source code using the introduced

‘local random extraction and insertion’ (LREI) operator is

considered in Sect. 4. Reordering is a well-known tech-

nique for assembly level optimization and is based on the

metric for the execution of assembly code and processing

units constraints. Particular GPGPU implementation uses a

high-level language (C-like) for not well documented

GPGPU architecture.

1.2 Contribution-LREI operator

Introduced in this paper, the LREI operator allows optimi-

zation for such case and the execution time is reduced about

8 %, typically. The experimental results are presented in

Sect. 5. Optimization technique needs appropriate starting

point. The selection of starting point is evaluated in Sect. 5

for random and sorting-based techniques. Tests (bench-

marks) for unbiased and biased starting points are based on

the Monte Carlo approach for the reliable comparison of

results and unbiased conclusions.

Theoretical evaluation of the optimization techniques

for contemporary GPGPU architectures is not possible

without documentation. The proposed approach shows how

to optimize automatically GPGPU code without this doc-

umentation (local metrics), what is important for software

developers.

1.3 Related works

Proposed technique for CUDA is based on the previous

experiences, related to the code and algorithm optimization

techniques (separated and combined). Optimization of the

ST-TBD code is possible using specific changes in algorithm

due to processing architecture. The best way for improvement

of ST-TBD is the downsampled approach that increases

computation speed up to 6 times (Mazurek 2010a, c). Auto-

matic code profiling using search for the optimal processing

block size changes computation speed up to few times (Ma-

zurek 2010b). Selection of the proper memory for the state

space and measurement data (texture memory instead global

memory) gives few percent improvements (Mazurek 2009b).

This work is related to the adaptive compilers (Cooper

et al. 2002), also. The adaptive compilers do not prefer

code optimization using fixed heuristics (Joseph et al.

2008; Kisuki et al. 2000), like typical compilers. The hill

climbing (random local search technique) and evolutionary

search (e.g. GA, Cooper et al. 1999) techniques are used,

typically. It is indicated in Almagor et al. (2004) and

Kulkarni et al. (2007) that the hill climbing solution is very

close to the global optimum within a small number of

steps. The proposed LREI operator is a kind of the hill

climbing dedicated to the code line reordering.

2 Track-before-detect systems

2.1 Introduction

Low-SNR tracking cases are very important for modern

tracking systems (Blackman and Popoli 1999; Stone et al.

1999). The signal of the object is reduced due to the larger

distance from the acquisition system. Moreover, the

‘stealth’ and countermeasure techniques are used for

intentional reduction of the object’s signal. A weak signal

occurs for civil applications, because poor atmospheric

conditions reduce effective range of sensors, which is

important in transportation surveillance systems.

Detection and estimation of signals hidden in noise are

important due to physical limitations of the sensors. The

extending of the detection and tracking range, using algo-

rithmic way, is very important for contemporary applications.

The track-before-detect (TBD) scheme (Fig. 2) (Black-

man and Popoli 1999; Boers et al. 2008; Doucet et al.

Detection Tracking
trajectoriesmeasurements

Fig. 1 Detection and tracking scheme
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2001; Ristic et al. 2004; Stone et al. 1999) is used for the

tracking a low SNR objects. The opposite processing order

in TBD algorithms is used. This scheme assumes that

tracked object is in every possible state (position, velocity,

etc.) and is tracked using all expected trajectories.

The incoming signal values are accumulated over tra-

jectories in simple TBD algorithms, for example. Such

technique reduces a noise, improves SNR, and gives the

ability of detection for the proper trajectory. Other tested

trajectories not related to the object are also filtered and for

the Gaussian noise. The mean value for the object’s tra-

jectory is much larger in comparison to the practically zero

valued other trajectories.

2.2 Spatio-temporal TBD algorithm

There are many TBD algorithms, and the spatio-temporal

TBD algorithm is very interesting for practical applica-

tions. This algorithm is a kind of the multidimensional IIR

filter (Mazurek 2009b, 2010a, c).

New measurements are applied in the information update

formula (3). The information update formula is a kind of the

exponential smoothing filter. The smoothing coefficient

affects the mixing between previous state space predictions

and new incoming data. Larger values of smoothing coef-

ficient, near to 1.0 for low SNR scenarios are used.

The predicted values are computed using the motion

update formula (2) and the trajectories are defined by the

Markov transition matrix. The prediction is based on

the previous results of the information update formula. The

information update formula sharps a state space values, and

the motion update formula blurs state space values. Both

formulas should be balanced for the reasonable tracking

system. The state space is 4D for 2D input images and 2D

motion vectors.

The following pseudocode shows this algorithm:

Start

Pðk ¼ 0; sÞ ¼ 0 ð1Þ

For k C 1 and s 2 S

P�ðk; sÞ ¼
Z

S

qkðsjsk�1ÞPðk � 1; sk�1Þdsk�1 ð2Þ

Pðk; sÞ ¼ aP�ðk; sÞ þ ð1� aÞXðkÞ ð3Þ

EndFor

End

where Eq. (1) is the initialization, Eq. (2) the motion

update, Eq. (3) the information update, S the state space,

e.g. 2D position and motion vectors, s the state (spatial and

velocity components), k the step number or time moment

(integer values), a the smoothing coefficient a 2 ð0; 1Þ;
X(k) the measurements (input image), P(k, s) the estimated

value of objects, P-(k, s) the predicted value of objects and

qk(s|sk-1) is the state transitions (Markov matrix).

Spatio-temporal TBD algorithm is computationally

demanding (Mazurek 2010a, c). All possible trajectories are

processed even if no object is in the range (Stone et al. 1999).

The important property of this algorithm is multiple targets

tracking possibility without additional costs. Efficient imple-

mentations are necessary, especially for real-time systems.

2.3 Computational requirements

Considering quite simple TBD system: input image

1,000 9 1,000 resolution, 13 motion vectors, there are

13 M state space cells. The simplest Markov matrix does

not use transitions between state space cells, and there is no

image blur in the motion update formula. Assuming 100

frames per seconds image rate, there are 1.3 G/s accumu-

lations and 2.6 G/s multiplications.

The cooperation between trajectories is necessary for

tracking systems, hence computed valued for state space

cell should be used by the surrounding state space cells

also. This is the explanation of the blurring effect in the

motion update formula and it is necessary for reasonable

size of the state space for maneuvering objects. The

number of trajectories is fixed and there are possible

trajectories of the object that are not well fitted to the

available set, so co-operation is necessary.

The Markov matrix is not implemented using conven-

tional matrix multiplication. This matrix is very large and

sparse, also. Implementations are based on the embedding

of the Markov transitions into code directly. It is a fast

technique that reduces occupancy of the data bus and

memory. The Markov matrix has similar values often, so

additional code optimization is possible, especially the

reduction of multiplications by the constant values. Design

and optimization techniques for the Markov matrix are not

considered in this paper.

2.4 Processing devices for TBD algorithms

The possible processing devices for TBD algorithms are:

custom VLSI chips, FPGAs, GPGPUs, DSPs and SIMD-

based CPUs. Custom chips are very interesting, but avail-

able for specific applications, especially military. FPGAs

chips are well fitted for efficient implementations but they

need careful synthesis and verification. GPGPUs are most

important for TBD systems, because such chips are

Tracking Detection
trajectoriesmeasurements

Fig. 2 Track-before-detect scheme
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available at low cost (modern graphic cards). The cost

reduction is important for civil applications and it is sig-

nificant motivation for the author. DSPs- and SIMD-based

CPUs are similar to GPGPUs but the level of parallelism is

lower. GPGPUs support hundreds of processing cores

(Kirk and Hwu 2010; NVIDIA 2011a, b) what is important

for processing the motion update formula with many pos-

sible transitions between trajectories.

2.5 Organization of memory for ST-TBD algorithm

The computation of the information update formula is

simple because the 2D image is added to the state space

using the exponential smoothing and this operation is not

considered in this paper in detail. Assuming N 9 N input

image size and M as a number of motion vectors there are

N 9 N 9 M exponential smoothing operations.

Conventional image processing filtering techniques

(a set of first order IIR filter) could be applied for the

specific state space formulation. It is assumed that set of

2D motion vectors corresponding to the input image

coordinates, and additional dimension for the motion vec-

tor number are used. Such formulation of the state space is

important due to efficient implementations for all men-

tioned processing devices. Optimized 2D software routines

or hardware structures are available for all of them.

The motion update formula needs much more opera-

tions. The size of the state space depends on the expected

tracking resolution. The resolution of the state space that

corresponds to the input image is a typical case, but higher

resolutions are possible for super-resolutional tracking. The

case with the N 9 N of position cells and M of motion

vectors is typical and allows the visualization of the

tracking process (Mazurek 2009a). The memory organi-

zation for TBD system and input images is shown in Fig. 3.

Organizing of the state spaces on the 2D plane for visual

inspection of the results is possible. It is important for the

human operator of the tracking system (Mazurek 2009a).

Assuming fixed number of weight coefficients between every

pair of motion planes as K, there are N 9 N 9 M 9 K of

‘Multiply and ACcumulate’ (MAC) operations.

The number of MAC operations is increased for the frac-

tional motion vectors. The interpolation techniques needs

more MAC operations. The bilinear interpolation is applied

typically, because it is supported in hardware of GPGPU.

In experimental tests the following arbitrary selected

values are used: N = 256 image size 256 9 256 pixels,

M = 9 (the number of motion vectors) and M 9 K = 40

(in this experiment there is a fixed number of motion

vector, but not equally assigned to every motion vector).

There are about 2.6 M of fractional motion vectors.

A few seconds are necessary for preparation of every

subtest and 1,000 subtests are executed. The 1,000 limit of

subtest is selected by the observation of the convergence.

Every subtest is executed 100 times on GPGPU. Overall

optimization for fixed motion vectors needs 100 M of TBD

code runs and takes more than 1 h. Larger images, number

of motion vectors occur in the real TBD systems and

optimization time is longer. The assumed parameters of the

TBD system are used for the code optimization researches,

without very long test (e.g. few months).

3 TBD algorithm synthesis for CUDA-supported

GPGPU

3.1 GPGPU programming limitations

The GPGPU devices are well suited for TBD algorithms

due to low-level parallelism, necessary for the code

implementation (Mazurek 2010a, c). There are few pro-

gramming options that are available for the code imple-

mentation. GPGPUs may process shader languages, but

shader languages are not convenient for sophisticated code

writing (Kirk and Hwu 2010).

Nowadays, the NVIDIA (2011a, b) and OpenCL are

used for programming of GPGPUs using C-like code. Both

of them are high-level languages what is advantage for the

software developer, but the efficient implementation

(reduction of computation time) needs a low-level pro-

gramming. The CUDA code is translated to the interme-

diate code—PTX (2011). The PTX code is similar to the

assembly code, but it is not desired for a low-level

assembly language. The PTX code is translated to low-

level operations but the overall process is only known for

NVidia (the manufacturer of CUDA-supported chips).

Similar situation occurs for another GPGPU manufactures,

unfortunately. The possibilities of particular GPGPU chips

are known with only high abstraction level point-of-view

(Farber 2011; NVIDIA 2011a, b; Sanders and Kandrot

2010). Detailed information about architecture, instruction

set, memory management unit, and cache algorithms are

not available, unfortunately.

The software developers use a set of programming rules

that are defined in GPGPU and CUDA/OpenCL/PTX

documentations (NVIDIA 2011a, b) and they make

experiments related to the code reorganization. Some

experiments fail, because the obtained code is executed too

slowly. Sometimes the success is obtained and the code

works faster in comparison to the previous step. Such

iterative code optimization, driven by the software devel-

oper is not efficient, as a code optimization based on

detailed chip documentation. Finding of the optimal order

of instructions, using conventional code synthesis tech-

niques without documentation of architecture, is not

possible.
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3.2 Automatic code optimization

Automatic optimization is based on the experimental

approach (run and measure) and cannot be considered

precisely from theoretical point-of-view.

The theoretical approach is applicable for well-defined

systems with known metrics. The typical GPGPU device

is ‘‘darkgray box’’, because only a small part of docu-

mentation is available. The theoretical approach needs

complete metrics: assembly code execution time includ-

ing pipeline processing, cache model, memory interfaces

model, etc. Available documentation allows limited

optimization, because GPGPUs are not a ‘‘black boxes’’

and some programming aspects are delivered (NVIDIA

2011a, b).

The lack of documentation is the typical problem for

many contemporary advanced integrated circuits. Particu-

lar GPGPUs allow programming using a high-level lan-

guage that is converted to the intermediate code (PTX-

code). This code is converted to the real assembly code of

GPGPU by the GPGPU card driver. Such approach gives

compatibility of the different generation cards at PTX code

level, which is very important for typical users. The

changes of ISA (Instruction Set Architecture) by the chip

manufacturer give abilities of the improvements of new

chips, without preservation of the backward compatibility.

Such strategy enables even a radical changes of ISA

without recompilation of the GPGPU code of target

applications (NVIDIA 2011c). Optimization of hardware

processing units and ISA is very important for the reduc-

tion of the processing time and power consumption. The

lack of the optimal code design is obtained, unfortunately.

The assembly code is ISA-dependent code strictly, but

metrics are not available, hence theoretical approach is not

possible. The experimental approach is one way only,

which is possible to use for software developers. Moreover,

the execution for particular code cannot be obtained using

single run due to reliability of the measurement timers.

Maximization of GPGPU performance is necessary for

the application of computation intensive algorithms such as

TBD. Automatic code synthesis or automatic code opti-

mization is necessary with automatic performance tests.

The performance tests are used in iterative search of the

optimal instruction order. Other techniques such as

switching between alternative memories, data organization,

loop rolling/unrolling are also subjects of the automatic

optimization process.

The discreet optimization techniques are the best way

for solving the code synthesis problem without GPGPU

architecture knowledge. The scale of the problem is well

depicted for mentioned example.

The number of basic motion vectors is equal to the

number of code lines of main processing code, so the

calculation of the MAC and data transfers for the operation
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is defined as a M 9 K (e.g. 40) for single CUDA kernel.

The number of possibilities of lines order is (M 9 K)!, e.g.

40! for example TBD system. Brute force search tech-

niques for all possibilities are not realistic. The more

advanced search is necessary.

3.3 GPGPU constraints

CUDA-based GPGPU supports SIMT (Single-Instruction

Multiple-Thread processing model) (Farber 2011; NVIDIA

2011a, b; Sanders and Kandrot 2010). Such programming

model is an extended SIMD (Single-Instruction Multiple-

Data) processing model. SIMT supports processing code

with branches, what is not available in SIMD model. TBD

algorithm is well fitted to both models, because branches

are not available. The processing speed-up depends on the

algorithm and implementation. Even a hundreds time faster

processing is possible for specific algorithm using GPGPUs

in comparison to the modern single core CPUs (x86

architecture).

Processed data are stored in the global memory (outside

of GPGPU chip), and transferred between GPGPU and

memory chip (a new and temporal data; the final result).

The main bottlenecks of GPGPU are: the bandwidth and

latency limits, related to the memory transfers between the

GPGPU and memory chip. The reduction of both bottle-

necks using internal shared memory, texture cache and

constants memory is necessary (NVIDIA 2011a, b).

The data transfer intense algorithms and the large

memory sets are not well fitted into GPGPU architecture.

TBD algorithms belong to both groups, unfortunately. TBD

algorithms are slow without special optimization tech-

niques, but the efficient algorithm level optimization

techniques are available (Mazurek 2010a, b, c, 2011).

Instruction code and memory-related optimization tech-

niques are also proposed, e.g. in (Mazurek 2010b, c).

One of the most interesting techniques is the application

of texture unit that supports memory transfers from the

global memory, a small cache and the acceleration of the

bilinear interpolation. The bilinear interpolation allows

computation values using a non-integer memory addresses,

what is useful for TBD algorithm using proposed organi-

zation of the state space memory. The cache memory

improves read operations from memory (Farber 2011;

NVIDIA 2011a, b; Sanders and Kandrot 2010) and is an

alternative to the custom memory management using the

shared memory using an additional code. The best solution

is based on the utilization of both GPGPU capabilities: the

texture cache and the shared memory. Shared memory,

used as a temporal storage of state space values, allows the

reduction of non-coalescence write operations (Farber

2011; NVIDIA 2011a, b; Sanders and Kandrot 2010).

Local operations on the state space area correspond to the

local memory operations. Shared memory is used for the

temporal result storage and allows simultaneous write

operation for neighborhood location (Farber 2011; NVI-

DIA 2011a, b; Sanders and Kandrot 2010).

4 Optimization technique for TBD code

4.1 Introduction

The evolutionary (Back et al. 2000a, b; Michalewicz 1998;

Spears 2000) technique, using the proposed operator,

reduces the computation time of TBD algorithm. The

proposed LREI operator could be considered as local

search operation or as a kind of the evolutionary operator

from evolutionary perspective—it is equivalent to trans-

position in genetics. Code lines reordering is a well-known

assembly code optimization technique. Different order of

instruction execution, without changes of results, is used by

the optimizing compilers or by the processors directly. The

first variant is based on the defined metrics. Integer linear

programing (optimization) techniques are applied typically.

Some processor architectures, such as Pentium 4, can

change order of execution, also. The texture unit is not well

documented, but the optimization technique operator is

based on the general knowledge about cache and memory

bus.

High-level (e.g. C-language) code optimization is pos-

sible depending on the compiler. Some compilers use

optimization techniques and the order of execution cannot

be selected by the software developer. Some compilers

allow such operation, fortunately.

Reordering of the CUDA instructions is efficient tech-

nique that improves texture cache utilization and reduces

the global memory transfer. Such optimization techniques

are not well described in the literature. Most GPGPU

optimization techniques are related to the parallel imple-

mentation of algorithm.

4.2 Structure of the motion update code

The ST-TBD code has quite simple structure. First part is

used for the calculation of the motion update formula using

MAC operations. The memory transfers of the state space

from the global memory via the texture cache are used. The

shared memory is used for the temporal result storage.

After all operation in the first part, new input values update

temporal results. It is second part (coefficient does not

influence the computation time). Third part is related to the

state space to the global memory transfer. Two last parts

are not subject of optimization.

The following code line is responsible for basic motion

vector (first part):
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V ¼ V þW � tex2DðtexImage; xþ SmallOffsetX;

yþ SmallOffsetY þMotionVectorOffsetÞ
ð4Þ

and the example code line (part of the Markov transitions)

looks like:

X4 ¼ X4þ 0:804f � tex2DðtexImage,xþ ð�1:90fÞ;
yþ ð�0:55fÞ þ 4 � OFFSETÞ

ð5Þ

There are 40 lines like this for different motion vectors

in example code. Transfers from memory via texture unit

are based on CUDA ‘tex2D’ function (NVIDIA 2011a, b).

The texImage is the reference of the texture memory block.

The spatial position is defined using the integer image

coordinates x and y. The bilinear interpolation is used for

non-integer offsets by the applications of SmallOffsetX and

SmallOffsetY fractional part. Four memory values are

necessary for the calculation of the bilinear interpolation

result, and two or four memory transfers are necessary.

Efficient implementation should process data using a

surrounding address values ‘x ? SmallOffsetX’ and

‘y ? SmallOffsetY’. The MotionVector Off set is used for

addressing the particular motion subspace. The V is the

temporal variable and the W is the constant weight

coefficient. All values are floating point numbers (32-bit

wide). The number of motion vectors is defined by the

number of temporal variables.

The subject of optimization is the list of the MAC

operations with texture transfer functions. There are no

additional constraints about the order of instructions related

to the algorithm, what is very promising. Main processing

steps are depicted in Fig. 4.

4.3 Solutions for the starting point problem

The starting point for any optimization technique is very

important. A well estimated starting point may reduce

optimization steps and improves convergence to the sub-

optimal or optimal solution.

The set of the code lines is sorted using the following order:

SmallOffsetX, SmallOffsetY, and MotionVectorOffset. This

order is related to the address distance between.

Largest distance is related to the MotionVector-

Offset, medium distance to the SmallOffsetY, and local

distance to the SmallOffsetX.

Experimental comparison of the random and sorting-

based techniques for the starting point is presented in

Sect. 5.

4.4 Solution for the metric of code problem

The real computation time is assumed as the metric of the

code and the optimization error criteria. Minimization aim

is assumed—the reduction of the computation time. The

optimization process finishes after selected number of

iterations (subtests).

Measurements of the computation time are not simple

and trivial. There are timer-based functions that are used

for estimation of code execution. It should be emphasized

that it is only estimation, due to time measurement errors,

not a exact value of execution time. Multiple code runs

give different time values. One of the most important

factors that influence the results is the preemptive behavior

of operating systems. Microsoft Windows and Linux sup-

port preemptive process switching. CUDA execution time

measurement could be extended by the another processes

assigned to CPU. Single run is not sufficient, because time

period values are sometimes a few times higher. Multiple

runs and calculation of the mean value are much more

reliable. The processing time has Gaussian probability

curve typically, but the right side long tail may occur.

Preferred metric should be based on the median value from

multiple runs not on the mean value. Such robust estimator

eliminates influence of long tails that is typical for the

mean estimator.

Median and mean values are influenced by the external

programs and are not reliable as a metric for the code

optimization. The minimal execution time is much better,

Code compilation

Sorting
(initialization of

Parent)

START

Measurements
(multiple run tests)

faster ? Parent := Child

Child := Parent
LREI operator

YN

Fig. 4 Main processing steps
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because the differences are related to the host platform

(CPU), not GPGPU. Multiple code runs are still

necessary.

The influences on time measurements from the host

platform are reduced, if the execution time of CUDA code

is longer. Such time values are more reliable, but the

overall optimization process is proportionally longer,

unfortunately.

4.5 LREI (local random extraction and insertion)

Selection of the optimization technique is very important

for convergence. The assumed evolutionary technique

uses single parent and single child. New parent is estab-

lished if the child is faster in comparison to the current

parent. Local search is used until maximal number of

iteration is reached.

The aim of the LREI operator is to reorder locally a part

of the code. The code is moved from one point (extracted)

to another one (inserted) that is depicted in Fig. 5. The

position of extraction is driven by the uniform RNG1

(Random Number Generator). The length of extraction is

driven by the uniform RNG2:

...
X6=X6+0.380f*tex2D(texImage, x+(-1.60f), y+(-1.90f)+0*DATA_H);
X0=X0+0.012f*tex2D(texImage, x+( 1.10f), y+(-1.50f)+0*DATA_H);
X7=X7+0.555f*tex2D(texImage, x+( 0.70f), y+(-1.30f)+2*DATA_H);
X6=X6+0.804f*tex2D(texImage, x+( 1.10f), y+(-1.60f)+2*DATA_H);
X1=X1+0.786f*tex2D(texImage, x+(-0.40f), y+( 0.30f)+1*DATA_H);
X0=X0+0.362f*tex2D(texImage, x+( 0.40f), y+( 2.00f)+1*DATA_H);
X3=X3+0.527f*tex2D(texImage, x+(-1.00f), y+(-1.90f)+1*DATA_H);
X4=X4+0.806f*tex2D(texImage, x+(-1.80f), y+( 0.20f)+2*DATA_H);
X8=X8+0.605f*tex2D(texImage, x+(-0.60f), y+(-0.20f)+2*DATA_H);
X7=X7+0.337f*tex2D(texImage, x+(-1.10f), y+(-0.70f)+3*DATA_H);
X6=X6+0.266f*tex2D(texImage, x+(-1.00f), y+( 1.90f)+3*DATA_H);
...

...
X6=X6+0.380f*tex2D(texImage, x+(-1.60f), y+(-1.90f)+0*DATA_H);
X0=X0+0.012f*tex2D(texImage, x+( 1.10f), y+(-1.50f)+0*DATA_H);
X3=X3+0.527f*tex2D(texImage, x+(-1.00f), y+(-1.90f)+1*DATA_H);
X4=X4+0.806f*tex2D(texImage, x+(-1.80f), y+( 0.20f)+2*DATA_H);
X8=X8+0.605f*tex2D(texImage, x+(-0.60f), y+(-0.20f)+2*DATA_H);
X7=X7+0.555f*tex2D(texImage, x+( 0.70f), y+(-1.30f)+2*DATA_H);
X6=X6+0.804f*tex2D(texImage, x+( 1.10f), y+(-1.60f)+2*DATA_H);
X1=X1+0.786f*tex2D(texImage, x+(-0.40f), y+( 0.30f)+1*DATA_H);
X0=X0+0.362f*tex2D(texImage, x+( 0.40f), y+( 2.00f)+1*DATA_H);
X7=X7+0.337f*tex2D(texImage, x+(-1.10f), y+(-0.70f)+3*DATA_H);
X6=X6+0.266f*tex2D(texImage, x+(-1.00f), y+( 1.90f)+3*DATA_H);
...

Parent code

Child code

RNG1

STEP 1

RNG2

STEP 2

RNG3

STEP 3

(position of
extraction)

uniform
distribution

(length of block)
uniform

distribution
<1, 5> length

RNG1

STEP 4

(offset)
triangular

distribution
<-5,-4,-3,-2,-1,

+1,+2,+3,+4,+5>

Extraction

Insertion

Fig. 5 Example of LREI operator processing steps
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RNG2 2 1; 2; 3; 4; 5f g: ð6Þ

The position of insertion is driven by the RNG3 with

triangular distribution:

RNG3 2 �5;�4;�3;�2;�1;þ1;þ2;þ3;þ4;þ5f g ð7Þ

The 0 offset value of RNG3 does not change position of the

insertion point, so this value is not used.

5 Experimental results

5.1 Comparison of the random and sorting-based

initializations

The G84 GPGPU core is used in tests (GeForce 8600 GTS)

and Intel Pentium 4D 2.6 GHz, 1 GB RAM, Debian Linux

3.0 amd64.

The texture cache memory that supports bilinear inter-

polation and global memory paging prefers local data

operation. Distant address of read operations reduces the

performance of the system. This is the reason of the

selection of local changes using LREI operator and selec-

tion of the sorting algorithm for initialization that is

probably quite near to the global optima.

The sorting order is:

SORTðincreasingorderÞ :

SmallOffsetY ; SmallOffsetX;OFFSETf g
ð8Þ

because OFFSET selects distant addresses, so it is last. The

selection of the SmallOffsetY, SmallOffsetX or opposite

SmallOffsetX, SmallOffsetY order is necessary for the

reduction of local address distance between two following

code lines. The sorting is not biased by the fixed OFFSETs.
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Fig. 7 Processing speed:
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(right) initialization (after

initialization and after 100

iterations)
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Typical solution which can be used by software devel-

opers, is based on the optimization of the order of code

lines, using the SmallOffsetY and SmallOffsetX only. Code

optimization related to OFFSET does not seem a promising

idea. The code line order should be optimized for separate

code block only. Every block should be defined by the

common value of OFFSET.

It is surprising, that such approach (based on the com-

mon knowledge) does not give best achieved results.

The experiments, described later, show that better results

are obtained for different orders of OFFSET.

The sorting algorithm forces order of operations, so

position in search space is biased. This hypothesis

considering starting point, selected by the sorting, should

be tested against another initialization technique.

The unbiased initialization is the best reference. The

random initialization for the same set of motion vectors and

values is the unbiased reference. The random initialization

selects starting point, near to the unknown global optima

and far from this point at equal probability. Falling into

local minimum is possible.

The LREI operator is based on the random generators so

unbiasing of the biased starting point is obtained by many

iterations steps.

The selection of the starting point strategy is tested

using 100 iterations steps only. There are 20 optimization

processes for the sorting strategy (all of them have identical

starting configuration). There are also 20 optimization

processes for the random initialization strategy. The num-

ber of iterations and number of processes is selected due to

very long execution time of the Monte Carlo test. Such test,

for the particular motion vector set, takes about 3.5 h.

There are 170 tests for different motion vectors, so all tests

take about 600 h per single computer (25 days). Few

computers were used for reduction of processing time in

this test.

The computation time for GPGPU code depends on the

set of vectors, so minimal execution time for the first iter-

ation is the reference value (100 %). This value is obtained

from 20 initializations based on the sorting strategy. All of

them should be equal theoretically, but the uncertainty of

measurement technique adds a small variations.

The mean value of performance speed (Fig. 6) is similar for

both optimization techniques (about 108 %). Random initial-

ization gives 41 % of starting values below initial performance

of the sorting-based initialization (reference: 100 %).

There are about 7 % cases, where the random initiali-

zation does not give improvements, after 100 of iterations,

over the initial performance of the sorting-based initiali-

zation (reference: 100 %). Such result shows that sorting is

better in comparison to the random initialization.
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Initial and obtained processing speed for every test case

is shown in Fig. 7. Random initialization gives four main

populations. Two of them are better on the start. There is

one population, related to wrong starting point, that fall in

the local minimum (left-bottom located), because the

number of iterations is rather small (100). Largest popu-

lation (central part of figures) has starting performance

similar to the reference.

5.2 Experimental tests for larger number of iterations

The time-logarithmic figure is used for better depiction of

the convergence during first iterations. Few example cases

are shown in Fig. 8.

Improvements are smooth or rapid, there are also a lot

iterations without improvements (Fig. 8). Starting code,

based on the sorting optimization is referenced by the

100 % level value. The improvement is significant, about

8–9 % (mean value), and only slightly larger in comparison

to the test use 100 iterations. The reduction of processing

time is significant for first iteration steps. Longer optimi-

zation is still interesting, but is limited to the 1,000 itera-

tions. The curves have exponential saturation shape,

because there is a global limit, and the asymptotic behavior

is observed. Different motion vector sets are used, so dif-

ferent asymptotic levels are achieved.

Final results, after 1,000 iterations, are stored and the

histogram (Fig. 9) shows distribution of the results for 31

tests.

Example order of code line values are shown in Fig. 10.

It is well shown that proposed optimization using LREI

changes order of code lines including OFFSET.

6 Conclusions and further works

The idea of the application of the optimization techniques

for reduction of code execution is not new. The optimi-

zation of code for efficient implementation of algorithm

using optimization technique is very important. The con-

ventional optimization approach is based on the detailed

knowledge about processing architecture. Such knowledge

is not available for high-performance processing devices

such as GPGPUs, unfortunately. Considered technique is

the useful tool for software developers and final users.

Sorting approach is based on the organization of memory.

The cache memory related to the texture unit improves

accesses to the neighborhood memory locations. Reordering

of the code, using high-level programming language allows

the reduction of computation time. It is not possible to find

solution without optimization due to scale of problem.

The code optimization technique gives significant

improvement of the computation time about 8 % for ST-TBD

algorithm what is important for real-time applications. This is

mean value, and obtained results depend on the motion

vectors set. The number of iteration could be small (100) and

the significant improvement is obtained in most cases.

The main problem is that optimization time is long (few

hours). It is not a problem of CUDA code, but sources code

compilation process. This is main bottleneck that should be

considered carefully for the application of this or similar

optimization techniques for CUDA code optimization.

The optimization of motion vectors (high-level optimi-

zation) and medium-level optimization (code reordering)

together are the most promising method that will be con-

sidered in further work.
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