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Abstract To apply laser forming process in reality, it is

required to know the relationships between the deformed

shape and scanning paths along with heating conditions. The

deformation due to laser scanning depends on various fac-

tors, namely laser power, scan speed, spot diameter, scan

position, number of scans, and many others. This article

presents soft computing-based methods to predict deforma-

tions for a set of heating conditions, and also to determine the

heating lines and heat conditions, in order to get a desired

shape (i.e., inverse analysis). A novel attempt has been made

in this paper to carry out analysis and synthesis (inverse

analysis) of laser forming process using both genetic-neural

network (GA-NN) and genetic adaptive neuro-fuzzy infer-

ence system (GA-ANFIS). During the analysis, laser power,

scan speed, spot diameter, scan position and number of scans

are taken as inputs and bending angle is considered as the

output. A batch mode of training has been used for both the

approaches with the help of some experimental data. The

performances of the developed approaches have been tested

on some real experimental data. Both the approaches are

found to be effective to predict the bending angles and carry

out the process synthesis successfully. GA-NN approach is

found to perform better than the GA-ANFIS approach in

predicting the bending angles, and both the approaches are

able to provide comparable predictions in inverse analysis.
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Neural networks � Neuro-fuzzy inference system �
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1 Introduction

Laser forming is a flexible thermal forming process used to

make complex curved shapes from flat sheet metal by

controlled laser irradiations. It is a complex thermo-elasto-

plastic process that depends on various process parameters,

such as laser power, scan speed, spot diameter, scan posi-

tions, number of scans, thermo-physical properties of the

workpiece material and its dimensions. It has got many

advantages over conventional mechanical forming like

absence of hard tooling, more flexibility, better precision

and accuracy without any spring-back. Depending on the

specific combinations of component geometries and laser

process conditions, mainly three mechanisms, namely

temperature gradient mechanism (TGM), buckling mech-

anism (BM) and upsetting mechanism (UM) may work. In

TGM, due to laser scan, a stiff temperature gradient is

set along thickness of the sheet, and when the thermal

stress exceeds the temperature-dependent yield stress, the

material deforms plastically. Therefore, after the heating

and cooling cycle, the sheet finally bends towards the laser

beam. When thermal diffusivity is high and moment of

inertia becomes low due to less sheet thickness, BM works

and bending direction depends upon the initial stress and

loading condition of the sheet. In UM, nearly uniform

temperature and hence, nearly equal plastic deformation

occurs at the top and bottom layers, but due to the

increased sheet thickness offering more moment of inertia,

buckling is prevented and uniform compression (in plane

strain) is resulted with a slight bending towards the laser
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beam. The process is applicable to rapid prototyping in

shipbuilding, automobile, aerospace industries and preci-

sion alignment and adjustments in microelectronics

industries. However, the process has not become so popular

and is not applied to large scale industry because of the

lack of automation or due to the difficulty of determining

the process parameters and scanning patterns to produce

any desired shape within a reasonable time. Analytical

models become difficult and cumbersome, and numerical

models are more time consuming to predict the deformed

shape due to multiple heating lines and multiple scans, and

to solve the inverse problem. This paper presents neural

network and fuzzy logic-based methods used for develop-

ing the models of bending angle and conducting inverse

analysis of the laser forming process.

The remaining part of this paper has been organized as

follows: Sect. 2 deals with the literature review. Section 3

describes the experimental set-up, method of experimenta-

tion and data collection. The methods of analysis and syn-

thesis used in the present study are explained in Sect. 4.

Results are stated and discussed in Sect. 5. Conclusions are

drawn and the scopes for future work are indicated in Sect. 6.

2 Literature review

Several attempts were made by various researchers for

modeling and analysis of laser forming process using dif-

ferent techniques, namely analytical, numerical and

empirical ones (Shen and Vollertsen 2009). Some of them

are discussed here. A number of analytical models were

developed by various investigators (Vollertsen 1994;

Kyrsanidi et al. 2000; Cheng and Lin 2001; Shen et al.

2006a) based on the theory of heat transfer and elasto-

plastic mechanics to predict bending angle in laser forming

process. However, these models become difficult and

cumbersome to determine the deformations for multiple

scans, as the absorptivity of the workpiece surface, thermal

and material properties change with temperature and time,

during the laser forming process. Numerical models give

better insight into the process through transient tempera-

ture, and stress–strain distribution. Several numerical

models are also available in the literature (Vollertsen et al.

1993; Hu et al. 2001; Wu and Ji 2002; Zhang and Mic-

haleris 2004; Zhang et al. 2007; Griffiths et al. 2010; Hu

et al. 2012) to predict bending angles in laser forming

process using finite element method, but those models

needed temperature dependent material properties and took

long computation time particularly for the multiple laser

irradiations. Moreover, determining the heating lines and

heat conditions to achieve a desired (deformed) shape by

laser forming, i.e., solving the inverse problem or carrying

out process synthesis is less likely by either analytical or

numerical method. Empirical models developed based on

experimental data and heuristic approaches are helpful in

such situations to solve both the problems, i.e., predicting

the bending angle (i.e., analysis) and carrying out synthesis

of laser forming process without considering the thermo-

mechanical complexity of the process.

Recently, various non-conventional nonlinear regression

methods based on different soft computing techniques like

neural networks, fuzzy logic, genetic algorithms and others

have been used by many researchers (Nasrabadi and Has-

hemi 2008; Khashei and Bijari 2010; Akbilgic and Bo-

zdogan 2011; Martino et al. 2010, 2011) for the analysis of

data and to achieve good prediction accuracy in different

applications. The methods based on soft computing and

hybrid algorithms (Whitley et al. 1990; Keller et al. 1992;

Jang 1993; Herrera et al. 1995; Pratihar et al. 1999) can

also be used for the analysis of complex manufacturing

process like laser forming. Some of the studies on model-

ing of laser forming process using soft computing tech-

niques are discussed here. Cheng and Lin (2000) used three

supervised neural networks and regression analysis to

develop models of bending angle in laser forming process.

The process parameters, namely laser power, scan speed,

spot diameter and workpiece geometries including thick-

ness were taken as input parameters and bending angle was

considered as output to develop the models. The perfor-

mances of the developed models were verified with

experimental data and the radial basis function neural

network was found to perform better than the other models

in predicting bending angle. A back-propagation neural

network was utilized by Dragos et al. (2000) to predict the

bending angle in laser bending of sheet metal. The laser

power, beam diameter, scanning speed, thickness of the

material and number of scans were considered as the input

parameters of the process and bending angle was the out-

put. The bending angles determined by the neural network

method were found to be in good correlation with the

experimental values. The proposed method was found to be

helpful for carrying out online simulation and automatic

control of the laser bending process. Casalino and Ludov-

ico (2002) also used a back-propagation neural network to

predict bending angle and to select process parameters in

laser bending under both the TGM and BM. The developed

model was verified with experimental data and was found

to be satisfactory. Chen et al. (2002) proposed an adaptive

fuzzy neural network to predict bending angle in laser

forming process. Energy density (defined as laser power

divided by the product of scan velocity and spot diameter),

width, thickness of sheet, and scanning path curvature were

taken as four inputs and bending angle was considered as

the output of the network to establish the model. Good

correlation was found between the results obtained from

the model and experiments. Liu and Yao (2002) proposed a
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response surface methodology based optimization method

for the synthesis of laser forming process. The proposed

method was made robust by considering the error propa-

gation technique as an additional response and optimized

via desirability function approach. A fuzzy control system

was developed by Kuo and Wu (2002) for controlling the

laser bending process. The developed control system was

found to be effective in controlling the laser bending pro-

cess and it increased the manufacturing efficiency. The

proposed method was found to be feasible and effective for

producing some shapes. Cheng and Yao (2004) presented a

process synthesis methodology for laser forming of a class

of shapes based on genetic algorithm (GA). The effects of

GA control parameters and the types of fitness function on

the synthesis process were discussed. The synthesis process

was experimentally validated through several cases under

diverse conditions. A model for bending angle in laser

forming was established by Shen et al. (2006b) using

adaptive network fuzzy inference system (ANFIS). The

laser forming process parameters considered in the model

were laser power, beam diameter, scanning velocity and

thickness of the plate. The performance of the ANFIS

model was optimized as a function of both the type and

number of membership functions. The prediction of the

ANFIS model was found to be satisfactory by comparing

with the experimental data. Guarino et al. (2007) presented

a neural network-based method for modeling the laser-

assisted forming of thin aluminium alloy sheet. Good

correlation was found between the trends of experimental

and calculated values of the variables through the sensi-

tivity analysis on the developed neural network model. A

back-propagation neural network model was developed by

Wang et al. (2008) for modeling and optimization of the

laser bending of aluminum alloy sheet. The developed

model was able to predict the bending angle and process

parameters within a reasonable accuracy. A computational

procedure based on the minimization of a vectorial fitness

function was proposed by Carlone et al. (2008) for the

inverse analysis of laser forming process. The vectorial

fitness function was calculated by comparing the target

surface with the reference deformed surface. The reference

deformed surface was determined using FEM and the

required scan strategy was obtained by minimizing the

vectorial fitness function. Nguyen et al. (2009) developed

an artificial neural network (ANN)-based model for the

predictions of angular distortion and transverse shrinkage

during the plate forming by induction heating. The devel-

oped model could predict the deformation satisfactorily

and with less time compared to finite element analysis. Du

and Wang (2010) presented an improved back-propagation

neural network model based on double chain quantum

genetic algorithm for predicting the bending angle more

accurately and optimization in laser bending of sheet metal.

Neural network-based model was also developed by Gi-

sario et al. (2011) for the correction and adjustment of

bending angle in mechanically bent samples using laser-

assisted bending. Good correlation was found between the

experimental and model predicted results in both interpo-

lative and extrapolative conditions.

Several techniques were presented to model laser

forming process to predict bending angle and final shape of

the sheet metal using analytical, numerical and soft com-

puting-based approaches. However, not enough studies had

been reported on the synthesis or inverse analysis of laser

forming process. The forward and reverse mappings of

electric discharge machining process were carried out by

Maji and Pratihar (2010) using GA-tuned ANFIS consid-

ering both linear and nonlinear membership functions and

the latter was found to give better results in terms of

accuracy in predictions. In the present paper, GA-tuned

neural network and neuro-fuzzy inference system have

been used for predicting the bending angle and carrying out

inverse analysis of laser forming process.

3 Experimental work

This section describes the experimental set-up used and

procedure adopted to carry out the experiments. The

method of data collection has also been explained.

3.1 Experimental set-up and method of experiments

Laser bending experiments are conducted on a Ytterbium

doped fiber laser (refer to Fig. 1) of 2 kW maximum power

Axes 
drivesControl 

panel 

Laser 
beam 

delivery  
system

Power 
supply 

unit  
Work  
Table

Fig. 1 2 kW Fiber laser system
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and 1.06 lm wavelength. AISI304 stainless steel has been

taken as the workpiece material and samples of size

120 9 40 9 0.5 mm3 are prepared. Black ink is used on

the area of the work-piece to be irradiated by laser to

increase the absorptivity. One end of the workpiece is

clamped on a metal plate and laser scans are performed at

different distances from the free end, as shown in Fig. 2.

Five input variables, namely laser power, scan speed,

spot diameter, scan position and number of scans are taken

as the inputs and bending angle is considered as the output.

Scan position (denoted by r) is the non-dimensional dis-

tance from the free edge of the work-piece and defined as

the ratio of effective free length (EFL) to total free length

(TFL). TFL and EFL are the distances from the free edge to

the scan position and clamped edge, respectively. After

laser scanning, deflections of the bent samples are mea-

sured using a coordinate measuring gauge and the bending

angles are calculated using triangulation method.

3.2 Experimental design and data collection

A series of experiments have been designed according to

face-centered central composite design (FCCD) of experi-

ments (Montgomery 2001). The five-factor CCD consists

of 43 runs (25 ? 2 9 5 ? 1) and each factor having three

levels, i.e., low, medium and high. The 43 runs are dis-

tributed as 32 factorial points, 10 axial points and one

center point. The factorial points represent the runs, where

the upper and lower limits of the five input variables are

chosen. The axial points denote the runs, where all but one

of the factors is set at their respective mid-values. The

centre point indicates the run, where mean values of all the

input variables are taken. The ranges of the input variables

have been considered in such a way to activate the tem-

perature gradient mechanism (TGM) of laser forming

process, and decided through some initial experiments, as

given in Table 1. For each combination of the input vari-

ables, experiments are conducted for three times and thus, a

total of 129 (i.e., 43 9 3) experiments are carried out. The

experimental data have been collected according to the

design of experiments and the corresponding sets of input–

output values are given in ‘‘Appendix A’’.

4 Analysis and synthesis of laser forming process

Analysis and synthesis of laser forming process have been

carried out using neural network and neuro-fuzzy inference

system. A batch mode of training has been adopted for the

neural network and neuro-fuzzy system with the help of a

binary-coded genetic algorithm (GA) (Pratihar 2008). In the

batch mode of training, if the number of training data becomes

less than that of the parameters of the network, it becomes

mathematically undetermined. Thus, the batch mode requires a

large number of training data but only 129 experimental data

are available, which are inadequate for the training of the

neural network. Non-linear regression analysis has been car-

ried out (with the help of Minitab 14 software) based on the

above experimental data using the least square method to

obtain an equation for the output, i.e., bending angle (A) in

terms of the input variables, as given below.

A ¼ �90:8617þ 0:232447pþ 0:468033vþ 8:93851d

þ 3:26021r þ 0:0534127n� 6:70880� 10�4p2

� 9:15703� 10�4v2 � 40:3819d2 � 2:52214r2

þ 0:00756133n2 þ 4:09091� 10�5pvþ 0:1772pd

� 0:00723333pr þ 0:00558167pn� 0:0105051vd

� 0:00742424vr � 0:00281061vnþ 0:813333dr

� 0:372667dnþ 0:1615rn ð1Þ

The numerical values associated with different terms in

Eq. (1) are the regression coefficients obtained using the

Bent sheet

Laser beam 
delivery head

Work-piece  
clamping 

arrangement

Fig. 2 Experimental set-up

Table 1 Input variables and their ranges

SL.

no.

Input

variables

Symbol Minimum

value

Mid-

value

Maximum

value

1 Laser power

(W)

p 225 250 275

2 Scan speed

(mm/s)

v 250.0 266.5 283

3 Spot diameter

(mm)

d 0.500 0.625 0.750

3 Scan position r 0.25 0.50 0.75

3 Number of

scans

n 5 10 15
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least square method for error (in predictions) minimization.

A total of 1,000 training data have been used, which

include 129 experimental data (shown in ‘‘Appendix A’’)

and 871 data generated using the regression Eq. (1). The

additional 871 training data are generated from the

regression Eq. (1) by randomly varying the input

parameters (p, v, d, r, n) within their respective ranges

and calculating the corresponding outputs (A). The training

data generated in this way are distributed randomly within

the ranges of the input variables.

A detailed report of the above regression analysis is

available elsewhere (Maji et al. 2012). The test data to be

used for the verification of the developed models are also

collected separately through experiments. The experi-

mental test data have been collected by considering ran-

dom combinations of different values of the input

variables lying within their respective ranges and these

data have not been used for training of the developed

neural network and neuro-fuzzy system-based models.

The regression model (refer to Eq. 1) has been tested for

15 test cases (refer to ‘‘Appendix B’’) and found to give

an average absolute deviation in predictions of 7.82 %.

Both neural network and neuro-fuzzy models are devel-

oped to predict the bending angle in laser forming process.

The performances of the neural network and neuro-fuzzy-

based approaches have been compared between them and

with that of the statistical model to predict the bending

angles. Moreover, comparisons are made of the perfor-

mances of these two approaches in case of inverse anal-

ysis or process synthesis.

4.1 Modeling and analysis of laser forming process

to predict bending angle

Both neural network and neuro-fuzzy system-based models

have been developed to predict bending angle in laser

forming process as discussed below.

4.1.1 Genetic algorithm-tuned neural network (GA-NN)

Neural network (NN) can be considered as a nonlinear

statistical data modeling tool (Pratihar 2008). It has been

used here to model the laser forming process based on

some experimental data for the estimation of bending

angles. In the present work, a neural network consisting of

three layers of neurons, i.e., input layer, hidden layer and

output layer has been considered, as shown in Fig. 3. The

number of neurons of the input and output layers has been

kept equal to that of input and output variables, respec-

tively. The transfer functions used in the input, hidden and

output layers are denoted by fIi(xi), fHj(xj) and fOk(xk), and

the corresponding coefficients are represented by cIi, cHj

and cOk, respectively. Inputs and outputs of the different

layers, i.e., input, hidden and output layers are denoted by

IIi, HIj, OIk and IOi, HOj, OOk for the ith, jth and kth neurons,

respectively. Now, the forward calculations through dif-

ferent layers are given below.

IOi ¼ fIiðIIiÞ; where; i ¼ 1; 2; . . .M

HIj ¼
XM

i¼1

vij � Ioi; where; j ¼ 1; 2; . . .N

HOj ¼ fHjðHIj þ bÞ;
where; j ¼ 1; 2; . . .N and b is the bias value:

OIk ¼
XN

j¼1

wjk � Hoj; where; k ¼ 1; 2; . . .P;

Ook ¼ fOkðOIk þ bÞ;
where k ¼ 1; 2; . . .P and b is the bias value:

The NN has been trained in a batch mode with the help

of a binary-coded GA. The GA-string represents the syn-

aptic weights (i.e., vij and wjk) of the NN, coefficients of the

transfer functions (cIi, cHj and cok) used and bias values (b),

as shown in Fig. 4.

Each parameter is represented using ten bits in the GA-

string. These parameters are decoded; real values are cal-

culated and supplied to the neural network to make it ready

before passing the training data. The mean absolute error
Fig. 3 Architecture of neural network used for modeling of laser

forming process

Fig. 4 GA-string used for

representing the parameters of

GA-NN Approach
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has been used as the fitness of the GA-string. Thus, the

fitness of a GA-string is calculated like the following:

f ¼ 1

L

1

P

XL

n¼1

XP

k¼1

TOkn � OOknj j; ð2Þ

where L indicates the number of training scenarios and

P represents the number of outputs. The population of GA-

strings is then modified using the operators like tournament

selection, single point crossover and bit-wise mutation. To

determine the optimum structure of the network, the fitness

values are calculated for different numbers of hidden

neurons, and the number of hidden neurons giving the

minimum fitness value is selected. A detailed parametric

study is performed for the selection of suitable GA-

parameters during the training (using a batch mode) and

optimization of the network. Thus, the GA, through its

search, determines an optimal network, which will be used

for making the predictions.

4.1.2 Genetic algorithm-tuned adaptive neuro-fuzzy

inference system (GA-ANFIS)

Adaptive neuro-fuzzy inference (ANFIS) (Jang 1993)

system has been used to model the laser forming process.

The working principle and architecture of the system

expressing the non-linear relationships between the inputs

and outputs of laser forming process are explained here.

Five inputs and one output have been considered to

develop the model, as shown in Fig. 5. A batch mode of

training using one thousand data has been adopted for the

neuro-fuzzy system as mentioned earlier. Each of the five

inputs has been represented using two linguistic terms and

there is a maximum of 25 ¼ 32 possible combinations

(rules) of them. According to first-order Takagi and

Sugeno’s model of FLC, the output of each rule can be

expressed as follows:

yi ¼ a1i þ a2ipþ a3ivþ a4id þ a5ir þ a6in; ð3Þ

where i ¼ 1; 2; 3; . . .; 32; a1i; a2i; a3i; a4i; a5i; and a6i are the

coefficients.

The functions of the different layers are described as

follows: Layer 1 is the input layer of the network, where

five nodes represent the five inputs, and it passes the inputs

to the next layer. The outputs of these nodes are the same

with the corresponding inputs. In layer 2, membership

values (ls) for a set of inputs are calculated corresponding

to their appropriate linguistic terms, i.e., low, high, etc. The

number of nodes in layer 3 is kept equal to the number of

rules, i.e., 25 = 32, and these are generally denoted by the

symbol p. This layer calculates the firing strengths (w) of

the nodes as the product of the corresponding membership

values (l) for different combinations of input variables.

The number of nodes of layer 4 is kept the same with that

of the previous layer and these nodes are indicated by the

symbol N. The normalized firing strength of each node of

this layer is calculated as the ratio of firing strength of that

node to the sum of strengths of all fired rules. Layer 6

consists of one node, as there is one output. The output is

calculated as the sum of the products of normalized firing

wiyi 

L5

H5

H4

L4

H3

L3

H2

L2

L1

H1

1 π N 

1 

p 1 
2 

3 
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16 

32 

A

n 

r 

d 

N

5 

3 

4 

4 
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7 
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8 
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10 

1 

2 

3 

4 

5 

π

N 

N 

N 

Σ

Layer 4 Layer 2 Layer 3 Layer 1 Layer 5 Layer 6 

wi wi 

π

Fig. 5 ANFIS architecture used

for modeling of laser forming

process
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strengths and outputs of the corresponding fired rules. The

performance of an ANFIS depends on membership func-

tion distributions of the input variables and coefficients of

the rules (refer to Eq. 3). The membership function dis-

tributions of the linguistic terms used for five inputs have

been considered to be bell-shaped and asymmetric in nat-

ure as given below.

lj ¼
1

1þ ðI�cjÞ
aj

���
���
2bj
; ð4Þ

where I is the input, and aj, bj and cj are the parameters of

the membership function of jth linguistic term corre-

sponding to an input. The initial membership function

distributions for the input:laser power (p) is shown in

Fig. 6. A binary-coded GA is utilized for tuning of the

ANFIS, in which the string carries information of the

parameters of the membership functions for inputs and

coefficients of the rules as shown in Fig. 7. The fitness of

the GA-string has been calculated according to the Eq. (2).

The GA through its extensive search determines the opti-

mal ANFIS, which will be used for making the predictions

related to laser forming process.

A batch mode of training has been used in both the

above approaches. In this mode of training, the parameters

of the network are updated after all the training examples

are passed or in other way, it can be said that the cost

function is defined by the average error of the network for

the whole training data set. From the statistical learning

theory, a batch mode of training can be viewed as a form of

statistical inference and, therefore, it is well suited for

solving nonlinear regression problems. The batch mode of

training may inject adaptability to the network, as it is

implemented using the average effect of the training data.

It is important to mention that once the training of the

network using the batch mode (off-line) is over, it can be

used for making on-line predictions.

4.2 Process synthesis or inverse analysis

Process synthesis or inverse analysis aims to determine the

set of input process parameters, corresponding to a set of

desired outputs. It may be difficult to carry out the said

inverse analysis using the obtained regression equation, as

the associated transformation matrix may not be invertible.

This problem of process synthesis of laser forming could

be handled effectively using the soft computing tools,

namely neural networks, fuzzy logic and genetic algorithm,

etc., as they have the ability to establish complex rela-

tionships between a set of inputs and outputs based on

some experimental data. In order to get a desired curved

surface from a flat sheet metal using laser forming process,

multiple scans are required at different positions to obtain

different amounts of deformation. Now, to achieve differ-

ent amounts of deformation or bending angles (A) and

different scan positions (r), the required process parameters

(p, v, d, n) are to be determined. Therefore, the inverse

problem has been formulated and solved by considering

(A and r) as inputs and (p, v, d and n) as outputs. The

following section describes inverse analysis of the laser

forming process using neural network and neuro-fuzzy

inference system.

4.2.1 Genetic algorithm-tuned neural network (GA-NN)

GA-tuned NN model has been developed for conducting

inverse analysis of the laser forming process. A neural

network with two inputs (A and r), one hidden layer and

four outputs (p, v, d and n) has been used to carry out the

inverse analysis. To form a 2D surface, it is required to

generate different bending angles (A) at different positions

(r), which can be calculated from the desired geometry of

the surface to be formed. Therefore, the bending angle

(A) and scan position (r) have been considered as inputs for

inverse analysis. Three transfer functions, namely linear,

Gaussian and log-sigmoid are used in the input, hidden and

output layers, respectively. A similar procedure as dis-

cussed above has been followed to determine the optimal

network for inverse predictions in laser forming process.

4.2.2 Genetic algorithm-tuned adaptive neuro-fuzzy

inference system (GA-ANFIS)

ANFIS model has also been developed to carryout inverse

analysis of the laser forming process. Bending angleFig. 6 Membership function distributions for laser power, p (w)

Fig. 7 GA-string uesd for

representing the parameters

of GA-ANFIS Approach
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(A) and scan position (r) are taken as inputs, and laser

power (p), scan speed (v), spot diameter (d) and number of

scans (n) are considered as the outputs for the inverse

analysis. Each input has been represented using three lin-

guistic terms, i.e., LW: Low; M: Medium; H: High, and

they are assumed to have bell-shaped membership func-

tions. The number of rules for these two inputs becomes

equal to 3 9 3 = 9. The outputs of the network have been

calculated following the same procedure, as explained

above.

In both the above approaches used for conducting the

forward and inverse analyses, the fitness of the GA has

been calculated as the mean absolute error in predictions in

order to obtain the optimum parameters of the networks. It

is important to mention here that a GA, in principle, solves

a maximization problem. However, in the present study,

the optimization problem has been formulated as a mini-

mization problem, where the aim is to minimize the fitness,

i.e., mean absolute error in predicting the outputs. To solve

a minimization problem using a GA, either the minimiza-

tion problem has to be converted into a corresponding

maximization problem or a slight modification is to be

made (i.e., a greater than sign is to be replaced by a less

than sign) in the tournament selection scheme used in it. In

the present paper, the second option has been utilized,

where the solution having the minimum fitness value has

been selected for the mating pool.

5 Results and discussion

The accuracies of different approaches, i.e., GA-NN, GA-

ANFIS and regression analysis have been compared in

predicting bending angles of a laser forming process. In

case of inverse analysis, the performances of the GA-NN

and GA-ANFIS have been compared to predict the process

parameters.

5.1 Results of modeling of bending angle

The aim of developing the models of bending angle in laser

forming process is to determine the deformed shape of the

sheet metal for a set of heating lines. Results of the

developed models are stated and discussed below.

5.1.1 Results of GA-NN

To decide the optimum structure of the network (decided

by the number of hidden neurons) to be used to model the

laser forming process, a parametric study is conducted. The

fitness values are determined for different number of hid-

den neurons of the network after keeping the GA-param-

eters initially fixed as follows: population size N = 100,

maximum number of generations G = 100, probability of

crossover pc = 0.90 and probability of mutation

pm = 0.001. The minimum fitness value (i.e., 0.401513) is

obtained for six number of hidden neurons (refer to Fig. 8)

and, therefore, the structure of the network is determined as

5� 6� 1; as displayed in Fig. 9. Now, to obtain the

optimal network to be used for making the predictions, a

systematic GA-parametric study has been conducted, as the

performance of a GA depends on its parameters, namely

crossover probability, mutation probability, population size

and maximum number of generations. The results of GA-

parametric study are shown in Fig. 10. The optimal values

of GA-parameters are found to be as follows: crossover

probability pc = 0.70, mutation probability pm = 0.002,

population size N = 130, maximum number of generations

G = 50,000. The minimum value of fitness is obtained as

f = 0.232031 at the generation number of G = 44,401.

The performance of the optimized network has been tested

on 15 experimental test cases and the average absolute

percent deviation in predictions is found to be equal to

7.98.

To decide the optimal architecture of the network, the

fitness values are calculated for different numbers of hid-

den neurons varying from 2 to 15 using a set of fixed GA-

parameters (i.e., pc = 0.9, pm = 0.001, N = 100 and
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G = 100). Thus, the network providing the minimum fit-

ness value has been identified. It is important to mention

here that NN-architecture determined in this way might not

be the true optimal but could be a near-optimal one. In

order to carry out the detailed GA-parametric study for

each number of hidden neurons (varying from 2 to 15), a

huge number of experiments are to be carried out. For

simplicity, the above study has been conducted for a fixed

set of GA-parameters (as mentioned above) initially by

varying the number of hidden neurons in the range of (2,

15). However, once the number of hidden neurons of the

network is decided, the GA-parameters have been deter-

mined through a detailed and systematic study.

5.1.2 Results of GA-ANFIS

A binary-coded GA is employed to determine the optimal

network used for the prediction of bending angle in the

laser forming process. The optimal set of GA-parameters is

obtained through a systematic parametric study. The fol-

lowing GA-parameters are found to yield the best results:

crossover probability pc = 0.80, mutation probability

pm = 0.001, population size N = 100, maximum number

of generations G = 50,000. The minimum value of fitness

(i.e., f = 0.009965) is found to obtain at the 35952nd

generation. The performance of the optimized network has

been tested on 15 experimental test cases and the value of

average absolute percent deviation in predictions is seen to

be equal to 9.55.

The performances of two soft computing-based

approaches (i.e., GA-NN and GA-ANFIS) and statistical

regression analysis have been compared for 15 test cases

in terms of average absolute percent deviation in predic-

tions of bending angle. The values of average absolute

percent deviations in prediction of bending angle (A) are

obtained as 7.82, 7.98 and 9.55 by the regression analysis,

GA-NN and GA-ANFIS approaches, respectively, as

shown in Fig. 11 and Table 2. From these results, it can
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Table 2 Comparison of prediction accuracy of different models for bending angle

Test no. Experimental

bending angle

Prediction accuracy of different models

Regression model GANN model GA-ANFIS model

Predicted

value

Abs.

deviat on

Abs. %

deviation

Predicted

value

Abs.

deviation

Abs. %

deviation

Predicted

value

Abs.

deviation

Abs. %

deviation

1 5.93 5.77 0.15 2.62 5.77 0.16 2.72 6.12 0.19 3.24

2 5.82 6.43 0.61 10.54 6.44 0.62 10.68 6.48 0.66 11.41

3 6.37 6.83 0.46 7.29 6.68 0.31 4.94 7.06 0.69 10.77

4 11.85 12.69 0.84 7.07 12.44 0.59 4.97 13.04 1.19 10.07

5 5.72 6.48 0.76 13.31 6.36 0.64 11.20 6.49 0.77 13.50

6 5.91 5.10 0.81 13.73 5.05 0.86 14.60 5.41 0.49 8.37

7 8.18 8.45 0.27 3.35 8.41 0.23 2.83 8.86 0.68 8.31

8 8.93 9.64 0.71 7.92 9.72 0.79 8.85 9.87 0.94 10.56

9 6.95 6.87 0.08 1.10 7.01 0.06 0.89 7.02 0.07 1.04

10 8.29 8.47 0.18 2.12 8.43 0.14 1.66 8.75 0.46 5.61

11 8.70 9.14 0.44 5.01 9.28 0.58 6.72 9.48 0.78 8.98

12 8.41 9.65 1.24 14.75 9.68 1.27 15.08 9.78 1.37 16.32

13 8.61 9.32 0.71 8.24 9.62 1.0 11.71 9.48 0.87 10.10

14 6.08 6.96 0.88 14.54 6.91 0.83 13.61 7.01 0.93 15.28

15 10.48 11.08 0.60 5.69 11.45 0.97 9.29 11.50 1.02 9.71

Average of absolute % deviation 7.82 7.98 9.55

Standard deviation 4.50 4.65 3.93
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be seen that the GA-NN approach has performed slightly

better than the GA-ANFIS approach. The GA-NN

approach gives prediction accuracy close to that of the

regression model. Both the regression analysis and

GA-NN models are found to perform better than the GA-

ANFIS model in terms of accuracy in predictions. How-

ever, the variation in error for different test cases is seen

to be less in the GA-ANFIS approach compared to that of

the other approaches (refer to standard deviation values of

different approaches given in Table 2). This could be due

to inherent adaptive nature of the GA-ANFIS approach

obtained by adjusting the membership function distribu-

tions of the variables. In case of GA-ANFIS approach, the

prediction accuracy can be further improved using more

number of linguistic terms (say three per input instead of

two) for the inputs but at the cost of more computation.

Moreover, it is felt that there is a chance of further

improvement of the performances of the developed GA-

NN and GA-ANFIS approaches.

The performances of the developed soft computing-

based models (both GA-NN and GA-ANFIS) for predicting

bending angles have been further verified using twofold

cross-validation approach. The entire training data set of

1,000 has been divided into two sub-sets of equal size at

random. One sub-set is used for the training of NN and the

other one is utilized for validation, and the training and

testing data are interchanged also. The advantages of this

method are that both the training and test sets are large, and

each data point is used for both the training and validation.

The similar method has been used for both the GA-NN and

GA-ANFIS models.

For the GA-NN model, the optimized architectures of

the network are determined as 5-9-1 and 5-6-1 for two

combinations of the data sub-sets. The optimal fitness

values for these two combinations of the data sets are found

to be equal to 0.178318 and 0.218035, after running the GA

for a maximum of 50,000 generations with the optimized

sets of GA-parameters: (pc = 0.8, pm = 0.002, N = 70)

and (pc = 0.7, pm = 0.002, N = 100), respectively. The

values of average absolute percent error in predictions of

bending angles for these two combinations are seen to be

equal to 2.98 and 3.37, respectively. For the GA-ANFIS

approach, the optimized fitness values are determined as

0.010107 and 0.009317 for the above two combinations of

data sets by running the GA with the optimal parameters:

(pc = 0.7, pm = 0.001, N = 90) and (pc = 0.6,

pm = 0.001, N = 80), respectively. For both these cases,

the GA is run for a maximum of 50,000 generations. The

values of average absolute percent error in predictions of

bending angles are obtained as 2.43 and 2.59, respectively,

for the two combinations of the data sets. Therefore, the

performances of both the GA-NN and GA-ANFIS

approaches are found to be reasonably good.

5.2 Results of inverse analysis

Process synthesis or inverse analysis of the laser forming

process is carried out to determine the process parameters,

such as laser power (p), scan speed (v), spot diameter

(d) and number of scans (n) to get a desired bending angle

(A) at a particular scan position (r). Both the GA-NN and

GA-ANFIS models have been used for the said purpose.

5.2.1 Results of GA-NN

Bending angle (A) and scan position (r) are considered as

the inputs, and laser power (p), scan speed (v), spot

diameter (d) and number of scans (n) are taken as the

outputs for inverse analysis of the laser forming process.

To decide the architecture of the GA-tuned neural network

(GA-NN), the number of hidden neurons is determined

through a thorough parametric study. The fitness values of

the network are calculated for different number of neurons

(varying from 2 to 15) at the hidden layer by considering

the following constant GA-parameters: N = 100,

G = 100, pc = 0.90 and pm = 0.001, and the minimum

fitness value (f = 0.226306) has been obtained for 11

numbers of hidden neurons. Therefore, the optimum

architecture of the NN for conducting the inverse analysis

is found to be as 2-11-4, as shown in Fig. 12.

To determine the optimized network to be used for inverse

predictions, a parametric study is conducted to find the opti-

mal set of GA-parameters. The following GA-parameters are

seen to yield the best results: pc = 1.0, pm = 0.001, N = 60,

G = 50,000. The minimum value of fitness (i.e.,

f = 0.217208) is obtained at the generation number of

G = 44,052. For the test data, this approach yields the

average absolute percent deviation in predictions as 5.34,

3.09, 12.36 and 12.42 for predicting p, v, d and n, respectively.
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Fig. 12 NN architecture used for inverse analysis of laser forming

process
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5.2.2 Results of GA-ANFIS

Inverse analysis has been conducted to predict the process

parameters, such as laser power (p), scan speed (v), spot

diameter (d) and number of scans (n) for the given bending

angle (A) and scan position (r) using a GA-tuned ANFIS

model. The ANFIS architecture used for the inverse anal-

ysis is shown in Fig. 13. It is to be noted that bell-shaped

membership function distributions have been assumed for

the inputs of ANFIS model.

The GA-parametric study has been carried out to optimize

this neuro-fuzzy system. The optimum GA-parameters are

found to be as follows: pc = 1.00, pm = 0.002, N = 100 and

G = 50,000. The minimum fitness value (i.e., f = 0.061454)

has been obtained at 27990th generation. The performance of

the developed ANFIS model has been tested in terms of

percent deviation in predictions of p, v, d and n for the 15 test

cases. The values of average absolute percent deviation in

predictions of p, v, d and n have been turned out to be equal to

5.44, 2.93, 12.29 and 16.31, respectively.

The performances of the two developed approaches,

namely GA-NN and GA-ANFIS are found to be satisfac-

tory for conducting inverse analysis of laser forming pro-

cess, as shown in Tables 3, 4, 5 and 6. The two approaches

have been compared in terms of average absolute percent

deviations in predictions of the process parameters, as

displayed in Fig. 14. For predicting the number of scans,

the GA-NN approach is seen to perform better than the

GA-ANFIS, whereas their performances are found to be

comparable to predict the other process parameters. How-

ever, there is a chance of further improvement of their

performances, which are mainly dependent on their

knowledge base. A lot of research is going on to design and

develop suitable knowledge base of an expert system, so

that it can be adaptive and at the same time, predict

accurately. It is also important to mention that the perfor-

mances of these approaches are data-dependent. It is to be

noted that the inverse model cannot be developed using the

obtained regression equation, as the transformation matrix

representing the input–output relationships becomes non-

square and hence, singular.

Twofold cross-validation method is also applied for the

verification of the developed models used in inverse
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forming process

Table 3 Comparison of

prediction accuracy of different

models for laser power

Test no. Actual value

of laser power (W)

Prediction accuracy of different models

GANN model GA-ANFIS model

Predicted

value

Abs.

deviation

Abs. %

deviation

Predicted

value

Abs.

deviation

Abs. %

deviation

1 230 237 7 3.04 243 13 5.65

2 270 239 31 11.48 241 29 10.74

3 240 241 1 0.42 241 1 0.42

4 260 260 0 0 257 3 1.15

5 240 239 1 0.42 242 2 0.83

6 230 239 9 3.91 239 9 3.91

7 270 248 22 8.15 245 25 9.26

8 240 250 10 4.17 249 9 3.75

9 270 241 29 10.74 246 24 8.89

10 260 248 12 4.62 246 14 5.38

11 230 249 19 8.26 245 15 6.52

12 240 249 9 3.75 245 5 2.08

13 230 248 18 7.83 249 19 8.26

14 260 240 20 7.69 240 20 7.69

15 270 255 15 5.56 251 19 7.04

Average of absolute % deviation 5.34 5.44

Standard deviation 3.50 3.19
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analysis of laser forming process. In case of GA-NN

model, the optimized architecture is determined as 2-9-4

for both the combinations of data sets. During the training

using two combinations of data sets, the minimum fitness

values are obtained as 0.219391 and 0.213003 corre-

sponding to the optimized GA-parameters as (pc = 0.8,

pm = 0.004, N = 100) and (pc = 0.9, pm = 0.001,

N = 120), respectively. The GA is run for a maximum of

Table 4 Comparison of

prediction accuracy of different

models for scan speed

Test

no.

Actual value of

scan speed (mm/s)

Prediction accuracy of different models

GANN model GA-ANFIS model

Predicted

value

Abs.

deviation

Abs. %

deviation

Predicted

value

Abs.

deviation

Abs. %

deviation

1 258.33 272.82 14.49 5.61 277.54 19.21 7.44

2 275.00 269.5 5.5 2 266.98 8.02 2.92

3 275.00 270.59 4.41 1.6 267.33 7.67 2.79

4 258.33 262.57 4.24 1.64 260.89 2.56 0.99

5 258.33 269.46 11.13 4.31 264.22 5.89 2.28

6 275.00 271.4 3.6 1.31 268.43 6.57 2.39

7 258.33 266.62 8.29 3.21 265.61 7.28 2.82

8 275.00 266.42 8.58 3.12 268.05 6.95 2.53

9 275.00 270.63 4.37 1.59 274.54 0.46 0.17

10 258.33 267.37 9.04 3.5 262.55 4.22 1.63

11 258.33 265.97 7.64 2.96 265.2 6.87 2.66

12 275.00 266.35 8.65 3.15 265.57 9.43 3.43

13 258.33 267.09 8.76 3.39 269.04 10.71 4.15

14 258.33 271.1 12.77 4.94 268.03 9.7 3.75

15 275.00 263.96 11.04 4.01 263.98 11.02 4.01

Average of absolute % deviation 3.09 2.93

Standard deviation 1.25 1.59

Table 5 Comparison of

prediction accuracy of different

models for spot diameter

Test

no.

Actual value of

spot diameter (mm)

Prediction accuracy of different models

GANN model GA-ANFIS model

Predicted

value

Abs.

deviation

Abs. %

deviation

Predicted

value

Abs.

deviation

Abs. %

deviation

1 0.550 0.644 0.094 17.09 0.653 0.103 18.73

2 0.700 0.647 0.053 7.57 0.655 0.045 6.43

3 0.550 0.638 0.088 16 0.642 0.092 16.73

4 0.700 0.623 0.077 11 0.605 0.095 13.57

5 0.700 0.655 0.045 6.43 0.665 0.035 5

6 0.550 0.641 0.091 16.55 0.647 0.097 17.64

7 0.550 0.635 0.085 15.45 0.631 0.081 14.73

8 0.700 0.625 0.075 10.71 0.619 0.081 11.57

9 0.700 0.637 0.063 9 0.642 0.058 8.29

10 0.550 0.627 0.077 14 0.623 0.073 13.27

11 0.550 0.640 0.090 16.36 0.63 0.080 14.55

12 0.700 0.634 0.066 9.43 0.629 0.071 10.14

13 0.550 0.627 0.077 14 0.623 0.073 13.27

14 0.700 0.640 0.060 8.57 0.645 0.055 7.86

15 0.550 0.623 0.073 13.27 0.619 0.069 12.55

Average of absolute % deviation 12.36 12.29

Standard deviation 3.48 3.94
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Table 6 Comparison of

prediction accuracy of different

models for number of scans

Test no. Actual value of

Number of scans

Prediction accuracy of different models

GANN model GA-ANFIS model

Predicted

value

Abs.

deviation

Abs. %

deviation

Predicted

value

Abs.

deviation

Abs. %

deviation

1 6 6 0 0 7 1 16.67

2 6 7 1 16.67 7 1 16.67

3 8 7 1 12.5 7 1 12.5

4 14 14 0 0 14 0 0

5 8 7 1 12.5 7 1 12.5

6 6 6 0 0 7 1 16.67

7 8 10 2 25 10 2 25

8 14 10 4 28.57 10 4 28.57

9 6 7 1 16.67 8 2 33.33

10 8 9 1 12.5 9 1 12.5

11 12 11 1 8.33 11 1 8.33

12 14 10 4 28.57 10 4 28.57

13 12 9 3 25 10 2 16.67

14 6 6 0 0 7 1 16.67

15 12 12 0 0 12 0 0

Average of absolute % deviation 12.42 16.31

Standard deviation 10.53 9.33
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Fig. 14 Comparisons of the

performances of GA-NN and

GA-ANFIS models in

predicting the process

parameters (inverse analysis):

i laser power (p); ii scan speed

(v); iii spot diameter (d); iv
Number of scans (n)
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50,000 generations. The values of average absolute percent

error in predicting the process parameters: p, v, d and n are

found to be equal to 4.47, 3.21, 10.88 and 12.27, and 4.89,

3.26, 10.90 and 12.99, respectively, for the two combina-

tion of data sets. For GA-ANFIS model, the minimum

fitness values are obtained as 0.061496 and 0.058811

during the training carried out using the optimized GA-

parameters: (pc = 0.8, pm = 0.001, N = 160) and

(pc = 1.0, pm = 0.001, N = 150), respectively, for the two

combinations of data sets. The GA is allowed to run for a

maximum of 50,000 generations. The values of average

absolute percent error in predicting the process parameters:

p, v, d and n have been obtained as 4.57, 3.20, 10.96 and

13.71, and 4.88, 3.45, 11.12 and 13.10, respectively, for the

two combinations of data sets.

6 Conclusions and scope for future work

It is a novel attempt to carry out both the analysis and

synthesis of laser forming process using neural network

and neuro-fuzzy inference system. A batch mode of

training is adopted. In case of predicting the bending

angles, the performances of GA-NN and GA-ANFIS

models are compared between them and with that of the

conventional regression analysis for 15 test cases obtained

through real experiments. Both the GA-NN and GA-AN-

FIS approaches are able to predict the bending angles in the

laser forming process, and their performances are found to

be comparable with that of the regression model. More-

over, the GA-NN approach has performed a slightly better

than the GA-ANFIS approach. It has happened due to the

reason that the GA faces a more difficult task for deter-

mining optimal knowledge base of ANFIS model com-

pared to that of the NN model. In case of inverse analysis,

both the models are able to predict the process parameters

within reasonable accuracy limit. It is important to mention

that it may be difficult to predict the process parameters

using conventional regression equation, as the transfor-

mation matrix may become singular. The performances of

the developed approaches have also been tested through

twofold cross-validation method and found to be satisfac-

tory. In the present paper, this method of process synthesis

has been used for 2D shapes only. However, this work can

be extended further to produce more complex 2D and 3D

shapes by considering both the mechanisms (namely TGM

and UM) of laser forming process. In the present study, the

performances of GA-NN and GA-ANFIS have been com-

pared for both the analysis and synthesis problems of laser

forming process. In future, their performances will be

compared with those of other soft computing-based

regression methods available in the literature.

Appendix A: Experimental data collected according

to CCD to develop the model of bending angle

SL.
no.

Input parameters Output: bending
angle (�)

p (W) v (mm/s) d (mm) r n A1 A2 A3

1 225 250.0 0.500 0.25 5 4.81 5.34 5.07

2 275 250.0 0.500 0.25 5 6.71 6.61 6.82

3 225 283.0 0.500 0.25 5 4.06 4.52 3.76

4 275 283.0 0.500 0.25 5 4.56 4.20 5.00

5 225 250.0 0.750 0.25 5 3.97 3.74 3.55

6 275 250.0 0.750 0.25 5 5.69 5.85 6.04

7 225 283.0 0.750 0.25 5 2.14 1.95 2.18

8 275 283.0 0.750 0.25 5 6.45 6.29 6.68

9 225 250.0 0.500 0.75 5 4.12 4.21 4.19

10 275 250.0 0.500 0.75 5 4.41 4.73 4.56

11 225 283.0 0.500 0.75 5 2.22 2.27 2.17

12 275 283.0 0.500 0.75 5 5.05 4.95 5.00

13 225 250.0 0.750 0.75 5 3.56 3.63 3.73

14 275 250.0 0.750 0.75 5 6.12 6.23 5.94

15 225 283.0 0.750 0.75 5 1.74 1.58 1.66

16 275 283.0 0.750 0.75 5 3.89 4.08 4.20

17 225 250.0 0.500 0.25 15 11.30 11.50 11.06

18 275 250.0 0.500 0.25 15 15.21 14.47 14.83

19 225 283.0 0.500 0.25 15 8.58 8.65 8.79

20 275 283.0 0.500 0.25 15 13.00 12.40 12.80

21 225 250.0 0.750 0.25 15 8.07 8.28 7.90

22 275 250.0 0.750 0.25 15 15.47 15.28 15.40

23 225 283.0 0.750 0.25 15 7.16 7.21 7.26

24 275 283.0 0.750 0.25 15 12.24 12.47 11.93

25 225 250.0 0.500 0.75 15 11.70 11.06 11.25

26 275 250.0 0.500 0.75 15 14.20 14.34 14.47

27 225 283.0 0.500 0.75 15 9.48 9.54 9.36

28 275 283.0 0.500 0.75 15 12.53 12.46 12.5

29 225 250.0 0.750 0.75 15 7.98 8.09 8.28

30 275 250.0 0.750 0.75 15 15.20 15.28 15.10

31 225 283.0 0.750 0.75 15 6.46 6.30 6.38

32 275 283.0 0.750 0.75 15 12.25 12.31 12.37

33 225 266.5 0.625 0.50 10 6.33 6.45 6.21

34 275 266.5 0.625 0.50 10 11.13 10.84 10.95

35 250 250.0 0.625 0.50 10 8.87 8.95 9.04

36 250 283.0 0.625 0.50 10 8.67 8.84 8.56

37 250 266.5 0.500 0.50 10 9.30 8.78 9.02

38 250 266.5 0.750 0.50 10 7.44 7.75 8.35

39 250 266.5 0.625 0.25 10 8.88 9.00 8.60

40 250 266.5 0625 0.75 10 9.25 8.78 8.97

41 250 266.5 0.625 0.50 5 4.60 4.85 5.08

42 250 266.5 0.625 0.50 15 13.67 13.80 13.56

43 250 266.5 0.625 0.50 10 9.24 9.13 9.19

Analysis and synthesis of laser forming process 863

123



Appendix B: Data collected for testing the models

of bending angle

SL.

no.

Input parameters Output:

bending

angle

p (W) v (mm/s) d (mm) r n A (�)

1 230 258.33 0.550 0.30 6 5.93

2 270 275.00 0.700 0.60 6 5.82

3 240 275.00 0.550 0.40 8 6.37

4 260 258.33 0.700 0.70 14 11.85

5 240 258.33 0.700 0.70 8 5.72

6 230 275.00 0.550 0.40 6 5.91

7 270 258.33 0.550 0.60 8 8.18

8 240 275.00 0.700 0.30 14 8.93

9 270 275.00 0.700 0.30 6 6.95

10 260 258.33 0.550 0.40 8 8.29

11 230 258.33 0.550 0.70 12 8.70

12 240 275.00 0.700 0.60 14 8.41

13 230 258.33 0.550 0.30 12 8.61

14 260 258.33 0.700 0.40 6 6.08

15 270 275.00 0.550 0.60 12 10.48
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