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Abstract In this paper, the asymptotic stability problem

of genetic regulatory networks with time-varying/constant

neutral delay is considered. By introducing a new Lyapu-

nov–Krasovskii functional and applying the free weighting

matrix technique, sufficient delay-dependent stability con-

ditions are developed and presented in terms of strict linear

matrix inequality, which can be easily verified by using the

LMI toolbox. Finally, two numerical examples are pro-

vided to demonstrate the effectiveness and reduced con-

servativeness of the proposed algorithm.

Keywords Genetic regulatory networks � Stability �
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1 Introduction

Over the past decades, genetic regulatory networks have

received increasing attention in the biological, engineering

and other research fields. In order to study gene regulation

processes in living organisms, several mathematical mod-

els are constructed based on large amounts of experimental

data (see Lestas et al. 2008; Smolen et al. 2000; Gebert

et al. 2007; Kauffman 1969; Jong 2002 and the references

therein).

It is well known that time delay will inevitably occur

due to the slow process of transportation and translation of

protein. The existence of time delays may lead to insta-

bility, which motivates many people to study the stability

of delayed genetic regulatory networks (GRNs). Various

results concerning GRNs with time delay have been

reported (see, for example, Ren and Cao 2010; Li et al.

2006, 2007; Wang et al. 2008, 2009, 2010; Banks and

Mahaffy 1978; Chen and Aihara 2002; Cao and Ren 2008;

Zhou et al. 2009). However, the existing gene networks

models in many cases cannot characterize the properties of

the GRNs precisely due to their complicated dynamic

properties in the real world. It is natural and important that

GRNs may contain some information about the derivative

of the past state, which motivates us to study the stability of

GRNs of neutral type. Although there are various stability

conditions available for neutral neural networks (Liu and

Zong 2009; Zhang et al. 2005; Feng et al. 2009; Park et al.

2008; Ren and Cao 2006; Li and Yang 2010; Lou et al.

2010; Balasubramaniam et al. 2010; Lakshmanan et al.

2011; Rakkiyappan et al. 2011), little work has been done

on the stability of GRNs with neutral delay (Jung et al.

2010). It is noted that in Jung et al. (2010) it is required

that the time-varying delays be differentiable and the

discrete delay be equal to the neutral delay. However,

these conditions may not be satisfied in some practical

circumstances.

Motivated by the above discussions, we shall further

study the problem of the delay-dependent asymptotic sta-

bility of GRNs with neutral delay. Different from (Jung

et al. 2010), the discrete delay may be non-differentiable,

and it is unnecessarily equal to the neutral delay. We shall

introduce a new Lyapunov–Krasovskii functional to arrive
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at sufficient delay-dependent stability conditions by means

of the free weighting matrix technique. Since these con-

ditions are expressed by strict linear matrix inequality

(LMI), it is easy to apply the MATLAB LMI toolbox to

deal with them. We shall further illustrate the usefulness of

the theoretical findings through two numerical examples.

Moreover, some comparisons are also made between the

results in Jung et al. (2010) and this paper to show the

reduced conservativeness achieved by our results.

Notations. In this paper, the n-dimensional Euclidean

space is denoted by Rn:Rn�m is the set of all n 9 m real

matrices. I denotes the identity matrix with appropriate

dimensions. 0\P 2 Rn�n implies that P is a real sym-

metric positive definite matrix. In a matrix, the term of

symmetry is represented by the asterisk �:

2 Problem formulation

By Li et al. (2006), GRNs with time-varying delays can be

described by the following differential equations:

_miðtÞ ¼ �aimiðtÞ þ Giðp1ðt � rðtÞÞ;
p2ðt � rðtÞÞ; . . .; pnðt � rðtÞÞÞ;

_piðtÞ ¼ �cipiðtÞ þ dimiðt � sðtÞÞ; ði ¼ 1; 2; . . .; nÞ;
ð1Þ

where mi(t) and pi(t) denote the concentration of mRNA

and protein of the ith node, respectively, ai and ci are the

degradation rates of the mRNA and the protein, di is the

translation rate, and the function Gi is the feedback

regulation of the protein on the transcription of the ith

gene which usually takes the Hill form. Throughout this

paper, the sum logic is used to describe the regulatory

function, i.e.,

Giðp1ðtÞ; p2ðtÞ; . . .; pnðtÞÞ ¼
Xn

j¼1

gijðpjðtÞÞ;

where gijð�Þ is usually a monotonically increasing function.

If transcription factor j is an activator of gene i, then

gijðpjðtÞÞ ¼ bij

pjðtÞHj

qHj

j þ pjðtÞHj
;

if transcription factor j is a repressor of gene i, then

gijðpjðtÞÞ ¼ bij

qHj

j

qHj

j þ pjðtÞHj
;

where Hj is the Hill coefficient, qj is a positive constant,

and bij is a constant that describes the transcriptional rate of

transcriptional factor j to gene i. Let bij = bij if

transcription factor j is an activator of gene i; bij = -bij

if transcription factor j is a repressor of gene i; bij = 0 if

there is no link between genes i and j. Then, the GRNs (1)

can be described as:

_miðtÞ ¼ �aimiðtÞ þ
Xn

j¼1

bijgjðpjðt � rðtÞÞÞ þ ki;

_piðtÞ ¼ �cipiðtÞ þ dimiðt � sðtÞÞ;
ð2Þ

where gj ¼
q

Hj
j

q
Hj
j þpjðtÞHj

; ki ¼
P

j2Ki
bij;Ki is the set of

repressors of gene i. Rewrite system (2) in the following

compact matrix form:

_mðtÞ ¼ �AmðtÞ þ Bgðpðt � rðtÞÞÞ þM;

_pðtÞ ¼ �CpðtÞ þ Dmðt � sðtÞÞ;
ð3Þ

where

A ¼ diag½a1; a2; . . .; an�; C ¼ diag½c1; c2; . . .; cn�;
D ¼ diag½d1; d2; . . .; dn�; M ¼ ½k1; k2; . . .; kn�T :

Let m� and p� be an equilibrium point of the system (3),

that is,

_m� ¼ �Am� þ Bgðp�Þ þM;

_p� ¼ �Cp� þ Dm�:

Now, let xðtÞ ¼ mðtÞ � m�; yðtÞ ¼ pðtÞ � p�. Then we

have:

_xðtÞ ¼ �AxðtÞ þ Bf ðyðt � rðtÞÞÞ;
_yðtÞ ¼ �CyðtÞ þ Dxðt � sðtÞÞ;

ð4Þ

where

f ðyðt � rðtÞÞÞ ¼ ½f1ðy1ðt � rðtÞÞÞ; f2ðy2ðt
� rðtÞÞÞ; . . .; fnðynðt � rðtÞÞÞ�T ;

and

fiðyiðt � rðtÞÞÞ ¼ giðpiðt � rðtÞÞÞ � giðp�i Þ:

We need the following assumption in this paper:

Assumption 1 For i ¼ 1; 2; . . .; n; there exist constants

ki
-, ki

? such that the regulatory function gið�Þ satisfies

k�i �
giðuÞ � giðvÞ

u� v
� kþi ; 8u 6¼ v 2 R: ð5Þ

It is clearly seen that fi(y) satisfies the sector condition

k�i �
fiðyÞ

y
� kþi ; 8y 6¼ 0 2 R; ð6Þ

which is equivalent to:

ðfiðyÞ � k�i yÞðfiðyÞ � kþi yÞ� 0:

For convenience, let
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K ¼ diag
kþ1 þ k�1

2
; . . .;

kþn þ k�n
2

� �
;

L ¼ diag½kþ1 k�1 ; . . .; kþn k�n �:

Remark 1 Assumption 1 in this paper is the same as that in

Lou et al. (2010), and it is a much milder condition than the

monotonically increasing condition since the constants

ki
-, ki

? are allowed to be positive, negative, or zero.

Therefore, Assumption 1 is weaker than those in Li et al.

(2006, 2007); Wang et al. (2008, 2010); Banks and Mahaffy

(1978); Chen and Aihara (2002); Wang et al. (2009).

In this paper, we shall study the GRNs model with time-

varying neutral delay given by:

_xðtÞ ¼ �AxðtÞ þ Bf ðyðt � rðtÞÞÞ;
_yðtÞ ¼ �CyðtÞ þ D1xðt � s1ðtÞÞ þ D2 _xðt � s2ðtÞÞ;

ð7Þ

where the time-varying delays r(t), s1(t) and s2(t) are

assumed to satisfy

0� rðtÞ� r; 0� s1ðtÞ� s1; 0� s2ðtÞ� s2; _s2ðtÞ� s:

Remark 2 The GRNs model is a highly useful tool for

discovering higher order structure of an organism and

gaining deep insights into both static and dynamic

behaviors. Well-characterized GRNs can help understand

genetic mechanisms responsible for evolutionary changes

and design approaches for cell/tissue engineering.

To get the main results, the following lemmas are nee-

ded in this paper:

Lemma 1 (Ren and Cao 2006) Let P 2 Rn�n be a posi-

tive definite matrix. Then, for yðtÞ 2 Rn and scalar a[ 0,

Z t

t�a

yðsÞds

0
@

1
A

T

P

Z t

t�a

yðsÞds

0
@

1
A� a

Z t

t�a

yðsÞT PyðsÞds:

Lemma 2 (Liu and Zong 2009) Suppose that xðtÞ 2 Rn

be continuously differentiable with first order derivative.

Then for any matrix P 2 Rn�n [ 0; any Y ¼ ½M1;M2� 2
Rn�2n; h [ 0; we have

�
Z t

t�h

_x sð ÞTP _x sð Þds

�
x tð Þ

x t � hð Þ

� �T
M1 þMT

1 �MT
1 þM2

� �M2 �M2
T

� �
x tð Þ

x t � hð Þ

� �

þ
x tð Þ

x t � hð Þ

� �T

YT P�1Y
x tð Þ

x t � hð Þ

� �

Lemma 3 (Li and Yang 2010) Let 0 \ s1 B s(t) B

s2, Qi, (i = 1, 2, 3) be some constant matrices with

appropriate dimensions. Then

Q1 þ ðs2 � sðtÞÞQ2 þ ðsðtÞ � s1ÞQ3\0

if the following inequalities hold

Q1 þ ðs2 � s1ÞQ2\0

Q1 þ ðs2 � s1ÞQ3\0

3 Main results

In this section, we present the delay-dependent conditions

that ensure the asymptotic stability of the equilibrium point

for the GRNs (7).

Theorem 1 System (7) with time-varying neutral delay is

asymptotically stable if there exist matrices

P ¼

P11 P12 P13 P14 P15

� P22 P23 P24 P25

� � P33 P34 P35

� � � P44 P45

� � � � P55

2

66664

3

77775
[ 0; Q ¼

Q11 Q12

� Q22

� �
[ 0;Qi [ 0; ði ¼ 1; 2; . . .; 6Þ;Rk [ 0; Sk [

0; ðk ¼ 1; 2; 3Þ;K1 ¼ diag½k11; . . .; k1n�[ 0;K2 ¼ diag
½k21; . . .; k2n� [ 0;K3 ¼ diag½k31; . . .; k3n�[ 0 and the free

matrices Mlðl ¼ 1; 2; . . .; 12Þ;Njðj ¼ 1; 2; . . .; 7Þ with

appropriate dimensions such that the following LMIs

hold:

U F1 F3 F5

� � 1
s1

R1 0 0

� � � 1
s2

R3 0

� � � � 1
r R2

2

664

3

775\0;

U F1 F3 F6

� � 1
s1

R1 0 0

� � � 1
s2

R3 0

� � � � 1
r R2

2

664

3

775\0;

ð8Þ
U F1 F4 F5

� � 1
s1

R1 0 0

� � � 1
s2

R3 0

� � � � 1
r R2

2

664

3

775\0;

U F1 F4 F6

� � 1
s1

R1 0 0

� � � 1
s2

R3 0

� � � � 1
r R2

2

664

3

775\0;

ð9Þ
U F2 F3 F5

� � 1
s1

R1 0 0

� � � 1
s2

R3 0

� � � � 1
r R2

2

664

3

775\0;

U F2 F3 F6

� � 1
s1

R1 0 0

� � � 1
s2

R3 0

� � � � 1
r R2

2

664

3

775\0;

ð10Þ
U F2 F4 F5

� � 1
s1

R1 0 0

� � � 1
s2

R3 0

� � � � 1
r R2

2

664

3

775\0;

U F2 F4 F6

� � 1
s1

R1 0 0

� � � 1
s2

R3 0

� � � � 1
r R2

2

664

3

775\0;

ð11Þ
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with

Proof Consider the following Lyapunov–Krasovskii

functional:

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ þ V4ðtÞ;

where

V1 tð Þ ¼

x tð Þ
x t � s1ð Þ
x t � s2ð Þ
Rt

t�s1

x sð Þds

Rt

t�s2

x sð Þds

2
66666666664

3
77777777775

T

P

x tð Þ
x t � s1ð Þ
x t � s2ð Þ
Rt

t�s1

x sð Þds

Rt

t�s2

x sð Þds

2
66666666664

3
77777777775

þ
y tð Þ

Rt

t�r
y sð Þds

2
4

3
5

T

Q

y tð Þ
Rt

t�r
y sð Þds

2
4

3
5;

V2 tð Þ ¼
Z t

t�s1

xT sð ÞQ1x sð Þ þ _xT sð ÞQ3 _x sð Þ
� �

ds

þ
Z t

t�s2

xT sð ÞQ2x sð Þ þ _xT sð ÞQ4 _x sð Þ
� �

ds

þ
Z t

t�r

yT sð ÞQ5y sð Þdsþ
Z t

t�s2 tð Þ

_xT sð ÞQ6 _x sð Þds;

V3 tð Þ ¼ 2
Xn

i¼1

k1i

Zyi tð Þ

0

fi sð Þds;

V4 tð Þ ¼
Z0

�s1

Z t

tþs

xT hð ÞS1x hð Þ þ _xT hð ÞR1 _x hð Þ
� �

dhds

þ
Z0

�r

Z t

tþs

yT hð ÞS2y hð Þ þ _yT hð ÞR2 _y hð Þ
� �

dhds

þ
Z0

�s2

Z t

tþs

xT hð ÞS3x hð Þ þ _xT hð ÞR3 _x hð Þ
� �

dhds:

Calculating the time derivative of V(t) along the solution of

the system (7), we have:

_VðtÞ ¼ _V1ðtÞ þ _V2ðtÞ þ _V3ðtÞ þ _V4ðtÞ; ð12Þ

where

_V1 tð Þ ¼ 2

x tð Þ
x t � s1ð Þ
x t � s2ð Þ
Rt

t�s1

x sð Þds

Rt

t�s2

x sð Þds

2
66666666664

3
77777777775

T

P

_x tð Þ
_x t � s1ð Þ
_x t � s2ð Þ

x tð Þ � x t � s1ð Þ
x tð Þ � x t � s2ð Þ

2
666664

3
777775

þ 2

y tð Þ
Rt

t�r
y sð Þds

2
4

3
5

T

Q
_y tð Þ

y tð Þ � y t � rð Þ

� �
;

ð13Þ

U ¼ UT ¼ Uij

� �
18�18

;

F1 ¼ 0;M2; 0; . . .; 0;M1#9
; 0; . . .; 0

h iT

18�1
;

F2 ¼ M3; 0; . . .; 0;M4#9
; 0; . . .; 0

h iT

18�1
;

F3 ¼ 0; 0;M6; 0; . . .; 0;M5#10
; 0; . . .; 0

h iT

18�1
;

F4 ¼ M7; 0; . . .; 0;M8#10
; 0; . . .; 0

h iT

18�1
;

F5 ¼ 0; . . .; 0;MT
10#13

; 0;MT
9

h iT

18�1
;

F6 ¼ 0; . . .; 0;MT
11#12

; 0; . . .; 0;MT
12

h iT

18�1
;

U11 ¼ Q1 þ Q2 þ s1S1 þ s2S3 þM3 þM3T þM7 þMT
7

þ P14 þ PT
14 þ P15 þ PT

15 � N1A� ANT
1 ;

U12 ¼ �P14 þ PT
24 þ PT

25;U13 ¼ �P15 þ PT
34 þ PT

35;
U14 ¼ PT

44 þ PT
45;U15 ¼ P45 þ P55;U16 ¼ P11 � N1 � ANT

2 ;
U17 ¼ P12;U18 ¼ P13;U19 ¼ �MT

3 þM4;U1;10 ¼ �MT
7 þM8;

U1;17 ¼ N1B� ANT
3 ;

U1;11 ¼ U1;12 ¼ U1;13 ¼ U1;14 ¼ U1;15 ¼ U1;16 ¼ U1;18 ¼ 0

U22 ¼ �Q1 �M2 �MT
2 � P24 � PT

24;U23 ¼ �P25 � PT
34;

U24 ¼ �P44;U25 ¼ �P45;U26 ¼ PT
12;U27 ¼ P22;

U28 ¼ P23;U29 ¼ �M1 þMT
2 ;

U2;10 ¼ U2;11 ¼ U2;12 ¼ U2;13 ¼ U2;14 ¼ U2;15

¼ U2;16 ¼ U2;17 ¼ U2;18 ¼ 0;
U33 ¼ �Q2 �M6 �MT

6 � P35 � PT
35;U34 ¼ �PT

45;U35 ¼ �P55

U36 ¼ PT
13;U37 ¼ PT

23;U38 ¼ P33;U3;10 ¼ �M5 þMT
6 ;

U39 ¼ U3;11 ¼ U3;12 ¼ U3;13 ¼ U3;14 ¼ U3;15

¼ U3;16 ¼ U3;17 ¼ U3;18 ¼ 0;

U44 ¼ �
1

s1

S1;U45 ¼ 0;U46 ¼ PT
14;U47 ¼ PT

24;U48 ¼ PT
34;

U49 ¼ U4;10 ¼ U4;11 ¼ U4;12 ¼ U4;13 ¼ U4;14 ¼ U4;15 ¼ U4;16

¼ U4;17 ¼ U4;18 ¼ 0;U55 ¼ �
1

s2

S3;U56 ¼ PT
15;U57

¼ PT
25;U58 ¼ PT

35;U59 ¼ U5;10 ¼ U5;11 ¼ U5;12 ¼ U5;13

¼ U5;14 ¼ U5;15 ¼ U5;16 ¼ U5;17 ¼ U5;18 ¼ 0;U66

¼ Q3 þ Q4 þ Q6 þ s1R1 þ s2R2 þ s2R3 � N2 � NT
2 ;U67

¼ U68 ¼ U69 ¼ U6;10 ¼ U6;11 ¼ U6;12 ¼ U6;13 ¼ U6;14

¼ U6;15 ¼ U6;16 ¼ U6;18 ¼ 0;U77 ¼ �Q3;U88 ¼ �Q4;U6;17

¼ N2B� NT
3 ;U78 ¼ U79 ¼ U7;10 ¼ U7;11 ¼ U7;12

¼ U7;13 ¼ U7;14 ¼ U7;15 ¼ U7;16 ¼ U7;17 ¼ U7;18

¼ 0;U89 ¼ U8;10 ¼ U8;11 ¼ U8;12 ¼ U8;13 ¼ U8;14

¼ U8;15 ¼ U8;16 ¼ U8;17 ¼ U8;18 ¼ 0;U99 ¼ M1 þMT
1 �M4

�MT
4 þ N4D1 þ D1NT

4 ;U9;11 ¼ N4D2 þ D1NT
5 ;U9;12

¼ �N4C þ D1NT
6 ;U9;15 ¼ �N4 þ D1NT

7 ;U9;10 ¼ U9;13

¼ U9;14 ¼ U9;16 ¼ U9;17 ¼ U9;18 ¼ 0;U10;10 ¼ M5 þMT
5

�M8 �MT
8 ;U10;11 ¼ U10;12 ¼ U10;13 ¼ U10;14 ¼ U10;15

¼ U10;16 ¼ U10;17 ¼ U10;18 ¼ 0;U11;11 ¼ N5D2 þ D2NT
5

� 1� sð ÞQ6;U11;12 ¼ �N5C þ D2NT
6 ;U11;15 ¼ �N5

þD2NT
7 ;U11;13 ¼ U11;14 ¼ U11;16 ¼ U11;17 ¼ U11;18 ¼ 0;U12;12

¼ Q5 þ Q12 þ QT
12 þ rS2 þM11 þMT

11 � N6C � CNT
6

�K2L;U12;13 ¼ �Q12;U12;14 ¼ Q22;U12;15 ¼ Q11

�N6 � CNT
7 ;U12;16 ¼ K2K;U12;17 ¼ 0;U12;18 ¼ �MT

11

þM12;U13;13 ¼ �Q5 �M10 �MT
10;U13;14 ¼ �Q22;U13;15

¼ U13;16 ¼ U13;17 ¼ 0;U13;18 ¼ �M9 þMT
10;U14;14

¼ � 1

r
S2;U14;15 ¼ QT

12;U14;16 ¼ U14;17 ¼ U14;18 ¼ 0;U15;15

¼ rR2 � N7 � NT
7 ;U15;16 ¼ K1;U15;17 ¼ U15;18 ¼ 0;U16;16

¼ �K2;U16;17 ¼ U16;18 ¼ 0;U17;17 ¼ �K3 þ N3Bþ BTNT
3 ;U17;18

¼ K3K;U18;18 ¼ M9 þMT
9 �M12 �MT

12 � K3L
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_V2 tð Þ� xT tð Þ Q1 þ Q2 þ Q6½ �x tð Þ þ _xT tð Þ Q3;Q4½ � _x tð Þ
� xT t � s1ð ÞQ1x t � s1ð Þ � xT t � s2ð ÞQ2x t � s2ð Þ
� _xT t � s1ð ÞQ3 _x t � s1ð Þ � _xT t � s2ð ÞQ4 _x t � s2ð Þ
� 1� sð Þ _xT t � s2 tð Þð ÞQ6 _x t � s2 tð Þð Þ
þ yT tð ÞQ5y tð Þ � yT t � rð ÞQ5y t � rð Þ; ð14Þ

_V3 tð Þ ¼ 2f T y tð Þð ÞK1 _y tð Þ; ð15Þ
_V4 tð Þ ¼ _xT tð Þ s1R1 þ s2R3½ � _x tð Þ þ xT tð Þ s1S1 þ s2S3½ �x tð Þ

þ _yT tð Þ rR2½ � _y tð Þ þ yT tð Þ rS2½ �y tð Þ

�
Z t

t�s1

xT hð ÞS1x hð Þ þ _xT hð ÞR1 _x hð Þ
� �

dhds

�
Z t

t�r

yT hð ÞS2y hð Þ þ _yT hð ÞR2 _y hð Þ
� �

dhds

�
Z t

t�s2

xT hð ÞS3x hð Þ þ _xT hð ÞR3 _x hð Þ
� �

dhds: ð16Þ

By Lemma 1, we obtain:

�
Z t

t�s1

xT sð ÞS1x sð Þds� � 1

s1

Z t

t�s1

x sð Þds

0

@

1

A
T

S1

Z t

t�s1

x sð Þds

0

@

1

A;

ð17Þ

�
Z t

t�s2

xT sð ÞS3x sð Þds� � 1

s2

Z t

t�s2

x sð Þds

0

@

1

A
T

S3

Z t

t�s2

x sð Þds

0

@

1

A;

ð18Þ

�
Z t

t�r

yT sð ÞS2y sð Þds� � 1

r

Z t

t�r

y sð Þds

0
@

1
A

T

S2

Z t

t�r

y sð Þds

0
@

1
A:

ð19Þ

It follows from Lemma 2 that

�
Z t

t�s1

_xT hð ÞR1 _x hð Þdh

¼ �
Zt�s1 tð Þ

t�s1

_xT hð ÞR1 _x hð Þdh�
Z t

t�s1 tð Þ

_xT hð ÞR1 _x hð Þdh

� x t � s1 tð Þð Þ
x t � s1ð Þ

� �T
M1 þMT

1 �MT
1 þM2

� �M2 �MT
2

� �
x t � s1 tð Þð Þ
x t � s1ð Þ

� �

þ s1 � s1 tð Þ½ � x t � s1 tð Þð Þ
x t � s1ð Þ

� �T MT
1

MT
2

" #
R�1

1 M1 M2½ � x t � s1 tð Þð Þ
x t � s1ð Þ

� �

þ x tð Þ
x t � s1 tð Þð Þ

� �T
M3 þMT

3 �MT
3 þM4

� �M4 �MT
4

� �
x tð Þ

x t � s1 tð Þð Þ

� �

þ s1 tð Þ x tð Þ
x t � s1 tð Þð Þ

� �
MT

3

MT
4

� �
R�1

1 M3 M4½ � x tð Þ
x t � s1 tð Þð Þ

� �
;

ð20Þ

�
Z t

t�s2

_xT hð ÞR3 _x hð Þdh

¼ �
Zt�s2 tð Þ

t�s2

_xT hð ÞR3 _x hð Þdh�
Z t

t�s2 tð Þ

_xT hð ÞR3 _x hð Þdh

�
x t � s2 tð Þð Þ

x t � s2ð Þ

" #T
M5 þMT

5 �MT
5 þM6

� �M6 �MT
6

" #
x t � s2 tð Þð Þ

x t � s2ð Þ

" #

þ s2 � s2 tð Þ½ �
x t � s2 tð Þð Þ

x t � s2ð Þ

" #T
MT

5

MT
6

" #
R�1

3 M5 M6½ �
x t � s2 tð Þð Þ

x t � s2ð Þ

" #

þ
x tð Þ

x t � s2 tð Þð Þ

" #T
M7 þMT

7 �MT
7 þM8

� �M8 �MT
8

" #
x tð Þ

x t � s2 tð Þð Þ

" #

þ s2 tð Þ
x tð Þ

x t � s2 tð Þð Þ

" #
MT

7

MT
8

" #
R�1

3 M7 M8½ �
x tð Þ

x t � s2 tð Þð Þ

" #
;

ð21Þ

�
Z t

t�r

_yT hð ÞR2 _y hð Þdh

¼ �
Zt�r

t�r

_yT hð ÞR2 _y hð Þdh�
Z t

t�r tð Þ

_yT hð ÞR2 _y hð Þdh

�
y t � r tð Þð Þ

y t � rð Þ

� �T M9 þMT
9 �MT

9 þM10

� �M10 �MT
10

" #
y t � r tð Þð Þ

y t � rð Þ

� �

þ r� r tð Þ½ �
y t � r tð Þð Þ

y t � rð Þ

� �T MT
9

MT
10

" #
R�1

2 M9 M10½ �
y t � r tð Þð Þ

y t � rð Þ

� �

þ
y tð Þ

y t � r tð Þð Þ

� �T M11 þMT
11 �MT

11 þM12

� �M12 �MT
12

� �
y tð Þ

y t � r tð Þð Þ

� �

þ r tð Þ
y tð Þ

y t � r tð Þð Þ

� �
MT

11

MT
12

� �
R�1

2 M11 M12½ �
y tð Þ

y t � r tð Þð Þ

� �
:

ð22Þ

On the other hand, from system (7) and for any

matrices Njðj ¼ 1; 2; . . .; 7Þ with appropriate dimensions,

there hold

0 ¼ 2

x tð Þ
_x tð Þ

f y t � r tð Þð Þð Þ

2
4

3
5

T
N1

N2

N3

2
4

3
5

� �Ax tð Þ � _x tð ÞBf y t � r tð Þð Þð Þ½ ; ð23Þ

0 ¼ 2

y tð Þ
_y tð Þ

x t � s1 tð Þð Þ
_x t � s2 tð Þð Þ

2
664

3
775

T
N4

N5

N6

N7

2
664

3
775

� D1x t � s1 tð Þð Þ þ D20 _x t � s2 tð Þð Þ � Cy tð Þ _y tð Þ
� �

:

ð24Þ

Noticing the sector condition (6), for any k2i [ 0;

k3i [ 0ði ¼ 1; 2; . . .; nÞ; we have:
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� k2i fiyi tð Þð Þ � kþi yi tð Þð Þ fi yi tð Þð Þ � k�i yi tð Þð Þ
� �

� 0;

� k3i fiðyiðt � rðtÞÞÞ � kþi ðyiðt � rðtÞÞÞ
� �

� fi yi t � r tð Þð Þð Þ � k�i yi t � r tð Þð Þð Þ
� �

� 0;

which can be further rewritten into the following compact

matrix forms:

�
Xn

i¼1

k2i

f y tð Þð Þ
y tð Þ

� �T eie
T
i � kþi þk�i

2
eie

T
i

� kþi þk�i
2

eie
T
i kþi k�i eie

T
i

2

4

3

5 f y tð Þð Þ
y tð Þ

� �

¼
f y tð Þð Þ
y tð Þ

� �T �K2 K2K

K2K �K2L

� �
f y tð Þð Þ
y tð Þ

� �
� 0;

ð25Þ

�
Xn

i¼1

k3i

f y t�r tð Þð Þð Þ
y t�r tð Þð Þ

� �T eie
T
i � kþi þk�i

2
eie

T
i

� kþi þk�i
2

eie
T
i kþi k�i eie

T
i

2

4

3

5

�
f y t�r tð Þð Þð Þ
y t�r tð Þð Þ

� �

¼
f y t�r tð Þð Þð Þ
y t�r tð Þð Þ

� �T �K3 K3K

K3K �K3L

� �
f y t�r tð Þð Þð Þ
y t�r tð Þð Þ

� �
�0;

ð26Þ

where K2 ¼ diag½k21; . . .; k2n�[ 0; K3 ¼ diag½k31; . . .; k3n�
[ 0:

Taking (12)–(26) into account, we get

_V tð Þ� gT tð Þ Uþ s1 � s1 tð Þð ÞF1R�1
1 FT

1 þ s1 tð ÞF2R�1
1 FT

2

�

þ s2 � s2 tð Þð ÞF3R�1
3 FT

3 þ s2 tð ÞF4R�1
3 FT

4

þ r� r tð Þð ÞF5R�1
2 FT

5 þ r tð ÞF6R�1
2 FT

6

	
g tð Þ;

ð27Þ

where gðtÞ ¼ ½xTðtÞ xTðt � s1Þ xTðt � s2Þ
R t

t�s1
xðsÞ dsR t

t�s2
xTðsÞds _xTðtÞ _xTðt � s1Þ _xTðt � s2Þ xTðt � s1ðtÞÞ xT

ðt � s2ðtÞÞ _xTðt � s2ðtÞÞ yTðtÞyTðt � rÞ
R t

t�r yTðsÞ ds _yTðtÞ
f TðyðtÞÞf Tðyðt � rðtÞÞÞyTðt � rðtÞÞ�T :

Next, we shall prove

Uþ ðs1 � s1ðtÞÞF1R�1
1 FT

1 þ s1ðtÞF2R�1
1 FT

2

þ ðs2 � s2ðtÞÞF3R�1
3 FT

3 þ s2ðtÞF4R�1
3 FT

4

þ ðr� rðtÞÞF5R�1
2 FT

5 þ rðtÞF6R�1
2 FT

6 \0; ð28Þ

where U is defined in (8)–(11).

By Lemma 3, it easily follows that (28) holds if the

following inequalities hold:

Uþ s1F1R�1
1 FT

1 þ s2F3R�1
3 FT

3 þ rF5R�1
2 FT

5 \0; ð29Þ

Uþ s1F1R�1
1 FT

1 þ s2F3R�1
3 FT

3 þ rF6R�1
2 FT

6 \0; ð30Þ

Uþ s1F1R�1
1 FT

1 þ s2F4R�1
3 FT

3 þ rF5R�1
2 FT

5 \0; ð31Þ

Uþ s1F1R�1
1 FT

1 þ s2F4R�1
3 FT

4 þ rF6R�1
2 FT

6 \0; ð32Þ

Uþ s1F2R�1
1 FT

2 þ s2F3R�1
3 FT

3 þ rF5R�1
2 FT

5 \0; ð33Þ

Uþ s1F2R�1
1 FT

2 þ s2F3R�1
3 FT

3 þ rF6R�1
2 FT

6 \0; ð34Þ

Uþ s1F2R�1
1 FT

2 þ s2F4R�1
4 FT

3 þ rF5R�1
2 FT

5 \0; ð35Þ

Uþ s1F2R�1
1 FT

2 þ s2F4R�1
3 FT

4 þ rF6R�1
2 FT

6 \0: ð36Þ

By the Schur complement formula and after some

manipulations, we can conclude that (29)–(36) are true if

(8)–(11) hold, which further implies that _VðtÞ\0:

Therefore, the GRNs (7) are asymptotically stable

according to the Lyapunov stability theory. The proof is

complete. h

Remark 3 Theorem 1 provides a delay-dependent stabil-

ity condition which guarantees the asymptotic stability of

the neutral GRNs (7). Different from Theorem 1 in Jung

et al. (2010), here the discrete delays are unnecessarily

differentiable. Moreover, the discrete delay and the neutral

delay are not required to be equal to each other. Therefore,

compared with Theorem 1 in Jung et al. (2010), Theorem 1

in this paper can be regarded as an extension of Jung et al.

(2010).

When the discrete delays and the neutral delay are

constant, i.e., r(t) = r, s1(t) = s1, s2(t) = s2, the GRNs

(7) turn into

_xðtÞ ¼ �AxðtÞ þ Bf ðyðt � rÞÞ;
_yðtÞ ¼ �CyðtÞ þ D1xðt � s1Þ þ D2 _xðt � s2Þ:

ð37Þ

We have the following theorem for the GRNs (37):

Theorem 2 The GRNs (37) with constant neutral delay

are asymptotically stable if there exist matrices

P ¼

P11 P12 P13 P14

� P22 P23 P24

� � P33 P34

� � � P44

2
664

3
775[ 0;Q ¼ Q11 Q12

� Q22

� �

[ 0; Qi [ 0ði ¼ 1; 2; 3; 4; 5Þ;Rk [ 0; Sk [ 0ðk ¼ 1; 2; 3Þ;
K1 ¼ diag½k11; . . .; k1n�[ 0;K2 ¼ diag½k21; . . .; k2n�[ 0;

and the free matrices Ml (l = 1, 2, 3, 4, 5, 6), Nj(j = 1, 2,

3, 4, 5, 6, 7) with appropriate dimensions such that the

following LMI holds:

W F1 F2 F3

� � 1
s1

T1 0 0

� � � 1
s2

T2 0

� � � � 1
r T3

2

664

3

775\0 ð38Þ
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where

W ¼ WT ¼ ðWijÞ13�13;

F1 ¼ ½M1; 0;M2; 0; . . .; 0�T13�1;

F2 ¼ ½M3;M4; 0; . . .; 0�T13�1;

F3 ¼ ½0; . . .; 0;M5#8
;M6; 0; . . .; 0�T13�1;

W11 ¼ Q1 þ Q2 þM1 þMT
1 þM3 þMT

3 þ P13 þ PT
13

þ P14 þ PT
14 þ s1R1 þ s2R2 � N1A� ANT

1 :

W12 ¼ �P14 þ PT
23 þ PT

24 �MT
3 þM4;

W13 ¼ �P13 �MT
1 þM2;

W14 ¼ P33 þ PT
34;W15 ¼ P34 þ P44;W16 ¼ P11 � N1 � ANT

2 ;

W17 ¼ P12;W18 ¼ W19 ¼ W1;10 ¼ W1;11 ¼ W1;12 ¼ 0;

W1;13 ¼ N1B� ANT
3 ;W22 ¼ �P24 � PT

24 � Q2 �M4 �MT
4 ;

W23 ¼ �P23;W24 ¼ �PT
34;W25 ¼ �PT

44;W26 ¼ PT
12;

W27 ¼ P22;W28 ¼ W29 ¼ W2;10 ¼ W2;11 ¼ W2;12 ¼ W2;13 ¼ 0;

W33 ¼ �Q1 �M2 �MT
2 þ N4D1 þ D1NT

4 ;W34 ¼ �P33;

W35 ¼ �P34;W36 ¼ 0;W37 ¼ N4D2 þ D1NT
5 ;

W38 ¼ �N4C þ D1NT
6 ;W3;11 ¼ �N4 þ D1NT

7 ;

W39 ¼ W3;10 ¼ W3;12 ¼ W3;13 ¼ 0;W44 ¼ �
1

s1

R1;

W46 ¼ PT
13;W47 ¼ PT

23;

W45 ¼ W48 ¼ W49 ¼ W4;10 ¼ W4;11 ¼ W4;12 ¼ W4;13 ¼ 0;

W55 ¼ �
1

s2

R2;W56 ¼ PT
14;W57 ¼ PT

24;

W58 ¼ W59 ¼ W5;10 ¼ W5;11 ¼ W5;12 ¼ W5;13 ¼ 0;

W66 ¼ Q4 þ s1T1 þ s2T2 � N2 � NT
2 ;

W67 ¼ W68 ¼ W69 ¼ W6;10 ¼ W6;11 ¼ W6;12 ¼ 0;

W6;13 ¼ N2B� NT
3 ;W77 ¼ �Q4 þ N5D2 þ D2NT

5 ;

W78 ¼ �N5C þ D2NT
5 ;W7;11 ¼ �N5 þ D2NT

7 ;

W79 ¼ W7;10 ¼ W7;12 ¼ W7;13 ¼ 0;

W88 ¼ Q12 þ QT
12 þ Q3 þ rR3 þM5 þMT

5 � N6C � CNT
6 � K1L;

W89 ¼ �Q12 �MT
5 þM6;W8;10 ¼ Q22;W8;11 ¼ Q11 � N6 � CNT

7 ;

W8;12 ¼ K1K;W8;13 ¼ 0;W99 ¼ �Q3 �M6 �MT
6 � K2L;

W9;10 ¼ �Q22;W9;11 ¼ W9;12 ¼ 0;

W9;13 ¼ K2K;W10;10 ¼ �
1

r
R3;W10;11 ¼ QT

12;W10;12 ¼ W10;13 ¼ 0;

W11;11 ¼ rT3 � N7 � NT
7 ;W11;12 ¼ W11;13 ¼ 0;W12;12 ¼ Q5 � K1;

W12;13 ¼ 0;W13;13 ¼ �Q5 � K2 þ N3Bþ BT NT
3 ;

Proof Consider the following Lyapunov–Krasovskii

functional:

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ þ V4ðtÞ þ V5ðtÞ;

where

V1ðtÞ¼

xðtÞ
xðt�s2Þ
Rt

t�s1

xðsÞds

Rt

t�s2

xðsÞds

2
666666664

3
777777775

T

P

xðtÞ
xðt�s2Þ
Rt

t�s1

xðsÞds

Rt

t�s2

xðsÞds

2
666666664

3
777777775

þ
yðtÞ
Rt

t�r
yðsÞds

2
64

3
75

T

Q

yðtÞ
Rt

t�r
yðsÞds

2
64

3
75;

V2ðtÞ¼
Z t

t�s1

xTðsÞQ1xðsÞdsþ
Z t

t�s2

xTðsÞQ2xðsÞds

þ
Z t

t�r

yTðsÞQ3yðsÞds;V3ðtÞ¼
Z t

t�s2

_xTðsÞQ4 _xðsÞds

þ
Z t

t�r

f TðyðsÞÞQ5f ðyðsÞÞds;

V4ðtÞ¼
Z0

�s1

Z t

tþs

xTðhÞR1xðhÞdhds

þ
Z0

�s2

Z t

tþs

xTðhÞR2xðhÞdhdsþ
Z0

�r

Z t

tþs

yTðhÞR3yðhÞdhds;

V5ðtÞ¼
Z0

�s1

Z t

tþs

_xTðhÞT1 _xðhÞdhdsþ
Z0

�s2

Z t

tþs

_xTðhÞT2 _xðhÞdhds

þ
Z0

�r

Z t

tþs

_yTðhÞT3 _yðhÞdhds:

The remaining process of the proof is similar to that of

Theorem 1, thus it is omitted here for brevity. h

Remark 4 As it is well known, there are no unique, exact

mathematical descriptions for modeling genetic networks.

Therefore, the robust stability problem and robust control

problem [as considered in Jin and Meng (2011, 2009)]

should also be studied for GRNs with neutral time delay,

which will be interesting topics for future research.

4 Numerical examples

Now, we provide two numerical examples to show the

effectiveness of the theoretical results developed in this

paper.

Example 1 In Elowitz and Stanislas (2000), the dynamics

of repressilator is theoretically predicted and experimen-

tally investigated. That system is a cyclic negative-feed-

back loop consisting of three repressor genes (lacl, tetR and

cl) and their promoters. It is described as follows:

_mi ¼ �cimi þ
bi

1þ pn
j

_pi ¼ �diðpi � miÞ

where i = lacl, tetR, cl; j = cl, lacl, tetR, and n is a Hill

coefficient, mi and pi are the concentrations of the three
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mRNA and repressor-protein, and di [ 0 denotes the ratio

of the protein decay rate to the mRNA decay rate. This

system is investigated in Li et al. (2006). Taking the

neutral time delay and the transcriptional time delay into

account, the above equations are rewritten in the vector

form as follows (Jung et al. 2010):

_xðtÞ ¼ �AxðtÞ þ Bf ðyðt � rðtÞÞÞ;
_yðtÞ ¼ �CyðtÞ þ D1xðt � s1ðtÞÞ þ D2 _xðt � s2ðtÞÞ;

ð39Þ

where

A ¼ diag½3; 3�; B ¼
0:8 0

0:8 0:8

� �
; C ¼ diag½2:5; 2:5�;

D1 ¼
0:5 0

0 0:5

� �
D2 ¼

0:6 0

0 0:6

� �
; f ðyÞ ¼ y2

1þ y2
:

Then we have

kþi ¼ 0:65; k�i ¼ 0;K ¼ diag½0:325; 0:325�; L ¼ 0:

Assuming that the time delays are

s1ðtÞ ¼ j sinðtÞj; s2ðtÞ ¼ 0:5þ 0:5 sinðtÞ; rðtÞ ¼ j sinðtÞj:

It is easily verified that Theorem 1 in Jung et al. (2010) is

not applicable because the discrete delays s1(t) and r(t) are

not differentiable. Hence, it fails to conclude whether these

GRNs are globally asymptotically stable or not. However,

by using the MATLAB LMI Toolbox, it can be seen that

the LMIs in (8)–(11) are feasible and

P11 ¼
86:0161 �21:0499

�21:0499 45:0905

� �
; P12 ¼

�0:0029 0:0001

�0:0084 �0:0005

� �
;

P13 ¼
0:0140 0:0000

�0:0026 0:0035

� �
; P14 ¼

0:2340 0:0393

�0:0136 0:1187

� �
;

P15 ¼
0:1590 0:0137

�0:0150 0:0748

� �
; P22 ¼

1:4201 �0:3282

�0:3282 0:9248

� �
;

P23 ¼
�0:0003 0:0000

0:0003 �0:0027

� �
; P24 ¼

0:0773 �0:0576

�0:0402 0:0447

� �
;

P25 ¼
�0:0459 �0:0056

�0:0050 �0:0528

� �
; P33 ¼

1:4285 �0:3295

�0:3295 0:9290

� �
;

P34 ¼
�0:0178 0:0074

0:0021 �0:0275

� �
; P35 ¼

0:0767 �0:0411

�0:0275 0:0574

� �
;

P44 ¼
1:6775 0:0545

0:0545 1:7015

� �
; P45 ¼

�0:3933 �0:0019

�0:0014 �0:3912

� �
;

P55 ¼
1:6614 0:0373

0:0373 1:6715

� �
; Q11 ¼

25:3269 �3:0633

�3:0633 14:3504

� �
;

Q12 ¼
�0:0150 �0:0286

�0:0364 �0:0766

� �
; Q22 ¼

1:4721 �0:0767

�0:0767 1:2941

� �
:

Therefore, by Theorem 1, we conclude that the GRNs (7)

with the above parameters are asymptotically stable, which

shows that for this example the asymptomatic stability

condition in this paper is less conservative than that in Jung

et al. (2010). The convergence dynamics of the system in

Example 1 is shown in Fig. 1.

Example 2 Consider the GRNs (37) with the following

parameters:

A ¼
0:3 0

0 0:3

� �
; B ¼

0 3:5

3:5 0

� �
; C ¼

2:5 0

0 2:5

� �
;

D1 ¼
0:2 0

0 0:2

� �
; D2 ¼

8 0

0 0:8

� �
; f ðyÞ ¼ y2

1þ y2
:

Then we have

kþi ¼ 0:65; k�i ¼ 0;K ¼ diag½0:325; 0:325�; L ¼ 0:

Assume that the time delays satisfy

r ¼ 0:1; s1 ¼ 0:995; s2 ¼ 1:

As s1 = s2, Theorems 1 in Jung et al. (2010) fails to check

whether these GRNs are globally asymptotically stable or

not. However, by resorting to Theorem 2 in this paper and

the Matlab LMI Toolbox, we obtain:

P11 ¼
37:6874 0

0 37:6874

� �
; P12 ¼

�9:4112 0

0 �9:4112

� �
;

P13 ¼
�0:3848 0

0 �0:3848

� �
; P14 ¼

�3:7548 0

0 �3:7548

� �
;

P22 ¼
6:7550 0

0 6:7550

� �
; P23 ¼

�1:1085 0

0 �1:1085

� �
;

P24 ¼
0:4419 0

0 0:4419

� �
; P33 ¼

4:0319 0

0 4:0319

� �
;

P34 ¼
�0:0576 0

0 �0:0576

� �
; P44 ¼

4:6757 0

0 4:6757

� �
;

Q11 ¼
77:0255 0

0 77:0255

� �
; Q12 ¼

7:3880 0

0 7:3880

� �
;

Q22 ¼
22:4188 0

0 22:4188

� �
:

Therefore, the given GRNs are globally asymptotically

stable by Theorem 2. The trajectories of x(t) and y(t) are

illustrated in Fig. 2, which also indicate that the GRNs with

the above parameters are globally asymptotically stable.
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Fig. 1 Transient response of xi(t) and yi(t), i = 1, 2
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5 Conclusions

In this paper, we have investigated the problem of the

asymptotic stability problem of genetic regulatory net-

works with time-varying/constant neutral delays. With the

introduction of a new Lyapunov–Krasovskii functional and

the use of the free weighting matrix technique, we have

derived the sufficient delay-dependent stability conditions

for GRNs. These conditions can be easily verified with the

MATLAB LMI toolbox since they appear in the form of

strict LMIs. It has been shown that the proposed stability

conditions are applicable no matter whether the discrete

delay is equal to the neutral delay or not. Finally, two

numerical examples have been presented, which clearly

show the effectiveness of the new stability conditions

(including the reduced conservativeness).
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