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Abstract In this paper, the asymptotic stability problem
of genetic regulatory networks with time-varying/constant
neutral delay is considered. By introducing a new Lyapu-
nov—Krasovskii functional and applying the free weighting
matrix technique, sufficient delay-dependent stability con-
ditions are developed and presented in terms of strict linear
matrix inequality, which can be easily verified by using the
LMI toolbox. Finally, two numerical examples are pro-
vided to demonstrate the effectiveness and reduced con-
servativeness of the proposed algorithm.
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1 Introduction

Over the past decades, genetic regulatory networks have
received increasing attention in the biological, engineering
and other research fields. In order to study gene regulation
processes in living organisms, several mathematical mod-
els are constructed based on large amounts of experimental
data (see Lestas et al. 2008; Smolen et al. 2000; Gebert
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et al. 2007; Kauffman 1969; Jong 2002 and the references
therein).

It is well known that time delay will inevitably occur
due to the slow process of transportation and translation of
protein. The existence of time delays may lead to insta-
bility, which motivates many people to study the stability
of delayed genetic regulatory networks (GRNs). Various
results concerning GRNs with time delay have been
reported (see, for example, Ren and Cao 2010; Li et al.
2006, 2007; Wang et al. 2008, 2009, 2010; Banks and
Mahaffy 1978; Chen and Aihara 2002; Cao and Ren 2008;
Zhou et al. 2009). However, the existing gene networks
models in many cases cannot characterize the properties of
the GRNs precisely due to their complicated dynamic
properties in the real world. It is natural and important that
GRNs may contain some information about the derivative
of the past state, which motivates us to study the stability of
GRNs of neutral type. Although there are various stability
conditions available for neutral neural networks (Liu and
Zong 2009; Zhang et al. 2005; Feng et al. 2009; Park et al.
2008; Ren and Cao 2006; Li and Yang 2010; Lou et al.
2010; Balasubramaniam et al. 2010; Lakshmanan et al.
2011; Rakkiyappan et al. 2011), little work has been done
on the stability of GRNs with neutral delay (Jung et al.
2010). It is noted that in Jung et al. (2010) it is required
that the time-varying delays be differentiable and the
discrete delay be equal to the neutral delay. However,
these conditions may not be satisfied in some practical
circumstances.

Motivated by the above discussions, we shall further
study the problem of the delay-dependent asymptotic sta-
bility of GRNs with neutral delay. Different from (Jung
et al. 2010), the discrete delay may be non-differentiable,
and it is unnecessarily equal to the neutral delay. We shall
introduce a new Lyapunov—Krasovskii functional to arrive
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at sufficient delay-dependent stability conditions by means
of the free weighting matrix technique. Since these con-
ditions are expressed by strict linear matrix inequality
(LMI), it is easy to apply the MATLAB LMI toolbox to
deal with them. We shall further illustrate the usefulness of
the theoretical findings through two numerical examples.
Moreover, some comparisons are also made between the
results in Jung et al. (2010) and this paper to show the
reduced conservativeness achieved by our results.

Notations. In this paper, the n-dimensional Euclidean
space is denoted by R*.R"*™ is the set of all n x m real
matrices. I denotes the identity matrix with appropriate
dimensions. 0 <P € R™" implies that P is a real sym-
metric positive definite matrix. In a matrix, the term of
symmetry is represented by the asterisk .

2 Problem formulation

By Li et al. (2006), GRNs with time-varying delays can be
described by the following differential equations:

fili(t) = —a,-m,-(t) + Gi(pl([ — O'(t)),
pa(t = a(t)),....pal(t — a(1))),

pi(t) = —cipi(t) +dimi(t — <(t)), (i=1,2,...,n),

(1)

where m;(f) and p(t) denote the concentration of mRNA
and protein of the ith node, respectively, a; and ¢; are the
degradation rates of the mRNA and the protein, d; is the
translation rate, and the function G; is the feedback
regulation of the protein on the transcription of the ith
gene which usually takes the Hill form. Throughout this
paper, the sum logic is used to describe the regulatory
function, i.e.,

Gp1(1).02(0).pa(0) = 3 8 (p 1),

where g;;(-) is usually a monotonically increasing function.
If transcription factor j is an activator of gene i, then

H
pi(t)”

8ii(pi(1) = ﬁum’

if transcription factor j is a repressor of gene i, then

H:

i’
=By
! Pj/ JFPJ(I)H’/

gij(p;(1))

where H; is the Hill coefficient, p; is a positive constant,
and f3; is a constant that describes the transcriptional rate of
transcriptional factor j to gene i. Let b; = f; if
transcription factor j is an activator of gene i; b; = —f;
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if transcription factor j is a repressor of gene i; b; = 0 if
there is no link between genes i and j. Then, the GRNs (1)
can be described as:

(1) = —ami(t) + > bygi(py(t — o(1))) + ki
) (2)

pi(t) = —cipi(t) + dimi(t — (1)),

h = L
where g = B ——
Py’ +pi(1)

repressors of gene i. Rewrite system (2) in the following
compact matrix form:

m(t) = —Am(t) + Bg(p(t — o(1))) + M,

ki=3 ek By, Ki is the set of

plt) = —Cplt) + Dt — (1), ©
where

A =diaglay, ay, . . .,a,), C =diaglci,ca,...,cn),

D =diagld,,dy, . ...d,), M=k, ka,... k"

Let m* and p* be an equilibrium point of the system (3),
that is,

m" = —Am" + Bg(p*) + M,
p* = —Cp" + Dm".

Now, let x(7) =m(t) —m*,y(r) = p(t) —p*. Then we
have:

(1) = —Ax(1) + Bf (y(t — o (1)),

5(6) = ~Cy(0) + D - 1), @
where
fO(t =) == a0)). L
= (1), Sulon(t = a ()],
and
it = o(0))) = gilpilt - o(1))) - 8i(p})-

We need the following assumption in this paper:
Assumption 1 For i =1,2,...,n, there exist constants
ki, ki such that the regulatory function g;(-) satisfies
<S80 sy e R, 5)

u—v

It is clearly seen that f;(y) satisfies the sector condition

k- sz(y) <k

L — )

Vy #0 € R, (6)

which is equivalent to:
() = k) () — k&'y) 0.

For convenience, let
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kI +ky ki +k,
2 VRS | 2 bl
L = diaglkky,... k'K,

% n}

K = diag

Remark 1 ~ Assumption 1 in this paper is the same as that in
Lou et al. (2010), and it is a much milder condition than the
monotonically increasing condition since the constants
ki, ki are allowed to be positive, negative, or zero.
Therefore, Assumption 1 is weaker than those in Li et al.
(2006, 2007); Wang et al. (2008, 2010); Banks and Mahaffy
(1978); Chen and Aihara (2002); Wang et al. (2009).

In this paper, we shall study the GRNs model with time-
varying neutral delay given by:

(1) = —Ax(t) + Bf (y(1 — a(1))),

y(1) = =Cy(t) + D1x(t — 11 (t)) + Dox(t — 12(1)), ™

where the time-varying delays o(¢), t,(f) and t,(¢) are
assumed to satisfy

0<o(t)<ag, 0<7(t)<ti, 0<71(f)<7p, 1T2(t)<rt.
Remark 2 The GRNs model is a highly useful tool for
discovering higher order structure of an organism and
gaining deep insights into both static and dynamic
behaviors. Well-characterized GRNs can help understand
genetic mechanisms responsible for evolutionary changes

and design approaches for cell/tissue engineering.

To get the main results, the following lemmas are nee-
ded in this paper:
Lemma 1 (Ren and Cao 2006) Let P € R"™" be a posi-
tive definite matrix. Then, for y(t) € R" and scalar o, > 0,
' T t t
/ y(s)ds] P / y(s)ds| <o / y(s)" Py(s)ds.
t—o t—o t—o
Lemma 2 (Liu and Zong 2009) Suppose that x(t) € R®
be continuously differentiable with first order derivative.
Then for any matrix P € R™™ >0, any Y = [M,M;] €
R™™ 1 > 0, we have
t
o \T -
- / x(s)" Px(s)ds
t=h

: L(f(t)h) } T {Ml -

* L(ic(—t)h) } iy [x(f(—t)m}

el

Lemma 3 (Li and Yang 2010) Let 0 <1t < 1(f) <
T, Q;, (i=1,2,3) be some constant matrices with
appropriate dimensions. Then

01+ (12 = 2()) Q2 + (2(r) = 11)Q3 <0
if the following inequalities hold

01+ (12— 11)02<0
01+ (12 —11)03<0

3 Main results

In this section, we present the delay-dependent conditions
that ensure the asymptotic stability of the equilibrium point
for the GRNs (7).

Theorem 1 System (7) with time-varying neutral delay is
asymptotically stable if there exist matrices
Py P Pz Pu  Pis
Py Py Pu P

P = * Pz Py P35 | >0, 0=

*
%
%
%
{Qu 812} >0,0,>0,(i=1,2, ...,6),R, >0, >

* 22
0, (k = 1,2, 3),/\1 = diag[ill, cee /11,,] > 0, A2 = dzag
[A21,- -+, Aon] > 0, A3 = diag|ls1, ..., 23,] > 0 and the free
matrices  M;(1=1,2,...,12),N;(j =1,2,...,7)  with
appropriate dimensions such that the following LMls
hold:

« —ir, 0 0 ol -iR 0 0 0
* * *éR} 0 <Pl * 7%R3 0 <5
* * * 7lR2_ * * * —1R,
(8)
()] F, Fy Fs ro Fy Fy Fe
* _T]_| 1 0 0 * _f]_| 1 0 0
* * —%R; 0 <0, * * —%Rg 0 <0,
* * * 7lR2_ | * * * 7lR2_
9)
() F; F3 Fs () F; F3 Fg
« —iR 0 0 * —FtR 0 0
* * —iR; o |<%|. * —iR; o | <%
* * * —l“_RQ_ * * * —%_Rg_
(10)
(0] F; Fy Fs 0] F, Fy Fe
* 7I]|R1 0 0 0 * 7{1|R1 0 0 0
<0, <,
* * 7%R3 0 * * 7%R3 0
* * * 71R2_ * * * 7lR2_
(11)
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with where
T
x(t x(t
>=0" = (q)if)]l%xls’ ( ) ( )
T x(t —11) x(t —11)
_ [o M>,0,. o,Ml_g,opu,o]lSXN - -
[ M. 0.0 T x(t — 17) x(t — 1)
4L9 .. 18><17 VI (l) — t P t
[0 0, M, ,...,o,M%,o,‘..,o]T , tl x(s)ds JT x(s)ds
T 18x1 1 fl
M7,0,...,0,Mg, ,0,...,0 ‘
[ Sor ]18xl7 | x(s)ds | x(s)ds
[0, .0 MIT(,“ 0 Mg]lg . S | = ]
X
Fo= [0, .,0,M11“27o,...,07M1T2] . yo) 1" (1)
X t t
Q=01+ +TT151 + T253T+M3 +M5T J;M7 +M; + [ y(s)ds Q J y(s)ds |’
+ Py + Py + Pis + Pis — NiA — ANy, 1-o 1=c

@, = Py + P, + Pls, @13 = —Pyis + Ph, + PLs,
@4 = P, + P, ®15 = Pss + Pss, @1 = Py — Ny — AN;
@7 = Piy, @15 = Pi3, O19 = —M] + My, Dy 10 = —MT + Mg,
@17 = N\B—ANj,
D1 =01 =01 13=D1 14 =P 15=Dy16=D;13=0
Oy = —Q1 — My — M} — Pyy — P, @y = —Pp5 — P},
Dyy = —Pyy, Drs = —Pas, 0o = P, Oy = P,
Do = Pa3, Op9 = —M; + M},
D10 =Dy 11 =Dy 12 =Dy 13 =Dy 14 = Dy 5
=016 =Dy 17 = 0y 13 =0,
D33 = —0) — Mg — M{ — P35 — Pis, @34 = —Pls, O35 = —Pss
O35 = P],, @37 = P1;, O35 = P33, @310 = —Ms + ML,
D39 =31 = D310 =033 =314 = D355
= (1337116 =037 =033 =0,
Dy = —T—lsl7®45 =0,Dy5 = Pl,, dy7 = P}, D45 = P,
Dyg =Dy 10 =Dy =Dy 10 = (D4,113 =Dy 1y = Dy 15 = Dy 6
=017 = Py 13 =0,Ds5 = _ES%(DSG = P, @5

= P, ®sg =PI, D59 = 0519 = s = D5 1o = Os 13
=054 = D515 = 0516 = D517 = D515 = 0, Des

=03+ 04+ Q6+ TR + 2Ry + 2R3 — Ny — NJ , D¢z

= Ogg = D9 = Dg,10 = Dg,11 = Ps,12 = Dg,13 = DPe,14
=g 15 = P16 = P18 = 0, D77 = — 03, Pgg = —Q4, Vg 17
=NoB — NI 05 = Doy = By 19 = Dy 1 = D712

=073 = D713 = O715 = V76 = 7,17 = D735

=0,Dg9 = Pg 10 = Dg 11 = Pg 12 = g 13 = Pg 14

= D515 = D 16 = Dg 17 = Dy 13 = 0, Dog = M| + M| — My
—MT 4+ NyDy + DiNI, ®g | = NyDs + DINI, @g 1

= —N;C + DlNgs(DQ,IS = —Ny+ D1N7Tv(D9,10 =y 13

=Dy 14 = Do 16 = Do 17 = Do 13 = 0, D110 = M5 + M?
—Mg — MY, @191 = Do = Pio13 = Pio s = D@io15

= D916 = P1o,17 = P10,15 = 0, 11,11 = NsD; + DoN1
—(1 = 7)Q¢, ®11,12 = —Ns5C + DoN , @11 15 = —Ns
+D2N7T7<I’11,|3 =®y14 = Dy1,16 = 11,17 = Criis = 0, Py 12
=05+ 012+ O, + 6, + My, + M!, — NgC — CN!
—MoL, @313 = —Q12, Pi214 = 02, P1215 = Ot

—Ng — CNY @13 16 = AK, D47 = 0, D155 = —M1,
M2, 1303 = —Qs — Mig — My, @i314 = — 00, D315

= D316 = iz 17 = 0,305 = —Mo + M1y, @14 14

1 -
= —(—7527‘1)14,15 =01, ®ia16 = Pra17 = Dra15 = 0, Dys 15

=Ry — N7 — NJ, @516 = A1, D517 = Pys 15 = 0, <D1616
= A2, D517 = Di6,15 = 0, D177 = —A3 + N3B + BIN @715
= AsK, @515 = My + My — My, — M}, — AsL

Proof Consider
functional:

V(I) = V](f) + Vg(l‘) + V3(t) + V4(t),

the following Lyapunov—Krasovskii
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Va(r) = / [xT(s)le(s) +xf

+ / [ ()Qax(s) + () Qui(s)] s
+/yT(s)Q5y(s)ds+ / )'CT(S)Q(,)'C(S)ds,
=0 1=15(t)
n i(t)
Vi(t) =2 Jui / fi(s)ds,
i=1 0
0 t
Vi(t) = [x"(0)S1x(0) (0)R,x(0)]dods
I
0 t
[ ] B 0s(0) + 5 Oas0))aoas
—JO H—sl
+ [x"(0)S3x(0) + x" (0)R3%(0)] dOds.
/)

Calculating the time derivative of V(¢) along the solution of
the system (7), we have:

V(t) = Vi(t) + Va(r) + Va(t) + Va(2), (12)
where
rox 17
x(t—1) x(t)
x(t - TZ) )C(t - ‘L'|)
V](t) =2 P ).C(t—‘Cz)

XS
t

(13)

=
Py
<
=
I
o=
PaN
<
I
=
=

><

] xou
jf x(t) —

Lt
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Va(1) <x"(1)[Q1 + Q2 + Qslx(1) + &7 (1)[Q3, Quli(r)
—xT(t — 1) O1x(t — 1)) — xT(t — 12) Qox(t — 1)
— .T(l‘ — Tl)Q3X(l — ‘L'l) —)'CT(I — ‘Eg)Q4X(l — ‘52)

— (1 =) (1 — 12(1)) Qe (t — 12(1))
+"(1)Qsy(t) =y (t — 0)Qsy(t — 0), (14)
Va(r) = 2fT (v(1)) Ary (1), (15)

V4(l) = )'CT(Z‘) [‘ElRl + T2R3]).C(l‘) -I-XT([) [rlSl + ‘L'zS3])C(l)
+ 31 (1) [oRa]3(1) + " (1) [0S2]y(7)

t

- / [x"(0)S1x(0) + &7 (0)R1%(0) ] dOds
- / " (0)S23(0) + " (0)R2y(0)] dOds

- / [x7(0)S5x(0) + &7 (0)R3%(0)]dOds.  (16)

—1

By Lemma 1, we obtain:

- / A7 (5)S1(s)ds < 1(/ x<s>ds> s(/ x<s>ds),

(17)

- / x"(5)Sax(s)ds < —;(/’ X(S)dS> 53(/ X(S)d5)7

—10 -7 =n (]8)
_ /y (5)S2y(s)ds < ;(/t y(s)ds> ng(/ y(s)ds

t—a -0 1-o (19)

It follows from Lemma 2 that
t

- / #(0)R£(0)d0
-1
t—1(1) t

= - / T ()R %(0)d0 — / T (O)R%(0)dO
=1 t—1(1)

x(e =) M+ M] —MT + M, [t =01 (1))
sl Jes”]

x(t—1) * My —MI | | x(t—7))

e[ O )P a7 0]

! x(t—11)
" [x(, - @)} [M3 o
t

e | P
10 [ w0
(20)

<

t—1(1) t
=- / AT (0)R3%(0)d0 — / AT (0)R3%(0)d0

=1 t—15(1)
_ [xe =) "TMs +MT —MT + Mg | [x(t = 1(1)
T x(t—1) * —Mg — M} x(t — 1)

+ [e2 — (0] {x(’ - ”(’))} [MST ]R;[Ms " {’“’ - ”“”}

x(t — 1) MI

T T T
My + M —MT + My
* —Ms — MY

+T2(f){ ) }{M;}Rz]U%Ms][ ) ]7
x(t =) | [ Mg | - x(t — (1))

- / 3 (0)R>3(0)d0

_ / 57 (0)Ro5(0)d0 — / ¥ (0)Ro5(0)d0

t—a t—a(t)

<[y(t(6(t)))]T Mo+ M —M§+M10 [ t*“(t”
L yit—o * —Myo - (t-o
+[afa(r)}{y(yt(,__ag)))] {M]TO oty M) {yiftt_— ((: }
ST (i) oy
y(t — ot * M Y=ol
e oy | g W“M“]{ o

(22)

On the other hand, from system (7) and for any
matrices N;(j = 1,2,...,7) with appropriate dimensions,

there hold
o ] i
0=2 x(t) N,
Lf (e — 0’( ))) N3
X [—Ax(t) — x()B (y(t —a(1))), (23)
Ny
N-
0=2 t - 11 t) NZ
t— T2 l) Ny
Dlx t— ‘L'] l + D20x<l — ‘CQ(Z)) Cy(l‘)).}<l>].
(24)

Noticing the sector condition (6), for any A >0,
3 >0(i=1,2,...,n), we have:
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— Aailf(1) = K G (0 (0) = K (3(0) = O+ uFIRUF] + R Fy o+ oFsRy <0, (31)
— Zai(fivi(r — 6( ) =k (it — a(1)))) O+ 1, F\R;'FT + 1,FuR; 'FT + 6FgR;'FT <0, (32)
x (il ki ule = o (0))) 20, -+ T PRy + FsR; P 4 oFsRy 'L <0, (33)

whic.h can be further rewritten into the following compact @+ 1,F, Rl—l FZT + 1, F; R3_] F3T + oFq R2—1 F6T <0, (34)

matrix forms:

1T —1 T —1 5T
y(t ool s ool f(y(t)) O+ T1F2R1 F2 + ‘L'2F4R4 F3 + GF5R2 F5 <0, (35)
i€ 2 i 1 =T —1 T —1 5T
- 2 e O+ 1 FR,F, +1F4Ry F, + oF6R, 'F, <O. 36
Z { } K -;—ki el kel {y(t) } e ) 20403 g oft2 e (36)
By the Schur complement formula and after some
t A AK t

= {f(y( ))} {A Ié j\ L] {f(y( ))} >0, manipulations, we can conclude that (29)—(36) are true if
¥(0) K =ML ] 1y() (8)~(11) hold, which further implies that V/(r)<O.
(25) Therefore, the GRNs (7) are asymptotically stable
" 0 cie! B ,.ﬂzrk, cie! according to the Lyapunov stability theory. The proof is
_ Z i complete. O

i=1 y(t—=a(1)) K eel kitkee!l . .
B Remark 3 Theorem 1 provides a delay-dependent stabil-
« [f (= J(t)))] ity condition which guarantees the asymptotic stability of
y(t—o0(1)) the neutral GRNs (7). Different from Theorem 1 in Jung
Fy(t—a()N) [=As AsK T [fO(t—0(1))) et al. (2010), here the discrete delays are unnecessarily

— = >07 . . .

L} (1— o( 1) ] { AK —As L} [y( — t)) } = differentiable. Mo.reover, the discrete delay and the neutral
delay are not required to be equal to each other. Therefore,
(26) compared with Theorem 1 in Jung et al. (2010), Theorem 1
where A, = diag[la1, - . ., 4] > 0, As = diag[/31,. .., 3,)  in this paper can be regarded as an extension of Jung et al.

> 0.
Taking (12)-(26) into account, we get
V() <" @+ (11 — 11 (6))FiR, 'F + 11 (t) 2R, ' F
+ (12 — 02(t))F3R; 'FY + 12 (t)F4R; ' F
+(0 — o(t))FsRy ' FI + a(t)FsR, 'F{ In(t)

(27)
where n(t) = [xT(t) xT(t—11) 2T (t — 12) zl—r, x(s) ds
i (s)ds & (05" (1 — ) X (l—fz) x(t—m(n)) X
(1 = 2(1)) & (1 = w2(0)) ¥ ()" (1 =) [, ¥"(s) dsy" (1)

(
SO (e = a(0)))y (t—(f(t))]

Next, we shall prove
@+ (11 — 71 (1))F1R, ' F] + v, (t)F2R; ' F1
+ (12 — 12(t))F3R; 'FT + 12(t)F4R; ' FL
+ (0 — o(t))FsR; 'FI + o(t)FsR, ' F{ <0, (28)

where ® is defined in (8)—(11).
By Lemma 3, it easily follows that (28) holds if the
following inequalities hold:

O + 1 FIR'F| + 12.F3Ry'F] + oFsR;'FL <0, (29)
® + 1 FiR'F| + 12F3R; 'F + 0FsR; ' FL <0, (30)

@ Springer

(2010).

When the discrete delays and the neutral delay are
constant, i.e., o(t) = o, 1,(t) = 14, T72(t) = 15, the GRNs
(7) turn into
#(t) = —Ax(r) + Bf (y(t — o)),

y(t) = —Cy(t) + D1x(t — 11) + Dax(t — 12).

We have the following theorem for the GRNs (37):

(37)

Theorem 2 The GRNs (37) with constant neutral delay

are asymptotically stable if there exist matrices

Py P Piz Py
* Py Py Py
* * P33 P34
* * * Py

P:

~0,0= {Qn le}

*  Op

>0,0;>00i=1,2,3,45),R. > 0,5 >0(k=1,2,3),
A= diag[i”, .. .,/11,,] > 0,A2 = diag[/lzl, ceey /lzn] > 07
and the free matrices M; (1 =1, 2,3,4,5,6), NG =1, 2,
3, 4,5, 6,7) with appropriate dimensions such that the
following LMI holds:

v F, F, Fs
—%Tl 0 0
* * -1ir 0 <0 (38)
T2 2
* * * —%T3
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T
where y(t) y(1)
. T B + t t
V=" =¥y i3 [ y(s)ds Q J y(s)ds|’
Fl = [Ml,O,Mz,O,..,70]1T3Xl7 t—ao t—ao
t '
F2: [M37M4707‘-'70}T3><17 T T
Fi=[0 0,Ms, ,Ms,0 O}T V2(t): / ! (S)QIX(S>dS+ / ¥ (S>Q2X(S)ds
; s YUy Ig? ) T> ’ I3><I/T , o =1
Yi=014+Q+M +M] +M;+M; +Pi3s+ Py ! !
T T . .
+ P4+ Py, + 1R + 2Ry — NjA — AN, . + / yT(S)Q3)’(S>dSaV3(t>: / xT(S)Q4)C(S)dS
T T T
\P12:7P14 +P23 +P247M3 +M47 t—o -1
W3 = —Pi3 — M| + M, t
T
\P14:P33+P§4,l{115:P34+P447W16=P117N1*AN2T7 +/f (y(s))Qif‘(y(S))ds,
W7 = P1p, Wi = Yo = ¥, 10=‘1"111 =¥12=0,
W13 =NB—ANI, ¥y = —Pyy — P}, Q2—M4—MZ7 0)R,x(0)d0d
a3 = =P, W = =Py, Was = =Py, Was = P, / / 1x( s
Wy = Py, Wog = W9 = ¥r10 = Wo11 = Wo12 = P13 =0, - ’JBS .
W33 = —Q) — My — MY + NuDy + D\NI, W3y = —Ps3,
33 1 2 2 41 14Vg4 T34 33 + xT( sz dBds+ R3y d@ds’
W35 = —P34, V36 = 0,37 = NyDy + D1Ns,,
Wi = —N,C + D1N6T7‘I’34,11 =N, +D1N7T’ —T7 t+s o t+s
1
Wi = Ws 10 = Wa1o = Wa13 = 0, Way = _T_R" / / 0T x(0)d0ds+ / / 0)T,x(0)d0ds
1
Wy = P13,‘I’47 237 o IH e
Wys = \1"4;; =Wy =VY410=Ys11 =Ys2="Y413=0, / / 0)T5/(6)d6ds.
Yss = _*RZ Wse = P145LP57 247 —0 t+s

Wss = ‘P59 =Ws10 =511 =¥s5120 =513 =0,

Weo = O0s+1iT1 + 12T — N, — Nj ,

Y67 = Wes = Woo = We,10 = Wo,11 = 6,120 =0,
We13 = NoB — N3, W77 = —Q4 + NsD; + DoNZ

W73 = —Ns5C + DN, W71 = —Ns + DaNJ

W9 = W70 =¥7,0 =¥713 =0,

Wes = Q12 + O, + Q3 + 0GRy + Ms + ML — NsC — CN] — A\L,

Weo = —Q1p — M2 + Mg, 5,10 = O, Ws.11 = Q11 — N6 — CNJ

Ws 12 = A1K, P53 =0, Pog = — Q3 — Mg — M{ — AsL,
Wo10 = —02, %911 =Po120=0

1
Wo 13 = MK, Wi0,10 = —;R37‘{’1o,11 =0, W12 = Y013 =0,

Win=0T3 —Ny =N ¥n=%113=0%n12=0s5—Aj,
Winis =0,¥i315 = —0s — Ay + N3B + BN,

Proof Consider
functional:

V(1) = Vi(t) + Va(t) + Va(t) + Va(t) + Vs(1),

the following Lyapunov—Krasovskii

where
x0T x
(t—12) (t—12)
vin=| J x| p| J (o
Fft x(s)ds ,,fl x(s)ds

The remaining process of the proof is similar to that of
Theorem 1, thus it is omitted here for brevity. O

Remark 4 As it is well known, there are no unique, exact
mathematical descriptions for modeling genetic networks.
Therefore, the robust stability problem and robust control
problem [as considered in Jin and Meng (2011, 2009)]
should also be studied for GRNs with neutral time delay,
which will be interesting topics for future research.

4 Numerical examples

Now, we provide two numerical examples to show the
effectiveness of the theoretical results developed in this

paper.
Example 1 In Elowitz and Stanislas (2000), the dynamics
of repressilator is theoretically predicted and experimen-
tally investigated. That system is a cyclic negative-feed-
back loop consisting of three repressor genes (lacl, tetR and
cl) and their promoters. It is described as follows:
Bi
1 +pj

pi = —0i(pi —my)

where i = lacl, tetR, cl; j = cl, lacl, tetR, and n is a Hill
coefficient, m; and p, are the concentrations of the three

m; = —yim; +
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mRNA and repressor-protein, and J; > 0 denotes the ratio
of the protein decay rate to the mRNA decay rate. This
system is investigated in Li et al. (2006). Taking the
neutral time delay and the transcriptional time delay into
account, the above equations are rewritten in the vector
form as follows (Jung et al. 2010):

(1) = —Ax(1) + Bf (y(t — 0(1))),

39

5(1) = —Co(1) + Dix(t — 11(0) + Dokt — a(1)), )
where
A = diag[3,3] 3[0'8 0} C = diag[2.5,2.5]

= awag|s, 3|, - 0.8 0.8 5 = alag|£.9,2.9|,

05 0 06 0 32

D = D = s =

! { 0 0.5} 2 [ 0 0.6] F0) =15

Then we have
ki+ =0.65,k; =0,K = diag[0.325,0.325],L = 0.

Assuming that the time delays are
71(¢) = | sin(#)|, 12(r) = 0.5 4 0.5sin(¢), o(z) = | sin(7)].

It is easily verified that Theorem 1 in Jung et al. (2010) is
not applicable because the discrete delays () and () are
not differentiable. Hence, it fails to conclude whether these
GRNs are globally asymptotically stable or not. However,
by using the MATLAB LMI Toolbox, it can be seen that
the LMIs in (8)—(11) are feasible and

[ 86.0161  —21.0499 ~0.0029  0.0001
Pu=1 510499 450005 } 2= {70.0084 70.0005}’
p_ [ 0:0140 0.0000}7 L { 0.2340 0.0393}7

| -0.0026  0.0035 ~0.0136 0.1187
py o [ 0159 0.0137}7 . { 1.4201 —0.3282]7

| —0.0150 0.0748 03282 0.9248

[-0.0003  0.0000 0.0773  —0.0576
P =1"6.0003 —0.0027}’ H- {—0.0402 0.0447 }

[-0.0459  —0.0056 14285  —0.3295
Pas =1 _0.00s0 —0.0528} B {—0.3295 0.9290 }

[-0.0178  0.0074 0.0767 —0.0411
Pa= 100021 70.0275}’ " {70.0275 0.0574 }

[1.6775  0.0545 ~0.3933 —0.0019
Pu= 00545 147015]’ o [—0.0014 —0.3912}’

116614 0.0373 253269 —3.0633
Pss=10.0373 1.6715}’ = [—3.0633 14.3504}’

[-0.0150 —0.0286 14721 —0.0767
Q=1 0364 70,0766}’ 2= {70,0767 1.2941 }

Therefore, by Theorem 1, we conclude that the GRNs (7)
with the above parameters are asymptotically stable, which
shows that for this example the asymptomatic stability
condition in this paper is less conservative than that in Jung
et al. (2010). The convergence dynamics of the system in
Example 1 is shown in Fig. 1.

@ Springer

Example 2 Consider the GRNs (37) with the following
parameters:

P M

0 03 35 0 0 25
02 0 8 0 3
D = Dy — _
! {0 0.2}’ 2 {0 o.s}’f(y) [

Then we have
ki+ =0.65,k; =0,K = diag[0.325,0.325],L = 0.

Assume that the time delays satisfy
0=0.1,71 =0.995,7, = 1.

As 1) # 15, Theorems 1 in Jung et al. (2010) fails to check
whether these GRNs are globally asymptotically stable or
not. However, by resorting to Theorem 2 in this paper and
the Matlab LMI Toolbox, we obtain:

[37.6874 0 —9.4112 0
Py = , Pn= )
0 37.6874 0 —9.4112
[—0.3848 0 —3.7548 0
P = , Pu= )
L 0 —0.3848 0 —3.7548
[6.7550 0 —1.1085 0
Py = , Pp= )
0 6.7550 0 —1.1085 |
[0.4419 0 4.0319 0
Py = , Pyp= )
0 0.4419 0 4.0319
[—0.0576 0 4.6757 0
P3y = , Py = )
0 —0.0576 0 4.6757)
o = [70255 0 o [73880 0
"0 770255 CP T | o 7.3880)
0ry = [22.4188 0 }
271 0 224188)

Therefore, the given GRNs are globally asymptotically
stable by Theorem 2. The trajectories of x(f) and y(f) are
illustrated in Fig. 2, which also indicate that the GRNs with
the above parameters are globally asymptotically stable.

— x1
— x2
— 1
— y2

Fig. 1 Transient response of x;(¢) and y;(t), i = 1, 2
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1.2
— x1
— X2
— E
e
-0.2 ‘
0 2 4 6 8 10 12 14 16 18 20
Fig. 2 Transient response of xi(¢) and y;(t), i = 1, 2

5 Conclusions

In this paper, we have investigated the problem of the
asymptotic stability problem of genetic regulatory net-
works with time-varying/constant neutral delays. With the
introduction of a new Lyapunov—Krasovskii functional and
the use of the free weighting matrix technique, we have
derived the sufficient delay-dependent stability conditions
for GRNs. These conditions can be easily verified with the
MATLAB LMI toolbox since they appear in the form of
strict LMIs. It has been shown that the proposed stability
conditions are applicable no matter whether the discrete
delay is equal to the neutral delay or not. Finally, two
numerical examples have been presented, which clearly
show the effectiveness of the new stability conditions
(including the reduced conservativeness).
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