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Abstract In this paper, we discuss some new numerical

methods to solve a fully fuzzy linear system (FFLS) with

triangular fuzzy numbers of the form ðm; a; bÞ. Almost

every existing method that intends to solve a FFLS con-

fines the coefficient matrix and the solutions to be non-

negative fuzzy numbers. The main intent of the proposed

methods is to remove these restrictions and widen the

scope of fuzzy linear systems in scientific applications. The

methods are illustrated with the help of numerical exam-

ples and are conceptually easy to understand and apply in

real life situations.

Keywords Fully fuzzy linear systems (FFLS) � Fuzzy

matrix � Triangular fuzzy numbers � Fuzzy optimization

1 Introduction

System of simultaneous linear equations plays a major role

in various areas such as operational research, physics,

statistics, engineering and social sciences. When the esti-

mation of the system coefficients is imprecise and only

some vague knowledge about the actual values of the

parameters is available, it may be convenient to represent

some or all of them with fuzzy numbers (Zadeh 1965).

Fuzzy number arithmetic is widely applied and useful in

computation of linear system whose parameters are

represented by fuzzy numbers, which are called fuzzy

linear systems (FLS). A general model for solving a n � n

fuzzy linear system whose coefficient matrix is crisp and

the right-hand side column is an arbitrary fuzzy vector was

first proposed by Friedman et al. (1998). A review of some

methods for solving these systems can be found in

(Abbasbandy et al. 2005, 2006; Abbasbandy and Jafarian

2006; Allahviranloo 2004a, b, 2005; Allahviranloo and

Ghanbari 2010; Buckley and Qu 1991; Dehghan and

Hashemi 2006; Friedman et al. 2000; Mosleh and Otadi

2010; Sun and Guo 2009; Yin and Wang 2009).

In addition, another important kind of fuzzy linear sys-

tems including fuzzy numbers in which all parameters are

fuzzy numbers and is named as FFLS. For a n� n fully

fuzzy linear systems, Dehghan and Hashemi (2006a) and

Dehghan et al. (2007) proposed the Adomian decomposi-

tion method, and other iterative methods to find the posi-

tive fuzzy vector solution of fully fuzzy linear system.

Dehghan et al. (2006) proposed some computational

methods such as Cramer’s rule, Gauss elimination method,

LU decomposition method and linear programming

approach for finding the approximated solution of FFLS.

Muzzioli and Reynaerts (2006) introduced an algorithm to

find vector solution by transforming the system A1xþ b1 ¼
A2xþ b2 into the FFLS Ax ¼ b where A ¼ A1 � A2 and

b ¼ b1 � b2:

Mosleh et al. (2007) proposed a method to find the

solution of fully fuzzy linear system of the form Axþ b ¼
Cxþ d with A;C square matrices of fuzzy coefficients and

b; d fuzzy number vectors and the unknown vector x is

vector consisting of n fuzzy numbers. Nasseri et al. (2008)

used decomposition methods of the coefficient matrix for

solving fully fuzzy linear system of equations. Allahvi-

ranloo et al. (2008) proposed a method for solving FFLS

Ax ¼ b; when coefficient matrix is positive. Gao (2009)
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proposed a unified iterative scheme for solving non-square

FFLS. Nasseri et al. (2009) proposed Greville’s method to

find the positive solution of FFLS. Mosleh et al. (2009)

discussed symmetric times triangular (ST) decomposition

to find the positive solution of FFLS. Nasseri and Zah-

matkesh (2010) proposed a new method for computing the

non-negative solution of FFLS. Liu (2010) developed a

block homotopy perturbation method (HPM) for finding

the approximation of the solution of FFLS. Nasseri and

Sohrabi (2010) used a certain decomposition of the coef-

ficient matrix of the FFLS to construct a new algorithm for

solving FFLS. Kumar et al. (2010) proposed a new method

to find the approximate solution of FFLS with trapezoidal

fuzzy numbers as parameters. All the methods that have

been reported in the literature presume the non-negativity

constraint on the coefficients and the solutions that has

greatly reduced the applicability and employability of

FFLS in scientific applications with almost negligible use.

In this paper, we firstly discuss a new computational

method for finding the non-negative solutions of a FFLS

~A� ~x ¼ ~b; where ~A is a fuzzy matrix with no restriction on

its elements and ~x and ~b are fuzzy vectors with appropriate

sizes. Later, we present a method to find all the solutions of

a FFLS ~A� ~x ¼ ~b with non-negative restriction on the

coefficient matrix ð ~A� 0Þ: Lastly, a new method is pro-

posed which jointly removes the sign constraints on the

coefficients and the solution vector. All the methods are

illustrated by solving numerical examples which cannot be

solved by any of the existing methods. Further the methods

are conceptually and computationally very simple. This

simplicity is necessary and is required so as to revive the

inclusion of fuzzy linear systems in scientific applications,

which till date has limited applications due to the restricted

nature of operations on fuzzy numbers and narrow math-

ematical usability.

The rest of this paper is organized as follows: In Sect. 2,

shortcomings of the existing methods to solve FFLS are

described. In Sect. 3 some basic definitions are reviewed.

In Sect. 4 new methods are proposed for solving FFLS and

also to illustrate the proposed methods, numerical exam-

ples are solved. In Sect. 5 the implications of the proposed

methods are discussed and the paper is concluded in

Sect. 6.

2 Shortcomings of existing methods

In this section, the shortcomings in the existing methods

(Abbasbandy et al. 2005, 2006; Abbasbandy and Jafarian

2006; Allahviranloo 2004a, b, 2005; Allahviranloo and

Ghanbari 2010; Allahviranloo et al. 2008; Buckley and Qu

1991; Dehghan and Hashemi 2006a, b; Dehghan et al.

2006; Dehghan and Hashemi 2007; Gao 2009; Engineering

Mathematics 1 2010; Liu 2010; Mosleh and Otadi 2010;

Mosleh et al. 2009; Nasseri et al. 2008, 2009; Nasseri and

Sohrabi 2010; Nasseri and Zahmatkesh 2010; Sun and Guo

2009; Yin and Wang 2009) are pointed out:

1. All the existing methods presume the non-negativity of

the coefficient matrix, i.e., ~A� 0: This restriction

creates difficulty in using the existing methods to solve

FFLS occurring in real life situations for which the

coefficient matrix may not be entirely non-negative.

2. In all the existing methods, it is assumed that the

system of equations is consistent and then the methods

are developed, i.e., consistency of the FFLS cannot be

checked using the existing methods. Also, in the

existing methods there is no provision for determining

if the solution is unique or infinite and the nature of

infinite solution.

3. Further all the existing methods aim at finding the

‘‘non-negative’’ solutions of a FFLS. This apriori

restriction creates difficulty in using the methods as the

solutions may not be entirely non-negative.

This abundance of methods with several restrictions on

the parameters will eventually serve no purpose if the

concept of fuzzy linear systems is not suitably applied in

scientific problems. There is thus an overwhelming need to

develop computational methods which assume no restric-

tions on the parameters and widen the boundaries of

applied fuzzy mathematics. To overcome the above

described shortcomings, in Sect. 4 three new computational

methods are proposed for solving a FFLS which tend to

remove the sign restrictions imposed.

3 Preliminaries

In this section, some necessary backgrounds and notions of

fuzzy set theory are reviewed (Dubois and Prade 1980;

Kaufmann and Gupta 1985).

Definition 3.1 Let X denote a universal set. Then the

fuzzy subset ~A of X is defined by its membership function

l ~A : X ! ½0; 1� which assigns a real number l ~AðxÞ in the

interval ½0; 1� to each element x 2 X; where the value of

l ~AðxÞ at x shows the grade of membership of x in ~A:

Definition 3.2 A fuzzy set ~A; defined on the universal set

of real number R; is said to be a fuzzy number if its

membership function has the following characteristics:

(i) ~A is convex, i.e., l ~Aðkx1 þ ð1� kÞx2Þ� minimum

ðl ~Aðx1Þ; l ~Aðx2ÞÞ 8x1;x2 2 R; 8k 2 ½0; 1�:
(ii) ~A is normal, i.e., 9 x0 2 R such that l ~Aðx0Þ ¼ 1:
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(iii) l ~A is piecewise continuous.

Support of a fuzzy number is defined by the set

Suppð ~AÞ ¼ fxjx 2 X; l ~AðxÞ[ 0g.

Definition 3.3 A fuzzy number ~A ¼ ðm; a; bÞ is said to be

a triangular fuzzy number if its membership function is

given by:

l ~AðxÞ ¼
1� m�x

a ; m� a� x�m; a[ 0;
1� x�m

b ; m� x�mþ b; b[ 0

0 otherwise

8
<

:

where, m; a; b 2 R.

Support of a triangular fuzzy number is the open interval

ðm� a;mþ bÞ:

Definition 3.4 A triangular fuzzy number ~A ¼ ðm; a; bÞ is

said to be non-negative (negative) triangular fuzzy number,

i.e., ~A� 0ð ~A [ 0Þ if and only if m� a� 0ðm� a[ 0Þ:
A triangular fuzzy number ~A ¼ ðm; a; bÞ is said to be

non-positive triangular fuzzy number, i.e., ~A� 0ð ~A\0Þ if

and only if mþ b� 0ððmþ b\0ÞÞ: A zero triangular

fuzzy number is denoted by (0, 0, 0).

Definition 3.5 Two fuzzy numbers ~M ¼ ðm; a; bÞ and
~N ¼ ðn; c; dÞ are said to be equal if and only if

m ¼ n; a ¼ c and b ¼ d:

Definition 3.6 A matrix ~A ¼ ð~aijÞ is called a fuzzy matrix,

if each element of ~A is a fuzzy number. ~A will be positive

(negative) and denoted by ~A [ 0 ð ~A\0Þ if each element of
~A be positive (negative). ~A will be non-positive (non-neg-

ative) and denoted by ~A� 0 ð ~A� 0Þ if each element of ~A be

non-positive (non-negative). We may represent n� m fuzzy

matrix ~A ¼ ð~aijÞn�m; where ~aij ¼ ðaij; bij; cijÞ:

Definition 3.7 Let ~A ¼ ð~aijÞ and ~B ¼ ð~bijÞ be two m� n

and n� p fuzzy matrices. We define ~A� ~B ¼ ~C ¼ ð~cijÞ
which is the m� p matrix where ~cij ¼

P	
k¼1;...;n ~aik � ~bkj:

Definition 3.8 Let ~A1 ¼ ðm; a; bÞ and ~A2 ¼ ðn; c; dÞ be

two triangular fuzzy numbers, then

(i) ðm; a; bÞ 	 ðn; c; dÞ ¼ ðmþ n; aþ c; bþ dÞ
(ii) �ðm; a; bÞ ¼ ð�m; b; aÞ
(iii) ðm; a; bÞ 
 ðn; c; dÞ ¼ ðm� n; aþ d;bþ cÞ:

3.1 Extended multiplication operation

In the literature (Dubois and Prade 1980; Kaufmann and

Gupta 1985), the product of two fuzzy numbers ~A1 ¼
ðm; a; bÞ and ~A2 ¼ ðn; c; dÞ is defined as:

~A1 � ~A2 ¼ ðm; a; bÞ � ðn; c; dÞ ¼ ðmn;mn�minððm� aÞ
n� cÞ; ðmþ bÞðn� cÞðnþ dÞ; ðmþ bÞðnþ dÞ; ðm� aÞð
nþ dÞÞ;maxððm� aÞðn� cÞ; ðmþ bÞðn� cÞ; ðmþ bÞð
nþ dÞ; ðm� aÞðnþ dÞÞ � mnÞð

If either ~A1or ~A2 is an unknown fuzzy number then it is

cumbersome to use this expression to find the product ~A1 �
~A2: To overcome this difficulty, the expression can be

simplified on the basis of the sign of the operand:

~A1 � ~A2 ¼
ðmn; f1; f2Þ if ðm; a; bÞ� 0

ðmn; f3; f4Þ if ðm; a; bÞ� 0

ðmn; f5; f6Þ otherwise

8
<

:
:

f1 ¼ mn�minððm� aÞðn� cÞ; ðmþ bÞðn� cÞÞ;
f2 ¼ maxððm� aÞðnþ dÞ; ðmþ bÞðnþ dÞÞ � mn

f3 ¼ mn�minððm� aÞðnþ dÞ; ðmþ bÞðnþ dÞÞ
f4 ¼ maxððm� aÞðn� cÞ; ðmþ bÞðn� cÞÞ � mn

f5 ¼ mn�minððm� aÞðnþ dÞ; ðmþ bÞðn� cÞÞ
f6 ¼ maxððm� aÞðn� cÞ; ðmþ bÞðnþ dÞÞ � mn

minðx; yÞ ¼ xþ y

2

� �
� x� y

2

�
�
�

�
�
�;

maxðx; yÞ ¼ xþ y

2

� �
þ x� y

2

�
�
�

�
�
�

4 Proposed methods

In this section, three new computational methods are pro-

posed to solve a FFLS ~A� ~x ¼ ~b comprising triangular

fuzzy numbers. The methods are conceptually simple and

rely on analytical decomposition of a fuzzy linear system

into its equivalent crisp linear form. Consider the n� n

FFLS as:

ð~a11 � ~x1Þ 	 ð~a12 � ~x2Þ 	 � � � 	 ð~a1n � ~xnÞ ¼ ~b1

ð~a21 � ~x1Þ 	 ð~a22 � ~x2Þ 	 � � � 	 ð~a2n � ~xnÞ ¼ ~b2

..

.

ð~an1 � ~x1Þ 	 ð~an2 � ~x2Þ 	 � � � 	 ð~ann � ~xnÞ ¼ ~bn

The matrix form of the above equation is ~A� ~x ¼ ~b where

the coefficient matrix ~A ¼ ð~aijÞ; 1� i; j� n is a n� n fuzzy

matrix. Let ~aij ¼ ðaij;mij; nijÞ; ~x ¼ ðxi; yi; ziÞ� 0; ~b ¼
ðbi; gi; hiÞ be triangular fuzzy numbers. We may represent

a n� n fuzzy matrix ~A ¼ ð~aijÞn�n where ð~aijÞ ¼ ðaij;mij; nijÞ
with the notation ~A ¼ ðA;M;NÞ;where A ¼ ðaijÞ;M ¼ ðmijÞ
and N ¼ ðnijÞ are three n� n crisp matrices.

Before formally stating the method we introduce the

following category of fuzzy numbers to simplify the con-

cept of including arbitrary triangular fuzzy coefficients

with no non-negative restriction.
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4.1 ‘‘Near zero’’ triangular fuzzy numbers

A fuzzy number ~M ¼ ðm; a; bÞ is called near-zero fuzzy

number, denoted by ~M � 0 if its membership function

l ~MðxÞ satisfies l ~Mð0þÞ ¼ l ~Mð0�Þ ¼ l ~Mð0Þ 6¼ 0: Alterna-

tively it specifies that 0 falls in Suppð ~MÞ; i:e:;m� a\0

\mþ b: An Example of a ‘‘near-zero’’ triangular fuzzy

number is (2, 4, 5) which is neither non-negative, nor non-

positive.

4.2 Decomposition method to find non-negative

solutions of a FFLS with arbitrary coefficient

matrix

In this section, we propose a simplified polynomial-time

computational method to solve the n� n FFLS ~A� ~x ¼ ~b
under the apriori non-negative constraint on the solution

vector. Here, we rewrite the FFLS as:

ðA;M;NÞ � ðx; y; zÞ ¼ ðB;G;HÞ

Further, we decompose the coefficient matrix into its non-

negative, non-positive and near zero fuzzy components, i.e.,

~A ¼ ~Ap 	 ~An 	 ~Ao

where

~Ap ¼
ð~aijÞ if ~aij� 0; i:e:; aij � mij� 0

0 otherwise

�

~An ¼
ð~aijÞ if ~aij� 0; i:e:; aij � nij� 0

0 otherwise

�

~A0 ¼
ð~aijÞ if ~aij � 0; i.e. ; aij � mij\0\aij þ nij

0 otherwise

�

Thus we can write ~A� ~x ¼ ~b as:

ð ~Ap 	 ~An 	 ~AoÞ � ðx; y; zÞ ¼ ðB;G;HÞ ð1Þ

This system is equivalent to the system

ðAp;Mp;NpÞ � ðx; y; zÞ 	 ðAn;Mn;NnÞ
� ðx; y; zÞ 	 ðAo;Mo;NoÞ � ðx; y; zÞ ¼ ðB;G;HÞ

Note that the weakly distributive extended multiplication

operation on two fuzzy numbers holds exactly here

(Proposition 4.2). Using the arithmetic operations on

triangular fuzzy numbers

~Ap � ~x ¼ ðAp;Mp;NpÞ � ðx; y; zÞ
¼ ðApx;Mpxþ ðAp �MpÞy; ðAp þ NpÞzþ NpxÞ

Similarly,

~An � ~x ¼ ðAnx;Mnx� ðAn �MnÞz;Nnx� ðAn þ NnÞyÞ
~Ao � ~x ¼ ðAox;Mox� Ao �MoÞz;N0xþ ðAo þ NoÞzÞ

Note that crisp relation A ¼ Ap þ An þ Ao is universally

true. Similar relations hold for matrices M and N also.

Substituting the above obtained values in the FFLS (1), we

obtain the following set of crisp equations:

Ax ¼ B
Mxþ ðAp �MpÞyþ ðMn � An þMo � AoÞz ¼ G
Nx� ðAn þ NnÞyþ ðAp þ Np þ Ao þ NoÞz ¼ H

8
<

:
ð2Þ

To solve the systems of equations obtained in (2)

employ any method for solving crisp system of linear

equations. A direct matrix inversion yields the following

results:

x ¼ A�1B
y ¼ a�1

1 ðc1 � b1ða2a�1
1 b1 � b2Þ

�1ða2a�1
1 c1 � c2ÞÞ

z ¼ ða2a�1
1 b1 � b2Þ�1ða2a�1

1 c1 � c2Þ

8
<

:
ð3Þ

where a1 ¼ Ap �Mp; a2 ¼ �An � Nn; b1 ¼ Mn � An þMo

�Ao; b2 ¼ Ap þ Np þ Ao þ No; c1 ¼ G�MA�1B and c2 ¼
H � NA�1B:

Note that the linear system (2) can be solved by a variety

of available classical methods to solve a crisp linear sys-

tem. The solution of the FFLS can be written as ~x ¼
ðx; y; zÞ where x; y; z are three n� 1 crisp vectors obtained

directly using a matrix inversion rule (3) or by solving the

linear system using any classical method.

4.2.1 Feasibility condition

The solution obtained above is considered (strong) feasible

if and only if the obtained solution is non-negative and

the non-negativity of the spreads is fulfilled, i.e., x�
y� 0; y� 0 and z� 0: If these constraints are vio-

lated then the FFLS would be said to have a (weak)

infeasible fuzzy solution.

Remark 4.1 The n� n FFLS ~A� ~x ¼ ~b will have a

(strong) feasible fuzzy non-negative solution ~x ¼ ðxi; yi; ziÞ
8i ¼ 1; 2; . . .; n if ðxi; yi; ziÞ� 0; i:e:; xi � yi� 0; yi� 0;

zi� 0 8i ¼ 1; 2. . .; n; otherwise the solution will be (weak)

Infeasible.

Remark 4.2 The proposed method for solving a n� n

FFLS ~A� ~x ¼ ~b with arbitrary coefficient matrix has a

polynomial time computational complexity Oðn3Þ, as it

relies on the computation of inversion and multiplication of

finite number of crisp matrices.

Remark 4.3 Under the constraint of non negativity of the

coefficient matrix ~An; ~Ao ¼ ~0n�n and the solution to FFLS

reduces to the solution of the following equivalent crisp

system. This crisp linear system has been solved by variety

of methods by different researchers, for e.g., (Dehghan and

Hashemi 2006a, b; Dehghan et al. 2006; Dehghan and
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Hashemi 2007; Nasseri et al. 2008, 2009; Nasseri and

Sohrabi 2010; Nasseri and Zahmatkesh 2010).

Ax ¼ B
Mxþ ðAp �MpÞy ¼ G
Nxþ ðAp þ NpÞz ¼ H

8
<

:

Remark 4.4 The n� n FFLS may be consistent or

inconsistent depending upon the consistency of the crisp

linear system obtained in (2). Further the FFLS may

generate trivial, unique or infinitely many feasible solutions

depending upon the solutions obtained by solving the crisp

linear system (2).

Proposition 4.1 The necessary condition for the n� n

FFLS ~A� ~x ¼ ~b to have a feasible fuzzy non-negative

solution ~x ¼ ðxi; yi; ziÞ 8i ¼ 1; 2; . . .; n obtained directly

using matrix inversion (3) if the matrices A; a1; a2 and

a2a�1
1 b1 � b2 are non singular.

Proof Straightforward.

Proposition 4.2 The transformation of FFLS (1) into

crisp linear system (2) is conditioned upon the exactness of

the weakly distributive law of fuzzy multiplication over

addition:

ð ~Ap 	 ~An 	 ~AoÞ � ~x ¼ ð ~Ap � ~xÞ 	 ð ~An � ~xÞ 	 ð ~Ao � ~xÞ

Proof Clearly,

~A� ~x ¼ ð ~Ap 	 ~An 	 ~AoÞ � ~x

From definition 3.7

ð ~A� ~xÞi ¼
X	

j¼1;::;n

~aij � ~xj 8i ¼ 1; 2; . . .; n

By segregating coefficients into three groups we easily

get:

X	

j¼1;...;n

~aij � ~xj ¼
X	

j¼1;...;n
~aij � 0

~aij � ~xj 	
X	

j¼1;...;n
~aij � 0

~aij � ~xj 	
X	

j¼1;...;n
~aij�0

~aij � ~xj

Clearly:

ð ~Ap � ~xÞi ¼
X	

j¼1;...n
~aij � 0

~aij � ~xj; ð ~An � ~xÞi

¼
X	

j¼1;...n
~aij � 0

~aij � ~xj; ð ~An � ~xÞi ¼
X	

j¼1;...n
~aij�0

~aij � ~xj

which completes the proof

~A� ~x ¼ ð ~Ap 	 ~An 	 ~AoÞ � ~x

¼ ð ~Ap � ~xÞ 	 ð ~An � ~xÞ 	 ð ~Ao � ~xÞ

Proposition 4.3 The n� n FFLS ~A� ~x ¼ ~b is called a

homogeneous FFLS if ~b is a null column vector, i.e., with

all elements as zero triangular fuzzy numbers. This FFLS

will always have a trivial solution. The possibility of

infinitely many solutions does not exist.

Proof The homogeneous FFLS ~A� ~x ¼ ~0 will always

have only a trivial solution ~x ¼ ~0 ¼ ð0; 0; 0Þn�1: The case

of infinite solutions is ruled out because for any fuzzy

number ~A; ~A
 ~A 6¼ 0:

Proposition 4.4 The n� n FFLS ~A� ~x ¼ ~b with a ‘‘near

zero’’ coefficient matrix ~A, i.e., all the elements as ‘‘near

zero’’ triangular fuzzy numbers will always hold the pos-

sibility of the existence of infinite feasible solutions.

Proof As ~An; ~Ap ¼ ~0n�n; the FFLS in (2) reduces to the

following crisp linear system. Clearly this FFLS will either

yield infinite solutions or no solution.

Aox ¼ B
Moxþ ðMo � AoÞz ¼ G
Noxþ ðNo þ AoÞz ¼ H

8
<

:

The given system will yield no solution if the following

crisp linear system is inconsistent

ðMo � AoÞz ¼ G�MoA�1
o B

ðNo þ AoÞz ¼ H � NoA�1
o B

�

However, if the above crisp linear system is consistent

then the FFLS will yield infinite solutions of the form ~x ¼
ðx; y; zÞ x� y� 0; y� 0; z� 0jf g: Where x, z are obtained

from solving the above crisp system. This is illustrated by

example 4.3.

Example 4.1 A ball swings from point A to point B with a

constant approximate velocity of ð3; 2; 3Þms�1 for a time

of ~t1 ¼ ðx1; y1; z1Þ s and then retracts with an approximate

velocity of ð�2; 1; 1Þms�1 for a time of ~t2 ¼ ðx2; y2; z2Þ s
with a net displacement of (5, 16, 17) mts. In another

instance the ball is pulled backwards with a constant

velocity of ð�4; 1; 2Þms�1 for a time of ~t1 and pushed

forward with a velocity of ð4; 2; 1Þms�1 covering

ð�4; 12; 22Þmts from the original point. Considering all

other parameters constant find ~t1 and ~t2:

Solution The problem can be simply modeled as a FFLS:

ð3; 2; 3Þ � ðx1; y1; z1Þ 	 ð�2; 1; 1Þ � ðx2; y2; z2Þ
¼ ð5; 16; 17Þ

ð�4; 1; 2Þ � ðx1; y1; z1Þ 	 ð4; 2; 1Þ � ðx2; y2; z2Þ
¼ ð�4; 12; 22Þ

Note that we have apriori knowledge that ~t1 and ~t2 have

to be non-negative fuzzy numbers. Also as all the fuzzy
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coefficients are not entirely non-negative, hence this FFLS

can not be solved by any of the existing methods. Using the

proposed method we obtain the following matrices

~Ap ¼
ð3; 2; 3Þ 0

0 ð4; 2; 1Þ

� �

; ~Ao ¼ ~0;

~An ¼
0 ð�2; 1; 1Þ

ð�4; 1; 2Þ 0

� �

; ~B ¼ ð5; 16; 17Þ
ð�4; 12; 22Þ

� �

Further we obtain the equivalent crisp linear system

using (2) as follows:

3x1 � 2x2 ¼ 5

� 4x1 þ 4x2 ¼ �4

2x1 þ x2 þ y1 þ 3z2 ¼ 16

x1 þ 2x2 þ 2y2 þ 5z1 ¼ 12

3x1 þ x2 � y2 þ 6z1 ¼ 17

2x1 þ x2 þ 2y1 þ 5z2 ¼ 22

On solving this crisp linear system we obtain the

following solution x1 ¼ 3; x2 ¼ 2; y1 ¼ 2; y2 ¼ 0 and

z1 ¼ 1; z2 ¼ 2: Hence the solution of the FFLS is ~t1 ¼
ð3; 2; 1Þ and ~t2 ¼ ð2; 0; 2Þ: Both the fuzzy numbers are non-

negative. Hence the FFLS is consistent and has a unique

(strong) feasible solution.

Example 4.2 Solve the following FFLS for non-negative

solutions:

ð4; 6; 1Þ � ðx1; y1; z1Þ 	 ð4; 2; 4Þ � ðx2; y2; z2Þ
¼ ð24; 26; 31Þ

ð3; 2; 1Þ � ðx1; y1; z1Þ 	 ð2; 3; 1Þ � ðx2; y2; z2Þ
¼ ð14; 18; 13Þ

Solution Clearly

~Ap ¼
0 ð4; 2; 4Þ

ð3; 2; 1Þ 0

� �

; ~Ao ¼
ð4; 6; 1Þ 0

0 ð2; 3; 1Þ

� �

;

~An ¼
0 0

0 0

� �

; ~B ¼ ð24; 26; 31Þ
ð14; 18; 13Þ

� �

Substituting ~An ¼ 0 in Eq. (2) we obtain the following

reduced set of a crisp linear system

Ax ¼ B
Mxþ ðAp �MpÞyþ ðMo � AoÞz ¼ G
Nxþ ðAþ NÞz ¼ H

8
<

:

which can be easily solved by matrix inversion as follows:

x ¼ A�1B
y ¼ ðAp �MpÞ�1ðG�MA�1B� ðMo � AoÞðAþ N�1ÞðH � NA�1BÞÞ
z ¼ ðAþ N�1ÞðH � NA�1BÞ

8
<

:

On solving this system we obtain the following feasible

solution: x1 ¼ 2; x2 ¼ 4; y1 ¼ 1; y2 ¼ 2 and z1 ¼ 1; z2 ¼
1:Putting the obtained values in ~x1 ¼ ðx1; y1; z1Þ and ~x2 ¼

ðx1; y1; z1Þ we get, ~x1 ¼ ð2; 1; 1Þ and ~x2 ¼ ð4; 2; 1Þ: Both

the fuzzy numbers are non-negative and the solution is thus

unique and feasible.

Example 4.3 Solve the FFLS for non-negative solutions:

ð�1; 2; 3Þ � ðx1; y1; z1Þ 	 ð2; 3; 2Þ � ðx2; y2; z2Þ
¼ ð3; 18; 17Þ

ð�4; 1; 10Þ � ðx1; y1; z1Þ 	 ð�1; 1; 2Þ � ðx2; y2; z2Þ
¼ ð�6; 20; 33Þ

Solution Using the proposed method we obtain the

following matrices

~Ao ¼
ð�1; 2; 3Þ ð2; 3; 2Þ
ð�4; 1; 10Þ ð�1; 1; 2Þ

� �

; ~Ap ¼ ~0; ~An ¼ ~0;

~B ¼ ð3; 18; 17Þ
ð�6; 20; 33Þ

� �

Further we obtain the equivalent crisp linear system

using (2) as follows:

� x1 þ 2x2 ¼ 3

� 4x1 � x2 ¼ �6

2x1 þ 3x2 þ 3z1 þ z2 ¼ 18

x1 þ x2 þ 5z1 þ 2z2 ¼ 20

3x1 þ 2x2 þ 2z1 þ 4z2 ¼ 17

10x1 þ 2x2 þ 6z1 þ z2 ¼ 33

On solving this crisp linear system we obtain the following

solution x1 ¼ 1; x2 ¼ 2; and z1 ¼ 3; z2 ¼ 1: Note that the

system is consistent because ðMo � AoÞ�1ðG�MoA�1
o BÞ ¼

ðNo þ AoÞ�1ðH � NoA�1
o BÞ: Further this FFLS has infinite

feasible solutions which may be represented as follows:

~x ¼ ~x1 ¼ ð1; a; 3Þ; ~x2 ¼ ð2; b; 1Þ a 2 0; 1½ �; b 2 0; 2½ �jf g

4.3 Linear programming method to solve a FFLS

with arbitrary solution vector and non-negative

coefficients

In this section, we introduce a new technique to solve a FFLS

with a non-negative coefficient matrix and no restrictions on

the solution vector, i.e., the proposed method does not

assume any apriori constraint of non negativity on the

unknown quantity and generates the solution irrespective of

its sign. The steps of the proposed method are as follows:

Step 1 Substituting ~A ¼ ð~aijÞn�n; ~x ¼ ð~xjÞn�1 and ~B ¼
ðBiÞn�1 the n� n FFLS may be written as:

X	

j¼1;...;n

~aij � ~xj ¼ ~Bi 8i ¼ 1; 2; . . .; n

Step 2 If ~aij; ~xj and ~Bi are represented by triangular fuzzy

numbers ðaij; bij; cijÞ� 0; ðxj; yj; zjÞ and ðBi; gi; hiÞ then the

FFLS obtained in Step 1, may be written as:
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X	

j¼1;...;n

ðaij; bij; cijÞ � ðxj; yj; zjÞ ¼ ðBi; gi; hiÞ 8i ¼ 1; 2; . . .; n

Step 3 By Assuming ðaij; bij; cijÞ � ðxj; yj; zjÞ ¼ ðfij; pij; qijÞ;
the FFLS obtained in step 2 may be written as:

X	

j¼1;...;n

ðfij; pij; qijÞ ¼ ðBi; gi; hiÞ 8i ¼ 1; 2. . .; n

using Sect. 3.1.

ðfij; pij; qijÞ ¼ ðaij; bij; cijÞ � ðxj; yj; zjÞ
fij ¼ aijxj

pij ¼ fij �minððaij � bijÞðxj � yjÞ; ðaij þ cijÞðxj � yjÞÞ

pij ¼ fij �
2aij � bij þ cij

2
ðxj � yjÞ þ

bij þ cij

2

�
�
�
�

�
�
�
� xj � yj

�
�

�
�

qij ¼ maxððaij � bijÞðxj þ zjÞ; ðaij þ cijÞðxj þ zjÞÞ � pij

qij ¼ �pij þ
2aij � bij þ cij

2
ðxj þ zjÞ þ

bij þ cij

2

�
�
�
�

�
�
�
� xj þ zj

�
�

�
�

8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

For notational convenience we substitute xj � yj ¼ Lj and

xj þ zj ¼ Rj8j ¼ 1; 2; � � � ; n where xj; yj; zj;wj; Lj;Rj 2 R:

Step 4 Substitute fij; pij; qij in the FFLS obtained in step 3

to obtain the following semi-linear system of equations:

For i ¼ 1; 2. . .; n:

Xn

j¼1

fij ¼ Bi )
Xn

j¼1

aijxj ¼ Bi ð4Þ

Similarly,

Xn

j¼1

pij ¼ gi )
Xn

j¼1

2aij � bij þ cij

2
Lj �

bij þ cij

2

� 	

Lj

�
�
�
� ¼ Bi � gi

ð5Þ
Xn

j¼i

qij ¼ ki )
Xn

j¼1

2aij � bij þ cij

2
Rj þ

bij þ cij

2

� 	

Rj

�
�
�
�

¼ Bi þ hi ð6Þ

Step 5 Substitute Lj ¼ L
0
j � L

00
j and Lj

�
�
�
� ¼ L

0
j þ L

00
j ; where

L
0

j ¼
Lj if Lj [ 0

0 otherwise

�

and L
00

j ¼
�Lj if Lj\0

0 otherwise

�

:

Similarly, Rj ¼ R
0
j � R

00
j and Rj

�
�
�
� ¼ R

0
j þ R

00
j : Therefore the

equations, obtained in Step 4, may be written as for

i ¼ 1; 2; . . .; n

Xn

j¼1

aijxj ¼ Bi ð7Þ

Xn

j¼1

2aij � bij þ cij

2
ðL0j � L

00

j Þ �
bij þ cij

2

� 	

ðL0j þ L
00

j Þ

¼ Bi � gi ð8Þ

Xn

j¼1

2aij � bij þ cij

2
ðR0j � R

00

j Þ þ
bij þ cij

2

� 	

ðR0j þ R
00

j Þ

¼ Bi þ hi ð9Þ

L
0

j; L
00

j ;R
0

j;R
00

j � 0 8j ¼ 1; 2; . . .; n

Step 6 To solve the original FFLS we construct the

following linear programming problem (LPP)

Minimize �Z ¼
Pn

i¼1

Zi þ
Pn

i¼1

Z
0

i þ
Pn

i¼1

Z 00i

subject to

Xn

j¼1

aijxj þ Zi ¼ Bi 8i ¼ 1; 2; . . .; n

Xn

j¼1

ððaij � bijÞL
0

j � ðaij þ cijÞL
00

j Þ þ Z
0

i ¼ Bi � gi

8i ¼ 1; 2; . . .; n

Xn

j¼1

ððaij þ cijÞR
0

j � ðaij � bijÞR
00

j Þ þ Z
000

i ¼ Bi þ hi

8i ¼ 1; 2; . . .; n

xj � L
0

j þ L
00

j � 0 8j ¼ 1; 2; . . .; n

R
0

j � R
00

j � xj� 0 8j ¼ 1; 2; . . .; n

L
0

j; L
00

j ;R
0

j;R
00

j ; Zj; Z
0

j ; Z
00

j � 0 8j ¼ 1; 2; . . .; n

For obtaining the equivalent matrix representation of the

above LPP, we define the following matrices

Define U as a unit column vector with all the entries

equal to 1 and order n� 1: We may obtain the equivalent

expressions for other matrices as follows:

Z ¼ ðZiÞn�1; Z 0 ¼ ðZ 0iÞn�1; Z 00 ¼ ðZ 00i Þn�1; L0ðL0Þn�1;

L00ðL00Þn�1;R
0 ¼ ðR0Þn�1

R
00 ¼ ðR00i Þn�1;A ¼ ðaijÞn�n;M ¼ ðbijÞn�n;N ¼ ðcijÞn�n;

B ¼ ðBiÞn�1;G ¼ ðgiÞn�1;

H ¼ ðhiÞn�1

Thus the LPP can be rewritten as follows:

Minimize �Z ¼ UT Z þ UT Z
0 þ UT Z 00

subject to

Axþ Z ¼ B

ðA�MÞL0 þ ðAþ NÞL00 þ Z
0 ¼ B� G

ðAþ NÞR0 � ðA�MÞR00 þ Z
00 ¼ Bþ H

x� L
0 þ L

00 � 0 R
0 � R

00 � x� 0

L
0
; L
00
;R

0
;R

00
; Z; Z

0
; Z

00 � 0

Step 7 Solve the LPP obtained in step 6 and substitute

the values of x; L
0
; L
00
;R

0
;R

00
obtained in step 6 in ~xj ¼
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ðxj; xj � L
0
j þ L

00
j ;R

0
j � R

00
j � xjÞ 8j ¼ 1; 2; . . .; n to find the

solution of the above FFLS.

Remark 4.5 The FFLS will be consistent, i.e., it will gen-

erate a solution if and only if the LPP is consistent. Further,

the necessary condition for the above LPP to generate a

feasible (strong) solution (if it is consistent) is that the value

of the objective function must be zero �Z ¼ 0 otherwise the

solution will be termed as an (weak) infeasible solution.

Thus, the sufficient conditions for the FFLS to have a feasible

(strong) fuzzy solution are L0 � L00T ¼ R0 � R00T ¼ �Z ¼ 0:

Remark 4.6 The nature of the solutions of the FFLS

depends upon the nature of the solutions of the LPP which

may be unique, trivial or infinitely many, i.e., the FFLS

may yield no solution, unique solution or infinitely many

solutions depending upon the nature of the LPP that is

constructed.

Remark 4.7 Under the constraint of the non negativity of

the solution vector L
00 ¼ R

00 ¼ 0; substituting these into the

LPP obtained in step 6 we obtain a simple crisp linear system

(similar to as discussed in Remark 4.3) which has been

solved by variety of classical methods by several researchers.

Example 4.4 Solve the following FFLS

ð5; 1; 1Þ ð6; 1; 2Þ
ð3; 1; 4Þ ð5; 2; 1Þ

� �
~x1

~x2

� �

¼ ð8; 22; 12Þ
ð9; 31; 7Þ

� �

where, ~x1; ~x2 are arbitrary triangular fuzzy numbers

Solution The solution of the chosen FFLS may be

obtained by using the steps of the above method and

converting the FFLS into the LPP as follows:

Minimize Z ¼ ðZ1 þ Z2 þ Z
0
1 þ Z

0
2 þ Z

00
1 þ Z

00
2Þ

subject to

5x1 þ 6x2 þ Z1 ¼ 8

3x1 þ 5x2 þ Z2 ¼ 9

4L
0

1 � 6L
00

1 þ 5L
0

2 � 8L
00

2 þ Z
0

1 ¼ �14

2L
0

1 � 7L
00

1 þ 3L
0

2 � 6L
00

2 þ Z
0

2 ¼ �22

6R
0

1 � 4R
00

1 þ 8R
0

2 � 5R
00

2 þ Z
00

1 ¼ 20

7R
0

1 � 2R
00

1 þ 6R
0

2 � 3R
00

2 þ Z
00

2 ¼ 16

x1 � L
0

1 þ L
00

1� 0

x2 � L
0

2 þ L
00

2� 0

R
0

1 � R
00

1 � x1� 0

R
0

2 � R
00

2 � x2� 0

Z1; Z2; Z
0

1; Z
0

2; Z
00

1 ; Z
00

2 ; L
0

1; L
0

2; L
00

1; L
00

2;R
0

1;R
0

2;R
00

1;R
00

2� 0

On solving the above LPP, the following solution is

obtained:

x1 ¼ �2; x2 ¼ 3; L
0

1 ¼ 0; L
00

1 ¼ 4; L
0

2 ¼ 2; L
00

2 ¼ 0;R
0

1 ¼ 0;

R
00

1 ¼ 1;R
0

2 ¼ 3;R
00

2 ¼ 0;

Z1 ¼ Z2 ¼ Z
0

1 ¼ Z
0

2 ¼ Z
00

1 ¼ Z
00

2 ¼ 0

Clearly the FFLS meets the necessary and sufficient

conditions for the possibility of a feasible fuzzy solution.

Substituting the values obtained in the following equation

yields the solution of the FFLS. ~xj ¼ ðxj; xj � L
0

j þ L
00

j ;R
0

j

�R
00

j � xjÞ 8j ¼ 1; 2; we obtain the following solution:

~x1 ¼ ð�2; 2; 1Þ and ~x2 ¼ ð3; 1; 0Þ

Note that ~x1� 0 and ~x2� 0. This clearly justifies that the

existing methods can not be used to solve this FFLS

because all the methods presume the non negativity of the

solution vector.

4.4 Fuzzy Cramer’s rule for solving an arbitrary FFLS

with no joint restrictions on the sign of coefficients

and the sign of variables

In this section, we propose a polynomial time algorithm to

solve a FFLS where the coefficient matrix and the solution

vector are unconstrained on the dimension of sign; how-

ever, we exclude the possibility of ‘‘near zero’’ fuzzy

numbers in the solution vector, i.e., the only constraint that

is now imposed on an arbitrary FFLS is that the solution

vector cannot include elements which have zero in their

support. The reason for this restriction lies in the structure

of arithmetic operations on fuzzy numbers that is explained

in Proposition 4.6.

The FFLS is written as:

ðA;M;NÞ � ðx; y; zÞ ¼ ðB;G;HÞ

Now we decompose the coefficient matrix into its non-

negative, non-positive and near zero fuzzy components and

the solution vector into its non-negative and non-positive

components, i.e.,
~A ¼ ~Ap 	 ~An 	 ~Ao and ~x ¼ ~xp 	 ~xn where

~xp ¼
ð~xiÞ if ~xi� 0; i:e:; xi � yi� 0

0 otherwise

�

~xn ¼
ð~xiÞ if ~xi� 0; i:e:; xi þ zi� 0

0 otherwise

�

Thus we can write ~A� ~x ¼ ~b as:

~Ap � ~xp 	 ~An � ~xp 	 ~Ao � ~xp 	 ~Ap � ~xn 	 ~An � ~xn 	 ~Ao�
~xn ¼ ~b ð10Þ

which is equivalent to:
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ðAp;Mp;NpÞ � ðxp; yp; zpÞ 	 ðAn;Mn;NnÞ � ðxp; yp; zpÞ
	 ðAo;Mo;NoÞ � ðxp; yp; zpÞ 	 ðAp;Mp;NpÞ � ðxn; yn; znÞ
	 ðAn;Mn;NnÞ � ðxn; yn; znÞ 	 ðAo;Mo;NoÞ
� ðxn; yn; znÞ ¼ ðB;G;HÞ

Note that the weakly distributive extended multiplication

operation on two fuzzy numbers holds exactly here

(Proposition 4.2). Using the arithmetic operations on

triangular fuzzy numbers

~Ap � ~xp ¼ ðApxp;Mpxp þ ðAp �MpÞyp; ðAp þ NpÞzp þ NpxpÞ
~An � ~xp ¼ ðAnxp;Mnxp � ðAn �MnÞzp;Nnxp � ðAn þ NnÞypÞ
~Ao � ~xp ¼ ðAoxp;Moxp � ðAo �MoÞzp;N0xp þ ðAo þ NoÞzpÞ
~Ap � ~xn ¼ ðApxn;�Npxn þ ðAp þ NpÞyn; ðAp �MpÞzn �MpxnÞ
~An � ~xn ¼ ðAnxn;�Nnxn � ðAn þ NnÞzn;�Mnxn � ðAn �MnÞynÞ
~Ao � ~xn ¼ ðAoxn;�Noxn þ ðAo þ NoÞyn;�M0xn � ðAo �MoÞynÞ

Note that crisp relation A ¼ Ap þ An þ Ao is universally

true. Similar relations hold for matrices M and N also.

Further x ¼ xp þ xn; y ¼ yp þ yn and z ¼ zp þ zn:

For convenience we create two step functions:

uðaÞ ¼ 1 if a� 0

0 otherwise

�

; vðaÞ ¼ 1 if a\0; ;
0 otherwise

�

We define two diagonal matrices: U ¼ ðuðxiÞÞn�n; i:e:;

U ¼ ðuijÞ ¼
uðxiÞ 8i ¼ j

0 8i 6¼ j

�

: Similarly, V ¼ ðvðxiÞÞn�n

such that xp ¼ Ux; yp ¼ Uy; zp ¼ Uz; xn ¼ Vx; yn ¼ Vy;

and zn ¼ Vz:

This on substituting in (10) yields following set of crisp

equations:

Ax ¼ B
Q11yþ Q12z ¼ G� A1x
Q21yþ Q22z ¼ H � A2x

8
<

:
ð11Þ

where

A1 ¼ MU � NV ;A2 ¼ �MV þ NU

Q11 ¼ ðAp �MpÞU þ ðAp þ Np þ Ao þ NoÞV
Q12 ¼ ðMn � An þMo � AoÞU � ðAn þ NnÞV
Q21 ¼ �ðAn þ NnÞU � ðAn �Mn þ Ao �MoÞV
Q22 ¼ ðAp þ Np þ Ao þ NoÞU þ ðAp �MpÞV

To solve the systems of equations obtained in (2) we

employ cramer’s rule to solve the block linear system.

xi ¼
detðAiÞ
detðAÞ ; i ¼ 1; 2; � � n

where Ai is the matrix obtained by replacing the ith column

of A by B.

yi ¼
detð �QiÞ
detðQÞ ; i ¼ 1; 2; . . .n;

where detðQÞ ¼ detðQ11 Q12

Q21 Q22
Þ ¼ detðQ11 � Q12Q�1

22 Q21Þ
detðQ22Þ: (Note that evaluating the determinant of the 2n�
2n block matrix significantly reduces the number of com-

putational operations by evaluating the determinant of two

n� n matrices with two matrix multiplication and one

inverse operation. However, the computational complexi-

ties in both cases remain same). and �Qi is the matrix

obtained by replacing the ith column of Q11 with G� A1x

and Q21 with H � A2x:

Similarly

zi ¼
detðQ

i
Þ

detðQÞ ; i ¼ 1; 2; . . .n;

and Q
i
is the matrix obtained by replacing the ith column of

Q12 with G� A1x and Q22 with H � A2x:

Note that the 3n� 3n linear system (11) can be

solved by a variety of available classical methods to

solve a crisp linear system. The solution of the FFLS

can be written as ~x ¼ ðx; y; zÞ where x, y, z are three

n� 1 crisp vectors obtained directly using the fuzzy

cramer’s rule or by solving the linear system using any

classical method.

Remark 4.8 The n� n FFLS ~A� ~x ¼ ~b will have a

(strong) feasible fuzzy solution ~x ¼ ðxi; yi; ziÞ 8i ¼
1; 2; . . .; n if yi� 0; zi� 0 and 0 62 Suppð~xÞ 8i ¼ 1; 2. . .; n;

otherwise the solution will be (weak) Infeasible.

Remark 4.9 Under the constraint of non negativity of the

solution vector V ¼ 0n�n and the method of solving the

FFLS reduces to the method described in Sect. 4.2.

Remark 4.10 Under the constraint of negligibility of

spreads (or small spreads) with respect to mean of a fuzzy

number, the product of spreads in the extended multipli-

cation operation is neglected, for example, See (Dehghan

and Hashemi 2006a, 2006b; Dehghan et al. 2006; Dehghan

and Hashemi 2007; Nasseri et al. 2008, 2009; Nasseri and

Sohrabi 2010; Nasseri and Zahmatkesh 2010). However

this further aggravates the encumbrance of restrictions

applied in solving an FFLS and thus is removed in the

methods described in this paper. Under this constraint of

negligibility of spreads Qij takes the following form: Q11 ¼
ApU þ ðAp þ AoÞV ; Q12 ¼ ð�An � AoÞU � AnV ; Q21 ¼
�AnU � ðAn þ AoÞV and Q22 ¼ ðAp þ AoÞU þ ApV:

Proposition 4.5 The necessary condition for the n� n

FFLS ~A� ~x ¼ ~b to have a unique and feasible fuzzy

solution ~x ¼ ðxi; yi; ziÞ 8i ¼ 1; 2; . . .; n obtained directly

using cramer’s rule (4.4) is that the determinant of

matrices A;Ai;Q; �Qi and Qi should not be zero.

Proof Straightforward.
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Proposition 4.6 Allowing the possibility of ‘‘near-zero’’

fuzzy numbers in the solution vector, combinatorially

explodes the solution space with computationally com-

plexity growing from polynomial time Oðn3Þ (P-class) to

exponential time Oð2nn3Þ (i.e., an unconstrained FFLS is

an NP problem).

Proof The modified fuzzy cramer’s rule has a straight-

forward computational complexity of Oðn3Þ with finite

number of matrix multiplications, inverse and determinant

operations. However, this polynomial-time complexity is a

consequence of the constraint on the solutions that propels

the exclusion ‘‘near-zero’’ fuzzy numbers in the solution

vector. The reason lies in the structure of arithmetic

operations on fuzzy numbers primarily in the multiplica-

tion between two ‘‘near-zero’’ fuzzy numbers, i.e., if the

solution vector is unconstrained then the multiplication

operation ~Ao � ~xo results in indeterminacy giving rise to a

non-polynomial time complexity of the algorithm for

solving the FFLS: ~Ao � ~x0 ¼ ðAox0;Aox0 �minððA0 �MoÞ
ðx0 þ zoÞ; ðA0 þ NoÞðx0 � yoÞÞ;Aox0 þmaxððA0 �MoÞ ðx0

� yoÞ; ðA0 þ NoÞðx0 þ zoÞÞÞ: The splitting of this system

into linear tuples without min–max constraints is infeasible

considering the entropy associated in the operation. Note

that the operation is totally uncertain as we have no apriori

information of ðx0 þ zoÞ or ðx0 � yoÞ which is paradoxi-

cally the objective of the problem. Consequently this can

be solved only be decomposing the system into 2n FFLS’s

(of order n� n) with each FFLS constrained with an

additional assumption (Ex. ðA0 �MoÞðx0 þ zoÞ \ðA0þ
NoÞðx0 � yoÞÞ leading to an overall exponential complexity

of Oð2nn3Þ: The verifier algorithm is evidently polynomial

time resulting to the conclusion that solving an uncon-

strained FFLS is an NP-problem. Commenting on the NP-

completeness and NP-hardness is left as a potential topic of

future research.

Example 4.5 Solve the following FFLS

ð2; 1; 1Þ � ðx1; y1; z1Þ 	 ð�1; 1; 0Þ � ðx2; y2; z2Þ ¼ ð6; 4; 11Þ
ð�5; 1; 4Þ � ðx1; y1; z1Þ 	 ð9; 3; 6Þ � ðx2; y2; z2Þ
¼ ð�28; 50; 21Þ

where, ~x1; ~x2 are arbitrary triangular fuzzy numbers

Solution As the coefficients and the solution vector both

are arbitrary, hence the given FFLS cannot be solved by

any of the existing methods. Using the proposed method

following solution is obtained:

x1 ¼
det

6 �1

�28 9

� 	

det
2 �1

�5 9

� 	 ¼ 2; x2 ¼
det

2 6

�5 �28

� 	

det
2 �1

�5 9

� 	 ¼ �2

Hence following matrices are constructed:

U ¼
1 0

0 0

� �

;V ¼
0 0

0 1

� �

;A1 ¼
1 0

1 6

� �

;

A2 ¼
1 �1

4 �3

� �

;Q11 ¼
1 0

0 15

� �

;Q12 ¼
0 1

6 0

� �

Q21 ¼
0 2

1 0

� �

;Q22 ¼
3 0

0 6

� �

detðQÞ ¼ det
Q11 Q12

Q21 Q22

� 	

¼ detðQ11 � Q12Q�1
22 Q21Þ detðQ22Þ ¼ 165

detð �Q1Þ ¼ 165; detð �Q2Þ ¼ 330; detðQ
1
Þ ¼ 165; detðQ

2
Þ

¼ 165

This gives: y1 ¼ 1; y2 ¼ 2; z1 ¼ 1; z2 ¼ 1 i.e.

~x1 ¼ ð2; 1; 1Þ and ~x2 ¼ ð�2; 2; 1Þ

Note that the FFLS has a unique and a feasible (strong)

solution and ~x1� 0; ~x2� 0.

Example 4.6 Solve the following FFLS taken from

(Dehghan et al. 2006)

ð5; 1; 1Þ � ðx1; y1; z1Þ 	 ð6; 1; 2Þ � ðx2; y2; z2Þ ¼ ð50; 10; 17Þ
ð7; 1; 0Þ � ðx1; y1; z1Þ 	 ð4; 0; 1Þ � ðx2; y2; z2Þ ¼ ð48; 5; 7Þ

Solution The method described in (Dehghan et al. 2006)

constrains the coefficient and solutions to be positive fuzzy

numbers. However, as the methods described in the paper

do not assume positivity constraint on the parameters,

hence any of the above methods (4.2, 4.3, 4.4) can be

applied to solve such a kind of problem. Further (Dehghan

et al. 2006) unexplainably constrains the spreads of the

fuzzy solution to be negligible as compared to the mean.

Under this assumption the method 4.4 gives following

matrices: A ¼ 5 6

7 4

� �

;U ¼ 1 0

0 1

� �

;V ¼ 0 0

0 0

� �

;A1 ¼

1 1

1 0

� �

;A2 ¼
1 2

0 1

� �

;Q11 ¼
5 6

7 4

� �

;Q22 ¼
5 6

7 4

� �

and Q12 ¼ 0;Q21 ¼ 0: On solving the crisp system

(Eq. 11) following solution is generated x1 ¼ 4; x2 ¼
5; y1 ¼ 1=11; y2 ¼ 1=11; z1 ¼ 0; z2 ¼ 1=2 which is exactly

same as that of (Dehghan et al. 2006), i.e., ~x1 ¼
ð4; 1=11; 0Þ and ~x2 ¼ ð5; 1=11; 1=2Þ: This establishes the

equivalence of new techniques with earlier proposed

paradigms.

5 Discussion and results

The paper studies the domain of FFLS that is unconstrained

on the dimension of sign. Three new computational

approaches toward solving a FFLS in polynomial time (i.e.
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P-class FFLS) are discussed which have profound implica-

tions. The category of ‘‘near-zero’’ fuzzy numbers which

have not been taken care of in the earlier research is con-

ceptualized and their impact in terms of computational

complexity of the algorithms for solving a FFLS is described.

The manuscript progresses in three stages. First, the signed

decomposition method (4.2) removes the sign restriction on

the coefficient matrix, as a result of which all kinds of FFLS

which have non-negative, non-positive or near-zero fuzzy

coefficients can be solved easily in polynomial time com-

plexity. The linear optimization problem (4.3) removes all

apriori sign restrictions on the solution vector which is a

tough criterion. Finally the fuzzy cramer’s rule (4.4) removes

joint restrictions on the coefficients as well as the solution

vector; however, confining the solutions to exclude near zero

fuzzy numbers, the reasons of which are explained earlier.

The implications can be summarized as follows:

1. The polynomial time algorithms significantly advance

the theory of FFLS by removing sign constraints on the

parameters in gradual steps (firstly on the coefficient

matrix, then on the solution vector and then jointly on

all parameters).

2. As a result the implementation scope of FFLS is

widely increased as the number of restrictions has been

greatly reduced.

3. Using the proposed methods it is easy to check

whether the FFLS is consistent or inconsistent and

generates feasible or infeasible solutions. Further

interestingly we see that a FFLS can have unique,

trivial and infinitely many solutions- a concept that has

not been studied so far.

Six new numerical examples have also been solved to

demonstrate the usability of the proposed algorithms.

Example 4.1 establishes real-life usage of a FFLS and also

demonstrates the need of methods for solving an arbitrary

coefficient FFLS and that apriori knowledge of sign of

solution vector can greatly reduce the computational effort.

Examples 4.3 demonstrates the case where solving a FFLS

results in infinitely feasible solutions. Also the examples

4.1–4.5 cannot be solved by any of the existing methods

(Abbasbandy et al. 2005, 2006; Abbasbandy and Jafarian

2006; Allahviranloo 2004a, b, 2005; Allahviranloo and

Ghanbari 2010; Allahviranloo et al. 2008; Buckley and Qu

1991; Dehghan and Hashemi 2006; Dehghan and Hashemi

2006a, b; Dehghan et al. 2006, 2007; Gao 2009; Kumar et al.

2010; Liu 2010; Mosleh and Otadi 2010; Mosleh et al. 2009;

Nasseri et al. 2008, 2009; Nasseri and Sohrabi 2010; Nasseri

and Zahmatkesh 2010; Sun and Guo 2009; Yin and Wang

2009) due to varied number of imposed restrictions used in

the existing methods. Example 4.6 illustrates clearly the

backward compatibility of the newly devised algorithms.

6 Conclusion

In this paper, three new computational methods for solving a

FFLS are presented. The proposed methods are easy to

understand and apply in real life situations. The methods are

illustrated with the help of numerical examples. Further the

methods tend to remove several constraints that are usually

considered and hence widen the scope of fuzzy linear systems.

The formulation of such simple conceptual and numerical

methods will erect several possible paths of employability of

fuzzy linear systems in engineering and scientific problems.

Future work to solve a FFLS with less computational effort

involving no joint restrictions on the coefficients and the

solution and to demonstrate the practical usability of fuzzy

linear systems in science unavoidably persists.
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