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Abstract Based on uncertainty theory, multiproduct

aggregate production planning model is presented, where

the market demand, production cost, subcontracting cost,

etc., are all characterized as uncertain variables. The

objective is to maximize the belief degree of obtaining the

profit more than the predetermined profit over the whole

planning horizon. When these uncertain variables are lin-

ear, the objective function and constraints can be converted

into crisp equivalents, the model is a nonlinear program-

ming, then can be solved by traditional methods. An

example is given to illustrate the model and the converting

method.

Keywords Aggregate production planning � Uncertain

variable � Uncertain distribution

1 Introduction

The goal of making aggregate production planning (APP)

is to determine the optimal product quantity, inventory

level, etc., to meet the demand for all products over a finite

planning horizon for obtaining the maximum profit or

minimum cost. Since Holt et al. (1955) proposed the

HMMS rule, a lot of researchers have developed various

types of models and approaches to solve APP decision

making problems. Zhang et al. (2012) built a mixed integer

linear programming (MILP) model to characterize mathe-

matically the problem of APP with capacity expansion in a

manufacturing system including multiple activity centers,

and developed a hybrid heuristic combining beam search

with capacity shifting, which was capable of producing a

high quality solution within reasonable computational time.

Ramezanian et al. (2012) developed an MILP model for

general two-phase aggregate production planning systems,

and designed a genetic algorithm for solving this problem.

Bergstrom and Smith (1970) generalized the HMMS

approach to a multiproduct formulation, which was further

extended by Hausman and Mcclain (1971) to a stochastic

programming model to deal with the randomness of

product demand. Bitran and Yanassee (1984) considered

the problems of determining production plans over a

number of time periods under stochastic demands. Fung

et al. (2003) developed a fuzzy multiproduct aggregate

production planning model whose solutions were intro-

duced to cater to different scenarios under various decision

making preferences by using parametric programming, best

balance and interactive techniques. Wang and Fang (2001)

presented a fuzzy linear programming method for solving

APP problems with multiple objectives where the product

price, unit cost to subcontract, work force level, production

capacity and market demand were fuzzy in nature. Then an

interactive solution procedure was developed to provide a

compromise solution. Wang and Liang (2005) provided an

interactive possibilistic linear programming approach for

solving APP problems with fuzzy demand, interrelated

operating costs, and capacity. Based on ranking methods of

fuzzy numbers and tabu search, Baykasoglu and Gocken

(2010) proposed a direct solution method to solve fuzzy

multi-objective aggregate production planning problem.

The parameters of the problem were defined as triangular

fuzzy numbers.
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However, in the real APP decision making problems,

randomness and fuzziness usually coexist. Fuzzy random

variable is a strong tool to deal with the above problems

(Kwakernaak 1978, 1979; Liu 2001a, b). Ning et al. (2006)

established a multiproduct aggregate production planning

(APP) decision making model in fuzzy random environ-

ments. The objective was to maximize the chance of

obtaining the profit more than the predetermined profit over

the whole planning horizon. In the model, the market

demand, production cost, maximum capital level, etc., were

all characterized as fuzzy random variables. A hybrid

optimization algorithm combining fuzzy random simula-

tion, genetic algorithm (GA), neural network (NN) and

simultaneous perturbation stochastic approximation (SPSA)

algorithm was proposed to solve the model.

When historical data are not available to estimate a

probability distribution, we have to invite some domain

experts to evaluate their belief degree that each event will

occur. Since human beings usually overweight unlikely

events, the belief degree may have much larger variance

than the real frequency. Perhaps some people think that the

belief degree is subjective probability. However, Liu (2012)

showed that it is inappropriate because probability theory

may lead to counterintuitive results in this case. In order to

deal with this phenomena, uncertainty theory was founded

by Liu (2007) and refined by Liu (2010a). Nowadays

uncertainty theory has become a branch of mathematics for

modeling human uncertainty, and have been developed and

applied widely to operational research, risk analysis, reli-

ability, comprehensive evaluation, portfolio selection,

transportation planning, etc. (Liu 2009a, b, 2010b, 2011,

2012; Yan 2009; Yang et al. 2009, 2012; Liu and Ha 2010;

Rong 2011; Liu and Chen 2012; Li et al. 2012a, b). Liu

(2011) proposed an uncertain comprehensive evaluation

(UCE) method, where all weight values of indices in eval-

uated system were characterized as uncertain variables to

constitute a vector, and all the corresponding remarks to

evaluated indices were also characterized as uncertain

variables to constitute a matrix. Liu (2012) presented an

analytic method to solve a class of uncertain differential

equations. Liu and Chen (2012) introduced an uncertain

currency model, derived a currency option pricing formula

for uncertain currency market, and discussed some mathe-

matical properties. Liu and Ha (2010) proved that the

expected value of monotone function of uncertain variable

was just a Lebesgue–Stieltjes integral of the function with

respect to its uncertainty distribution, and gave some useful

expressions of expected value of function of uncertain

variables. Rong (2011) provided two new models of eco-

nomic order quantity (EOQ), where the holding cost,

shortage cost and ordering cost per unit were assumed to be

uncertain variables. The models could be converted into

deterministic equivalents and solved by 99-method. Yan

(2009) provided two new models for portfolio selection,

where the securities were assumed to be uncertain variables.

The original problems could be converted into their crisp

equivalents when the returns were chosen as some special

uncertain variables such as rectangular uncertain variable,

triangular uncertain variable, trapezoidal uncertain variable

and normal uncertain variable.

Motivated by all the literature mentioned above, this

paper will present an uncertain APP model based on

uncertainty theory, where the market demand, production

cost, subcontracting cost, etc., are all characterized as

uncertain variables. The objective function and constraints

can be converted into crisp equivalents when they are

linear uncertain variables. Then the model can be solved

by traditional methods. At the end of this paper, an

example is given to illustrate the model and the con-

verting method.

2 Uncertain variable

Definition 1 Liu (2007) Let C be a nonempty set, s a

r-algebra over C; and M an uncertain measure, M meets

the three axioms: (1) (normality axiom) MfCg ¼ 1; (2)

(duality axiom) MfKg þMfKcg ¼ 1 for any event K: (3)

(subadditivity axiom) For every countable sequence of

events fKig;Mf
S1

i¼1 Kig�
P1

i¼1 MfKig: Then the triplet

ðC; s;MÞ is called an uncertainty space.

Definition 2 Liu (2007) An uncertain variable is a mea-

surable function from an uncertainty space ðC; s;MÞ to the

set of real numbers, i.e., for any Borel set B of real num-

bers, the set fn 2 Bg ¼ fr 2 CjnðrÞ 2 Bg is an event.

Definition 3 Liu (2007) The uncertainty distribution U of

an uncertain variable n is defined by

UðxÞ ¼ Mfn� xg ð1Þ

for any real number x.

Definition 4 Liu (2007) An uncertain variable n is called

linear if it has a linear uncertainty distribution

UðxÞ ¼
0; if x� a;
ðx� aÞ=ðb� aÞ; if a� x� b
1; if x� b

8
<

:
ð2Þ

denoted by L(a, b) where a and b are real numbers with

a \ b.

For other special uncertain distributions, see Liu (2007).
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Definition 5 Liu (2007) An uncertain variable n is called

zigzag if it has a zigzag uncertainty distribution

UðxÞ ¼

0; if x� a;
ðx� aÞ=2ðb� aÞ; if a� x� b
ðxþ c� 2bÞ=2ðc� bÞ; if b� x� c
1; if x� c

8
>><

>>:
ð3Þ

denoted by Z(a, b, c) where a, b, c are real numbers with

a \ b \ c.

Definition 6 Liu (2007) An uncertain variable n is called

normal if it has a normal uncertainty distribution

UðxÞ ¼ 1þ exp
pðe� xÞ

ffiffiffi
3
p

r

� �� ��1

; x 2 R ð4Þ

denoted by N(e, r) where e and r are real numbers with

r[ 0.

Theorem 1 Liu (2007) Assume that n1 and n2 are inde-

pendent linear uncertain variables L(a1, b1) and

L(a2, b2), respectively. Then the sum n1 ? n2 is also a

linear uncertain variable L(a1 ? a2, b1 ? b2), i.e.,

Lða1; b1Þ þ Lða2; b2Þ ¼ Lða1 þ a2; b1 þ b2Þ: ð5Þ

The product of a linear uncertain variable L(a, b) and a

scalar number k [ 0 is also a linear uncertain variable

L(ka, kb), i.e.,

kLða; bÞ ¼ Lðka; kbÞ ð6Þ

Theorem 2 Liu (2007) The product of a linear uncertain

variable L(a, b) and a scalar number k \ 0 is also a linear

uncertain variable L(kb, ka), i.e.,

kLða; bÞ ¼ Lðkb; kaÞ ð7Þ

3 Formulation for uncertain APP model

Assume that a company produces N types of products to meet

the market demands over a planning horizon T in uncertain

environments. For convenience, the notations used in this

paper are described in Table 1, where the notations

Dnt, gnt, jnt, znt, dnt, ent, ht, lt, int, mnt, vnt, rnt, Wtmax, Mtmax,

Vtmax and Ctmax are characterized as uncertain variables,

Qnt, Ont, Snt, Int, Bnt, Ht and Lt are decision variables,

n ¼ 1; 2; . . .;N; t ¼ 1; 2; . . .; T :

In an APP decision making problem, the profit function

can be defined as follows,

f ¼
XN

n¼1

XT

t¼1

rntðInt�1 � Bnt�1 þ Qnt þ Ont þ Snt � Int þ BntÞ

�
XN

n¼1

XT

t¼1

ðgntQnt þ jntOnt þ zntSnt þ dntInt þ entBntÞ

�
XT

t¼1

ðhtHt þ ltLtÞ; ð8Þ

where rnt, gnt, jnt, znt, dnt, ent, ht, and lt are uncertain

variables, the term
P

n=1
N P

t=1
T rnt(Int-1 - Bnt-1 ? Qnt ?

Ont ? Snt - Int ? Bnt) is the total revenue, and the term
P

n=1
N P

t=1
T (gntQnt ? jntOnt ? zntSnt ? dntInt ? entBnt) is the

total production cost, and
P

t=1
T (htHt ? ltLt) is the cost of

changing labor level including the costs to hire and lay off

workers. It is obvious that the profit function f is an uncertain

variable.

In the real APP decision making problems with uncer-

tain coefficients, the demand Dnt cannot be predicted pre-

cisely. Therefore, the decision can only be made to meet

the market demand within a permitted fluctuation scope at

a predetermined confidence level. If the decision maker

hopes that the belief degree of satisfying the market

demand within a permitted fluctuation scope is at least

k, then the constraints on product-inventory are as follows,

Mf
�
� Int�1 � Bnt�1 þ Qnt þ Ont þ Snt � Int

þ Bnt � Dnt

�
� � pg� k; ð9Þ

where p is the permitted fluctuation scope, k is the prede-

termined confidence level, 0\k� 1; n ¼ 1; 2; . . .;N; and

t ¼ 1; 2; . . .; T :

If the decision maker hopes that the belief degree of

balancing the labor level in two successive periods within a

permitted fluctuation scope is at least b, the constraints on

labor level can be described as follows,

M
XN

n¼1

int�1ðQnt�1 þ Ont�1Þ þ Ht � Lt

�
�
�
�
�

(

�
XN

n¼1

intðQnt þ OntÞ
�
�
�
�
�
� q

)

� b; ð10Þ

where q is the permitted fluctuation scope, b is the prede-

termined confidence level, 0 \b B 1, and t ¼ 1; 2; . . .; T :

If the decision maker expects that the belief degree that

the hours of labor used by all products in period t do not

exceed the maximum labor level available in the period is

at least 1; the constraints on labor usage are as follows,

M
XN

n¼1

intðQnt þ OntÞ�Wt max

( )

� 1; ð11Þ

where 1 is the predetermined confidence level, 0\1� 1;

and t ¼ 1; 2; . . .; T:
If the decision maker wishes that the belief degree that

the hours of machine usage by all products in period t does

not exceed the maximum machine capability available in

the period is at least d, the constraints on machine usage

are as follows,

M
XN

n¼1

mntðQnt þ OntÞ�Mt max

( )

� d; ð12Þ
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where d is the predetermined confidence level, 0 \ d B 1,

and t ¼ 1; 2; . . .; T:
If the decision maker expects that the belief degree that the

warehouse space used by all products in period t does not

exceed the maximum warehouse space available in the period

is at leastr, the constraints on warehouse space are as follows,

M
XN

n¼1

vntInt �Vt max

( )

� r; ð13Þ

where r is the predetermined confidence level, 0 \ r B 1,

and t ¼ 1; 2; . . .; T:

If the decision maker hopes that the belief degree that all

the costs in period t do not exceed the maximum capital

level available in the period is at least s, the constraints on

capital are as follows,

M

(
XN

n¼1

ðgntQnt þ jntOnt þ zntSnt þ dntInt þ entBntÞ

þ htHt þ ltLt�Ct max

)

� s; ð14Þ

where s is the predetermined confidence level, 0 \ s B 1,

and t ¼ 1; 2; . . .; T:
The non-negativity constraints on decision variables are

as follows,

Qnt;Ont; Snt; Int;Bnt;Ht; Lt � 0; ð15Þ

where n ¼ 1; 2; . . .;N; and t ¼ 1; 2; . . .; T :
In many APP decision problems, a decision-maker is

usually concerned about the profit rather than the cost.

Moreover, the decision maker usually predetermines a

number of total profit over the whole planning horizon, and

wants to maximize the chance that the real profit exceeds

the predetermined value. In such cases, the following

uncertain APP model can be constructed,

max Mff � f0g
subject to:

ð9Þ � ð15Þ

8
<

:
ð16Þ

where f is given by (8), f0 is the predetermined profit by the

decision-maker.

Table 1 Notation
Notation Meaning

N Types of products

T Planning horizon

f Profit function over T

Dnt Demand for the nth product in period t (units)

gnt Production cost in regular time per unit of the nth product in period t ($/unit)

Qnt Production in regular time per unit of the nth product in period t (units)

jnt Production cost in overtime per unit of the nth product in period t ($/unit)

Ont Production in overtime per unit of the nth product in period t (units)

znt Subcontracting cost per unit of the nth product in period t ($/unit)

Snt Subcontracting quantity of the nth product in period t (units)

dnt Inventory carrying cost per unit of the nth product in period t ($/unit)

Int Inventory level of the nth product in period t (units)

ent Backorder cost per unit of the nth product in period t ($/unit)

Bnt Backorder level of the nth product in period t (units)

ht Cost to hire one worker in period t ($/man-hour)

Ht Workers hired in period t (man-hour)

lt Cost to lay off one worker in period t ($/man-hour)

Lt Workers laid off in period t (man-hour)

int Hours of labor per unit of the nth product in period t (man-hour/unit)

mnt Hours of machine usage per unit of the nth product in period t (machine-hour/unit)

vnt Warehouse spaces per unit of the nth product in period t (ft2/unit)

rnt Sales revenue per unit of the nth product in period t ($/unit)

Wtmax Maximum labor level available in period t (man-hour)

Mtmax Maximum machine capacity available in period t (machine-hour)

Vtmax Maximum warehouse space available in period t (ft2)

Ctmax Maximum capital level available in period t($)
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4 Solving method

Suppose that all the uncertain variables in Model (16) can

be characterized as linear ones, as shown in Table 2, the

model can be converted into crisp equivalent, and the steps

can be described as follows.

Step 1: conversion of objective function

From Eq. (8) and Theorems 1 and 2, it is obtained that

f - f0 is the uncertain variable L(A, B) where

A ¼
XN

n¼1

XT

t¼1

arnt
ðInt�1 � Bnt�1 þ Qnt þ Ont þ Snt

� Int þ BntÞ �
XN

n¼1

XT

t¼1

ðbgnt
Qnt þ bjnt

Ont þ bznt
Snt

þ bdnt
Int þ bent

BntÞ �
XT

t¼1

ðbht
Ht þ blt LtÞ � f0;

B ¼
XN

n¼1

XT

t¼1

brnt
ðInt�1 � Bnt�1 þ Qnt þ Ont þ Snt

� Int þ BntÞ �
XN

n¼1

XT

t¼1

ðagnt
Qnt þ ajnt

Ont þ aznt
Snt

þ adnt
Int þ aent

BntÞ �
XT

t¼1

ðaht
Ht þ alt LtÞ � f0:

Then we have

Mff � f0g ¼ 1�Mff � f0\0g

¼ 1� 0� A

B� A
¼ B

B� A
: ð17Þ

Step 2: conversion of product-inventory constraints

From Eq. (9) and Theorems 1 and 2, it is obtained that

Mf�p� Int�1 � Bnt�1 þ Qnt þ Ont þ Snt � Int þ Bnt � Dnt� pg
¼ MfInt�1 � Bnt�1 þ Qnt þ Ont þ Snt � Int

þ Bnt � Dnt � p� 0g
�MfInt�1 � Bnt�1 þ Qnt þ Ont þ Snt � Int

þ Bnt � Dnt þ p� 0g

Then Int-1 - Bnt-1 ? Qnt ? Ont ? Snt - Int ? Bnt - Dnt

- p is uncertain variable LðInt�1 � Bnt�1 þ Qnt þ Ont þ
Snt � Int þ Bnt � bDnt

� p; Int�1 � Bnt�1 þ Qnt þ Ont þ Snt

�Int þ Bnt � aDnt
� pÞ; and Int-1 - Bnt-1 ? Qnt ? Ont ?

Snt - Int ? Bnt - Dnt ? p is uncertain variable LðInt�1�
Bnt�1 þ Qnt þ Ont þ Snt � Int þ Bnt � bDnt

þ p; Int�1 �
Bnt�1 þ Qnt þ Ont þSnt � Int þ Bnt � aDnt

þ pÞ:
Then the product-inventory constraints (9) are converted

into

2p

bDnt
� aDnt

� k: ð18Þ

Step 3: conversion of labor level constraints

From Eq. (10) and Theorems 1 and 2, it is obtained that

M �q�
XN

n¼1

int�1ðQnt�1 þ Ont�1Þ þ Ht � Lt

(

�
XN

n¼1

intðQnt þ OntÞ� q

)

¼ M
XN

n¼1

int�1ðQnt�1 þ Ont�1Þ þ Ht � Lt

(

�
XN

n¼1

intðQnt þ OntÞ � q� 0

)

�M
XN

n¼1

int�1ðQnt�1 þ Ont�1Þ þ Ht � Lt

(

�
XN

n¼1

intðQnt þ OntÞ þ q� 0

)

:

While the term
PN

n¼1 int�1ðQnt�1 þ Ont�1Þ þ Ht � Lt �
PN

n¼1 intðQnt þ OntÞ � q is the uncertain variable

Lð
PN

n¼1 aint�1
ðQnt�1 þ Ont�1Þ þ Ht � Lt �

P
N
n¼1bint

ðQnt þ
OntÞ � q;

PN
n¼1 bint�1

ðQnt�1 þ Ont�1Þþ Ht � Lt �
PN

n¼1 aint

ðQnt þ OntÞ � qÞ; and the term
PN

n¼1 int�1ðQnt�1 þ
Ont�1Þ þ Ht � Lt �

PN
n¼1 intðQnt þ OntÞ þ q is the uncer

tain variable Lð
PN

n¼1 aint�1
ðQnt�1 þ Ont�1Þ þ Ht � Lt �

PN
n¼1 bint

ðQnt þ OntÞ þ q;
PN

n¼1 bint�1
ðQnt�1 þ Ont�1Þ þ

Ht � Lt �
PN

n¼1 aint
ðQnt þ OntÞ þ qÞ: So we have

Table 2 Uncertain variables

Uncertain variable Distribution

Dnt LðaDnt
; bDnt
Þ

gnt Lðagnt
; bgnt
Þ

jnt Lðajnt
; bjnt
Þ

znt Lðaznt
; bznt
Þ

dnt Lðadnt
; bdnt
Þ

ent Lðaent
; bent
Þ

ht Lðaht
; bht
Þ

lt Lðalt ; blt
Þ

int Lðaint
; bint
Þ

mnt Lðamnt
; bmnt
Þ

vnt Lðavnt
; bvnt
Þ

rnt Lðarnt
; brnt
Þ

Wtmax LðaWtmax
; bWtmax

Þ
Mtmax LðaMtmax

; bMtmax
Þ

Vtmax LðaVtmax
; bVtmax

Þ
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Then the labor level constraints Eq. (10) are converted into

2q

C þ D
� b ð19Þ

where

C ¼
XN

n¼1

ðQnt�1 þ Ont�1Þðbint�1
� aint�1

Þ;

D ¼
XN

n¼1

ðQnt þ OntÞðbint
� aint

Þ:

Step 4: conversion of labor usage constraints

From Eq. (11) and Theorems 1 and 2, it is obtained that
PN

n¼1 intðQnt þ OntÞ �Wtmax is the uncertain variable

Lð
PN

n¼1 aint
ðQnt þ OntÞ � bW tmax;

PN
n¼1 bint

ðQnt þ OntÞ �
aWtmax

Þ: Then the labor usage constraints are converted into

�
PN

n¼1 aint
ðQnt þ OntÞ þ bWt maxPN

n¼1ðbint
� aint

ÞðQnt þ OntÞ þ bWt max
� aWt max

� 1 ð20Þ

Step 5: conversion of machine usage constraints

From Eq. (12) and Theorems1 and 2, it is obtained that
P

n=1
N mnt (Qnt ? Ont) - Mtmax is the uncertain variable

Lð
PN

n¼1 amnt
ðQnt þ OntÞ � bMt max

;
PN

n¼1 bmnt
ðQnt þ OntÞ�

aMt max
Þ:

Then the machine usage constraints are converted into

�
PN

n¼1 amnt
ðQnt þ OntÞ þ bMt maxPN

n¼1ðbmnt
� amnt

ÞðQnt þ OntÞ þ bMt max
� aMt max

� r ð21Þ

Step 6: conversion of warehouse space constraints

From Eq. (13) and Theorems 1 and 2, it is obtained that
P

n=1
N vntInt - Vtmax is the uncertain variable Lð

PN
n¼1

avnt
Int � bVt max

;
PN

n¼1 bvnt
Int � aVt max

Þ:
Then the warehouse space constraints are converted into

�
PN

n¼1 avnt
Int þ bVt maxPN

n¼1ðbvnt
� avnt

ÞInt þ bVt max
� aVt max

� d ð22Þ

Step 7: conversion of capital constraints

From Eq. (14) and Theorems 1 and 2, it is obtained that
P

n=1
N (gntQnt ? jntOnt ? zntSnt ? dntInt ? entBnt) ? htHt ?

ltLt - Ctmax is the uncertain variable L(E, F), where E ¼
PN

n¼1ðagnt
Qnt þ ajnt

Ontþ aznt
Snt þ adnt

Int þ aent
BntÞþ aht

Ht

þalt Lt � bCt max
; and F ¼

PN
n¼1ðbgnt

Qnt þ bjnt
Ont þ bznt

Snt

þbdnt
Int þ bent

BntÞ þ bht
Ht þ blt Lt � aCt max

:

Then the capital constraints are converted into

�E

F � E
� s ð23Þ

Therefore, the crisp equivalent of APP Model (16) is

made as follows,

max ð17Þ
subject to :
ð18Þ � ð23Þ

8
<

:
ð24Þ

It is obvious that model (24) is a nonlinear

programming. The model can be solved by many

traditional methods.

5 An example

A food company produces two types of products to meet

the market demand during two periods (denoted by Period

1 and Period 2, respectively) in uncertain environments.

The basic data are shown in Table 3. It can be seen that

there are 52 uncertain variables in this problem. In addi-

tion, the parameters in model (16) are given as fol-

lows, I10 ¼ 0; I20 ¼ 0;B10 ¼ 0;B20 ¼ 0; i10 ¼ 0; i20 ¼
0; k ¼ 0:6; b ¼ 0:7; 1 ¼ 0:7; d ¼ 0:9; r ¼ 0:7; s ¼ 0:8;

p ¼ 100; q ¼ 100; f0 ¼ 9;000:

The objective function can be converted into the fol-

lowing form.

0� ð
PN

n¼1 aint�1
ðQnt�1 þ Ont�1Þ þ Ht � Lt �

PN
n¼1 bint

ðQnt þ OntÞ � qÞ
PN

n¼1ðQnt�1 þ Ont�1Þðbint�1
� aint�1

Þ þ
PN

n¼1ðQnt þ OntÞðbint
� aint

Þ

� 0� ð
PN

n¼1 aint�1
ðQnt�1 þ Ont�1Þ þ Ht � Lt �

PN
n¼1 bint

ðQnt þ OntÞ þ qÞ
PN

n¼1ðQnt�1 þ Ont�1Þðbint�1
� aint�1

Þ þ
PN

n¼1ðQnt þ OntÞðbint
� aint

Þ

¼ 2q
PN

n¼1ðQnt�1 þ Ont�1Þðbint�1
� aint�1

Þ þ
PN

n¼1ðQnt þ OntÞðbint
� aint

Þ
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ð67Q11 þ 66O11 þ 67S11 � 0:3I11 � 0:3B11

þ 66Q12 þ 67O12 þ 67S12 � 70:4I12 þ 69:6B12

þ 56Q21 þ 57O21 þ 58S21 � 60:3I21 þ 59:6B21

þ 61Q22 þ 62O22 þ 62S22 � 65:3I22 þ 64:7B22

� 3H1 � 3L1 � 4H2 � 3L2 � 9000Þ=ð35Q11 þ 34O11

þ 36S11 þ 5:5I11 � 4:6B11 þ 41Q12 þ 40O12

þ 42S12 � 34:6I12 þ 35:3B12 þ 18Q21 þ 21O21

þ 21S21 � 14:7I21 þ 15:4B21 þ 24Q22 þ 27O22

þ 25S22 � 19:7I22 þ 20:3B22 þ 5H1 þ 5L1

þ 4H2 þ 5L2Þ: ð25Þ

The the constraints can be converted into the following

form.

67Q11 þ 66O11 þ 67s11 � 0:3I11 � 0:3B11 þ 66Q12

þ 67O12 þ 67S12 � 70:4I12 þ 69:6B12 þ 56Q21

þ 58S21 � 60:3I21 þ 59:6B21 þ 61Q22 þ 62O22

þ 62S22 þ 57O21 � 65:3I22 þ 64:7B22 � 3H1 � 3L1

� 4H2 � 3L2 � 9;000 [ 0: ð26Þ

32Q11 þ 32O11 þ 31s11 � 5:8I11 þ 4:3B11 þ 25Q12

þ 27O12 þ 25S12 � 35:8I12 þ 34:3B12 þ 38Q21

þ 36O21 þ 37S21 � 45:6I21 þ 44:2B21 þ 37Q22

þ 35O22 þ 37S22 � 45:6I22 þ 44:4B22 � 8H1

� 8L1 � 8H2 � 8L2 � 9000\0:

ð27Þ

200=ð3ðQ11 þ O11Þ þ 4ðQ21 þ O21ÞÞ� 0:7: ð28Þ

200=ð3ðQ11 þ O11Þ þ 4ðQ21 þ O21Þ þ 3ðQ12 þ O12Þ
þ 5ðQ22 þ O22ÞÞ� 0:7: ð29Þ

ð�3ðQ11 þ O11Þ � 4ðQ21 þ O21Þ þ 80Þ=ð3ðQ11

þ O11Þ þ 4ðQ21 þ O21Þ þ 50Þ� 0:7:
ð30Þ

ð�3ðQ12 þ O12Þ � 4ðQ22 þ O22Þ þ 90Þ=ð3ðQ12

þ O12Þ þ 5ðQ22 þ O22Þ þ 70Þ� 0:7:
ð31Þ

ð�3ðQ11 þ O11Þ � 4ðQ21 þ O21Þ þ 70Þ=ð5ðQ11

þ O11Þ þ 2ðQ21 þ O21Þ þ 35Þ� 0:9:
ð32Þ

ð�4ðQ12 þ O12Þ � 3ðQ22 þ O22Þ þ 70Þ=ð4ðQ12

þ O12Þ þ 4ðQ22 þ O22Þ þ 30Þ� 0:9:
ð33Þ

ð�35I11 � 30I21 þ 300Þ=ð35I11 þ 50I21 þ 150Þ� 0:7:

ð34Þ
ð�40I12 � 30I22 þ 300Þ=ð30I12 þ 25I22 þ 300Þ� 0:7:

ð35Þ

ð�3Q11 � 4O11 � 3S11 � 0:3I11 � 0:3B11 � 4Q21

� 3O21 � 2S21 � 0:3I21 � 0:4B21 � 3H1 � 3L1

þ 800Þ=ð5Q11 þ 4O11 þ 6S11 þ 0:5I11 þ 0:4B11

þ 5H1 þ 5L1 þ 3Q21 þ 6O21 þ 6S21 þ 0:3I21

þ 0:4B21 þ 500Þ� 0:8: ð36Þ

ð�4Q12 � 3O12 � 3S12 � 0:4I12 � 0:4B12 � 4Q22

� 3O22 � 3S22 � 0:3I22 � 0:3B22 � 4H2 � 3L2

þ 1000Þ=ð6Q12 þ 5O12 þ 7S12 þ 0:4I12 þ 0:3B12

þ 4H2 þ 5L2 þ 4Q22 þ 7O22 þ 5S22 þ 0:3I22

þ 0:3B22 þ 800Þ� 0:8: ð37Þ

Q11� 0; Q12� 0; Q21� 0; Q22� 0;

O11� 0; O12� 0; O21� 0; O22� 0;

S11� 0; S12� 0; S21� 0; S22� 0;

B11� 0; B12� 0; B21� 0; B22� 0;

I11� 0; I12� 0; I21� 0; I22� 0;

H1� 0; H2� 0; L1� 0; L2� 0:

ð38Þ

Up to now, the model (16) can be converted into the

crisp one with the objective (25) and constraints (26)–(38).

It is a nonlinear programming. We use software Lingo to

solve the model. The optimal objective value is 1, and the

optimal solution (production plan) is shown in Table 4.

Table 3 Basic data

Item Period 1 Period 2

D1t L(80, 150) L(65, 100)

D2t L(65, 80) L(70, 95)

g1t L(3, 8) L(4, 10)

g2t L(4, 7) L(4, 8)

j1t L(4, 8) L(3, 8)

j2t L(3, 9) L(3, 10)

z1t L(3, 9) L(3, 10)

z2t L(2, 8) L(3, 8)

d1t L(0.3, 0.8) L(0.4, 0.8)

d2t L(0.3, 0.6) L(0.3, 0.6)

e1t L(0.3, 0.7) L(0.4, 0.7)

e2t L(0.4, 0.8) L(0.3, 0.6)

ht L(3, 8) L(4, 8)

lt L(3, 8) L(3, 8)

i1t L(3, 6) L(3, 6)

i2t L(4, 8) L(4, 9)

m1t L(3, 8) L(4, 8)

m2t L(4, 6) L(3, 7)

v1t L(35, 70) L(40, 70)

v2t L(30, 80) L(30, 55)

r1t L(40, 70) L(35, 70)

r2t L(45, 60) L(45, 65)

Wtmax L(30, 80) L(20, 90)

Mtmax L(35, 70) L(40, 70)

Vtmax L(150, 300) L(0, 300)

Ctmax L(300, 800) L(200, 1,000)
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6 Conclusion and future research

This paper presents an uncertain APP model based on

uncertainty theory. The objective function and constraints

can be converted into crisp equivalents when they are

linear uncertain variables. Then the model can be solved by

traditional methods. Similarly, the objective function and

constraints can also be converted into crisp equivalents

when they are other uncertain variables, such as zigzag

uncertain variable, normal uncertain variable, etc. Very

importantly, if the uncertain distributions of the market

demand, production cost, subcontracting cost, etc. do not

belong among one same type, it may be impossible that the

model is converted into crisp equivalent. In the situation,

uncertain simulation can be used to estimate the values of

objective function and constraint functions, then an intel-

ligent algorithm (such as genetic algorithm) can be

employed to solve the model.
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