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Abstract Identification and classification of overlapping

nodes in networks are important topics in data mining. In this

paper, a network-based (graph-based) semi-supervised learn-

ing method is proposed. It is based on competition and coop-

eration among walking particles in a network to uncover

overlapping nodes by generating continuous-valued outputs

(soft labels), corresponding to the levels of membership from

the nodes to each of the communities. Moreover, the proposed

method can be applied to detect overlapping data items in a data

set of general form, such as a vector-based data set, once it is

transformed to a network. Usually, label propagation involves

risks of error amplification. In order to avoid this problem, the

proposed method offers a mechanism to identify outliers

among the labeled data items, and consequently prevents error

propagation from such outliers. Computer simulations carried

out for synthetic and real-world data sets provide a numeric

quantification of the performance of the method.

Keywords Graph-based method � Community detection �
Particle competition and cooperation � Overlapping nodes �
Outliers

1 Introduction

Over the last decade, there has been an increased interest in

network research, with the focus shifting away from the

analysis of single small graphs to consideration of large-

scale ones, called complex networks. Complex network-

based machine learning and data mining have triggered

much attention. This is because such networks are ubiq-

uitous in nature and in everyday life. Many data sets are

already represented by networks, such as the Internet,

WWW, telecommunication networks, transportation net-

works, biological networks, and social networks. Many

other kinds of data sets can be transformed to network

representations. For example, a table-based relational data

base can be transformed into a network by simply con-

necting the k nearest neighbors of each data point. One of

the main motivations of graph theory research is the ability

to describe topological structure of the original system. In

machine learning domain, it has been shown that the

topological structure is quite useful in detecting various

cluster (class) forms by a data clustering (classification)

algorithm with a unique distance measure (Karypis et al.

1999; Fortunato 2010).

One of the striking phenomena of complex networks is

the presence of communities. The notion of communities in

networks is straightforward, each community is defined as

a subgraph whose nodes are densely connected within itself

but sparsely connected with the rest of the network.

Therefore, community detection in networks has turned out

to be an important topic in data mining (Newman and

Girvan 2004; Newman 2006; Duch and Arenas 2005;

Reichardt and Bornholdt 2004; Danon et al. 2005). In

graph theory, community detection corresponds to graph

partition, which has been shown to be a NP-complete

problem (Fortunato 2010). For this reason, a lot of efforts
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have been paid to develop more efficient approximate

solutions (see Fortunato 2010 and references there in).

In practice, there are common cases where some nodes

in a network can belong to two or more communities at the

same time. For example, in a social network of friendship,

individuals often belong to several communities: their

families, their colleagues, their classmates, etc. These

nodes are often called overlapping nodes, and few com-

munity detection algorithms can deal with this problem.

Therefore, uncovering the overlapping community struc-

ture of complex networks is still an open problem (Zhang

et al. 2007a, b; Palla et al. 2005).

It is rare that we know nothing on a given data set. On

the contrary, in many real world data sets, we know the

labels of some elements. For example, one certainly does

not know the majority of the people from Brazil, but we

usually know some of them, such as Pelé, a famous soccer

player, or Ayrton Senna, who was a famous racing driver.

These labeled data, without a doubt, help to correctly

determine the labels of the remaining ones. For this reason,

we consider fuzzy community structure detection in a

semi-supervised environment.

In this paper, we present a new community detection

method, which uses competition and cooperation among

particles walking in the network. It is inspired by the

community detection method proposed by Quiles et al.

(2008), in which only hard labels can be produced. That

model features walking particles in the network competing

with each other in order to possess as many nodes as

possible. Later, Breve et al. (2012) extended that model to

perform semi-supervised learning including not only

competition among particles spreading different labels, but

also cooperation among the particles which are spreading the

same class label. However, it also provides only hard labels.

Both Quiles et al. (2008) and Breve et al. (2012) provide

analysis on time and storage complexity of these methods,

showing that they have lower order of computational com-

plexity than other unsupervised and semi-supervised graph-

based methods. While most semi-supervised graph-based

methods have cubic complexity order (O(n3)) (Zhu 2005),

the methods proposed by Quiles et al. (2008) and Breve et al.

(2012) have only linear complexity (O(n)), thus they can be

applied to larger data sets.

A preliminary work to determine overlapping nodes by

particle competition has been presented by Breve et al.

(2009). In that work, partial knowledge of networks is not

taken into consideration, thus only the competition mech-

anism between particles is implemented. In this paper, we

extend that model to semi-supervised learning case by

introducing the cooperative mechanism through the con-

cept of teams of particles. Particles in the same team

cooperate with their teammates and compete against par-

ticles of other teams. We also transform the unsupervised

learning mechanism into a semi-supervised learning

mechanism, in order to take advantage of a small portion of

labeled samples that usually are available in many real data

sets. The proposed model produces a fuzzy output (soft

label) for each node of the network. Such continuous-val-

ued output can be treated as the levels of membership of

each node to each community. Therefore, it is able to

uncover the overlapping community structure in networks.

Another problem faced by machine learning algorithms

is the presence of outliers or mislabeled samples in the

training data. In practical applications, semi-supervised

learning may entail risks because error propagation may be

embedded in normal label propagation. For example, in a

medical diagnostic system, a classification mistake may

have serious consequences to a person’s health. In semi-

supervised learning domain, this situation gets worse

because the classification mistake may propagate to the

sub-system or even the whole system, resulting in wrong

diagnosis of other cases. The model proposed in this paper

gives special consideration to label propagation safety by

introducing a mechanism to identify outliers among the

labeled data items, and consequently prevent error propa-

gation coming from outliers.

It is worth noting that many graph-based semi-supervised

learning methods have been developed (Chapelle et al.

2006). However, most of them are similar to each other (Zhu

2005) in such way that they can be seen as regularization

frameworks, differing only in the particular choice of the loss

function and the regularizer (Blum and Chawla 2001;

Zhu et al. 2003; Zhou et al. 2004; Belkin et al. 2004, 2005;

Joachims 2003). Moreover, most of these methods spread the

labels globally, i.e., at each iteration, all nodes propagate

their labels to all other nodes accordingly to edges weights.

The method proposed in this paper is essentially different

from the others because the nature-inspired particle move-

ment, competition and cooperation mechanisms allow it to

spread the labels locally, at each algorithm step, i.e., only

those nodes which are being visited by a particle are updated.

Both the fuzzy output (overlapping community structure

detection) and the outlier detection mechanisms are extrac-

ted naturally from the particle dynamics.

The rest of this paper is organized as follows: Sect. 2

describes the model in details. Section 3 shows some

experimental results from computer simulations, and in

Sect. 4 we draw some conclusions.

2 Model description

In this section, we introduce the particle competition and

cooperation algorithm. It takes a undirected and unweighed

network as input. Therefore, if the data set is already in that

form, it can be used directly. Otherwise, the input data set
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must be transformed into an undirected and unweighed

network. For each labeled data item, a corresponding par-

ticle is generated and put in the network. A group of par-

ticles having the same label is called a team. Each node in

the network possesses a vector of elements, which corre-

sponds to the domination level of each team of particles

over that node. As the system runs, each particle uses a

random-greedy rule to choose a neighbor to visit. In this

chosen node, there is an increase of the domination level of

the particle team, while there is a decrease of the domi-

nation levels of other teams. Teams of particles will act

cooperatively trying to dominate as many nodes as possible

while preventing intrusion of other teams. We keep track of

each node visits and, at the end of iterations, we calculate

the membership degrees of each node to each class by

using the information of domination levels.

The input of the algorithm is a graph G ¼ ðV;EÞ; where

V ¼ fv1; v2; . . .; vng is the set of nodes and E is the set of

edges (vi, vj), which can also be represented by an adja-

cency matrix W:

Wij ¼
1 if vi and vj are neighbors

0 otherwise

�
; ð1Þ

so Wij specifies whether there is an edge between the pair

of nodes vi and vj. The algorithm also requires a vector

Y ¼ fy1; y2; . . .; yng; where yi takes the hard label of the

node vi if it is known, or 0, otherwise. The label set is

defined as L ¼ f1; 2; . . .; cg; where c is the amount of

classes/communities, so a number is assigned to each class/

community and 0 is reserved for nodes which label is

unknown. If a labeled node is known to be an overlap node,

its hard label is chosen after the class/community that it has

the higher pertinence level. The goal of the algorithm is to

provide a vector of membership degrees to each class for

each of the nodes in the graph, no matter if they are ini-

tially labeled or unlabeled.

If the input data set is not a undirected unweighed

network, it must be first transformed into one. For instance, if

the input data set is vector-based, as in v ¼ fx1; x2; . . .; xng �
Rm; one may transform it into an undirected and unweighed

graph by transforming each element xi into a node vi, and

connecting it its k nearest neighbors according to some dis-

tance measure, such as the Euclidean distance. In this case,

the adjacency matrix W may be build as follows:

Wij ¼
1 if xj is among the k-nearest neighbors

of xi or vice-versa

0 otherwise

8<
: : ð2Þ

where Wij specifies whether there is an edge between the

pair of nodes xi and xj. Of course, one can also use faster

methods to estimate the nearest neighbors, specially in

larger data sets where the prior graph construction may be

more time consuming than the algorithm iterations, as the

algorithm has lower order of computational complexity

than the prior graph construction step.

For each labeled node vi (i.e., yi = 0) in the network, a

particle qi is generated and its initial position is at the

node vi. Thus, there is a particle for each labeled node in

the network. If vi is the initial position of particle qi, we

call it the home node of particle qi. At each iteration, each

particle changes its position and register the distance it is

from its home node. Particles generated for nodes with

the same class/communities labels form a team and

cooperate with each other to compete with other teams.

Therefore, each team represents a class/community of the

network.

Each particle qj comes with two variables: qxðtÞ
j and

qdðtÞ
j : The first variable qxðtÞ

j 2 ½0; 1� is the particle strength,

which indicates how much the particle can affect a node

levels at time t. The second variable is a distance table, i.e.,

a vector qd
j ðtÞ ¼ fq

d1

i ðtÞ; q
d2

i ðtÞ; . . .; qdn
i ðtÞg; where each

element qdi
j ðtÞ 2 ½0; n� 1� corresponds to the distance

measured between the particle’s home node vj and its

current position.

Each node vi has two variables. The first variable is a

vector vx
i ðtÞ ¼ fv

x1

i ðtÞ; vx2

i ðtÞ; . . .; vxc
i ðtÞg called instanta-

neous domination levels, and each element vx‘

i ðtÞ 2 ½0; 1�
corresponds to the level of domination of team ‘ over node

vi. At each node, the sum of the domination levels is always

constant, as follows:

Xc

‘¼1

vx‘

i ¼ 1: ð3Þ

This relation is possible because particles increase the node

domination level of their own team and, at the same time,

decreases the other teams’ domination levels. The second

variable is the long-term domination levels, which is a

vector vk
i ðtÞ ¼ fv

k1

i ðtÞ; v
k2

i ðtÞ; . . .; vkc
i ðtÞg; and each element

vk‘
i ðtÞ 2 ½0 1� represents long-term domination level by

team ‘ over node vi. Long-term domination levels can vary

from zero to infinity and they never decrease.

Each node vi has an initial value of its instantaneous

domination vector vx
i set as follows:

vx‘

i ð0Þ ¼
1
c if yi ¼ 0

1 if yi ¼ ‘
0 otherwise

8<
: ; ð4Þ

i.e., for each unlabeled node (y = 0), the domination levels

of all particle teams are set to the same value 1
c ; where c is

the number of classes/communities (number of teams); and

for each labeled node (y 6¼ 0), the domination level of the

dominating team is set to the highest value 1, while the

domination levels of other teams are set to the lowest value
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0. On the other hand, in all nodes, all long-term domination

levels vk‘
i ð0Þ have their initial values set to zero, for all the

classes ‘ no matter if the corresponding data item is labeled

or unlabeled.

Each particle has its initial position set to the corre-

sponding home node, and their initial strength is set as

follows:

qx
j ð0Þ ¼ 1; ð5Þ

i.e., each particle starts with maximum strength.

Particles have limited knowledge of the network, they

only know the distances from their home node to nodes that

they already visited. Distances are recalculated dynami-

cally at each particle movement. Thus, the distance table of

each particle is set as follows:

qdi
j ðtÞ ¼

0 if i ¼ j
n� 1 if i 6¼ j

�
; ð6Þ

i.e., for each particle, the distance from its home node is set

to zero, and all the other distances are assumed to be the

largest possible value n - 1.

Table 1 Degrees of

membership from each sample

to each class obtained by the

proposed method for the Iris

Data Set

Inst. I. Set I. Vers. I. Virg. Inst. I. Set I. Vers. I. Virg. Inst. I. Set I. Vers. I. Virg.
1 1,0000 0,0000 0,0000 51 0,0000 0,9252 0,0748 101 0,0000 0,0084 0,9916
2 1,0000 0,0000 0,0000 52 0,0000 0,9245 0,0755 102 0,0000 0,2505 0,7495
3 1,0000 0,0000 0,0000 53 0,0000 0,8756 0,1244 103 0,0000 0,0072 0,9928
4 1,0000 0,0000 0,0000 54 0,0000 0,9688 0,0312 104 0,0000 0,0275 0,9725
5 1,0000 0,0000 0,0000 55 0,0000 0,9251 0,0749 105 0,0000 0,0111 0,9889
6 1,0000 0,0000 0,0000 56 0,0000 0,9569 0,0431 106 0,0000 0,0071 0,9929
7 1,0000 0,0000 0,0000 57 0,0000 0,7678 0,2322 107 0,0000 0,9384 0,0616
8 1,0000 0,0000 0,0000 58 0,0000 0,9769 0,0231 108 0,0000 0,0071 0,9929
9 1,0000 0,0000 0,0000 59 0,0000 0,9291 0,0709 109 0,0000 0,0243 0,9757
10 1,0000 0,0000 0,0000 60 0,0000 0,9492 0,0508 110 0,0000 0,0072 0,9928
11 1,0000 0,0000 0,0000 61 0,0000 0,9769 0,0231 111 0,0000 0,1042 0,8958
12 1,0000 0,0000 0,0000 62 0,0000 0,9784 0,0216 112 0,0000 0,0450 0,9550
13 1,0000 0,0000 0,0000 63 0,0000 0,9847 0,0153 113 0,0000 0,0118 0,9882
14 1,0000 0,0000 0,0000 64 0,0000 0,8696 0,1304 114 0,0000 0,2545 0,7455
15 1,0000 0,0000 0,0000 65 0,0000 0,9919 0,0081 115 0,0000 0,2492 0,7508
16 1,0000 0,0000 0,0000 66 0,0000 0,9300 0,0700 116 0,0000 0,0293 0,9707
17 1,0000 0,0000 0,0000 67 0,0000 0,9466 0,0534 117 0,0000 0,0298 0,9702
18 1,0000 0,0000 0,0000 68 0,0000 0,9924 0,0076 118 0,0000 0,0071 0,9929
19 1,0000 0,0000 0,0000 69 0,0000 0,7237 0,2763 119 0,0000 0,0071 0,9929
20 1,0000 0,0000 0,0000 70 0,0000 0,9792 0,0208 120 0,0000 0,3700 0,6300
21 1,0000 0,0000 0,0000 71 0,0000 0,5359 0,4641 121 0,0000 0,0078 0,9922
22 1,0000 0,0000 0,0000 72 0,0000 0,9924 0,0076 122 0,0000 0,2488 0,7512
23 1,0000 0,0000 0,0000 73 0,0000 0,4285 0,5715 123 0,0000 0,0071 0,9929
24 1,0000 0,0000 0,0000 74 0,0000 0,9488 0,0512 124 0,0000 0,2812 0,7188
25 1,0000 0,0000 0,0000 75 0,0000 0,9431 0,0569 125 0,0000 0,0104 0,9896
26 1,0000 0,0000 0,0000 76 0,0000 0,9318 0,0682 126 0,0000 0,0071 0,9929
27 1,0000 0,0000 0,0000 77 0,0000 0,8878 0,1122 127 0,0000 0,2847 0,7153
28 1,0000 0,0000 0,0000 78 0,0000 0,5506 0,4494 128 0,0000 0,3837 0,6163
29 1,0000 0,0000 0,0000 79 0,0000 0,9593 0,0407 129 0,0000 0,0220 0,9780
30 1,0000 0,0000 0,0000 80 0,0000 0,9862 0,0138 130 0,0000 0,0072 0,9928
31 1,0000 0,0000 0,0000 81 0,0000 0,9731 0,0269 131 0,0000 0,0071 0,9929
32 1,0000 0,0000 0,0000 82 0,0000 0,9752 0,0248 132 0,0000 0,0071 0,9929
33 1,0000 0,0000 0,0000 83 0,0000 0,9937 0,0063 133 0,0000 0,0184 0,9816
34 1,0000 0,0000 0,0000 84 0,0000 0,2363 0,7637 134 0,0000 0,2480 0,7520
35 1,0000 0,0000 0,0000 85 0,0000 0,9469 0,0531 135 0,0000 0,1000 0,9000
36 1,0000 0,0000 0,0000 86 0,0000 0,8618 0,1382 136 0,0000 0,0071 0,9929
37 1,0000 0,0000 0,0000 87 0,0000 0,9015 0,0985 137 0,0000 0,0160 0,9840
38 1,0000 0,0000 0,0000 88 0,0000 0,8396 0,1604 138 0,0000 0,0294 0,9706
39 1,0000 0,0000 0,0000 89 0,0000 0,9782 0,0218 139 0,0000 0,4552 0,5448
40 1,0000 0,0000 0,0000 90 0,0000 0,9541 0,0459 140 0,0000 0,0148 0,9852
41 1,0000 0,0000 0,0000 91 0,0000 0,9496 0,0504 141 0,0000 0,0084 0,9916
42 1,0000 0,0000 0,0000 92 0,0000 0,9450 0,0550 142 0,0000 0,0246 0,9754
43 1,0000 0,0000 0,0000 93 0,0000 0,9861 0,0139 143 0,0000 0,2506 0,7494
44 1,0000 0,0000 0,0000 94 0,0000 0,9769 0,0231 144 0,0000 0,0075 0,9925
45 1,0000 0,0000 0,0000 95 0,0000 0,9675 0,0325 145 0,0000 0,0080 0,9920
46 1,0000 0,0000 0,0000 96 0,0000 0,9856 0,0144 146 0,0000 0,0254 0,9746
47 1,0000 0,0000 0,0000 97 0,0000 0,9654 0,0346 147 0,0000 0,2266 0,7734
48 1,0000 0,0000 0,0000 98 0,0000 0,9725 0,0275 148 0,0000 0,0857 0,9143
49 1,0000 0,0000 0,0000 99 0,0000 0,9788 0,0212 149 0,0000 0,0257 0,9743
50 1,0000 0,0000 0,0000 100 0,0000 0,9853 0,0147 150 0,0000 0,2961 0,7039
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At each iteration, each particle will select a neighbor to

visit. There are two different kinds of movements a particle

can use: random movement and greedy movement. During

random movement, a particle randomly chooses any

neighbor to visit without concerning domination levels or

distance from its home node. This movement is used for

exploration and acquisition of new nodes. Meanwhile, in

greedy movement, each particle prefers visiting those nodes

that have been already dominated by its own team and that

are closer to their home nodes. This movement is used for

defense of both its own and its team’s territories. In order

to achieve an equilibrium between exploratory and defen-

sive behavior both movements are applied. Therefore, at

each iteration, each particle has probability pgrd to choose

greedy movement and probability 1 - pgrd to choose ran-

dom movement, with 0� pgrd� 1: Once the random

movement or greedy movement is determined, the target

neighbor node qs
j ðtÞ will be chosen with probabilities

defined by Eq. (7) or Eq. (8), respectively.

In random walk the particle qj tries to move to any node

vi with the probabilities defined as:

pðvijqjÞ ¼
WqiPn

l¼1 Wql
; ð7Þ

where q is the index of the current node of particle qj, so

Wqi = 1 if there is an edge between the current node and

any node vi, and Wqi = 0 otherwise.

In greedy movement the particle tries to move to a

neighbor with probabilities defined according to its team

domination level on that neighbor qx‘
j and the inverse of

the distance (qdi
j ) from that neighbor vi to its home node vj

as follows:

pðvijqjÞ ¼
Wqiv

x‘
i ðq

di
j þ 1Þ�2

Pn
l¼1 Wqlvx‘

l ðqdl

j þ 1Þ�2
: ð8Þ

Once more, q is the index of the current node of particle qj

and ‘ ¼ qf
j ;where qf

j is the class label of particle qj.

Particles of different teams compete for owning the network

nodes, when a particle moves to another node, it increases the

instantaneous domination level of its team in that node, at the

same time it decreases the instantaneous domination level of

the other teams in that same node. The exception are the

labeled nodes, which instantaneous domination levels are

fixed. Thus, for each selected target node vi, the instantaneous

domination level vx‘
i ðtÞ is updated as follows:

vx‘
i ðt þ 1Þ ¼

maxf0; vx‘
i ðtÞ �

Dvqx
j ðtÞ

c�1
g

if yi ¼ 0 and ‘ 6¼ qf
j

vx‘

i ðtÞ þ
P

q 6¼‘ v
xq

i ðtÞ � v
xq

i ðt þ 1Þ
if yi ¼ 0 and ‘ ¼ qf

j

vx‘
i ðtÞ if yi 6¼ 0

8>>>>><
>>>>>:

; ð9Þ

where 0\Dv� 1 is a parameter to control changing rate of

the instantaneous domination levels and qf
j represents the

class label of particle qj. If Dv takes a low value, the node

instantaneous domination levels change slowly, while if it

takes a high value, the node domination levels change

quickly. Each particle qj increases the instantaneous

domination level of its team (vx‘

i ; ‘ ¼ qf
j ) at the node vi

when it moves to it, while it decreases the instantaneous

domination levels of this same node of other teams

(vx‘
i ; ‘ 6¼ qf

j ), always respecting the conservation law

defined by Eq. (3). The instantaneous domination level of

all labeled node vx
i are always fixed, as defined by the third

case expressed by Eq. (9).

Regarding long-term domination levels, at each itera-

tion, for each selected node vi in random movement, the

long-term domination level vk‘
i ðtÞ is updated as follows::

vk‘
i ðt þ 1Þ ¼ vk‘

i ðtÞ þ qx
j ðtÞ ð10Þ

where ‘ is the class label of particle qj. Eq. (10) shows

that the updating of the long-term domination levels

vk‘
i ðt þ 1Þ is proportional to the current particle strength

qx
j ðtÞ: This is a desirable feature because the particle

probably has a higher strength when it is arriving from its

own neighborhood, while it has a lower strength when it

is arriving from nodes of other teams’ neighborhoods.

When greedy movement is selected, long-term domination

levels are not updated, otherwise a team domination

would be amplified by greedy movement visits, which is

not desirable as it would introduce bias in the fuzzy

output.

Regarding particles strength, they get stronger when

they move to a node being dominated by its own team and

they get weaker when they move to a node dominated by

other teams. Thus, at each iteration t, a particle strength

qx
j ðtÞ is updated as follows:

qx
j ðt þ 1Þ ¼ vx‘

i ðt þ 1Þ; ð11Þ

where vi is the target node, and ‘ ¼ qf
j ; i.e., ‘ is the class

label of particle qj. Therefore, each particle qj has its

strength qx
j set to the value of its team instantaneous

domination level v
xj

i of the node vi.

It is important to notice that when a particle moves, it

may be accepted or rejected in the target node due to the

competition mechanism. First, a particle modifies both the

node instantaneous and long-term domination levels as

explained, then it updates its own strength, and finally it

will be accepted in the new node only if the domination

level of its team is higher than others; otherwise, a shock

happens and the particle goes back to the last node until

next iteration.
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The distance table purpose is to keep the particle aware

of how far it is from its home node. This information is

used in the greedy movement in order to keep the particle

around its own neighborhood most of the time, avoiding

letting it susceptible to be attacked by other teams. The

instantaneous domination levels together with the distance

information also avoid situations where a particle would

walk into enemies’ neighborhoods and lose all its strength.

Each particle qj updates its distance table qdk
j ðtÞ at each

iteration t as follows:

qdk
j ðt þ 1Þ ¼ qdi

j ðtÞ þ 1 if qdi
j ðtÞ þ 1\qdk

j ðtÞ
qdk

j ðtÞ otherwise

(
; ð12Þ

where qdi
j ðtÞ and qdk

j ðtÞ are the distances to its home node

from the current node and the target node, respectively.

The distance calculation works as follows: we assume

that the particles initially have limited knowledge of the

network, i.e., they know how many nodes in the network,

but they do not know how the nodes are connected, so they

assume all the nodes can be reached in at most n - 1 steps

(the largest possible distance). Every time a particle moves,

it checks the current distance table. If the target node dis-

tance is higher than the current node distance, the target

node distance is updated to the distance of the current node

plus 1. This method has advantage to use already known

distances without recalculation.

In a first glance, the nodes’ instantaneous domination

levels vx
i ðtÞ looks like a natural choice for nodes’ fuzzy

(gradual) outputs, since they indicate the domination

levels from each team (class) to each node quantified in

terms of continuous values in [0, 1]. However, instan-

taneous domination levels are very volatile under certain

conditions. For instance, the dominating team of a non-

overlapping node after the last iteration usually owns the

node for all or majority of iterations, but this may not

happen to overlapping nodes, in which the dominating

team changes frequently, and thus the instantaneous

domination level of the last dominating team may not

correspond to the team which have dominated that node

for longer time. In addition, due to the competition

effect, the instantaneous domination level of the domi-

nating team is largely amplified and it does not corre-

spond to the real overlapping level. And that is why we

have the long-term domination levels, which represents

temporal averaged domination level for each team at

each node. In this case, when a team’s long-term dom-

ination level is increased, long-term domination levels of

other teams are kept without changes. In addition, there

is no upper limit on long-term domination levels, i.e.,

they can vary from zero to infinity. At the end of iter-

ations, the fuzzy output is derived from the long-term

domination levels. It is important to note that the long-

term domination levels are adjusted only when a particle

selects the random movement, because, such as the

competition effect, the greedy movement amplifies visit-

ing advantage of dominating particle.

After the last iteration, the degrees of membership f ‘i 2
½0 1� corresponding to each node vi are calculated using the

long-term domination levels, as follows:

f ‘i ¼
vk‘

i ð1ÞPc
q¼1 v

kq

i ð1Þ
ð13Þ

where fi
‘ represents the final membership level from the

node vi to community ‘.

Based on the membership degrees (fuzzy output), we

have formed an overlapping measure in order to easily

illustrate the application of the algorithm. Therefore, the

overlapping index oi for a node vi is defined as follow:

oi ¼
f ‘��i

f ‘�i

ð14Þ

where ‘� ¼ arg max‘ f ‘i ; ‘ � � ¼ arg max‘;‘6¼‘� f ‘i ; and oi 2
½0 1�; where oi = 0 means completely confidence that the

node belongs to a single community, while oi = 1 means

the node is completely undefined being shared among two

or more communities.

If needed, hard labels may be easily obtained through

the following equation:

yi ¼ arg max
‘

f ‘i ; ð15Þ

i.e., the node is hard labeled after the class with the highest

membership level. These hard labels may be very different

from those obtained from instantaneous domination levels,

such as in (Breve et al. 2012). They are usually more

accurate to classify outliers and nodes around outliers.

They may also be used to accurately reclassify wrongly

labeled nodes, as instantaneous domination levels are

always fixed and, therefore, cannot be used to this purpose.

Overall, the proposed algorithm can be outlined as

follows:
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3 Computer simulations

In this section, we present some simulation results to

evaluate the effectiveness of the proposed method. First,

the proposed algorithm is applied to artificial data sets with

increasing amount of overlapped nodes. Then, the robust-

ness to incorrectly labeled nodes is demonstrated, including

the reclassification of these nodes. Next, the proposed

algorithm is applied to some real-world data sets, including

both network-based and vector-based data sets. Finally, the

algorithm is evaluated with the benchmark for undirected

and unweighted networks with overlapping communities

proposed by Lancichinetti and Fortunato (2009) (LFR

benchmark), in order to make it easier to compare it to

other methods.

For all vector-based data sets, the networks are built by

using Eq. (2), with the parameter k being empirically set for

each problem, i.e., a set of simulations is executed by

varying k in the interval [0.01n 0.1n], and the value leading

to the best results is chosen. The Euclidean distance is used

in all cases. The algorithm parameters are also empirically

set to Dv ¼ 0:1 and pgrd = 0.5 for all the experiments. All

results shown in this section are the average of 50 to 1,000

executions.

Figure 1a–c shows the results of the proposed method

applied to three banana-shaped classes generated using

PRTools (Duin et al. 2007) function gendatb with 1,000

elements each (500 per class) and different variance

parameter s = {0.6, 0.8, 1.0}. For each data set, 50 ele-

ments (5 %) were randomly selected as the labeled ones.

The size of the nodes in the plot are proportional to their

respective overlapping index. We see that there are more

overlapping nodes and the overlapping levels are higher as

the classes get more mixed. This situation matches well the

results we obtain through a direct visual inspection. These

experiments are repeated 100 times. The mean standard

deviation of the membership levels are 0.0216, 0.0222, and

0.0598, for Fig. 1a–c, respectively. After assigning the

hard labels, the average correct classification rates are

0.9945, 0.9923 and 0.9607, respectively; and the standard

deviations are 0.0108, 0.0140, and 0.0164, respectively.
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Fig. 1 Fuzzy classification of two banana-shaped classes generated

with different variance parameters: a s = 0.6, b s = 0.8, c s = 1.0.

Nodes size and colors represent their respective overlapping index

detected by the proposed method
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Figure 2a shows a data set with 4 classes with Gaussian

distribution, generated by using PRTools (Duin et al. 2007)

function gendats with 1,000 elements (250 per class)

and 20 samples are labeled (5 per class), represented by the

squares, triangles, lozenges and stars. The algorithm is

applied to the data set and the detected overlapping indexes

are shown in Fig. 2b. We see that the nodes in the interior

of each class are small, i.e., they are clearly non-overlap-

ping nodes. Meanwhile, the nodes in the borders among

classes have larger sizes, which represent their different

levels of overlapping. These results are in agreement with

our intuition. These experiments are repeated 100 times

and the mean standard deviation of the membership levels

is only 0.0037. For the hard labels, the average correct

classification rate is 0.9546 and the standard deviation is

0.0012.

Referring to Fig. 2a, we note that there is an upper tri-

angle in the space of the square class, it is clearly an out-

lier. However, it does not mix up the overlapping indexes

of the nodes around it. It means that a particle which home

node is an outlier has difficulty to defend its neighborhood,

since it may be far from its team-mates and receives few or

no help from them. A particle whose home node is an

outlier can eventually abandon its home, if its neighbor-

hood is dominated by another team. In this case, it may

migrate to the neighborhood of one of its nearby team-

mates. Although an outlier can eventually change a little bit

of the instantaneous domination levels (vx
i ðtÞ) of its

neighbors, it has very weak effect to the long-term domi-

nation levels (vk
i ðtÞ) of these same neighbors. Thus, we can

achieve good classification results even though the data

sets have some outliers. Notice that the instantaneous

domination levels are fixed for labeled nodes, but the long-

term domination levels are not. Thus, through the long-

term domination levels, a labeled node can be reclassified

if it is an outlier using Eq. (15).

In order to show these features, we perform simulations

on an artificial data set presented by Fig. 3a, it has 2,000

elements distributed into two banana-shaped classes (1,000

elements per class), 100 (5 %) of them are labeled (circles
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Fig. 2 Classification of normally distributed classes (Gaussian dis-

tribution). a Toy data set with 1,000 samples divided in four classes,

20 samples are labeled, 5 from each class (squares, triangles,

lozenges, and stars). b Nodes size represent their respective

overlapping index detected by the proposed method
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Fig. 3 Classification of data sets with some outliers: a artificial data

set with some wrongly labeled nodes, b classification by the proposed

method
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and squares), however, 10 of these labeled nodes have the

wrong label representing outliers. Figure 3b shows the

classification by the proposed method. The hard labels are

obtained through Eq. (15), i.e, the sample is simply clas-

sified to the class with the highest membership level. We

can see that the wrongly labeled nodes do not affect the

classification of their neighbors and the outliers themselves

are eventually reclassified to their respective proper clas-

ses. These experiments are repeated 100 times, the average

correct classification rate is 0.9975 and the standard devi-

ation is only 0.0001.

Next, the proposed algorithm is applied to a network-

based real-world data set: the Zachary’s Karate Club Net-

work (Zachary 1977), which is already an undirected and

unweighed network, so the prior graph construction step is

not needed. The data set is presented to the algorithm with

only two labeled nodes: 1 and 34, each one representing a

different class. The results are shown in Fig. 4, and the

overlapping index of each node is indicated by their sizes.

Our visual inspection indicates that this is a good result as

well. Notice that although the two labeled nodes exhibit

some degree of overlapping, the algorithm still produced a

good result, even detecting these overlapping degrees in the

labeled nodes (notice the slightly larger size). This is also a

desirable feature, since we do not need to choose a non-

overlapping node to represent a class. The three most

overlapping nodes detected by the proposed algorithm are

nodes 9, 3, and 20, which matches the results obtained by

Zhang et al. (2007b). Notice that these results are the mean

of 1000 executions, and the standard deviation of the

continuous output is only 0.003, i.e., the method output is

pretty consistent. By applying Eq. (15), the hard labels are

obtained and the algorithm achieves a perfect classification

score (100 % correct classification rate of the 34 nodes) in

all the 1000 repetitions.

As the next step, the proposed method is applied to two

vector-based real-world data sets from the UCI Machine

Learning Repository (Frank and Asuncion 2010): the Iris

Data Set and the Wine Data Set. The Iris Data Set has 150

samples of 3 different types of Iris flower: Iris Setosa, Iris

Versicolour and Iris Virginica. The first class (Iris Setosa)

is quite different from the other two; while the latter are

more similar and hard to separate from each other. There

are 50 samples in each class and 4 real-valued attributes for

each sample. The network is built from the data using (2)

with k = 5, which was empirically set. We randomly select

10 % of the samples to be presented to the algorithm with

their respective labels, while the remaining are presented

unlabeled. The degrees of membership from each sample to

each class obtained by the proposed algorithm are pre-

sented in Table 1. A graph representation is showed in

Fig. 5, in which the overlapping index of each node is

indicated by their sizes. Notice that the linearly separable

class becomes a disconnected subset of the graph nodes,

and the membership degrees of these samples are complete

to the respective class and zero for the others, as expected

for clearly non-overlapping nodes. The other two classes

are not linearly separable as they have some degree of

overlapping. The different overlapping degrees of all these

nodes and their respective pertinence to each of the classes

are detected by the proposed algorithm. These experiments

are repeated 1,000 times and the mean standard deviation

of the membership levels is 0.0803. Regarding the hard

labels, the average correct classification rate is 0.9375 and

the standard deviation is 0.0458.

The Wine Data Set has 178 samples of 3 different types

of Wine. There are 59, 71 and 48 samples in classes 1, 2,

and 3, respectively. Each sample has 13 integer and real-

valued attributes. The network is also built from the data

using (2) with k = 5. Once more, we randomly select 10 %
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1Fig. 4 The Karate Club

Network. Nodes size and colors

represent their respective

overlapping index detected by

the proposed method
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of the samples to be presented to the algorithm with their

respective labels, while the remaining are presented unla-

beled. The degrees of membership from each sample to each

class obtained by the proposed algorithm are presented in

Table 2; and a graph representation is showed in Fig. 6, in

which the overlapping index of each node is indicated by their

sizes. By analyzing the results, we can notice that there are

some overlapping nodes between classes 1 and 2; and some

more between classes 2 and 3. On the other hand, classes 1

and 3 are almost completely separated. These experiments are

repeated 1,000 times and the mean standard deviation of the

membership levels is 0.0794. Regarding the hard labels, the

average correct classification rate is 0.9326 and the standard

deviation is 0.0364.

Finally, the proposed method is evaluated with the

benchmark for undirected and unweighted networks with

overlapping communities proposed by Lancichinetti and

Fortunato (2009) (LFR benchmark). This benchmark uses the

normalized mutual information between the planted and the

recovered partition, in its generalized form for overlapping

communities proposed by Lancichinetti et al. (2009), as the

performance measure. The benchmark method does not use

the overlap degrees, only hard labels. Therefore, we adapted

the proposed method to produce one single hard label using

Eq. (15) when the overlap index is low (oi� 0:5), and two

hard labels when the overlap index is high (oi [ 0.5). In this

last case, the first hard label is given by Eq. (15), and the

second hard label (yi
**) is given by:

Fig. 5 The Iris Data Set. Nodes

size and colors represent their

respective overlapping index

detected by the proposed

method
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Table 2 Degrees of

membership from each sample

to each class obtained by the

proposed method for the Wine

Data Set

Inst. Class 1 Class 2 Class 3 Inst. Class 1 Class 2 Class3  Inst. Class 1 Class 2 Class 3
1 0,9519 0,0480 0,0002 61 0,0007 0,7603 0,2390 121 0,0103 0,9886 0,0011
2 0,9656 0,0344 0,0000 62 0,0007 0,6056 0,3937 122 0,3327 0,6665 0,0008
3 0,9918 0,0082 0,0000 63 0,0928 0,8615 0,0457 123 0,0188 0,9800 0,0012
4 0,9951 0,0049 0,0000 64 0,0907 0,9075 0,0018 124 0,3004 0,6992 0,0003
5 0,8581 0,1418 0,0000 65 0,0008 0,9466 0,0525 125 0,0288 0,9706 0,0006
6 0,9969 0,0030 0,0001 66 0,2946 0,7048 0,0007 126 0,0017 0,9974 0,0009
7 0,9922 0,0078 0,0000 67 0,0212 0,9770 0,0019 127 0,0024 0,9964 0,0012
8 0,9866 0,0129 0,0005 68 0,0009 0,9983 0,0008 128 0,0161 0,9802 0,0037
9 0,9944 0,0056 0,0000 69 0,0008 0,5794 0,4198 129 0,0009 0,9971 0,0020
10 0,9937 0,0063 0,0000 70 0,4067 0,5930 0,0003 130 0,0138 0,9002 0,0861
11 0,9976 0,0024 0,0000 71 0,0006 0,6912 0,3082 131 0,0010 0,3101 0,6889
12 0,9720 0,0280 0,0000 72 0,5857 0,4135 0,0008 132 0,0010 0,1112 0,8878
13 0,9847 0,0153 0,0000 73 0,0008 0,9973 0,0018 133 0,0008 0,0904 0,9088
14 0,9970 0,0030 0,0000 74 0,9584 0,0416 0,0000 134 0,0010 0,2033 0,7957
15 0,9977 0,0023 0,0000 75 0,1593 0,8391 0,0015 135 0,0005 0,4696 0,5299
16 0,9900 0,0095 0,0006 76 0,0010 0,9206 0,0785 136 0,0005 0,2124 0,7870
17 0,9921 0,0073 0,0006 77 0,0044 0,9932 0,0024 137 0,0004 0,0608 0,9388
18 0,9752 0,0244 0,0004 78 0,0008 0,6035 0,3957 138 0,0000 0,0689 0,9311
19 0,9969 0,0029 0,0002 79 0,6053 0,3946 0,0000 139 0,0003 0,1273 0,8724
20 0,9648 0,0352 0,0000 80 0,1655 0,8342 0,0003 140 0,0000 0,0849 0,9151
21 0,8798 0,1202 0,0000 81 0,0020 0,9974 0,0006 141 0,0002 0,1748 0,8251
22 0,7910 0,2090 0,0000 82 0,2093 0,7899 0,0008 142 0,0006 0,0761 0,9233
23 0,9694 0,0306 0,0000 83 0,0007 0,9942 0,0051 143 0,0002 0,0968 0,9030
24 0,7613 0,2383 0,0004 84 0,0001 0,3549 0,6451 144 0,0001 0,0823 0,9176
25 0,9177 0,0822 0,0001 85 0,0274 0,9719 0,0007 145 0,0002 0,0332 0,9667
26 0,8603 0,1395 0,0002 86 0,0058 0,9927 0,0015 146 0,0005 0,1752 0,8243
27 0,9745 0,0255 0,0000 87 0,0007 0,9931 0,0062 147 0,0000 0,0433 0,9567
28 0,9516 0,0484 0,0000 88 0,0006 0,9944 0,0049 148 0,0000 0,0156 0,9844
29 0,9208 0,0792 0,0001 89 0,0005 0,9859 0,0135 149 0,0000 0,0050 0,9950
30 0,9885 0,0115 0,0000 90 0,0007 0,9968 0,0025 150 0,0000 0,0046 0,9954
31 0,9811 0,0188 0,0002 91 0,0005 0,9702 0,0293 151 0,0000 0,0038 0,9962
32 0,9950 0,0050 0,0000 92 0,0005 0,9701 0,0294 152 0,0000 0,0038 0,9962
33 0,8139 0,1861 0,0000 93 0,0004 0,9253 0,0743 153 0,0001 0,0166 0,9833
34 0,9824 0,0169 0,0007 94 0,0087 0,9906 0,0007 154 0,0000 0,0038 0,9962
35 0,9592 0,0406 0,0002 95 0,0111 0,9877 0,0012 155 0,0004 0,1057 0,8939
36 0,9258 0,0742 0,0000 96 0,7751 0,2249 0,0000 156 0,0000 0,0137 0,9863
37 0,9625 0,0375 0,0000 97 0,0010 0,5963 0,4028 157 0,0000 0,0043 0,9957
38 0,8767 0,1233 0,0000 98 0,0125 0,9863 0,0012 158 0,0000 0,0321 0,9679
39 0,6611 0,3384 0,0005 99 0,1788 0,8194 0,0018 159 0,0000 0,0035 0,9965
40 0,9801 0,0199 0,0000 100 0,0195 0,9797 0,0008 160 0,0000 0,0035 0,9965
41 0,9626 0,0374 0,0000 101 0,0337 0,9645 0,0017 161 0,0000 0,0035 0,9965
42 0,6785 0,3214 0,0000 102 0,0008 0,9788 0,0204 162 0,0002 0,1577 0,8420
43 0,9917 0,0083 0,0000 103 0,0048 0,9943 0,0010 163 0,0000 0,1638 0,8362
44 0,8045 0,1955 0,0000 104 0,0009 0,9981 0,0009 164 0,0008 0,1396 0,8596
45 0,7310 0,2686 0,0005 105 0,0031 0,9966 0,0004 165 0,0001 0,0100 0,9899
46 0,9461 0,0537 0,0002 106 0,0002 0,9924 0,0074 166 0,0000 0,0519 0,9481
47 0,9904 0,0096 0,0000 107 0,0031 0,9960 0,0009 167 0,0000 0,0036 0,9964
48 0,9813 0,0187 0,0000 108 0,0003 0,9128 0,0869 168 0,0000 0,0041 0,9959
49 0,9885 0,0114 0,0001 109 0,0024 0,9974 0,0002 169 0,0000 0,0035 0,9965
50 0,9975 0,0025 0,0000 110 0,0357 0,9634 0,0010 170 0,0000 0,0038 0,9962
51 0,9949 0,0051 0,0000 111 0,1555 0,8442 0,0003 171 0,0008 0,1383 0,8610
52 0,9942 0,0058 0,0000 112 0,0021 0,9970 0,0008 172 0,0002 0,0222 0,9776
53 0,9946 0,0054 0,0000 113 0,0004 0,6633 0,3364 173 0,0000 0,0034 0,9966
54 0,9928 0,0065 0,0007 114 0,0108 0,9846 0,0046 174 0,0000 0,0217 0,9783
55 0,9758 0,0241 0,0001 115 0,0009 0,9970 0,0022 175 0,0000 0,0099 0,9901
56 0,9551 0,0449 0,0000 116 0,0017 0,9954 0,0029 176 0,0000 0,0046 0,9954
57 0,9794 0,0206 0,0000 117 0,0008 0,9987 0,0004 177 0,0001 0,0075 0,9924
58 0,9844 0,0154 0,0002 118 0,0247 0,9243 0,0510 178 0,0000 0,0039 0,9961
59 0,9967 0,0033 0,0000 119 0,0006 0,0818 0,9176
60 0,0016 0,9955 0,0029 120 0,0136 0,9862 0,0002
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y��i ¼ arg max
‘;‘ 6¼yi

f ‘i ; ð16Þ

i.e., the node second hard label is assigned after the team

with the second largest domination level on that node. In

all cases, 10 % of the nodes are randomly chosen to be

presented to the algorithm with their respective label.

The proposed method benchmark output is shown in

Figs. 7 and 8. Each data point in these figures is obtained

by an average of 50 executions with different generated

networks. The vertical bars indicate the standard deviation.

These figures makes it easier to compare the proposed

method benchmark performance with those obtained by

Fig. 6 The Wine Data Set.

Nodes size and colors represent

their respective overlapping

index detected by the proposed

method
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Lancichinetti and Fortunato (2009); Lancichinetti and

Fortunato (2009) for the Cfinder method, proposed by Palla

et al. (2005), as we generate the test networks using exactly

the same parameters they have used. The proposed method

performed better than Cfinder when the communities are

larger (Figs. 7c, d, 8c, d).

4 Conclusions

This paper presents a new semi-supervised learning

graph-based method for uncovering the network over-

lapping community structure. The method combines

cooperation and competition among particles in order to

generate a fuzzy output (soft label) for each node in the

network. The fuzzy output correspond to the levels of

membership of the nodes to each class. An overlapping

measure is derived from these fuzzy output, and it can

be considered as a confidence level on the output label.

This mechanism has been used to determine outliers in

data sets too. The fuzzy output and outlier detection

realized by our algorithm provide mechanisms to help

stopping error propagation during the semi-supervised

learning process, thus avoiding label propagation risk at

certain level. It is also able to reclassify incorrectly

labeled data items.

Computer simulations were performed with both syn-

thetic and real-world data sets, including vector-based data-

sets, network-based data sets, and an evaluation with the

LFR benchmark. Their results show that the proposed

model is a promising method for classification of data sets

with overlapping structure and/or a considerable amount of

outliers, as well as detecting and quantifying an overlap-

ping measure for each node in the network.
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Fig. 7 Test of the proposed method on the benchmark for undirected

and unweighted networks with overlapping communities (Lancichinetti

and Fortunato 2009). The plot shows the variation of the normalized

mutual information between the planted and the recovered partition, in

its generalized form for overlapping communities (Lancichinetti et al.

2009), with the fraction of overlapping nodes. The error bars indicate

standard deviation. The networks have 1,000 nodes, the other param-

eters are s1 = 2, s2 = 1, hki ¼ 20; and kmax = 50. a Smin = 10,

Smin = 50, lt = 0.1; b Smin = 10, Smax = 50, lt = 0.3; c Smin = 20,

Smax = 100, lt = 0.1; d Smin = 20, Smax = 100, lt = 0.3
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Fig. 8 Test of the proposed method on the benchmark for undirected

and unweighted networks with overlapping communities (Lancichinetti

and Fortunato 2009). The plot shows the variation of the normalized

mutual information between the planted and the recovered partition, in

its generalized form for overlapping communities (Lancichinetti et al.

2009), with the fraction of overlapping nodes. The error bars indicate

standard deviation. The networks have 5,000 nodes, the other param-

eters are s1 = 2, s2 = 1, hki ¼ 20; and kmax = 50. a Smin = 10, Smin =

50, lt = 0.1; b Smin = 10, Smax = 50, lt = 0.3; c Smin = 20, Smax =

100, lt = 0.1; d Smin = 20, Smax = 100, lt = 0.3
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Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the

overlapping community structure of complex networks in nature

and society. Nature 435(7043):814–818. doi:http://dx.doi.org/

10.1038/nature03607

Quiles MG, Zhao L, Alonso RL, Romero RAF (2008) Particle

competition for complex network community detection. Chaos

18(3):033,107. doi:10.1063/1.2956982

Reichardt J, Bornholdt S (2004) Detecting fuzzy community struc-

tures in complex networks with a potts model. Phys Rev Lett

93(21):218,701

Zachary WW (1977) An information flow model for conflict and

fission in small groups. J Anthropol Res 33:452–473

Zhang S, Wang RS, Zhang XS (2007a) Identification of overlapping

community structure in complex networks using fuzzy c-means

clustering. Phys A Stat Mech Appl 374:483–490. doi:10.1016/

j.physa.2006.07.023

Zhang S, Wang RS, Zhang XS (2007b) Uncovering fuzzy community

structure in complex networks. Phys Rev E 76(4):046103. doi:

10.1103/PhysRevE.76.046103

Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2004) Learning

with local and global consistency. In: Advances in Neural

Information Processing Systems, vol 16. MIT Press, Cambridge,

pp 321–328

Zhu X (2005) Semi-supervised learning literature survey. Tech. Rep.

1530, Computer Sciences, University of Wisconsin-Madison

Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning

using gaussian fields and harmonic functions. In: Proceedings of

the twentieth international conference on machine learning,

pp 912–919

Fuzzy community structure detection by particle competition and cooperation 673

123

http://dx.doi.org/10.1103/PhysRevE.80.016118
http://link.aps.org/doi/10.1103/PhysRevE.80.016118
http://link.aps.org/doi/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://link.aps.org/doi/10.1103/PhysRevE.80.056117
http://link.aps.org/doi/10.1103/PhysRevE.80.056117
http://stacks.iop.org/1367-2630/11/i=3/a=033015
http://stacks.iop.org/1367-2630/11/i=3/a=033015
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1063/1.2956982
http://dx.doi.org/10.1016/j.physa.2006.07.023
http://dx.doi.org/10.1016/j.physa.2006.07.023
http://dx.doi.org/10.1103/PhysRevE.76.046103

	Fuzzy community structure detection by particle competition and cooperation
	Abstract
	Introduction
	Model description
	Computer simulations
	Conclusions
	Acknowledgments
	References


