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Abstract In this study, we propose a new method to

apply the rapid flood spreading model (RFSM) using cel-

lular automata (CA) to multiple inflows of Carlisle, UK.

The purpose of the RFSM is to generate predictions of

water depth and flood extent using less computer resource

than required by two-dimensional shallow water equation

models (SWEMs). To be useful the RFSM must produce

predictions that are comparable with those obtained from

SWEMs. This paper reports a validation data available to

the date on an urban flood, collected in January 2005 after a

major event in the city of Carlisle, UK. This demonstrates

an agreement between the proposed RFSM and measured

data.

Keywords Cellular automata � Rapid flood spreading

model � Shallow water equation model � Urban flood

1 Introduction

Two-dimensional (2D) hydrodynamic models have found a

wide range of application in various fields of science and

engineering. This has been supported by the increasing

availability of remotely sensed digital elevation data and

the growth in computing power. They are considered to

give a good description of the hydraulic processes since

they cater for both mass and momentum conservation.

Despite the great success achieved in real-world applica-

tions, 2D models have also encountered many challenges.

For a 2D model, a higher computational cost is needed

when applied to a high-resolution grid. In many real-world

applications, simulation time is not trivial. There are sev-

eral situations in which the computational resources of 2D

models become prohibitive and computational efficient

flood inundation models have to be adopted. Lhomme et al.

(2008) reported that flood risk analysis involves the inte-

gration of a full range of loading, multiple defence system

states and uncertainty related to the input parameters of the

2D model and this type of analysis needs thousands of

simulations of flood events. The expense of 2D models

makes it unfeasible to generate predicted flood extents

arising from hundreds of combination of entry points and

floodwater volumes. Although the use of parallel comput-

ing offers a potential remedy to these problems in reducing

the overall computational time, an alternative method of

using fast inundation models to replace computationally

expensive model evaluations has been suggested recently

(Néelz et al. 2007; Krupka et al. 2007).

The concept of fast inundation models relies heavily on

replacing time-consuming simulation models with a sim-

plified model structure that is much faster but retains suf-

ficient accuracy upon which to base suitable decisions. The

requirements of RFSMs are therefore fast computation

linked to sufficient accuracy and numerical robustness.

Evaluation of RFSMs is normally based on two criteria:

(1) a good overall agreement of the water depth and (2) a

good overall agreement of the flood extent when compared

with SWEMs. The use of fast models has only recently

(Krupka et al. 2007; Lhomme et al. 2008; Liu and Pender

2010; Liu et al. 2009) become a topic of interest. Krupka

et al. (2007), Liu and Pender (2010) and Lhomme et al.

(2008) developed three similar rapid flood spreading
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models (RFSMs) using a heuristic kind algorithm, called

cellular automata (CA). The CA has attracted much

attention and has been widely applied to problems in

almost all research fields in the past two decades (Guo et al.

2007). The CA has attracted much attention and has been

widely applied to problems in almost all research fields in

the past two decades (Guo et al. 2007). Krupka (2008)

proposed a rapid one-direction spilling flood inundation

model. The model was divided into two parts: in pre-cal-

culation, an array of flood storage cells is constructed from

a digital elevation map (DEM) of the flood risk area. In the

inundation routine, a specified volume of flood water is

distributed across the storage cells. The water will spread

from a cell to its lowest neighbour with a constant driving

head. The spatial measure of fit and the RMSE of flood

depth prediction were used to evaluate the performance

between a more complex hydrodynamic model (TUFLOW)

and the RFSM. The spatial measure of fit gives the per-

centage agreement in flood prediction and RMSE gives an

indication of agreement in flood depth prediction in these

flood cells. The rapid simulation undertaken for the

Thames mead site took less than one second. Similar flood

extent predictions to those by TUFLOW were obtained as

long as a reasonable estimate of constant extra head is used

(Krupka 2008). Liu and Pender (2010) described an

improvement on the previous RFSM as it dynamically

adjusts the head driving the flood flow to account for the

rate of flood inflow and the frictional resistance of the

floodplain. This allows the RFSM to adapt predictions of

inundation extent to surface characteristics to the area over

which the water is spreading. Improvements in this tech-

nique have been applied to the same catchment. This

demonstrates that the method significantly improves the

level of agreement between the proposed RFSM and a

SWEM when compared with the performance of a previous

spreading algorithm. Similarly, Lhomme et al. (2008)

described improvements to the rapid flood spreading model

that focused on incorporating additional physical process

within the spreading algorithm (multiple spilling and fric-

tion). This improved model was applied to a number of

different sites (Carlisle, Cumbia, UK; River Brit, Dorset,

UK; Boston, East Anglia, UK; River Lee, London, UK)

and compared well with simulations obtained using the

TUFLOW. The mean deviation, the fit and bias of pre-

dicted depths were used to evaluate performance by

quantifying the matching of the flood extent from both

models. These test results suggested that the RFSM was

capable of producing comparable predictions using a

computationally less expensive technique (run time typi-

cally \5 s). In particular, they reported that incorporation

of multiple spilling and friction effects in the algorithm had

a significant benefit in improving the model predictions for

flat floodplains.

Recently, the attention of flood inundation modellers has

focused on more complex urbanized catchments, where the

value of assets at risk is greater (Neal et al. 2009). How-

ever, instances where the accuracy of the proposed RFSM

simulation has been assessed against field observations of

inundation extent or water surface elevation are rare to

date, due to lack of validation data. Inundation extent data

in urban areas are rare because it is difficult to obtain high-

resolution imagery that coincides with the flood peak. The

aim of this paper was to assess the predictability of rapid

flood spreading model using cellular automata and present

a test case for model validation in urban areas. In addition,

we propose a new method to apply the RFSM to multiple

inflows of Carlisle, UK.

2 Rapid flood inundation model using cellular

automata

2.1 Basic algorithm

Cellular automata are spatially and temporally discrete

dynamic systems characterized by local interaction, self-

production and universal computation (Chopard and Droz

1998). A standard cellular automaton consists of a regular

grid of cells, each in one of a finite number of states. At

every modelling step, the states of all cells are updated

synchronously by an identical set of transition rules. For

each cell, the updating only involves the previous state of

the cell and of its predefined neighbours. Despite the

simple principles of cellular automata, very complex

behaviours can be generated (Guo et al. 2007). The rapid

flood spreading model consists of two parts: (1) a pre-

calculation routine, in which an array of flood storage cells

is constructed from a digital elevation map (DEM) of the

flood risk area; and (2) an inundation routine, in which a

specified volume of flood water is distributed across the

storage cells (Krupka et al. 2007). The pre-calculation

process identifies low points on the DEM and expands

these outwards in a manner similar to a growing area of

ponded water. The size and number of storage cells are

controlled by two flood cell parameters—the minimum

area of a flood cell and the minimum depth of a flood cell.

Thus by varying these limits the terrain can be represented

at several different spatial resolutions ranging from very

many small pools to very few large pools. Once the flood

risk area is covered with viable cells, links (potential

flow paths) between neighbouring cells are identified

by searching for the lowest elevations on the inter-cell

boundaries. Finally, volume-elevation curves are con-

structed for each cell from its topography, for use in the

inundation routine. Figure 1 shows the expansion process.

In inundation routine, the water will spread from a big cell
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to its lowest neighbour with a constant extra head (see

Fig. 2). The entry point of the water to the flood risk area

and the total volume of flood water to be spread are

determined by the modeller. The inundation calculation

begins by filling the cell containing the entry point. When

the lowest link to a neighbouring cell is reached, the entry

cell stops filling and the neighbouring cell fills until its

water level reaches its lowest link, at which point the next

cell begins to fill (see Fig. 3). This process continues until

all the floodwater has been transferred to cells. A pseudo-

code version of the standard one-directional spilling RFSM

algorithm is shown below:

• Initialize the four parameters: the minimum cell plan

area (Amin), minimum cell depth (Dmin), total volume

of water for spreading (total_volume) and constant

driving head Dz.

• Divide the big floodplain into the small number of n big

flood cells based on two parameters Amin and Dmin.

• Save the water level versus volume for each big flood

cell in a file and its neighbours and link water levels of

its neighbours.

• Set the volume_sum = 0.

• Set the start location for spreading and the current flood

cell becomes active.

• Boolean (i) = 1//start big flood cell becomes active.

• Set the water level for each big flood cell = its lowest

digital elevation data.

• Do while (volume_sum \ total_volume).

• Find the next active grid based on current active cell’s

neighbour’s water level data.

• Next active index = p.

• Set current active flood cell water level:

• If the current flood cell is dry (Boolean (i) = 0) then.

• Water_level (i) = water level of its lowest link

level ? driving head.

• Else the current flood cell is wet (Boolean (i) = 1).

• Water_level (i) = water_level (i) ? driving head.

• Endif.

• Volume_sum = volume_sum ? current_volume//

record the volume of water that has been spread so far.

• Endwhile.

A simple artificial test terrain is used to demonstrate the

CA algorithm. The domain in Fig. 4a consists of six

depressions that have been identified by the precalculation

routine. All compartments have plan areas of 20,000 m2,

flat bottoms at a level of 10.0 metres and are separated

from their neighbours by walls. The elevation of the inter-

cell walls, which act as the links between cells are depicted

in Fig. 4a. A wall also surrounds the whole domain having

a crest at a level of 15.0 m, which ensures no water is

allowed to leave the domain. A flood incident resulting in

the flooding of cell 3 is simulated. The total volume of

inundation, which in a real scenario would be calculated

from an inflow hydrograph, is set at 55,000 m3. The extra

head value Dz of 0.3 m considered. The calculation starts at

cell 3 (Fig. 4b), which is filled up to the level of the lowest

link (10.3 m) plus the extra head value (?0.3 m), because

cell 2, which will be linked in the next step, is dry. Cell 2 is

activated (Fig. 4c). The water level rises to the level of the

lowest link, which is the link back to the cell 3. The extra

head value is not added to cell 2, because cell 3 has already

been flooded. Figure 4d shows the next step in which both

cells 2 and 3 are active. The next lowest link is at the level

of 10.4 m to cell 5. The extra head is applied to both active

cells, because cell 5 is dry. Depths in cells 2 and 3 then rise

to 0.7 m. Next, cell 5 is active while cells 2 and 3 are

inactive (Fig. 4e). There are two lowest links from cell 5 to

4 and to cell 6, which are both dry; hence, the extra head is

Fig. 1 An example of expansion process

Fig. 2 An example of a flood distribution

Fig. 3 One-directional spilling process
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applied to cell 5 and the depth in this cell increases to

0.5 m. In Fig. 4f, cells 4 and 6 become active. The lowest

links from these cells lead back to cell 5, which is already

flooded. Hence no extra head is applied to cell 4 and 6. All

three cells 4, 5 and 6 are now active. The lowest link from

these three cells leads back to cell 2, which has been

flooded before—no extra head is applied to cells 4, 5 and 6

(Fig. 4g). However, the depths in cell 4 and 6 increase to

0.4 m. In the next step, cells 2 and 3 also become active

(Fig. 4h). Now the lowest link from all active cells is the

internal link between cells 3 and 6, which both have

already been flooded; hence no extra head is applied.
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The water level is increased only in cells 4 and 6 to the

depth 0.5 m so they reach the level of the current lowest

link (10.5 m between cells 3 and 6). The total volume

check is applied to stop the calculation when all the

available volume has been spread. Figure 4i shows that the

water level has been iterated and rose to give a depth of

0.55 m in cells 4, 5 and 6. It should be stressed that Fig. 4i

depicts maximum depths experienced by every cell during

the inundation, not the final depths. A realistic Dz param-

eter value needs to be selected to well represent the real

event. No guidance on this parameter value is available in

the literature; hence the model needs to be calibrated to

find optimum value (Krupka 2008).

2.2 The proposed method for multiple inflows

of RFSM using CA

Here, we propose a new method to apply the RFSM using

CA to multiple inflows problem:

1. We set the main inflow location as the spreading

location using the RFSM. This is because the flooding

is predominantly the result of overflow from the main

river.

2. The different constant driving head values of flood

cells are adjusted to get a good prediction.

In this paper, we will test prediction accuracy of

the proposed method to Carlisle, UK, with three inflows

compared with a SWEM (ISIS2D) and measured data.

3 Model parameters and objective functions

A brief description of calibration parameters used is given

in Table 1. In order to evaluate the performance of the

RFSM, it is necessary to formulate numerical performance

measures that reflect the different objectives. Two objec-

tive functions (each corresponding to the goodness-of-fit

criteria) are formulated as follows:

F1ðhÞ ¼
Num SRFSM \ S2DModel=Obs

� �

Num SRFSM [ S2DModel=Obs

� � ð1Þ

F2ðhÞ ¼ MAE ¼ 1

n

Xn

i¼1

h2dmodeli=Obsi
� hRFSMi

�� �� ð2Þ

where the Num function gives the number of members of

the set, SRFSM and S2DModel/Obs represent the sets of pixels

classified as wet by the rapid flood inundation model and

by SWEM or observed data, respectively, and i is the i’th

pixel of the domain consisting of n pixels. The numerator

Table 1 RFSM parameters

Model

parameters

Description Lower

bound

Upper

bound

Amin Minimum cell plan area (m2) 500 50,000

Dmin Minimum cell depth (m) 0.1 2

Dz Constant driving head for RFSM (m) 0.001 2

Fig. 5 5 m grid resolution

digital elevation data of

Carlisle, UK and two gauges

(Botcherby Bridge and Denton

Holme)

Fig. 6 Inflows to Carlisle model from the Rivers Eden, Petteril and

Caldew
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represents the intersection of the two flood extent maps

while the denominator represents their unification. In case

of total agreement of flood extents, F1 would become equal

to 1, while in case of zero agreement F1 would be 0. The

higher the F1 value, the better predictor of the flood extent

the parameter set is. The F2 assesses the quality of water

depth prediction in these pixels. Therefore, the second

measure is used—a mean absolute error (MAE) of the

flood depth predictions compared with a SWEM result,

where hRFSMi
and h2dmodeli=Obsi

are predicted water depths in

the i’th pixel in rapid flood inundation model and the

SWEM or observed data. The lower the MAE value, the

better the agreement between the SWEM and RFSM pre-

dictions. The development of flood risk analysis has

focused mainly on the selection of a single objective

measure of flood extent and water depth. However, prac-

tical experience with hazard analysis suggests that no sin-

gle-objective function is adequate to measure the ways in

which the model fails to evaluate the important charac-

teristics of the observed data. In order to successfully

measure flood hazard of a 2D model, multiple criteria

should be considered.

4 Experiment setup and result

The RFSM was tested on the Carlisle floodplain, in UK.

The Environment Agency of England and Wales (EA)

provided a digital surface model (DSM) of the study site,

generated from an airborne laser altimetry (LiDAR) survey

undertaken in March 2002 and updated along the River

Caldew in November 2005. These data were post-pro-

cessed by Mason et al. (2007) to produce a digital elevation

model (DEM) (Fig. 5) that includes buildings but not

vegetation and a digital terrain model (DTM) without

buildings or vegetation. Simulations obtained from a

Fig. 7 Flood extents of

Carlisle using ISIS2D and

RFSM at peak volume on the

floodplain
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SWEM (ISIS2D) and measured data were therefore used as

the basis of comparison. The study case was modelled

using ISIS2D. At the core of ISIS2D, there are two solution

methods that are specifically developed to tackle different

types of hydraulic conditions: alternating direction implicit

(ADI) and total variation diminishing (TVD) finite differ-

ence schemes. We choose to run a 15-m grid model for the

experiment using ISIS2D with ADI method. A value of

Manning’s n = 0.05 was used in river channels and

n = 0.04 was used on floodplain. The computational time

was about 1 h for the 15-m grid model (with 1 s time step)

on an Intel core 2 Quad CPU 2.83 GHz and 3 GB of RAM.

The hydrographs for each river are shown in Fig. 6. It was

assumed that all flow entered the model domain via these

river channels. Flow was allowed to leave the domain as a

free surface flow just west of the floodplain, shown in

Fig. 5.

The start of spreading location is the upstream of Eden

River using RFSM (see Fig. 5). This is because the

flooding is predominantly the result of overflow from the

main river. Figure 7a, b shows flood extent predictions of

peak volume of water obtained using ISIS2D compared

with the RFSM, and Fig. 8 shows final flood extent pre-

diction on the floodplain using ISIS2D. The risk is the

greatest of peak volume of water on the floodplain for the

flood risk analysis, so we calculate the performance sta-

tistics of Fit and MAE for the flood extent prediction of

peak volume of water is shown in Table 2. The RFSM is

been shown to compare well against ISIS2D for the Car-

lisle, producing the prediction of flood extent in a signifi-

cantly shorter run time (typically \2 s) but there is about

0.25 m difference of water depth prediction between the

RFSM and ISIS2D based on MAE measure. In order to

measure the prediction accuracy of the RFSM and ISIS2D,

we compared their water level predictions with measured

data in two gauge stations (Botcherby Bridge and Denton

Holme) in Fig. 5. With respect to the AE measures in

Table 3, the RFSM using CA has a better performance

compared with ISIS2D. The large difference between

ISIS2D prediction and measured data could because the

coarse grid data (15 m resolution grid) was used to get

quick running time (about 1 h) on the single PC for the

Fig. 8 Final flood extent and

water depth using ISIS2D after

72 h

Table 2 Performance statistics using RFSM

Flood extent prediction of peak volume of water using RFSM

MAE 0.25

Fit 86.28 %

Table 3 Performance statistics

of peak volume
Test locations Measured

data (m)

Water level

using RFSM (m)

Water level

using ISIS2D (m)

Botcherby Bridge 16.002 16.1330 16.57716

AE between measured data and

RFSM/ISIS2D for Botcherby Bridge

0.1310 0.5752

Denton Holme 15.2920 16.1350 16.6091

AE between measured data and

RFSM/ISIS2D for Denton Holme

0.8430 1.3171
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long simulation period (around 72 h). The most sensitive

parameter of RFSM is minimum cell depth using local

Morris method (Liu and Pender 2010; Morris 1991). The

model parameters (Amin, Dmin, Dz) need to be calibrated

using the multi-objective optimisation algorithms for a real

application (Liu and Pender 2011). The optimal parameters

(Amin = 6,000, Dmin = 0.6 and Dz = 0.6) were obtained

after calibration. For a more detailed description of auto-

matic calibration and its applications the reader is referred

to Liu (2009).

5 Conclusions

Simulating flood inundation problems usually requires a

large amount of computation time for high-resolution data.

The focus of this research was to develop a fast inundation

model that produced predictions comparable with those

obtained from 2D shallow water equation models or

observations. The RFSM using CA has been applied to

multiple inflows of Carlisle, UK. This experiment showed

that the water depth and flood extent predictions obtained

were comparable to measured data and ISIS2D simulated

results. The evaluation scheme considers numerical per-

formance measures of two different objectives: (1) flood

extent and (2) water depth. Work is currently undergoing to

include (1) velocity prediction and (2) multi-objective

calibration in the RFSM.
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Néelz S, Hall J, Pender G (2007) Improving the performance of fast

flood inundation models by incorporating results from very high

resolution simulations. In: Proceedings of flood risk assessment

II conference, Institute of Mathematics & its Applications,

Southend on Sea, pp 1–9

Urban flood event simulation 37

123


	Carlisle 2005 urban flood event simulation using cellular automata-based rapid flood spreading model
	Abstract
	Introduction
	Rapid flood inundation model using cellular automata
	Basic algorithm
	The proposed method for multiple inflows of RFSM using CA

	Model parameters and objective functions
	Experiment setup and result
	Conclusions
	Acknowledgments
	References


