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Abstract The analysis of daily living human behavior

has proven to be of key importance to prevent unhealthy

habits. The diversity of activities and the individuals’

particular execution style determine that several sources of

information are normally required. One of the main issues

is to optimally combine them to guarantee performance,

scalability and robustness. In this paper we present a fusion

classification methodology which takes into account the

potential of the individual decisions yielded at both activity

and sensor classification levels. Particularly tested on a

wearable sensors based system, the method reinforces the

idea that some parts of the body (i.e., sensors) may be

specially informative for the recognition of each particular

activity, thus supporting the ranking of the decisions pro-

vided by each associated sensor decision entity. Our

method systematically outperforms the results obtained by

traditional multiclass models which otherwise may require

a high-dimensional feature space to acquire a similar per-

formance. The comparison with other activity-recognition

fusion approaches also demonstrates our model scales

significantly better for small sensor networks.

Keywords Multisource fusion � Hierarchical

classification � Weighted decision � Binary classifiers �
Activity recognition � Wearable sensors

1 Introduction

The enhancement of the quality of life of the elderly is one

of the most important goals considered in the ambient

assisted living framework (European-Commission 2011).

For that purpose, the main idea is to reduce the innovation

barriers of forthcoming promising markets, and to lower

future social security costs through the use of the potential

offered by the information and communication technolo-

gies (ICTs). The motivation of this new funding activity is

in the demographic change and ageing in the developed

countries, which implies not only challenges but also

opportunities for the citizens, the social and healthcare

systems as well as the industry or the market.

One of the main premises to guarantee an adequate

quality of life is to define proactive policies. The idea is not

just to act when the subject requires to be treated but to

avoid such situations as far as possible. Since the eventual

health problems might be tackled before coming true, it is

likely the subject will not experience the disease and

consequently not require future assistance. This may help

to reduce the costs required to afford the treatments, which

in some cases are particularly expensive. Obviously some

damages associated with uncontrollable factors may not be

averted even considering proactive conducts. Nevertheless,

some of the most relevant may be prevented. As an

example, cardiovascular diseases, cancer or diabetes lead

causes of death and disability in the United States

accounting for 60–70 % of all deaths in the Region (WHO

2006). These diseases share common risk factors which
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include tobacco use, physical inactivity, obesity and

hypertension. There is sufficient evidence these diseases

can be prevented and controlled through changes in life-

style, public policies and health interventions. If these risk

factors were eliminated, at least 80 % of all heart diseases,

strokes and type-2 diabetes and over 40 % of cancer cases

could be prevented (WHO 2005). Undoubtedly, this is an

encouraging example which reinforces the need of the

integration of preventive methods to guarantee a better

quality of life and a sustainable healthcare system.

The analysis of the daily living subjects’ behavior is of

key importance to identify possible unhealthy conducts.

The traditional methods require the direct intervention of

the users, normally filling out periodic questionnaires and

reports. One of the main problems of this kind of tech-

niques is the memory limitations of individuals and

intentional misreport. An increasing lack of interest in the

report task is experimented by the user due to the required

continuous involvement. These issues along with problems

with reliability, validity and sensitivity have been com-

prehensively summarized in Shephard (2003).

Nevertheless, these problems may be faced with the use

of systems which perform the monitoring task without the

users’ participation. The latest advances on the sensor

monitoring technologies allow us to define a new generation

of systems which may automatically and autonomously

perform the recordings. For example, the assessment of

tobacco use (Sazonov et al. 2011), digestive disorders

(Sazonov et al. 2010) or the sedentariness (Staudenmayer

et al. 2009; Bonomi et al. 2009) may be performed without

direct intervention of the user.

A detailed description of the subject behavior may help

to have a better understanding of the eventual health

problems the individual might suffer. Nevertheless, the

dimensionality of the context and activity-recognition

problems is sometimes misunderstood and some of the

proposed methods just succeed in restricted scenarios

(Warren et al. 2010). Because of that the current tendency

is to define sensor networks on and around the subject

which take into consideration a broad representation of the

individuals’ behavior and their surroundings (Roggen et al.

2010). This is supported by the idea that decisions based on

the collectivity are required to deal with the complexity of

the activity-recognition problem. Nonetheless, the pro-

posed fusion models generally lack of scalability and/or

reliability capabilities since the same importance is usually

given to the decisions provided by all the sources. This is

particularly harmful when small sensor networks are con-

sidered. Here, we are on the definition of a fully scalable

fusion method which supports the efficient combination of

different sources of information through considering the

particular discriminatory potential of each one. The idea is

further extended to the activity or class level, since each

source may be particularly suitable for the recognition of a

subset of the whole set of target activities.

The rest of the paper is organized as follows. In Sect. 2,

a brief summary of the main activity-recognition issues and

the classical methodology is introduced. Section 3 presents

the most common machine-learning techniques used in

activity recognition and the proposed fusion method. In

Sect. 4, the considered models are tested for a particular

case. The results are subsequently discussed in Sect. 5 and

our final conclusions are summarized in Sect. 6.

2 Activity-recognition issues

2.1 Sensor modalities

The complexity of human daily living activity recognition

resides on the diversity of possible executions and context

situations that may refer to the same activity. Since many

of them are related to the body movement (or absence), the

use of motion sensors has become one of the most recurrent

alternatives in the literature.

For the motion analysis, two types of sensors are gen-

erally used depending on whether they are placed on

(wearable sensors) or around (ambient sensors) the subject.

In principle, the use of ambient sensors such as cameras or

microphones is restricted to particular scenarios where

their deployment is feasible. Even when practicable, there

exist some additional constraints that may difficult their

use (subject’s privacy, occlusions, ambient noise, etc.).

Consequently there is an increasing tendency to the use of

on-body sensors lacking such kind of limitations.

From the range of sensors that may be attached to the

body, the inertial sensors are the most exhaustively used,

providing good results for different setups and activities.

Nevertheless, one of the main drawbacks is the obtrusive-

ness. Several considerable-sized devices attached to dif-

ferent parts of the subject’s body in a likely uncomfortable

way may not be considered a realistic daily wearable

solution. Fortunately sensors miniaturization, battery-

consumption reduction and lower cost production allow us

to envision a new generation of tiny sensors to be inte-

grated in ‘‘wearable things’’ such as the subject’s clothes

(Amft and Lukowicz 2009).

2.2 Exogenous factors

There are some well-known characteristics of the main

daily activities that in theory allow us to accurately dis-

criminate them. For example, depending on the intensity of

the movements, one should be able to distinguish between

some exercises such as walking and running, which nev-

ertheless share a common execution style. The orientation
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of the body may provide useful information about the

posture when carrying out low intensity or quasi-static

activities (e.g., lying down vs. standing still). However,

there exist exogenous factors that difficult the recognition

task. Age, weight, height or other subject-related features,

as well as ambient and context-related factors (e.g., subject

carrying items, unstable floor, etc.) may determine that

notably different data recordings could refer to a similar

activity. As an example, one cannot expect to register the

same kind of data when an adult is cycling as when an

elder does; similarly, the gait may differ when walking on

the ground, grass or a frozen surface.

2.3 Activity-recognition chain

To deal with most of these problems, a general methodology

is proposed. Classically referred to as activity-recognition

chain (ARC), a general scheme is shown in Fig. 1. From left

to right, a set of M sources (sensors) delivers raw unpro-

cessed signals (uj) representing the magnitude measured

(e.g., acceleration). The signals are usually preprocessed

(pj) to avoid noise and diverse nature artifacts, typically

through a filtering process. To capture the dynamics of the

signals, these are partitioned in segments of a certain length

(sjk). Different techniques are devised for that purpose,

mainly based on windowing or event-activity-based seg-

mentation. Subsequently a feature-extraction process is

carried out to provide a handy representation of the signals

for the pattern-recognition stage. A wide range of heuristics,

time/frequency domain and other sophisticated mathemat-

ical and statistical functions are commonly used. The fea-

ture vector is provided as input of the classifier (f(sjk)),

which ultimately assigns the activity or class recognized (ci)

to one of the N considered for the particular problem. The

last optional stage corresponds to a fusion model that may

combine the decisions of each individual ARC to improve

the reliability of the recognition system. An extensive top-

ical review of the main stages of the ARC may be seen in

Preece et al. (2009b).

Each stage of the ARC may suffer from different kinds

of difficulties. At the signal level, and beyond the special

characteristics of each sensor, the data may contain arti-

facts and noise. Depending on the type of signals and target

activities the classical preprocessing techniques may be

more or less appropriate. For example, some filtering

processes may imply an information loss. Since the even-

tual removed data can nevertheless be informative for some

of the considered activities, the selection of an adequate

preprocessing technique should be carefully studied. With

respect to the segmentation process, it is not clearly defined

which window data length must be considered. In general it

depends on the complexity, duration and granularity of the

activities among other considerations. The feature extrac-

tion process usually constitutes the computational bottle-

neck of the ARC. Since the final goal may be to define a

real-time activity recognition system it is important to look

for features which are not too much costly in terms of

resources or reduce the number of features required to the

minimum possible (efficiency optimization). Such reduc-

tion may in general help to define simpler classifiers. The

other problem is the search of the optimal feature vector

(performance optimization). Ideally, all the possible com-

binations of the extracted features should be assessed,

implying an exponential complexity search problem (On).

Fig. 1 Multiple activity recognition chain (M-ARC). M sensors

deliver raw signals (uj) which are subsequently processed (pj). The

signals are k-partitioned (sjk) and a set of features (generically defined

as f) are extracted from them, possibly different for each chain. The

feature vector is used as input to the classifier entities. Each classifier

yields a class on a N-class problem which may be combined through a

fusion decision method. The indices are respectively defined for all

j ¼ 1; . . .;M; k ¼ 1; . . .;K; i ¼ 1; . . .;N:
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Filter feature-selection methods allow us to reduce the

search, but in general, they do not ensure the best subset of

features to be selected. On the other hand, wrapper meth-

ods evaluate the features’ capabilities when used on the

classifiers, thereby providing a more reliable representation

of the feature potential but likely requiring a huge amount

of computational resources and time. On top of the ARC,

machine-learning methods are more specifically affected

by problems related to their practical use, normally

unbalanced data or boundaries convergence. The generality

of the ARC definition determines all these problems may

be faced in a different way depending on the considered

sensor modalities. However, not all the solutions are in line

with the definition of a usable model with independence of

the particular context and setup.

Even whether the ARC is optimized, it is clear that some

sensors may be more specialized in the recognition of some

activities. Consequently, to increase the recognition scope,

a combination of sensors is suggested. This combination or

fusion may be performed at each level of the ARC (Sharma

et al. 1998). For example, the sensor fusion may be per-

formed at the feature-extraction level, thus defining a sin-

gle feature vector composed by the independent features

extracted from each sensor (Mantyjarvi et al. 2001). The

arising problem is that one might have to deal with a high-

dimensional feature space problem, which may difficult the

feature selection and classification process as described

above. This approach is not scalable for an online learning,

since the inclusion of a new sensor requires to redefine the

feature vector and retrain the whole system.

More interesting may be to define a fusion scheme acting

at the classification level (Fig. 1). The idea is basically to

combine the decisions delivered by each individual ARC in

one single reinforced decision. In general, the system based

on the fusion will be more accurate and robust than the

individual ARCs. Furthermore, unlike (the) fusion at the

feature level, the addition or removal of sensors would not

imply to retrain the initial systems but to update the decision

structure parameters. The main problem of the decision

fusion is to define an accurate model which takes into

account robustness and scalability. That means the model

should be accurate enough with independence of the

topology or the number of sensors considered.

3 Classification methods for activity recognition

3.1 Direct multiclass models

As Fig. 1 shows, a single ARC may be defined for each

source or sensor ideally constituting a complete autono-

mous recognition system. Different classification schemes

may be used on top of the single ARCs.

Decision trees (DT) proved to perform well in combi-

nation with time and frequency domain features (Bao and

Intille 2004; Maurer et al. 2006; Parkka et al. 2006)

although they were less accurate for other setups (Ermes

et al. 2008). DT algorithms examine the discriminatory

ability of the features one at a time, creating a set of rules

that ultimately leads to a complete classification system.

Due to its simplicity, speed and the absence of a training

phase, the K-nearest neighbor (KNN) algorithm is one of

the most used techniques in machine learning. Based on a

neighborhood majority voting scheme, the classification of

a given sample is assigned to the most common class

amongst its K-nearest neighbors. Interesting results have

been shown from its use by Pirttikangas et al. (2006) and

Preece et al. (2009a).

Another frequently used approach is based on the

Bayes’ rule. Regarding the simplicity, the Naive Bayes

(NB) algorithm may be a suitable approach as long as the

stochastical independence is guaranteed, which in practice

is normally attained. Ravi et al. (2005), Lester et al.

(2005), and Maurer et al. (2006) have used it in different

activity-recognition-related problems.

Support vector machines (SVM) is a machine-learning

technique which has become very popular in the last years.

The promising results recently obtained in previous studies

as Parera et al. (2009) or He and Jin (2009) reinforce the

idea of its use.

3.2 Fusion

There are different reasons supporting the use of meta-

classifiers or decision fusion models in the activity-recog-

nition field. One of the most important is to increase the

efficiency and accuracy of the recognition system. A

multistage combination of rules in principle allows us to

fuse the decision of simple classifiers using a small set of

cheap features. Unlike signal or feature-level fusion

approaches, the fusion at the classification level reduces the

required complexity at the lower levels of the ARC,

increasing as well the robustness and adaptability of the

recognition system (Zappi et al. 2007). Moreover the

models may be, in general, scaled to a large number of

sensors, even supporting the combination of heterogeneous

sensors (Ward et al. 2006).

Even whether the fusion may be just defined at the

sensor level it may also be interesting to define it in terms

of classes (here activities). It has been demonstrated that

binary or class-specialized classifiers, in general, perform

better than direct multiclass entities (Allwein et al. 2000).

The idea then is to combine the decisions of simple binary

classifiers, specialized in the insertion or rejection of a

particular class. This reduces, in general, the feature-level

requirements through the use of more classification entities,
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which nevertheless are completely defined through a few

parameters once trained.

For the decision fusion, different schemes have been

proposed in the literature (Kittler et al. 1998). In this paper,

we focus on two fusion techniques which have been pre-

viously used in the activity-recognition field. The third one

is originally proposed as an alternative to the former ones.

3.2.1 Hierarchical decision (HD)

Some classification entities may work better on the rec-

ognition of some particular classes. Consequently it may be

reasonable to rank the classifiers’ decisions (o the classi-

fication entities’ decisions). The idea is to give more

importance to those classifiers which generally behave

better, so allowing them to decide first. Thus, the decisions

are made in strict order of classification capabilities (the

ranking is established according to performance criteria). If

the decision is negative, the next classifier in the hierarchy

is asked and so on.

The main problem of this model is the dependence of

the decisions of the low-level entities on the upper ones. If

an upper-level decision-maker fails, the error propagates

down the hierarchy and the final decision is likely erro-

neous. It is true that the decision error is minimized with

the hierarchical configuration, since the best decision

entities are on top of the hierarchy. However, the potential

decisions of the upper-level entities basically determine the

eventually adopted decision, even when the rest of the

entities may be only slightly less accurate. This translates

into a model behaving satisfactorily when at least a few

entities are reliable enough, but may neglect the potential

of the rest of the lower-ranked decision entities.

3.2.2 Majority voting (MV)

To give the same opportunities to all the decision entities, a

democracy-based model may be defined. The majority

voting or plurality voting is a naive approach relying on an

equality scheme. The final adopted decision is the one

obtaining more votes from the participant decision entities.

The main properties of this method are the fairness and

decisiveness, which translate in a similar treatment of each

vote and eventually a unique resulting decision.

When considering rich sensor environments, the use of

plural decision may be particularly recommended. Never-

theless, the main risk of this approach is precisely related to

the previous highlighted properties. The same significance

is given to all the decisions even when they may be dif-

ferent in accuracy. Consequently, a high degradation on the

performance is expectable in noisy environments (‘‘tyranny

of the majority’’): a minority of high-accuracy decision-

makers can be hidden by a majority of weak-decision

makers. Such kind of situations are typically depicted in

context and activity recognition, since the sensors may fail

or the setups change, with a more remarkable effect when

the dimensionality of the sensor topology is reduced (Zappi

et al. 2007).

3.2.3 Hierarchical-weighted classification (HWC)

The model we propose is a fusion technique which takes in

the advantages of the hierarchical decision and majority

voting models. The idea is to give to all the entities the

opportunity of collaborating on the decision making, but

ranking the relative importance of each decision through

the use of weights based on the individual performance of

each entity.

The HWC is composed by three classification levels or

stages (see Fig. 2). In general, for M sources of information

(sensors) and N-classes (activities), a set of M by N ‘‘class

classifiers’’ (cmn; 8m ¼ 1; . . .;M; n ¼ 1; . . .;N) is defined.

They are binary classifiers specialized in the insertion/

rejection of the class n using the data obtained from the mth

source. Each one applies a one-versus-rest strategy1, and

any type of classification paradigm may be used. This

defines the base-level or class-level classifier. The second

stage, source-level classification, is here defined by M

‘‘source classifiers’’ (Sm;8m ¼ 1; . . .;M). Source classifiers

are not machine-learning type classifiers, but hierarchical

decision models defining a classification entity strictly

speaking. These structures are composed by several class

classifiers as shown in Fig. 2, whose decisions are com-

bined through a weighting scheme. The model is replicated

at the next level, ultimately defining a decision structure

constituted by the fusion of source classifiers.

In accordance to the structure described above, a process

consisting of a few main steps is carried out to build the

complete HWC. The process starts by evaluating the

individual average accuracy of each class classifier (Rmn).

A p fold cross-validation is suggested to accomplish this

task. The whole process is repeated for each source, and a

weight is then obtained for each class classifier:

bmn ¼
Rmn

PN
k¼1 Rmk

ð1Þ

These weights represent the importance that each class

classifier will have on the source classifier decision scheme.

A specific voting algorithm is considered at this stage to

fuse the class classifier decisions into a single decision for

each source, respectively. For a source m, given a sample

xmk to be classified and being q the class predicted by the

1 Other approaches as the one-versus-one may be similarly applied,

but here, the one-versus-rest is particularly recommended to reduce

the number of classification entities.
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classifier cmn, if such class belongs to the class of

specialization (q = n), the classifier will set its decision to

’1’ for the class n and ’0’ for the rest of the classes. The

opposite is made for (q = n). The decision of the classifier n

for the class q is given by (8fq; ng ¼ 1; . . .;N):

DnqðxmkÞ ¼
1; xmk classified as q
0; xmk not classified as q

ð8q ¼ nÞ
1; xmk not classified as q
0; xmk classified as q

ð8q 6¼ nÞ

8
><

>:
ð2Þ

Now the output of the mth source classifier may be

computed as follows:

OmqðxmkÞ ¼
XN

n¼1

bmnDnqðxmkÞ ð3Þ

The class predicted for the mth source classifier (qm)

is the class q for which the source classifier output is

maximized:

qm ¼ argmax
q
ðOmqðxmkÞÞ ð4Þ

At this stage, the source-level classifiers are completely

defined. Every source classifier may be independently used.

However, as introduced in Sect. 3.2, the fusion of sources

has been devised to be, in general, a more robust and

efficient solution. Furthermore it provides the capability of

being used in different scenarios without needing a

retraining. Similarly to Eq. 1, a weight is now calculated

for each source by first assessing the average accuracy rates

of each source classifier (Rm). This is performed through a

new cross-validation process for the already trained source

classifiers. The weight for each source is:

am ¼
Rm

PM
k¼1 Rk

ð5Þ

The output is calculated taking into account the

individual outputs obtained from each source classifier.

For a sample xk defined through the corresponding samples

obtained from each source (x1k; . . .; xMk), the output is:

OqðxkÞ ¼ Oqðfx1k; . . .; xMkgÞ ¼
XM

p¼1

apOpqðxpkÞ ð6Þ

Similar to (4) the eventually assigned class q is obtained

as:

q ¼ argmax
q
ðOqðxkÞÞ ð7Þ

At this point the HWC is simply defined through the

trained class classifiers (cmn), the class-level weights (bmn)

and the source-level weights (am).

4 Results and analysis

4.1 Experimental setup

To compare the capabilities of the described models, a

well-characterized inertial sensor-based dataset, highly

cited in the activity-recognition field, is used (Bao and

Intille 2004). It comprises the acceleration data registered

for 20 subjects aged 17–48 while performing a set of daily

living activities. From the whole set, the most representa-

tive nine are selected (Fig. 3), covering from intense

activities such as running or cycling to fitness exercises like

stretching, or relaxed activities such as sitting or lying

down. The movements were recorded through five biaxial

accelerometers attached to the subjects’ right hip, dominant

wrist, non-dominant arm, dominant ankle and non-domi-

nant thigh, respectively.

4.2 Methods

According to the ARC presented in Fig. 1, the data are first

preprocessed. The recorded signals are affected by spurious

spikes, offset discontinuities and electronic noise. A 20 Hz

cutoff low-pass elliptic FIR filter is used to remove such

anomalies. This is supported by Bouten et al. (1997) and

Mathie et al. (2004) who state a 20 Hz sampling rate is

sufficient to assess habitual daily physical activity. The

signals are subsequently partitioned in windows of data of

approximately 6 s as suggested in Bao and Intille (2004). It

is assumed an independent system provides the start and

end point of the actions.

To analyze the required classification complexity for

each presented method, different feature vector lengths are

α

α

α

β

β

β

β

β

β

β

β

β

Fig. 2 Structure of the hierarchical weighted classifier. Problem with

N-classes and M sources
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tested (1, 5, 10 and 20 features). Here, a subset of the

complete set of features proposed in a previous work is

considered (Banos et al. 2012). For that purpose, the best

features ranked for each sensor are accordingly selected

through the use of a ROC feature selector (Theodoridis and

Koutroumbas 2008), until reaching the feature vector

lengths defined for each case.

The classification process is carried out through the use

of the different methods presented in Sect. 3. The machine-

learning paradigms used for both direct and fusion models

correspond to those presented in Sect. 3.1. In particular, a

C4.5 implementation (Duda et al. 2000) is used for the DT.

For the SVM an RBF kernel with automatically tuned (grid

search) hyper-parameters c and C is used (Cristianini and

Shawe-Taylor 2000). Likewise the K values for the KNN

models (Cover and Hart 1967) are obtained. Finally, the

NB approach presented in Theodoridis and Koutroumbas

(2008) is considered.

Binary or class-specialized classifiers are trained for the

fusion approaches, while multiclass models are used for the

direct approaches. In all cases, a tenfold cross-validation

process is applied. A reserved subset of the training data

(normally representing a 30 % of the initial dedicated data)

is particularly used for the HWC weights assessment. The

process is repeated 100 times for each method to ensure

statistical robustness.

4.3 Evaluation

Figure 4 depicts the accuracy differences among the direct

multiclass models, based on the most accurate sensor (here

the wrist), and those based on the fusion of all the available

sensors (the proposed HWC technique is considered for

that purpose). Clearly the fusion approach systematically

outperforms the direct ones with independence of the

considered machine learning paradigm. This demonstrates

the potential of the fusion of different sensors with respect

to the use of just one sensor. Moreover, we want to stress

that more than 95 % accuracy is obtained for some fusion

models based on KNN or SVM through the use of one

single feature for each class-level classifier. This implies an

outperformance of up to 20 % for the KNN-based models.

Even whether an increment in the number of features

allows, in general, the models to improve their recognition

capabilities, up to 20 features are required for the best

direct model to achieve an accuracy comparable to the one

achievable by means of the fusion.

In Fig. 5, the performance of the different fusion models

is presented. The confusion matrices for each paradigm are

shown, since these are more informative than the accuracy

rates (in any case calculable from the ‘‘diagonalness’’ of

the matrices). A general overview allows us to confirm the

HWC model as the most reliable. Even when a single

feature is used for each classification entity the confusion

matrices are almost diagonal, thereby demonstrating a high

accuracy level. An increment on the number of features

improves, in general, the classification capabilities but for

the MV. The observed enhancement of the HD models may

be explained with the results previously analyzed for

Fig. 4. Since better individual sensor recognition systems

are generally obtained as more features are used, the

hierarchy down-propagated error is minimized. This

determines the decisions are, in general, made on top of the

hierarchy, and the error reduced. From a statistical point of

view, MV is easily corrupted when the number of low-

performance decision entities overtake the accurate ones.
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In such circumstances, the potential of those entities

offering a high performance may be hidden by a majority

of less-accurate classification entities, introducing a sys-

tematic error which degrades the performance of the whole

recognition system.

With regard to the discriminant capabilities at the

activity level, different results are also depicted. Particu-

larly, diverse are the misclassifications for the HD model

(more as the feature vector length reduces). KNN with one

feature and SVM with five or less provide the poorest

results, but the best when ten or more features are con-

sidered. A reduced feature vector suffices for some activ-

ities as ‘‘sitting and relaxing’’, but it is not enough for

most of the rest. In such case, insertions and rejections

are mainly determined by a few high-ranked classifiers,

thereby hiding the decisions provided by a majority of less

accurate class-specialized classifiers. This is encountered to

coincide with the classes with more misclassifications. For

MV the decisions seem to be biased, systematically mis-

classified as ‘‘walking’’. This is not because there exists a
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tendency towards interpreting the considered activities as

such class, but rather due to the source-level class criterion

selection. When all class classifiers reject the class, all

classes receive the same number of votes, thereby on equal

terms, the first class in order (i.e., ‘‘walking’’) is the

eventually selected. Fortunately both situations are effi-

ciently overcome when the HWC is considered. The

weighting of the decisions provided at the activity level is

definitely important to avoid the misclassifications in the

above cases. Indeed, the performance is almost absolute

but for ‘‘stretching’’ and ‘‘strength training’’ activities,

which are a little less distinguishable. This is probably due

to the motion similarities between these two activities.

One of the major drawbacks of the fusion approaches is

the drop on the performance for small sensor networks. To

prove the scalability of the proposed technique, Fig. 6

depicts the confusion matrices when different number of

sensors is used. We show all the possible combinations of

sensors, using the HWC with SVM and a single feature for

the class-level entities (the simplest realization). Moreover,

this analysis also helps us to identify which body sensor

locations are the most interesting for the recognition task.

The wrist sensor is shown to be the most reliable of the

considered five. The fusion at the class-level works rea-

sonably well but for the arm (A) and ankle (K) sensors.

Conversely to the other previously analyzed fusion

approaches, the combination of good-quality sensors with

poor-performance sensors generally results in a better

recognition system. Furthermore, the combination of sen-

sors which in principle do not provide high levels of

individual performance translates into a high discriminant

model (e.g., combination A–K). This is particularly inter-

esting for those cases when the sensors’ performance

degrades due to unexpected variations in the devices or

their deployment. At any rate, the performance is clearly

improved as more sensors are considered, with almost

absolute accuracy for combinations of three sensors such as

the hip, wrist and thigh.

5 Discussion

The comparison between HWC and the rest of models here

presented exhibits the remarkable capabilities of the pro-

posed fusion technique. With regard to the accuracy of the

systems, it has been ascertained that the decisions provided

by the collectivity are more reliable than the one dependent

on one single source. That is completely reasonable, since

some of the activities may higher involve a subset of the

considered sensors as each part of the body moves differ-

ently. The natural alternative is to define the fusion at the

first levels of the ARC (signal level or feature level), but

systems based on such approach are highly constrained,

since a change on the sensor topology require a retraining

of the whole system (which in principle is not affordable in

an online context). Conversely, when the fusion is per-

formed on top of the ARC no influence on other stages is

experienced. The addition or removal of sensors and

classes basically translates into the inclusion or elimination

of the associated knowledge-inference entities, but the rest

of the originals remain identical. Then to include these

changes, the fusion parameters are just updated. This may

be performed in a negligible time, thereby allowing for

the system updating even in an online manner. These rel-

evant characteristics define HWC structurally simple and

flexible.

Now, with respect to other fusion approaches which may

share the aforementioned features, the obtained results

demonstrates HWC stands out above the rest. MV and HD

have been shown not to perform well due to different

causes. The potential of the MV approach is restricted by a

majority of less-accurate recognition entities, while HD

requires at least one decision entity performing with a

significant accuracy level (normally obtained when a sub-

stantial number of features are considered). The HWC
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Fig. 6 Confusion matrices for the HWC fusion model when all the

possible sensor combinations are considered. SVM is used as machine

learning model. Legend of the sensors: H hip, w wrist, A arm, K ankle,

T thigh
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model has been demonstrated to be both scalable and

efficient, since the model outperforms the accuracy of the

individual recognition entities independently of the number

of sensors considered. Furthermore, this is not just

restricted to the sensor level but extended to the class level.

In a previous study, we showed a first attempt for a four

activities-based recognition problem (Banos et al. 2011).

In this work, we have likewise extended the recognition

capabilities of the system to a complete set of nine activ-

ities, some of them likely similar from a body-motion point

of view. These outstanding results also reinforce the use of

the weighting at the activity or class level.

6 Conclusion

We have presented a fusion technique which combines the

capabilities of simple classification entities at the class

(activity) and source (sensor) levels. The model outperforms

direct multiclass approaches with a considerable reduction

in the dimensionality of the required feature vector.

The use of a hierarchical weighting decision scheme has

been demonstrated to significantly improve the scalability

and robustness with respect to other traditional fusion

techniques. The combination of poor decision entities leads

to a decision system which, in general, behaves better or at

worst as the best of the constituent entities.

The benefits of the presented methodology could be

similarly envisioned in changeable scenarios. In principle,

with the fusion at the classification level, the addition or

removal of classes and/or sensors do not imply to modify

and/or retrain the whole system. Only the corresponding

entities should be added or removed with a subsequent

updating of the fusion parameters, which might be per-

formed at runtime and without disrupting the normal use of

the recognition system.
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