
FOCUS

On user-centric memetic algorithms

Ana Reyes Badillo • Juan Jesús Ruiz •

Carlos Cotta • Antonio J. Fernández-Leiva

Published online: 17 July 2012

� Springer-Verlag 2012

Abstract Memetic algorithms (MAs) constitute a meta-

heuristic optimization paradigm [usually based on the

synergistic combination of an evolutionary algorithm (EA)

and trajectory-based optimization techniques] that sys-

tematically exploits the knowledge about the problem

being solved and that has shown its efficacy to solve many

combinatorial optimization problems. However, when the

search depends heavily on human-expert’s intuition, the

task of managing the problem knowledge might be really

difficult or even indefinable/impossible; the so-called

interactive evolutionary computation (IEC) helps to miti-

gate this problem by enabling the human user to interact

with an EA during the optimization process. Interactive

MAs can be constructed as reactive models in which the

MA continuously demands the intervention of the human

user; this approach has the drawback that provokes fatigue

to the user. This paper considers user-centric MAs, a more

global perspective of interactive MAs since it hints possi-

bilities for the system to be proactive rather than merely

interactive, i.e., to anticipate some of the user behavior

and/or exhibit some degree of creativity, and provides

some guidelines for the design of two different models for

user-centric MAs, namely reactive and proactive search-

based schema. An experimental study over two complex

NP-hard problems, namely the Traveling Salesman prob-

lem and a Gene Ordering Problem, shows that user-centric

MAs are in general effective optimization methods

although the proactive approach provides additional

advantages.

Keywords Memetic algorithm � Interactive evolutionary

computation � User-centric optimization � Combinatorial

optimization

1 Introduction

The need of exploiting problem knowledge inside evolu-

tionary algorithms (EAs), and metaheuristics in general, in

order to both obtain solutions of better quality and accel-

erate the optimization process has been repeatedly high-

lighted (Hart and Belew 1991; Wolpert and Macready

1997; Culberson 1998; Davis 1991). A number of different

ways to incorporate knowledge have been reported in the

literature and one can find proposals such as the design of

specific genetic operators, the definition of intelligent

representations with inherent information on them, or the

hybridization with another techniques, just to name a few,

Puchinger and Raidl (2005) and Moscato and Cotta (2010).

In this context, memetic algorithms (MAs) (Moscato 1999;

Moscato and Cotta 2003; Moscato et al. 2004; Krasnogor

and Smith 2005; Neri et al. 2012; Neri and Cotta 2012). In

this context, memetic algorithms (MAs) (Moscato 1999;

Moscato and Cotta 2003; Moscato et al. 2004; Krasnogor

and Smith 2005; Neri et al. 2012; Neri and Cotta 2012) are

probably one of the most successful proposals (in the sense

of being effective optimization methods) to date (Hart

et al. 2005).

However, both evolutionary and MAs have still evident

limitations and there still exists one main complication that

lies precisely in the difficulty to characterize the subjective

interest through a certain mathematical expression or

A. R. Badillo � J. J. Ruiz � C. Cotta (&) � A. J. Fernández-Leiva

Dept. Lenguajes y Ciencias de la Computación, ETSI

Informática, Campus de Teatinos, Universidad de Málaga,

29071 Málaga, Spain

e-mail: ccottap@lcc.uma.es

A. J. Fernández-Leiva

e-mail: afdez@lcc.uma.es

123

Soft Comput (2013) 17:285–300

DOI 10.1007/s00500-012-0893-6



algorithm that can be optimized. This difficulty is generally

common to those problems in which the search has to be

conducted (directly or indirectly, completely or partially)

in a psychological space. We speak thus about those

problems in which the search has to be conducted on

spaces comprising candidate solutions which are not easy

to evaluate mathematically.

Within the framework of metaheuristics—and more

specifically of evolutionary computing—the solution that

has been proposed is the so-called interactive evolutionary

computing (IEC). In a broad sense, IEC is an approach

based on the optimization of a certain target system, using

evolutionary computing and interacting with a human user;

in other words, the user can influence the evolutionary

process when this is being executed. Traditionally, this

interaction was based on the subjective assessment of the

solutions generated by the algorithm; in this line, see for

instance, the seminal work of Dawkins (1986) as well as

different applications in artistic fields (see, e.g., the pro-

ceedings of EvoMUSART), industrial processing of

audiovisual information, data mining or robotics, among

other fields (Takagi 2001). The common nexus of classical

IEC is the existence of a reactive search-based mechanism

in which the user provides some feedback to the demands

of the running EA.

Although IEC represents an extension to EC that makes

it useful on problems that demands knowledge provided by

human user, it is also true that classical IEC methods have

still an important limitation (that is also inherent to the IEC

model): the fatigue of the human user that is produced by

the continuous feedback that the subjacent EC technique

demands to the user. Advanced IEC techniques smooth this

drawback by extending its concept to an optimization

centered in the user in the sense that the interactive opti-

mization process tries to guess the further user interactions

and thus reduce the requirement of user interventions. This

form of optimization has been termed as user-centric

evolutionary computation (Parmee and Abraham 2004;

Parmee et al. 2008) [note that the term ‘‘Human-centric’’

has also been used instead of ‘‘user-centric‘‘ (Parmee

2007)].

There still remains an important issue to analyze: the

combination of user-centric evolutionary optimization and

MAs. As already mentioned, perhaps the most prominent

characteristic of a MA is the systematic exploitation of

knowledge about the problem being solved, and IEC rep-

resents another form of incorporating knowledge to the

problem. Therefore it seems natural to investigate a global

combination of both components, termed here as user-

centric MAs, with the goal of providing an extra dimension

to each of their constituent parts. Actually, some works

have already highlighted the benefits attainable via the use

of the human user interaction with the MA, in particular in

the context of multi-objective optimization (Dias et al.

2008; Jaszkiewicz 2004). We explore here some of these

capabilities (extended to proactive models) in this work. In

particular, this paper provides a general overview on user-

centric memetic computation, providing principles for their

design, identifying the places where a human user can

interact with the subjacent MA under the demand of this

algorithm (i.e., a reactive approach), and drawing a more

general schema for a proactive model. Two study cases

for the optimization of the Traveling Salesman Problem

(TSP) and a Gene ordering problem (GOP) are also ana-

lyzed to show the adequacy of human-guided MA-based

optimization.

2 Memetic algorithms

The adjective ‘memetic’ comes from the term ‘meme’,

coined by Dawkins (1976) to denote an analogous to the

gene in the context of cultural evolution. As EAs, MAs are

also population based metaheuristics. The main difference

is that the components of the population are active entities

that cooperate and compete in order to find improved

solutions. rather than mere passive solutions.

There are many possible ways to implement MAs. The

most common implementation consists of combining an

EA with a procedure to perform local search (LS) that is

usually done after evaluation, although it must be noted

however that the integration does not simply reduce itself

to this particular scheme. In fact, the purpose of using LS

inside a MA is to provide specific knowledge that can help

to a better optimization process (Bonissone et al. 2006).

For instance, Fig. 1 shows the classical view of a MA and

Fig. 1 Places to incorporate problem knowledge within an evolu-

tionary algorithm, according to Eiben and Smith (2003)

286 A. R. Badillo et al.

123



indicates places were problem specific knowledge, in form

of a local searcher, can be incorporated inside a specific

metaheuristic (i.e., a genetic algorithm) according to Eiben

and Smith (2003). Also, Algorithm 1 shows a general

picture where a LS can be incorporated inside an MA (note

that this classical combination follows an integrative

approach as considered in Puchinger and Raidl (2005).

This classical schema considers partial Lamarckianism

(Houck et al. 1997), in which the application of LS

depends on certain probability pLS so that LS might be

applied only to a fraction of individuals (the individuals to

which LS will be applied can be selected in many different

ways (Nguyen et al. 2007). Note that applying always the

LS in each generation of the MA (or initially on each

individual in the initial population) is not always the best

option (as shown in Sudholt 2009, for the application of LS

on each generated new individual).

In general, the underlying idea of this kind of integration

is to combine the intensifying capabilities of the embedded

LS method, with the diversifying features of MA, i.e., the

population will spread over the search space providing

starting points for a deeper (probably local) exploration. As

generations go by, promising regions will start to be

spotted, and the search will concentrate on them. Ideally,

this combination should be synergistic, providing better

results that either the MA or the LS by themselves.

Regarding this issue, one can find in the literature a

number of proposals that explore the intensification/diver-

sification balance within the MA. Some works lean towards

a more explorative combination, by using a blind recom-

bination operator in the MA whereas other models incor-

porate an intense exploration of the dynastic potential (i.e.,

set of possible children) of the solutions being recombined

(Cotta and Troya 2003; Gallardo et al. 2007).

In addition to other domains, MAs have proven to be

very successful across a wide range of combinatorial

optimization problems, where they are state-of-the-art

approaches for many problems. For a comprehensive bib-

liography, the reader may consult Neri et al. (2012), Neri

and Cotta (2012) and Moscato and Cotta (2007).

3 Why human-guided memetic algorithms?

EAs require that the user defines, before the process of

evolution, the fitness measure (i.e., the evaluation function)

that will be used to guide the evolution of candidate

solutions. Those problems in which the fitness function is

difficult (or even impossible) to formulate can hardly be

handled by classical EAs; in this context IEC has recently

been proposed as a part of evolutionary computation (EC)

to cope with those problems that possess aesthetical or

psychological features and as a consequence fitness eval-

uation functions are difficult, or even impossible, to for-

mulate mathematically.

Generally speaking, IEC (also termed indistinctly here

as user-centric EC or human-guided EC) represents an

optimization paradigm that promotes the communication

between a human user and an automated EA. The human

usually intervenes under the demand of the subjacent EA,

for instance to provide subjective fitness evaluation of

candidate solutions. The classical version of IEC basically

consists of incorporating human user evaluation during the

evolutionary procedure.

In any case, more modern models of IEC have been

proposed to attain the collaboration between the human

user and the EA. For instance, Takagi (2000) proposes

using techniques of dimensionality reduction to project the

population of the EA to a bidimensional plane that is dis-

played to the user and over which the user selects the most

promising candidates. It is also worthwhile to mention the

work conducted in the area of multi-objective IEC (Deb

and Chaudhuri 2007; Deb and Kumar 2007) in which the

aim is to direct the exploration toward particular regions of

the Pareto front. Again this kind of participation only

represents one of the manifold forms that exist to fix search

priorities. Interactive EAs have already been implemented

in all the standard types of EC (as for instance in genetic

programming (Lim et al. 2004; Lim and Cho 2005),

On user-centric memetic algorithms 287

123



genetic algorithms (Kosorukoff 2001), evolution strategies

(Breukelaar et al. 2006), and evolutionary programming

(Kubota et al. 2003) just to name a few. Interactivity has

also been added to a number of cooperatives models (e.g.,

Babbar and Minsker 2006; Quiroz et al. 2008, 2009).

A recent work (Cotta and Fernández-Leiva 2011)

describes the basic fundament of IEC, presents some

guidelines to the design of interactive EAs to handle

combinatorial optimization problems, and discusses the

two main models over which IEC is constructed, namely

reactive and proactive search-based schemas. In the reac-

tive model the subjacent algorithm demands the direct

intervention of the user whereas in the proactive model the

subjacent algorithm constructs a model of the user’s pref-

erences that takes the role of the human user in the reactive

schema. The objective of the proactive model is to mitigate

the main problem of the reactive model, that is to say, the

fatigue/tiredness that the human user accumulates as result

of being continuously demanded from the underlying

algorithm. Such fatigue can take different forms. One is the

exhaustion after hours of work. However, even in shorter

periods of time, a user subject to a repetitive task can

inadvertently reduce his effort by paying less attention or

providing less careful feedback.

In general IEC and human-guided search have been

widely studied (see for instance Takagi 2001 and Klau

et al. 2010) that present surveys respectively on these

mentioned issues). However, no general approach for the

design of effective interactive MAs exists in a well-defined

sense, and hence this design phase must be addressed from

an intuitive point of view as well. Recently, in Espinar

et al. (2012) we have provided a first approximation to this

issue and have formulated some principles for the design of

reactive hybrid EAs; in this mentioned paper we also

described a reactive MA for the search of optimal Golomb

rulers, a very hard to solve combinatorial problem. Now,

here we analyze interactive MAs from a more general

perspective, discussing the principles for human-guided

MAs, including both reactive and proactive interactive

MAs. The aim is to help the reader to understand the

mechanisms of human-guided MAs and provide some

indications for their design.

4 Human-guided reactive MAs

In Espinar et al. (2012), we provided the first attempt (to

the best of our knowledge) of establishing a global

approach for the design of effective interactive MAs and

defined a general schema for constructing reactive inter-

active MAs in which the human user interacts with the

subjacent MA when the automated algorithm demands her

intervention. In general, the human user might interact with

the MA in a number of ways (the reader is referred to

Espinar et al. 2012 for a more comprehensive explanation

of these ways). This schema corresponded to a reactive

model in which, from a global perspective, the basic idea is

to let the user affect the search dynamics with the objective

of driving (resp. deviating) the search towards (resp. from)

specific regions of the solution space. The intervention of

the user might be required asynchronously (e.g., the MA

demands the user intervention because the search does not

progress adequately and needs assistance from the human

user), or synchronously (for instance by imposing a fixed

number of human interventions). Of course, the human user

might also act as a mere supervisor of the search process so

that her intervention might be voluntary in any moment. In

the following we analyze a study case in the context of the

well-known Traveling Salesman problem (TSP).

4.1 A study case: a user-centric approach to MAs

for TSP

As already mentioned in Sect. 1, MAs are particularly

suited to integrate different sources of problem-knowledge

into a single optimization tool. We refer to Moscato and

Cotta (2010) for an up-to-date review of the state-of-the-art

in MAs. In the following, we shall describe how we have

integrated user-centric capabilities in MAs. In particular,

we focus in the dynamic management of user-defined

constraints, and in user-controlled LS.

4.1.1 Rationale

Some of the most common themes in IEC are using a

human-expert to provide subjective evaluation information,

or to perform subjective selection of solutions for breeding,

among many others. We defer to Takagi (2001) for an

overview of the area. One of the recurring issues in this

context is dealing with human fatigue, i.e., coping with the

fact that the human expert cannot be forced to provide a

continuous supply of information, and hence the search

algorithm has to exhibit a degree of autonomy. This is

particularly feasible in domains in which some objective

optimization measure is already available, and therefore

the human expert is a source on knowledge that can

improve results, but is not necessarily required for

obtaining some solutions (even if just low-quality ones). In

this sense, we adhere to this vision of having an human

expert overseeing the evolution of resolution process, and

providing hints (Abu-Mostafa 1993) on which directions

the search should proceed but only sporadically (and

asynchronously if possible).

More precisely, we have considered three particular

ways to put the user in the loop, biasing the search

dynamics:

288 A. R. Badillo et al.

123



– Allowing her to change dynamically some parameters

of the algorithm, including the application probability

and choice of operators (in order to change the way

solutions are generated and thus direct the exploration

process). Note in this sense that there are many works

focusing in self-parameterization of EAs (Smith 2008).

Thus, the human expert would here act as a high-level

controller that would exert direct control of these

parameters, or supervise the procedure of self-adapta-

tion, superseding the latter if necessary.

– Allowing her to provide search bias via the dynamic

introduction (and removal) of additional constraints,

i.e., constraints that are not a part of the problem

definition, but are forced by the user in order to drive

the search towards-to/away-from specific regions of

solution space. Such constraints are handled as soft-

constraints, i.e., their violation results in a penalty term

being added to the raw fitness of solutions.

– Allowing her to selectively use local-search add-ons.

This is particularly relevant in the case of MAs, in

which several studies exist focusing on which solu-

tions should undergo local improvement, and how this

local improvement should be done (i.e., which LS

operator to use, how intense this local improvement

has to be, etc.)—e.g., see Ong and Keane (2004) and

Ong et al. (2006). Allowing the user to interfere in

this regard allows further possibilities such as apply-

ing local-improvement just to particular portions of

solutions rather than undergoing a full-fledged local

optimization.

Next section will describe how we have accommodated

the above capabilities in a memetic solver for the Traveling

Salesman Problem (TSP).

4.1.2 Implementation and management of user input:

the TSP case

We have built a prototype of user-centric reactive MA on

the basis of the ECJ library.1 ECJ is an evolutionary

computation framework written in java available under the

Academic Free License (AFL) version 3.0, and it has been

chosen due to its high flexibility and modularity among

other reasons. Our implementation comprises problem-

specific classes (corresponding to the representation of

solutions and variation operators used) and interaction-

specific classes (providing the functionality for supplying

information to the user and accepting feedback from her).

Among the latter we can cite:

– Output: this class has been modified in order to allow

the user select specific actions, e.g., modify parameters,

introduce constraints, etc.

– VectorSpecies: a derived class Permutation-

VectorSpecies has been defined for the TSP in

order to store problem-specific parameters and dynamic

constraints.

– Statistics: a derived class from the former is

responsible for controlling when user interaction takes

place. In this prototype we have opted for two

interaction possibilities: a pre-scheduled mechanism

(interacting every certain number of generations; this is

dynamically reconfigurable by the user, who can

effectively set up when the next interaction will take

place), and a trigger mechanism (interacting when the

algorithms fulfills some condition, i.e., diversity drops

below a certain threshold).

– Canvas: several problem-specific classes are derived

from the latter in order to provide the means to display

sensible information to the user.

The latter aspect is particularly important if the inter-

action with the user is to be fruitful. The user needs being

provided with relevant (yet not overwhelming) information

upon which to base her decisions on the course the search

has to take. In this sense, the TSP has been chosen as test-

suite precisely because of its amenability for graphical

depiction, and intuitive visual nature. Figure 2 shows the

basic interface. The left panel provides a description of

the population: a graph is built by merging all tours in the

population, subsequently, it is drawn making edge-width be

proportional to the frequency of that edge in the popula-

tion. As to the right panel, it provides a description of the

best solution found and its quality. At the bottom, a drop-

down menu provides the user a list of available actions

(some of which can in turn result in additional lists of

options and/or text inputs). An important feature is the

possibility of selectively applying local-improvement to a

specific portion of a solution. This is shown in Fig. 3. As it

can be seen, the user can select a subset of the solution

upon which 2-opt LS will be applied (i.e., only edges

adjacent to selected cities can be modified). From a general

point of view, this feature is important in order to make a

better use of the computational effort (consider that LS

consumes a large part of the computational budget of a

MA) by focusing on specific portions of the solution that

can benefit most of the application of LS, rather than

blindly exploring the whole neighborhood of the solution.

Obviously, this relies on the capability of the user to detect

this issue which in turn is influenced by the particular

problem considered, the visualization method used, and the

size of the problem instance at hand. As the latter grows

larger there may appear difficulties in conveying the1 http://www.cs.gmu.edu/*eclab/projects/ecj/.

On user-centric memetic algorithms 289

123

http://www.cs.gmu.edu/~eclab/projects/ecj/


Fig. 2 General depiction of the user interface for interacting with the memetic solver in the context of the TSP

Fig. 3 The user can control the

application of local search to

specific portions of the current

best solution

290 A. R. Badillo et al.

123



information to the user. Then again, this is more an issue of

data visualization –an interesting a substantial topic by

itself– rather than an issue of the search algorithm.

4.1.3 Experiments

The experiments have been done using an elitist steady-

state EA (popsize = 100, maxevals = 10, 000, binary

tournament selection) with edge-recombination crossover

(pX = 1.0), and subtour-inversion mutation (pM = 0.005).

Two TSP instances from the TSPLIB,2 namely kroA100

and kroA200 have been used. In order to obtain baseline

results, 20 runs of the algorithm have been done without

user interaction. Subsequently, we have done single runs

with 1, 2, 4 and 8 user-interactions. These interactions have

been logged (specific actions and time at which they are

done), and are subsequently replicated in automatic runs of

the algorithm in order to determine their general goodness.

Table 1 shows an example of the kind of actions performed

on the kroA100 instance. Six different users participated

in these experiments.

The results are shown in Fig. 4. Notice how in the case

of the kroA100 instance the results are better for an

increasing number of iterations, mostly due to the selective

application of LS (which is much less expensive than a

full-fledged LS, and whose cost is already accounted in the

total computational budget). In the case of the kroA200

such improvement is only attained for a larger number of

interactions (which is where LS is effectively deployed).

Except in kroA100 and 1 interaction, in all cases the

differences with respect to the autonomous algorithm are

statistically significant at 5 % level using a Wilcoxon

ranksum test.

5 User-centric proactive MAs

One of the drawbacks that can be observed in the use of

user-centric reactive MAs (also termed here as reactive

interactive MAs) corresponds exactly with one of the main

concerns of classical IEC, that is to say, the fatigue of the

human user that appears when reactive IEC algorithms are

employed. The fatigue that an interactive MA causes in the

human user is, as in an interactive EA, the result of

demanding continuously feedback to the user. Several

mechanisms described in the literature have been proposed

in the literature to mitigate this fatigue in the context of

IEC and these can be naturally extrapolated to the context

of interactive MAs (Ohsaki et al. 1998; Sáez et al. 2005).

One proposal that mitigates this problem consists of

replacing the reactive answer of the user by a proactive

approach in which the subjacent running algorithm usually

infers the user’s answer before the feedback demand. In

other words, during the interactive optimization, the

underlying EA (in this case a MA) works to construct a

model of the user’s preferences; the objective is to reduce

the number of user interventions by guessing her actions in

those cases in which it would be necessary to demand her

intervention (in these cases the user demand is replaced by

the automated application of the guessed actions). This user

model can be viewed as a prediction model and as a con-

sequence might be constructed using computational learn-

ing techniques. This is a sophisticated approach in which

the intervention of the user is optional and the algorithm

runs autonomously (Breukelaar et al. 2006).

Proactive algorithms are not new and one can find a

number of proposals in the literature; for instance Beck and

Wilson proposed a set of proactive algorithms for the job

shop scheduling problem with probabilistic durations (Beck

and Wilson 2005, 2007); also, an ant colony optimization-

based routing approach that proactively set up multiple paths

between the source and the destination in a Mobile ad hoc

network was described in Mamoun (2010). We can also

mention other works such as Khanna et al. (2008). More-

over, an illustrative example of proactive algorithms might

be the Estimation of Distribution Algorithms (EDAs)

(Lozano et al. 2006) that were proposed by Mühlenbein and

Paaß (1996) and departed from traditional EAs in that the

generation of new solutions depended on a probabilistic

mechanism, rather than on the use of a set of genetic oper-

ators. Relationships and dependencies among the variables

that define a solution to the problem under consideration are

explicitly expressed in EDAs via probability distributions.

Table 1 User interaction in the kroA100 instance

No. of

interactions

Action performed

1 forbid h15� 50i; h25� 65i; h4� 72i and h43� 68i
2 forbid h43� 79i; h14� 89i and h62� 73i

2-opt LS in the bottom right corner

4 forbid h65� 98i; h50� 56i and h50� 60i
forbid h21� 82i; h22� 68i and h22� 48i
forbid h13� 50i; h64� 82i and 2-opt LS in the

bottom right corner

forbid h57� 62i and 2-opt LS in the top left corner

8 forbid h14� 30i; h13� 46i and h18� 61i
forbid h3� 50i and h43� 54i
forbid h23� 71i and h55� 71i
forbid h17� 47i
2-opt LS in the bottom right corner

2-opt LS in the top left corner

2-opt LS in the top right corner

2-opt LS in the bottom left corner

2 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

On user-centric memetic algorithms 291

123

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


Generally speaking, (traditional) EDAs work as follows: an

initial probabilistic model is built, typically describing a

uniform distribution over the search space (although some

heuristic initialization can also be done if problem-knowl-

edge is available). This model is subsequently sampled to

obtain a population of solutions from which an elite sample

will be extracted and used to rebuild the model. The new

model is then resampled and the whole process is repeated

until a certain termination condition is fulfilled. This con-

tinuous process of updating and adjusting to the new con-

ditions can be considered as an adaptive model in the sense of

a proactive schema. However, proactivity, as proposed in

these works, is not directly related with human interactivity

but with approaches that can predict certain information that

surely will be useful in the future and thus these algorithms

can manage this information for their own convenience (for

instance to tune themselves). In the context of pure IEC we

can mention a number of works following this line of

research such as Babbar and Minsker (2006), Gong et al.

(2009), Inoue et al. (1999) and Dozier (2001); however,

there are no memetic versions except the already mentioned

work described in Espinar et al. (2012).

Fig. 4 Results obtained by

interactive and non-interactive

algorithms on the kroA100
instance (top) and on the

kroA200 instance (bottom)

292 A. R. Badillo et al.

123



This section is devoted to present a proactive user-

centric memetic search/optimization. This is the case when

the interactive MA model employs computational learning

techniques to predict the adequacy of the solutions still to

be evaluated. Figure 5 shows a possible schema for a user-

centric MA in which both the human user and the user

model (i.e., the predictive model) can interact with the

subjacent MA in a number of several forms. This schema

extends the schema suggested in Espinar et al. (2012) in a

number of ways that can be enumerated as follows:

– It introduces the role of a predictive model that will

replace the human user to reduce (or even avoid the

appearance of) her tiredness;

– It centers the interaction process in the user;

– It indicates new ways in which the user can influence

the optimization process that were not mentioned in

Espinar et al. (2012).

Regarding the latter issue, in general the human user

(and the user prediction model) can influence the optimi-

zation process in several ways that basically coincide with

those that were reported in Espinar et al. (2012) and that

can be summarized as follows:

– The user might select the policy of the genetic

operators (and the genetic operators themselves). She

also might modify all the parameters of the algorithm

(e.g., operators application probabilities).

– The user may influence the candidate population by

ranking it according to some (possibly psychological)

criteria (this of course has influence in the further

replacement process), removing individuals, modifying

individual representation (even at gene level), or even

introducing/imposing certain level or criteria of diver-

sity, just to name a few actions.

– The user can control the application of LS (if we

consider the most classical form of a MA) in several

levels. For instance, the user might decide to establish a

partial Lamarckianism schema as mentioned in Sect. 2.

– The user might act as the evaluation mechanism. In this

context the user might add the subjective evaluation as

an additional component to the objective evaluation

(for instance as an addend with some associated

weight) or use the subjective value and the objective

values as two different objectives to optimize (trans-

forming thus the model in an interactive multiobjective

MA). The user might also reformulate the objective

function (or even add new objectives) and also with

respect to the problem constraints.

It should be noticeable that the user is required to have

certain knowledge about both the problem domain and the

search process in order to obtain an effective interactive MA.

In the latter case, the user needs certain level of expertise to

cope with the optimization process from an algorithmic point

of view so that she can manage the parameters that influence

the search. In the first case, the user might use this knowledge

for instance to assess candidates (or even mark the best/worst

solutions), provide subjective information to the search if

necessary, or control the use of local improvement by iden-

tifying the adequate regions of the search space to apply it.

Fig. 5 A possible schema of a

user-centric memetic algorithm

On user-centric memetic algorithms 293

123



Indeed, we might even think of having two different users

working (perhaps in parallel) in these two distinct (but

complementary) levels of knowledge.

If the prediction model of this adequacy is sufficiently

adjusted, then alternating phases between optimization via

the interactive MA and optimization via the predictive

model can be conducted. This is precisely the idea that is

shown in Algorithm 2. The general process basically works

as follows: initially the MA runs autonomously and

demands the attention of the human user when it detects

that the search is not progressing adequately. Then the

human user intervenes in the optimization process if her

level of fatigue is acceptable. During this interactive pro-

cess the automated algorithm constructs a prediction model

of the user preferences that will be used in subsequent

phases of the execution of the proactive user-centric

algorithm. If the automated algorithm detects that the

human user might be tired then the user (prediction) model

is activated and substitutes the human user in the optimi-

zation process; this means that the human user will not be

demanded by the MA what it is translated in a progressive

reduction of her fatigue and, in case of search stagnation,

the MA will impose the preferences proposed by the pre-

dictive model. Of course, the human user can always

intervene voluntarily in the process; in any case, as the

optimization continues it is expected that the tiredness of

the human user progressively decreases so that the process

can go back to the initial phase of interaction.

In general, an approach of this type has several problems

that are mentioned in the following:

– the difficulty of defining a prediction model that adjusts

with an acceptable confidence to the behavior of the

human user; in fact this corresponds with the difficulty

of finding a measure of the adequate distance that

captures the subjective preferences of the human user;

– the inherent noise that often exists in the human

response (due for instance to the fatigue of user, to the

evolution of their subjective perception, or to an

adjustment of its response to the characteristics of the

solutions in the current generation);

– the difficulty to evaluate the level of fatigue (i.e.,

represented as the function fatigue in Algorithm 2)

associated to the human user as the optimization

process evolves. This is not an easy task and a

primitive solution consists of imposing a maximum

number of user interventions that has been agreed

previously.

In any case, the flexibility of the proactive approach

makes it helpful in cases in which the user wants to obtain

an added value, but makes it also useful in complex opti-

mization problems with perfectly well defined evaluation

functions; in these cases the inherent skills of perception

and information processing of the human user can help to

both lead the search towards suboptimal regions of the

search space and avoid the stagnation (or even premature

convergence) of the algorithm in specific parts of this

space. In the following section we present a study case in

the context of a Gene Ordering Problem (GOP).

5.1 Study case: Gene Ordering Problem

This section describes the application of a number of MAs

(including interactive and proactive proposals) on the gene

ordering problem (Cotta et al. 2003), an NP-hard problem

with strong implications in biomedicine.

5.1.1 Rationale

Thanks to microarray technology (De Risi et al. 1997),

biologists can monitor the activity of hundreds up to tens of

thousands of genes, with usually tens of measurements per

gene. As a result, a data deluge takes place very much

demanding reduction techniques [e.g., genes are believed

to be influenced on average by about eight to ten other

genes (Arnone and Davidson 1997)]. To this end genes

with related expression patterns are grouped together

since such genes are likely to regulate each other, or be

co-regulated. Clustering techniques (Ben-Dor and Yakhini

1999; Eisen et al. 1998; Fasulo 1999; Hartuv et al. 1999)

can be used, but this does not exhaust the possibilities. The

Gene Ordering Problem (GOP) address this issue aiming to

obtaining a high-quality re-arrangement of gene-expression

294 A. R. Badillo et al.

123



data, such that related (from the point of view of their

expression level) genes be placed in nearby locations

within a gene sequence.

The result of a microarray experiment can be expressed

as a matrix G ¼ fgijg; i ¼ 1. . .n; j ¼ 1. . .m; where n is the

number of genes, and m is the number of experiments per

gene. The GOP amounts to finding an optimal order of

genes such that genes with similar expression patterns are

close in this order. For this purpose a notion of distance

among genes is required. For simplicity we can consider

the Euclidean distance: D½gi; gj� ¼
Pm

k¼1 gik � gjk

� �2
h i1=2

:

Once this distance matrix is found, fitness is computed by

calculating the total distance between adjacent genes,

similarly to what is done in the Traveling Salesman

Problem. Thus, if p ¼ hp1; p2; . . .; pni is the gene ordering,

the total distance between adjacent genes can be described

as the
Pn�1

i¼1 D½pi; piþ1� (other fitness functions are possible,

see Cotta et al. 2003).

5.1.2 Experiments

The user interface for the GOP is similar to that shown

for the TSP—see Fig. 6. Basically, a graphical depiction

of the best individual and an average composition of

the population state is provided, along with controls for

modifying along the run every parameter or element of the

algorithm (e.g., check Fig. 7). The LS is conducted by

selecting a portion of the best individual and checking

whether exchanges of adjacent positions leads to a fitness

improvement. In addition, the user also has the possibility

of performing alterations such as for example inverting a

portion of the image, and freezing/unfreezing a part of the

solution (which will be then left unaltered by evolutionary

operators).

In order to mitigate user fatigue the MA proactively

suggests actions based on previous interventions of the

user. These are recorded along with some indications of the

state of the run at the point in which these actions were

taken (the user can decide to leave some actions out of the

record if she considers these actions were not valuable).

The state of the run can be described in many different

ways depending on different factors and the level of detail

desired. In this case and for the sake of simplicity we have

characterized the search state just in terms of three

descriptors: diversity (population entropy), stagnation

(number of iterations without improvement) and conver-

gence speed (slope of the best-fitness curve in the last

iterations), that range in an interval [0 %,100 %] (i.e., 0 %

indicates the lowest value and 100 % the highest one; for

stagnation we imposed a maximum number of iterations

without improvement). When the user decides to intervene,

Fig. 6 Interface for the GOP

On user-centric memetic algorithms 295

123



the current state is compared against recorded states and

the action that best fit is chosen and suggested to the user

who has the last word on whether it should be applied or

not (an automatic always-accept mode can be used as

well). More specifically, and as already mentioned, in the

proactive model learning comes from previous experiences

so that each time the algorithm is executed it will take into

account its past executions. During each execution, the

conflictive states (i.e., phases of the algorithm that clearly

do not hold desirable properties –e.g., high diversity of the

population, acceptable ratio of solution improvement, and

non-premature convergence– according to the descriptors

mentioned above) are registered beside the actions that

were specifically applied with the aim of changing the state

nature (to non-conflictive), as well as statistical information

about how many times this action was taken under the

same state and the amount of times that its application

was successful (i.e., it allowed to reverse the situation to a

Fig. 7 Example of user

intervention for the GOP

Fig. 8 Results on a dataset comprising selectively expressed genes in

diffuse large B-cell lymphoma (380 genes, 19 experiments per gene)

(Alizadeh et al. 2001). Algorithms in X axis, from left to right: non-

interactive without LS, non-interactive with LS, interactive without

LS (1 interaction), interactive without LS (2 interactions), interactive

without LS (4 interactions), interactive without LS (8 interactions),

interactive with LS (1 interaction), interactive with LS (2 interac-

tions), interactive with LS (4 interactions), interactive with LS

(8 interactions), proactive-reactive without LS (1 interaction), proac-

tive-reactive without LS (2 interactions), proactive-reactive without

LS (4 interactions), proactive-reactive without LS (8 interactions),

proactive-reactive with LS (1 interaction), proactive-reactive with

LS (2 interactions), proactive-reactive with LS (4 interactions),

proactive-reactive with LS (8 interactions), proactive-automatic

without LS (1 interaction), proactive-automatic without LS

(2 interactions), proactive-automatic without LS (4 interactions),

proactive-automatic without LS (8 interactions), proactive-automatic

with LS (1 interaction), proactive-automatic with LS (2 interactions),

proactive-automatic with LS (4 interactions), and proactive-automatic

with LS (8 interactions)

296 A. R. Badillo et al.

123



non-conflictive state). Moreover, each state is also associ-

ated to a quantitative value of unrest that represents the

amount (i.e., percentage) of conflict (measured as the

average of the values of the descriptors associated to

the state) that the state exhibits. This value is also recorded

as part of the past experience. All this information is used

by the algorithm to propose new actions in the future;

basically, once a new conflictive state is detected the

algorithm will try to apply, with a probability directly

related with its percentage of unrest, the best action that,

under equal circumstances, was shown to be successful

in the past, and register this information in memory for

further feedback. Those operations that in the past were

discarded by the user in similar circumstances have also

less probability to be elected for application.

Two problem instances have been considered for the

experiments: a dataset comprising selectively expressed

genes in diffuse large B-cell lymphoma (380 genes, 19

experiments per gene) (Alizadeh et al. 2001), and a dataset

describing Kaposi’s sarcoma-associated herpes virus gene

expression (106 genes, 21 experiments per gene) (Jenner

et al. 2001).

The MA has been used in four different settings: no

interaction, interactive (with different number of user

interventions; a single user–different from those used in the

TSP experiments and more specialized in this problem–

has been considered), proactive-reactive (the MA suggests

an action to be done) and automatic proactive (the MA

simulates user interventions in previous runs). Ten runs of

each algorithm are done, using a steady-state MA, max-

evals = 10,000, popsize = 40, edge recombination, and

mutation by block inversion.

First of all, Fig. 8 shows the results on a 380-gene

instance. Firstly we can observe that the application of LS

is useful as all the MAs outperform its corresponding non-

memetic versions, independently of the incorporation of

interactivity. Also, regarding user interactions, as it can be

seen, we observe again that all the interactive versions

performs better than their corresponding non-interactive

counterparts; this noticeable result can be a clear indication

of the utility of incorporating human knowledge during the

execution of the algorithms; note also that there is a general

trend of improved results when the number of user inter-

ventions increases. Moreover the proactive versions are

generally better than the purely interactive ones, this

indicating that the ability of the MA for suggesting actions

is valuable for the user.

This result is further confirmed by the results on a 106

instance (Fig. 9), in which the MA with no user input is

compared to the proactive automatic MA which uses the

Fig. 9 Results on a dataset describing Kaposi’s sarcoma-associated

herpes virus gene expression (106 genes, 21 experiments per gene)

(Jenner et al. 2001). Algorithms in X axis, from left to right: non-

interactive without LS, non-interactive with LS, proactive auto-

matic without LS (1 interaction), proactive automatic without LS

(2 interactions), proactive automatic without LS (4 interactions),

proactive automatic without LS (8 interactions), proactive automatic

with LS (1 interaction), proactive automatic with LS (2 interactions),

proactive automatic with LS (4 interactions), and proactive automatic

with LS (8 interactions)

On user-centric memetic algorithms 297

123



experience gathered in the previous instance. The same

trends are observed, indicating that the MA can success-

fully apply the lessons learned on the previous instance to a

unseen instance of the same problem (obviously, this need

not be the case on other problems in which particular

features of the instance varied wildly).

Particularly, as regard the proactive algorithms and

considering the two problem instances, in general we did

not find significant differences (statistically speaking, and

at the standard level of 5 % level using a Wilcoxon rank-

sum test) between the reactive versions and their corre-

sponding automatic equivalents. This is an important result

that encourages the employment of predictive models as

real alternative to the human expert that might be replaced

by the user model (i.e., as shown in Fig. 5) without

decreasing the performance of the algorithm; moreover,

this result suggests that, once the human user is discon-

nected from the search process, the execution might be

totally automated. Two considerations though should be

done here: (1) even for the proactive automatic algorithms

presented here, the intervention of a human expert is

required (either in the initial stages of the algorithm exe-

cution or in previous executions of this—or similar inter-

active algorithms, perhaps without proactivity—over the

same problem instance) to construct a historical record of

past experiences so that the predictive model is constructed

from this. (2) The cost of obtaining a predictive model

should be taken into account before implementing a pro-

active automatic algorithm as the attainment of a predictive

model (as presented in this paper) demands a number of

previous interventions of the human; in any case it seems

clear that proactivity is a worthwhile mechanism when the

problem demands a high level of expertise and fatigue is an

important factor to decrease.

6 Conclusions

User-centric EC is an thriving research topic. Paving the

way for further extensions, we have conducted in this work

a study on the deployment of interactive capabilities in a

MA, with application to two complex NP-hard problems.

The results have been encouraging, since it has been shown

that even some forms of limited interaction are capable of

improving the results of a baseline autonomous algorithm.

While the computational scenario is not a tough one, these

results indicate that these techniques are capable of taking

advantage from good-quality human feedback, not merely

as a carrier of subjective information but as a source of

problem-aware perturbations that can drive/focus the

algorithm towards specific regions of the search space. At

any rate, much remains to be done. As mentioned before,

IEC is merely the tip of the iceberg; full-fledged user-

centric optimization also implies proactivity in the search

heuristic, anticipating the needs of the user, or trying to

follow her preferences in order to provide hints in the

direction she is headed to. Our results using some simple

models of proactive behavior have also yielded encourag-

ing results. We are currently working on some related user-

modeling areas in the context of videogames, from which

some general lessons will be hopefully learned.

Acknowledgments This work is partially supported by Spanish

MICINN under projects NEMESIS (TIN2008-05941) and ANYSELF

(TIN2011-28627-C04-01), and by Junta de Andalucı́a under project

P10-TIC-6083 (DNEMESIS).

References

Abu-Mostafa Y (1993) Hints and the VC dimension. Neural Comput

5:278–288

Arnone A, Davidson B (1997) The hardwiring of development:

organization and function of genomic regulatory systems.

Development 124:1851–1864

Alizadeh A et al (2001) Distinct types of diffuse large B-cell

lymphoma identified by gene expression profiling. Nature 403:

503–511

Babbar M, Minsker B (2006) A collaborative interactive genetic

algorithm framework for mixed-initiative interaction with

human and simulated experts: a case study in long-term

groundwater monitoring design. In: World environmental and

water resources congress

Bonissone PP, Subbu R, Eklund NHW, Kiehl TR (2006) Evolutionary

algorithms ? domain knowledge = real-world evolutionary

computation. IEEE Trans Evol Comput 10(3):256–280

Breukelaar R, Emmerich M, Bck T (2006) On interactive evolution

strategies. In: Rothlauf F, Branke J, Cagnoni S, Costa E, Cotta C,

Drechsler R, Lutton E, Machado P, Moore J, Romero J, Smith G,

Squillero G, Takagi H (eds) Applications of evolutionary

computing. Lecture notes in computer science, vol 3907,

Springer, Berlin, pp 530–541

Beck JC, Wilson N (2005) Proactive algorithms for scheduling with

probabilistic durations. In: Proceedings of the 19th international

joint conference on Artificial intelligence. IJCAI’05. Morgan

Kaufmann, San Francisco, pp 1201–1206

Beck JC, Wilson N (2007) Proactive algorithms for job shop scheduling

with probabilistic durations. J Artif Intell Res 28(1):183–232

Ben-Dor A, Yakhini Z (1999) Clustering gene expression patterns. In:

Proceedings of the ACM RECOMB’99, Lyon, France. ACM

Press, New York, pp 33–42

Cotta C, Fernández Leiva AJ (2011) Bio-inspired combinatorial

optimization: notes on reactive and proactive interaction. In:

Cabestany J, Rojas I, Caparrós GJ (eds) Advances in computa-

tional intelligence—11th international work-conference on arti-

ficial neural networks, Part II (IWANN 2011). Lecture notes in

computer science, vol 6692. Springer, Málaga, pp 348–355

Cotta C, Troya JM (2003) Embedding branch and bound within

evolutionary algorithms. Appl Intell 18(2):137–153

Cotta C, Mendes A, Garcia V, França P, Moscato P (2003) Applying

memetic algorithms to the analysis of microarray data. In: Raidl

G et al (eds) Applications of evolutionary computing. Lecture

notes in computer science, vol 2611. Springer, Berlin, pp 22–32

Culberson J (1998) On the futility of blind search: an algorithmic

view of ‘‘no free lunch’’. Evol Comput 6(2):109–128

298 A. R. Badillo et al.

123



Davis L (1991) Handbook of genetic algorithms. Van Nostrand

Reinhold, New York

Dawkins R (1976) The selfish gene. Clarendon Press, Oxford

Dawkins R (1986) The BlindWatchmaker, 1986. Longman, Essex

Deb K, Chaudhuri S (2007) I-mode: an interactive multi-objective

optimization and decision-making using evolutionary methods.

KanGal report 2007003, Kanpur Genetic Algorithms Laboratory

Deb K, Kumar A (2007) Interactive evolutionary multi-objective

optimization and decision-making using reference direction

method. KanGal report 2007001, Kanpur Genetic Algorithms

Laboratory

De Risi J, Lyer V, Brown P (1997) Exploring the metabolic and

genetic control of gene expression on a genomic scale. Science

278:680–686

Dias J, Captivo M, Clı́maco J (2008) A memetic algorithm for multi-

objective dynamic location problems. J Global Optim 42:221–253

Dozier G (2001) Evolving robot behavior via interactive evolutionary

computation: from real-world to simulation. In: 16th ACM

symposium on applied computing (SAC2001), Las Vegas, NV.

ACM Press, New York, pp 340–344

Eiben AE, Smith JE (2003) Introduction to evolutionary computation.

Springer, Berlin

Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis

and display of genome-wide expression patterns. Proc Natl Acad

Sci USA 95:14863–14868

Espinar J, Cotta C, Fernández-Leiva AJ (2012) User-centric optimi-

zation with evolutionary and memetic systems. In: Lirkov I,

Margenov S, Wasniewski J (eds) 8th international conference on

large-scale scientific computing (LSSC 2011). Lecture Notes in

Computer Science, Sozopol, Bulgaria, vol 7116. Springer,

Berlin, pp 214–221

Fasulo D (1999) An analysis of recent work on clustering algorithms.

Technical Report UW-CSEO1-03-02, University of Washington

Gallardo J, Cotta C, Fernández A (2007) On the hybridization of

memetic algorithms with branch-and-bound techniques. IEEE

Trans Syst Man Cybern Part B 37(1):77–83

Gong D, Yao X, Yuan J (2009) Interactive genetic algorithms with

individual fitness not assigned by human. J Univ Comput Sci

15(13):2446–2462

Hart WE, Belew RK (1991) Optimizing an arbitrary function is hard

for the genetic algorithm. In: Belew RK, Booker LB (eds)

Proceedings of the fourth international conference on genetic

algorithms, San Mateo CA. Morgan Kaufmann, San Francisco,

pp 190–195

Hart W, Krasnogor N, Smith J (2005) Recent advances in memetic

algorithms. Studies in fuzziness and soft computing, vol 166.

Springer, Berlin

Hartuv E, Schmitt A, Lange J, Meier-Ewert S, Lehrach H, Shamir R

(1999) An algorithm for clustering cDNAs for gene expression

analysis. In: Proceedings of the ACM RECOMB’99, Lyon,

France. ACM Press, New York, pp 188–197

Houck C, Joines J, Kay M, Wilson J (1997) Empirical investigation of

the benefits of partial lamarckianism. Evol Comput 5(1):31–60

Inoue T, Furuhashi T, Fujii M, Maeda H, Takaba M (1999)

Development of nurse scheduling support system using interac-

tive EA. IEEE Int Conf Syst Man Cybern 5:533–537

Jaszkiewicz A (2004) Interactive multiple objective optimization with

the pareto memetic algorithm. In: Gottlieb J et al (eds) 4th EU/

ME workshop: design and evaluation of advanced hybrid meta-

heuristics, Nottingham, UK

Jenner R, Alba M, Boshoff C, Kellam P (2001) Kaposi’s sarcoma-

associated herpesvirus latent and lytic gene expression as

revealed by DNA arrays. J Virol 75:891–902

Khanna R, Liu H, Chen HH (2008) Proactive power optimization of

sensor networks. In: IEEE international conference on commu-

nications (ICC), Beijing, China, IEEE, pp 2119–2123

Klau G, Lesh N, Marks J, Mitzenmacher M (2010) Human-guided

search. J Heuristics 16:289–310

Kosorukoff A (2001) Human-based genetic algorithm. In: 2001 IEEE

international conference on systems, man, and cybernetics. IEEE

Press, Tucson, pp 3464–3469

Krasnogor N, Smith J (2005) A tutorial for competent memetic

algorithms: model, taxonomy, and design issues. IEEE Trans

Evol Comput 9(5):474–488

Kubota N, Nojima Y, Sulistijono I, Kojima F (2003) Interactive

trajectory generation using evolutionary programming for a

partner robot. In: 12th IEEE international workshop on robot and

human interactive communication (ROMAN 2003), Millbrae,

California, USA, pp 335–340

Lim S, Cho SB (2005) Language generation for conversational agent

by evolution of plan trees with genetic programming. In: Torra

V, Narukawa Y, Miyamoto S (eds) Modeling decisions for

artificial intelligence. Lecture notes in computer science, vol

3558. Springer, Berlin, pp 305–315

Lim S, Kim KM, Hong JH, Cho SB (2004) Interactive genetic

programming for the sentence generation of dialogue-based

travel planning system. In: 7th Asia-Pacific conference on

complex systems, Cairns, Australia. Asia-Pacific Workshops on

Genetic Programming, pp 6–10

Lozano JA, Larrañaga P, Inza I, Bengoetxea E (2006) Towards a new

evolutionary computation: advances on estimation of distribution

algorithms. Studies in fuzziness and soft computing, vol 192.

Springer, Berlin

Mamoun MH (2010) A new proactive routing algorithm for manet.

Int J Acad Res 2(2):199–204

Moscato P (1999) Memetic algorithms: a short introduction. In: Corne

D, Dorigo M, Glover F (eds) New ideas in optimization,

McGraw-Hill, Maidenhead, pp 219–234

Moscato P, Cotta C (2003) A gentle introduction to memetic

algorithms. In: Glover F, Kochenberger G (eds) Handbook of

Metaheuristics. Kluwer, Boston, pp 105–144

Moscato P, Cotta C (2007) Memetic algorithms. In: Gonzalez TF

(eds) Handbook of approximation algorithms and metaheuristics,

Chapter 27. Chapman & Hall, London

Moscato P, Cotta C (2010) A modern introduction to memetic algorithms.

In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics.

International series in operations research and management science.

2nd edn, vol 146. Springer, Berlin, pp 141–183

Moscato P, Mendes A, Cotta C (2004) Memetic algorithms. In:

Onwubolu G, Babu B (eds) New optimization techniques in

engineering. Springer, Berlin, pp 53–85

Mühlenbein H, Paaß G (1996) From recombination of genes to the

estimation of distributions I. Binary parameters. In: PPSN IV:

Proceedings of the 4th international conference on parallel

problem solving from nature, London, UK. Springer, Berlin,

pp 178–187

Neri F, Cotta C (2012) Memetic algorithms and memetic computing

optimization: a literature review. Swarm Evol Comput 2:1–14

Neri F, Cotta C, Moscato P (2012) Handbook of memetic algorithms.

Studies in computational intelligence, vol 379. Springer, Berlin

Nguyen QH, Ong YS, Krasnogor N (2007) A study on the design

issues of memetic algorithm. In: Srinivasan D, Wang L (eds)

2007 IEEE congress on evolutionary computation, Singapore,

IEEE Computational Intelligence Society. IEEE Press, New

York, pp 2390–2397

Ong YS, Keane A (2004) Meta-lamarckian learning in memetic

algorithms. IEEE Trans Evol Comput 8(2):99–110

Ohsaki M, Takagi H, Ohya K (1998) An input method using discrete

fitness values for interactive ga. J Intell Fuzzy Syst 6(1):131–145

Ong YS, Lim MH, Zhu N, Wong K (2006) Classification of adaptive

memetic algorithms: a comparative study. IEEE Trans Syst Man

Cybern Part B 36(1):141–152

On user-centric memetic algorithms 299

123



Parmee IC (2007) Human-centric evolutionary systems in design and

decision-making. In: Rennard JP (eds) Handbook of research on

nature-inspired computing for economics and management. IGI

Global, pp 395–411

Parmee I, Abraham J (2004) User-centric evolutionary design. In:

Marjanovic D (eds) 8th international design conference DESIGN

2004. Decision making workshop, pp 1441–1446

Parmee IC, Abraham JAR, Machwe A (2008) User-centric evolu-

tionary computing: melding human and machine capability to

satisfy multiple criteria. In: Knowles J, Corne D, Deb K, Chair

DR (eds) Multiobjective problem solving from nature. Natural

computing series. Springer, Berlin, pp 263–283

Puchinger J, Raidl GR (2005) Combining metaheuristics and exact

algorithms in combinatorial optimization: a survey and classi-

fication. In: Mira J, Álvarez JR (eds) Artificial intelligence and

knowledge engineering applications: a bioinspired approach.

First international work-conference on the interplay between

natural and artificial computation, (IWINAC 2005), Part II.

LNCS, vol 3562. Springer, Las Palmas, pp 41–53

Quiroz JC, Banerjee A, Louis SJ (2008) Igap: interactive genetic

algorithm peer to peer. In: Proceedings of the 10th annual

conference on Genetic and evolutionary computation. GECCO

’08. ACM, New York, pp 1719–1720

Quiroz J, Louis S, Banerjee A, Dascalu S (2009) Towards creative

design using collaborative interactive genetic algorithms. In:

IEEE congress on evolutionary computation (CEC 2009),

Singapore, IEEE, pp 1849–1856

Sáez Y, Viñuela PI, Segovia J, Castro JCH (2005) Reference

chromosome to overcome user fatigue in IEC. New Gener

Comput 23(2)

Smith JE (2008) Self-adaptation in evolutionary algorithms for

combinatorial optimisation. In: Cotta C, Sevaux M, Sörensen K

(eds) Adaptive and multilevel metaheuristics. Studies in com-

putational intelligence, vol 136. Springer, Berlin, pp 31–57

Sudholt D (2009) The impact of parametrization in memetic

evolutionary algorithms. Theor Comput Sci 410(26):2511–2528

Takagi H (2000) Active user intervention in an ec search. In: 5th Joint

conference information sciences (JCIS2000), Atlantic City, NJ,

pp 995–998

Takagi H (2001) Interactive evolutionary computation: fusion of the

capabilities of EC optimization and human evaluation. Proc

IEEE 9:1275–1296

Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

300 A. R. Badillo et al.

123


	On user-centric memetic algorithms
	Abstract
	Introduction
	Memetic algorithms
	Why human-guided memetic algorithms?
	Human-guided reactive MAs
	A study case: a user-centric approach to MAs for TSP
	Rationale
	Implementation and management of user input: the TSP case
	Experiments


	User-centric proactive MAs
	Study case: Gene Ordering Problem
	Rationale
	Experiments


	Conclusions
	Acknowledgments
	References


