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Abstract In this article we provide a formal framework

for reidentification in general. We define n-confusion as a

concept for modeling the anonymity of a database table and

we prove that n-confusion is a generalization of k-ano-

nymity. After a short survey on the different available

definitions of k-anonymity for graphs we provide a new

definition for k-anonymous graph, which we consider to be

the correct definition. We provide a description of the

k-anonymous graphs, both for the regular and the non-

regular case. We also introduce the more flexible concept

of (k, l)-anonymous graph. Our definition of (k, l)-anony-

mous graph is meant to replace a previous definition of

(k, l)-anonymous graph, which we here prove to have

severe weaknesses. Finally, we provide a set of algorithms

for k-anonymization of graphs.

1 Introduction

In data privacy, the assessment of risk is one of the ele-

ments of major importance. At present, several approaches

have been studied in the literature. The major approaches

are k-anonymity (Samarati 2001; Samarati and Sweeney

1998; Sweeney 2002a, b), reidentification (Domingo-Ferrer

and Rufian-Torrell 2001; Winkler 2004), and differential

privacy (Dwork 2006).

In this paper, we focus on two of them: reidentification

and k-anonymity. The former evaluates the disclosure risk

of a protected data set measuring the chances that an

intruder can link his information and the one in the pro-

tected data set. In contrast, k-anonymity tries to avoid any

reidentification, producing a protected data set where each

record is cloaked into a set of other k - 1 records.

In this work we formalize the reidentification process

and we use this formalization to discuss the concept of

k-anonymity and then propose the concept of n-confusion.

We also prove that n-confusion is a generalization of

k-anonymity.

Then, we discuss the application of the concept of

k-anonymity to graphs. At present, due to the interest of

online social networks, several authors have studied data

protection for graphs. It is relevant here to consider the

works in (Feder et al. 2008; Hay et al. 2008a; Liu and

Terzi 2008; Zhou and Pei 2008), in which alternative

definitions of k-anonymity for graphs have been presented.

In this work we discuss these different definitions and we

show that the definition in Feder et al. (2008) have severe

weaknesses. Then, we first provide an alternative definition

for k-anonymity that provides enough privacy at the cost

of being quite restrictive, and later the definition of

(k, l)-anonymity, a relaxation of the former one.

The paper discusses several properties of the definitions.

In particular, we study the characterization of the k-anon-

ymous graphs. We also provide algorithms for transform-

ing a graph into a k-anonymized one, for calculating the

degree of (k, l)-anonymity of a graph given k, and to

increase the l of the (k, l)-anonymity of a graph.

The structure of the paper is as follows. Section 2 dis-

cusses disclosure risk on online social networks focusing
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on reidentification and k-anonymity. Section 3 reviews

previous approaches of k-anonymity for graphs, and pre-

sents an attack for the approach introduced in Feder et al.

(2008). Section 4 introduces a new definition for k-ano-

nymity and studies some properties of this definition.

Section 5 presents a relaxation of k-anonymity, which we

call (k,l)-anonymity. Section 6 includes the algorithms that

we have developed related to (k, l)-anonymity. The paper

finishes with the conclusions.

2 Disclosure risk evaluation

In this section, we first present a formal framework for

evaluating disclosure risk in data privacy in general (see

also Stokes and Torra 2012). Then we will focus on dis-

closure risk for online social networks.

2.1 Reidentification in privacy protected databases

A database is a collection of records of data. In this article we

will suppose that all records correspond to distinct individ-

uals or objects. Every record has a unique identifier and is

divided into attributes. The attributes can be very specific, as

the attributes ‘‘height’’ or ‘‘gender’’, or more general, as the

attributes ‘‘text’’ or ‘‘sequence of binary numbers’’.

Suppose that the database can be represented as a single

table. Let the records be the rows of the table and let the

attributes be the columns. The intersection of a row and an

attribute is a cell in the table, and we call the data in the

cells the entries of the database.

Let T be a table with n records and m attributes. We

define the partition set PðTÞ of T to be the set of subsets of

the underlying set of entries of T,
Sn;m

i;j¼1 T ½i; j�:

Definition 1 A method for anonymization of databases is

any transformation or operator

q : D! D

X 7!Y ;

where D is a space of databases.

Then q; given a database X, returns a database Y. Since

Y is a database, all entries in Y will correspond to a unique

individual or object, which we will suppose to be the same

individuals as the ones behind the records in X. Usually it is

assumed that there is, in some sense, less sensible infor-

mation about the individuals behind the records in X in the

transformed database Y than there was in the original

database X.

Definition 2 Let q be a method for anonymization of

databases, X a table with n records indexed by I in the

space of tables D and Y ¼ qðXÞ the anonymization of X

using q: Then a reidentification method is a function that

given a collection of entries y in PðYÞ and some additional

information from a space of auxiliary informations

A, returns the probability that y correspond to entries from

the record with index i 2 I;

r : PðYÞ � A! ½0; 1�n

ðy; aÞ7! Pðy corresponds to entries from X½i�Þ: i 2 Ið Þ:

Consider the true probability distribution of the reidentifi-

cation problem. Then, we require from a reidentification

method that it returns a probability distribution that is

compatible with this probability, also after missing some

relevant information. Compatibility can be modeled in

terms of compatibility of belief functions (see Chateauneuf

1994; Smets and Kennes 1994).

In this definition, the probability r(y, a) could have been

expressed as conditioned by a. However, in this article we

prefer to use the notation above.

Compatibility implies that the more evidence we have,

the more informative the probability is. Because of that, the

method returns ð1=n; . . .; 1=nÞ if it has no evidence of the

original record corresponding to the protected record

y, and, as the evidence increases, the probabilities of the

corresponding indices are augmented. An example of this

situation is when the variables of a data set are protected

independently by means of k-anonymity. Then, reidentifi-

cation can be applied to protected data using only some of

the attributes. The distributions computed by these methods

should be compatible with the ones considered when all

attributes are taken into account. When no attribute is

considered, the algorithm should lead to the probability

ð1=n; . . .; 1=nÞ:
Thus, we avoid reidentification methods with false

positives, since they would disturb the rest of the discus-

sion. Also, probabilities are assumed to be defined so that

the same value will apply to different protected records

whenever these have the same value.

A common assumption is to consider that reidentifica-

tion occurs when the probability function that is returned

by the reidentification method takes the value 1 at one

index, say at i0, and the value 0 at all the other indices.

That is, given the auxiliary information a there is proba-

bility 1 that y belongs to the record with index i0 in X.

We say that the entries s 2 PðYÞ are linked to a col-

lection of indices J � I if the probabilities that are returned

by the reidentification method are non-zero over the indices

J and are zero on the complement I n J: In a nice and

regular situation, a possible non-zero value for the

reidentification method over J is then 1=jJj:
Here, auxiliary information denotes any information

used to achieve a better performance of the reidentification

process. It is common that researchers use parts of the
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original database X as such auxiliary information. It can be

argued that, for example, knowledge of the method of

anonymization is also auxiliary information. When the

database covers only part of a population, and it is not

known who is in the database, then information about

individuals that are not in the original database can serve as

auxiliary information. In general, we do not assume that the

auxiliary information can be indexed by individuals or that

it has any particular structure at all.

Definition 3 We define the confusion of a method of

reidentification r, with respect to the anonymized database

Y ¼ qðXÞ; the auxiliary information A and the threshold

t 2 ½0; 1� as

confðr; Y;A; tÞ ¼ inf
y2Y

Mr;tðy;AÞ

where

Mr;tðy;AÞ ¼
infa2A jfi 2 I : rðy; aÞ½i� � tgj

if infa2A jfi 2 I : rðy; aÞ½i� � tgj[ 0

jIj if infa2A jfi 2 I : rðy; aÞ½i� � tgj ¼ 0

8
<

:

The space of auxiliary information contains any

information that could be useful and accessible to the

adversary. Examples of auxiliary information is

information in the public domain and information on the

method that was used in order to anonymize the data. A

bad determination of A could imply that the confusion of a

reidentification method is overestimated.

We have assumed that we know who is in the database

and who is not. It can be proved that, under this assump-

tion, any additional information that is useful for a re-

identification method can be deduced from the original

database X. Hence, in this particular case, we may assume

that A = X.

Definition 4 Given a space of databases D, a space of

auxiliary information A and a method of anonymization of

databases q; we say that q provides (n, t)-confusion if for

all reidentification methods r, and all anonymized dat-

abases qðXÞ 2 D the confusion of r with respect to qðXÞ
and A is larger or equal to n for the fixed threshold

0\t� 1=n:

The (n, t)-confusion therefore measures the smallest

cardinality of a set of individuals for which the reidentifi-

cation methods gives probability higher than t, calculated

for all protected records y 2 qðXÞ:
(n, t)-Confusion is more reliable as a measure of ano-

nymity when n and t are both large, simultaneously. That

is, an anonymization method providing ðn0; t0Þ-confusion is

better or equal than one that provides (n, t)-confusion when

t0 � t and n0 � n: This statement is based on the following

observations.

On the one hand, if n is small, then an adversary might

be able to form a collusion of size n - 1 which could break

the anonymity of the nth register. This issue is analogous to

what we get if we implement k-anonymity with a small k.

On the other hand, it is interesting to observe what may

occur if the threshold t is much smaller than 1/n. For

example, say that we apply all available reidentification

methods to the protected record y. Suppose that the best

result gives us r(y,a)[i0] = 0.9 and that there are n - 1

other indices i for which r(y,a)[i] = 0.1/(n - 1). Then we

have (n, t)-confusion with t = 0.05/(n - 1). To avoid this

issue, an adequate value for t could be approximately

t = 1/n.

Next we present a proposal for a definition of

n-confusion.

Definition 5 Let notations be as in Definition 4. We say

that the anonymization method q provides n-confusion if

there is a t [ 0 such that q provides (n, t)-confusion.

This definition of n-confusion is designed so that n will

be the cardinality of the smallest set of indices in 1; . . .; n

for which the result is a non-zero probability, when

applying a reidentification method to a protected record in

qðXÞ: In this way, anonymization methods for which re-

identification returns very distinct probabilities also pro-

vide n-confusion, whenever at least n of these probabilities

are non-zero for every protected record. This mimics

k-anonymity in the sense that in order to reidentify an

individual with absolute certainty, a collusion of the k - 1

other target individuals is necessary.

Other possible approaches are to consider that a table

satisfies n-confusion

• when the highest value of the best reidentification

method is taken at least n times, for every protected

record y and all auxiliary information;

• when the highest value of the best reidentification

method is at most 1/n.

2.2 An approach for disclosure risk control: k-

anonymity

The concept of k-anonymity (Samarati 2001; Samarati and

Sweeney 1998; Sweeney 2002a, b) encompasses a set of

techniques for data protection that try to avoid reidentifi-

cation risk. When protecting a database, we have k-ano-

nymity when a record is cloaked into a set of other k - 1

records. Thus, given the record of the intruder, reidentifi-

cation always returns at least k records.

Let T be a table with the attributes A. Let B � A be a set

of attributes of the table. We denote the projection of the

table on the attributes B by T[B]. We suppose that every

record contains information about a unique individual. An
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identifier I in a database is an attribute such that it uniquely

identifies the individuals behind the records. In particular,

any entry in T[I] is unique. A quasi-identifier QI in the

database is a collection of attributes fA1; . . .;Ang that

belongs to the public domain (i.e., are known to an

adversary), such that they in combination can uniquely, or

almost uniquely, identify a record (Dalenius 1986). That is,

the structure of the table allows for the possibility that an

entry in T[QI] is unique, or almost unique. In the former

case, the entry in T[QI] uniquely identifies the individual

behind the record and in the latter, a small set of individ-

uals can form a collusion and use secret information about

themselves in order to make this identification possible.

The former case may be formalized as follows. Consider

the table ~T obtained by permuting randomly the records of

T. Let s be an element in PðTÞ such that the entries of s all

belong to the same record in ~T (and therefore also in T).

Then, if there is a method of reidentification r : ~T � A!
½0; 1�n such that r(s,a)[i] = 1 for some a 2 A and one index

i, then s belongs to T[QI].

In the latter case, an s such that r(s, a) is large for a

small subset J of indices and 0 for the others (so that s is

linked to J) would also belong to T[QI].

Example 6 If a table contains information on students in a

school class, the attributes birth data and gender could be

sufficient to determine to which individual a record of the

table corresponds, although it is possible that not all

records will be uniquely identified in this way. Hence for

this table, birth date and gender are an example of a quasi-

identifier.

The following definition of k-anonymity appeared for

the first time in Samarati and Sweeney (1998) (see also the

articles by Samarati 2001 and Sweeney 2002).

Definition 7 A table T, that represents a database and has

associated quasi-identifier QI, is k-anonymous if every

sequence in T[QI] appears with at least k occurrences in

T[QI].

We have the following relation between k-anonymity

and n-confusion.

Theorem 8 Consider a database X and a space of aux-

iliary information A. Suppose that our knowledge on A has

permitted us to determine correctly the quasi-identifier QI

of X. Let q be a method of anonymization of databases that

gives k-anonymity with respect to QI. Then there is a

threshold 0 \ t \ 1 such that any method of reidentifica-

tion r is of confusion at least k with respect to qðXÞ; r; and

t, so that q provides k-confusion.

Proof Let X be a table with records indexed by I and

Y ¼ qðXÞ a table that is k-anonymous with respect to

QI, obtained by applying the anonymization method q to

X. The assumption that our knowledge on A has permitted

us to determine correctly the quasi-identifier QI, implies

that we may express the auxiliary information as the

restriction of the original table to the quasi-identifier,

A = X[QI]. Then any reidentification method r : Y � A!
½0; 1�jIj will take values r(y, a) in which at least k entries

r(y, a)[i] are equal to x with 0\x� 1=k and the other

entries are smaller than x. Define t as the minimum among

all these x. Then the confusion of r is at least k, for the

threshold 0\t� 1=k: Since X was any table and r any

method of reidentification, q provides k-confusion. h

In some cases the threshold for a k-anonymous table will

be 1/k.

Theorem 8 shows that any table that satisfies k-ano-

nymity also satisfies n-confusion with n: = k. The con-

verse is not true, that is, a table that satisfies n-confusion

does not necessarily satisfy n-anonymity. Next, we will see

an example of this.

Example 9 Let X be a numerical table with 30 distinct

records (points) in R
3: Suppose that we want to anonymize

X according to k-anonymity with k = 3. A common

approach for achieving k-anonymity is to apply a clustering

algorithm to the table, see for example Domingo-Ferrer and

Torra (2005). A clustering algorithm returns a partition of

the records so that the records in each class of the partition

are in some sense similar. In this case, the clustering

algorithm returns a partition of the record set in 10 classes

with exactly 3 records in each class, so that these records

are points inside a ball of radius r from the average of the

three points. Given the records (points) p1; p2; p3 2 R
3; let

Aðfp1; p2; p3gÞ represent their average, and V({p1, p2, p3})

represent the normalized vector that is perpendicular to the

plane defined by the points p1, p2, p3. Let c(p) represent the

points in the cluster of the point p. Two alternatives are

considered for the definition of a 3-anonymization of X.

1. Replace p 2 X by A(c(p));

2. Let p; p0; p00 be the three points in a cluster c. Replace p

by AðcÞ; p0 by AðcÞ þ �VðcÞ and p00 by AðcÞ � �VðcÞ;
where � is a positive real number smaller than the

radius r of the ball that contains the points in the

cluster c.

Then, the first alternative satisfies both 3-anonymity and

(3,1/3)-confusion. However, the second alternative does not

satisfy 3-anonymity, but it does satisfy (3,1/3)-confusion.

2.3 k-Anonymity for graphs

A graph is a pair (V, E), where V is a set of vertices and

E is a family of 2-subsets of V called edges. Sometimes
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there is associated an additional information to a vertex or

to an edge. Such information is called a label. Graphs can

be used to represent for example social networks. In the

common approach for representing a social network as a

graph, individuals are represented as vertices, information

about relations between individuals is represented as edges

and other information about the individuals or about the

relations is represented as labels.

The concept of k-anonymity was initially defined for

tables. In order to apply k-anonymity to other data struc-

tures, observe that these can be represented in table form.

For example, when applying k-anonymity to graphs, the

adjacency matrix of the graph is a representation of the

graph in table form. The adjacency matrix of a graph is a

matrix in which both the rows and the columns are indexed

by the vertices of the graph and the entries represent the

number of edges between the corresponding vertices. A

table is obtained by taking the rows and the columns of the

matrix to be the records and the attributes of the table,

respectively. Then every vertex of the graph occurs as an

index of a record in the table and the attributes indicate the

existence of edges to the other vertices. Depending on the

situation, what is considered to be interesting information

about the graph may vary. Therefore, other attributes may

be included in the table, like for example the degree of the

vertices. The information given by the adjacency matrix is

however enough to deduce any other information available

about the graph. There are also other representations of

graphs that contain the same information as the table just

described. One example is the incidence matrix, in which

the rows are indexed by the vertices, the columns are

indexed by the edges and the entries indicate if the corre-

sponding vertex is on the corresponding edge.

As we saw in the previous section, the concept of

k-anonymity is based on the existence of a quasi-identifier.

A quasi-identifier is a collection of attributes of the table,

and the quality of the anonymization of the table depends

on the correct determination of the quasi-identifier. Usually

it is the data owner who is the entity that executes the

anonymization method and who therefore is the responsi-

ble for the correct determination of the quasi-identifier. In

this process, the data owner should represent the graph in

table form. The choice of attributes for this table is of

course crucial for the determination of the quasi-identifier.

The data owner cannot know in advance which information

may be useful for the adversary. For example, the adver-

sary could use the edge set of the vertices for the reiden-

tification process, or he could use only the degree of the

vertices. In the former example the adversary uses exactly

the information given by the adjacency matrix, and in the

latter example he uses information that can be derived from

the adjacency matrix, and that can be attached to the table

as an additional attribute. A prudent data owner should

assume that the table that represents the graph, and which

serves for the determination of the quasi-identifier, contains

all attributes that may be relevant for a reidentification

intent of an adversary. We observe that this will occur

exactly when the table that is defined for the adjacency

matrix (or some other equivalent table) is k-anonymized.

This is so, because all other information about the graph

can be deduced from this table.

2.4 Table data k-anonymity versus graph k-anonymity

Previous authors on this subject seem to agree on that

k-anonymization for graphs differs from k-anonymization

of tables. This opinion complicates the application of the

concept of k-anonymity to graphs. We argue that graph

k-anonymity is a special case of k-anonymity as defined by

Sweeney.

Below we list the arguments used in Zhou and Pei

(2008) in order to justify the difference between k-anony-

mization of table form data and graph data.

1. They claim that it is much more challenging to model

the background knowledge on adversaries and attacks

on social networks than on relational data. For

relational data, they say, it is often assumed that a

set of attributes serving a quasi-identifier is used to

associate data from multiple tables, and attacks mainly

come from identifying individuals from the quasi-

identifier. However, in a social network many pieces of

information can be used to identify individuals, such as

labels of vertices and edges, neighborhood graphs,

induced subgraphs, and their combinations. It is much

more complicated and much more difficult than the

relational case.

2. They also claim that it is much more challenging to

measure the information loss when anonymizing social

network data than when anonymizing relational data.

3. Finally, they claim that it is much more difficult to

anonymize a social network than data in table form,

since changing labels of vertices and edges may affect

the neighborhoods of other vertices, and removing or

adding vertices and edges may affect other vertices and

edges as well as the properties of the network.

Observe that only the first point is relevant for the

definition of k-anonymity since it focuses on the choice of

quasi-identifier, at least if we consider this choice to form

part of the definition of k-anonymity for graphs. The

second and the third points are only important when

defining an algorithm for k-anonymization of graphs. In

particular, the third point is of a completely practical

nature. Also, it is important to realize that every kind of

data has its peculiarities. Also relational table data can hide

unexpected quasi-identifiers. Trajectorial data can be

Reidentification and k-anonymity: a model for disclosure risk in graphs 1661

123



tricky; when anonymizing car trajectories it is important to

check that the published trajectories are feasible. For

example, a car cannot drive over a lake. For graphs we

have a similar situation. When anonymizing a graph it is

important to check that we do not produce edges which

contain only one vertex. Concluding, we see that the

anonymization algorithm must take into account the

underlying structure of the data type that is being

anonymized.

Regarding the first point, we have seen in the previous

discussion that all available information about a graph can

be deduced from its adjacency matrix. This implies that if

the matrix is k-anonymous, so is the graph, with respect to

any graph property that can come to mind.

2.5 n-Confusion for graphs

We will here make some remarks on n-confusion for

graphs, although we spare a more detailed discussion on

this subject for future work.

The concept of n-confusion generalizes k-anonymity,

and permits to define methods of anonymization that do not

provide k-anonymity, but that do provide the same level of

anonymity as does k-anonymity. The main interest is then

to minimize information loss. Just as for any table data,

n-confusion can be used for privacy protection of data from

social networks. We can separate data that are represent-

able in graph form, from data that are not. Then a sketch

for a family of methods of anonymization could be the

following:

1. Transform the graph data into a k-anonymous graph.

2. Observe that the k-anonymous graph provides a

partition of the vertex set (see Sect. 4), hence defining

a clustering of the records. Now apply a method of

anonymization providing n-confusion with n = k to

every cluster independently.

It is not hard to see (remembering that k-anonymity is a

special case of n-confusion) that the result is a method of

anonymization that provides n-confusion with n = k.

Suitable methods of anonymization could be the following:

• Data distortion by probability distribution (Liew et al.

1985) This is a special case of synthetic data genera-

tion, in which the protected data is generated from what

is determined to be the probability distribution of the

original data. It is very important that the data generator

provides non-reversible anonymity (as it is supposed to

do). Otherwise, the result will not satisfy n-confusion.

In particular, one should be careful with methods that

generate data with the same statistics as the original

data, since too many restrictions may lead to a

determined system of equations, and consequently,

reversible anonymity. The exact characterization of

data generators that provide non-reversible anonymity

is still to determine. Observe that although the new data

asymptotically preserve statistics locally, if no further

actions are taken, all global statistics will not be

preserved. Also observe that if the clusters are small,

then local statistics may not be preserved.

The idea to combine a first step of clustering with a

second step of data generation within the clusters has

previously been studied for non-graph data in Domin-

go-Ferrer and Rufian-Torrell (2012) and Stokes and

Torra (2012), Section 4.

• Data swapping In this case, we suggest that all data

should be uniformely scrambled, attribute by attribute.

Then it is clear that the result satisfies n-confusion.

Also, some of both the global and the local statistics are

preserved, since the data entries are the same as the

original data entries. Future work includes an evalua-

tion of the information loss. Possible relaxations could

be discussed in order to lower the information loss.

3 Previous work

Previous applications of k-anonymity to graphs have sug-

gested several different quasi-identifiers, resulting in dif-

ferent definitions of k-anonymity for graphs. These

definitions compete, and no agreement has been reached.

We review some of the available definitions here below.

3.1 k-Anonymous graphs in terms of structural queries

Hay et al. (2008a) explore the potential of structural que-

ries on graphs for the reidentification of vertices and pro-

pose a formalization of the graph anonymization problem

based on k-anonymity. Given a graph G = (V, E) and an

anonymization of it, G0 ¼ ðV 0;E0Þ; they let an adversary

post queries on the structure of G in a neigborhood of a

fixed vertex v 2 V 0: The vertex sets V and V0 are assumed

to be equal, so that if v is a vertex in the anonymized graph,

then it is also a vertex in the original graph. They define the

candidate set of the vertex v 2 V with respect to the query

Q as the set of vertices candQðxÞ � V such that the out-

come of the query is the same for all vertices in candQ(x),

candQðxÞ ¼ fv 2 V : QðxÞ ¼ QðvÞg:

As observed by Hay et al. the candidate sets with respect to

a fixed query form a partition of the vertex set V into

equivalence classes. In their model of the behavior of an

adversary, he posts a sequence of structural queries. The

intersection of the results from this sequence of queries is

compared with the additional information the adversary has
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on the vertex he wants to reidentify and may then provide a

refinement of the reidentification of a vertex compared to

what a single query provides. A graph is then k-candidate

anonymous if it satisfies the following condition.

Definition 10 (Hay et al. 2008a) Let Q be a structural

query. An anonymized graph satisfies k-candidate ano-

nymity given Q if:

8x 2 V ; 8y 2 candQðxÞ : CQ;x½y� � 1=k

where CQ,x[y] is the probability, given Q, of taking can-

didate y for x. The authors define CQ;x½y� ¼ 1=jcandQðxÞj
for each y 2 candQðxÞ and 0 otherwise.

The anonymization method proposed in Hay et al.

(2008a) is based on the idea of k-anonymity as a partition

of the record set. An algorithm is described that uses

simulated annealing in order to find a partition of the vertex

set that satisfies the k-anonymity constraint and maximizes

the descriptive properties of the relations between the

classes of the partition. The algorithm returns a general-

ization of the graph; a set of super-vertices, corresponding

to the classes of the partition of the vertices, connected by a

set of super-edges (including super self-loops), corre-

sponding to the structural relations between the classes. If

the partition of the vertices is defined so that k-anonymity

is obtained with respect to the information contained in the

super-edges, then the privacy constraint is indeed satisfied.

The data owner can choose to publish either the general-

ized graph or a sampled graph with the same properties as

the ones described by the generalized graph.

The approach in Hay et al. (2008a) does not fix a unique

quasi-identifier, but leaves it to the data owner to choose

which structural attributes are important to publish and/or

protect. Among the previous work we have found, it is also

probably the approach that is closest to the one presented in

this article.

3.2 k-Anonymous graphs with respect to the degree

If we choose the degree of the vertices as the quasi-iden-

tifier of the graph, then we obtain the definition of

k-anonymous graph proposed by Liu and Terzi (2008). The

reason for their proposal seems to be of pragmatic nature.

Without doubt they are aware of the fact that the degree of

the graph is not the only attribute that can be used as a

quasi-identifier. However, they explore the possibility to

anonymize the graph with respect to this sole attribute

while making as little changes in the graph as possible

using a greedy method.

Their definition of k-anonymity for graphs is as follows.

Definition 11 (Liu and Terzi 2008) A graph (V, E) is k-

degree anonymous if every number that appears as a degree

of a vertex in V, appears as the degree for at least k vertices

in V.

3.3 k-Anonymous graphs with respect to isomorphic

1-neighborhoods

If we instead consider that the quasi-identifier of the graph

is the induced subgraph of the neighbors of a vertex, then

we obtain the definition of k-anonymous graph proposed by

Zhou and Pei (2008). Given a graph G = (V, E) and a

vertex v 2 V; the d-neigborhood Neighbord
GðvÞ is the

induced subgraph of the set of vertices of distance d from v.

For d = 1, the 1-neighborhood Neighbor1
GðvÞ is the

induced subgraph of the set of vertices that share an edge

with v.

Definition 12 (Zhou and Pei 2008) Let G = (V, E) be a

graph. Then, the 1-neighborhood of v 2 V is the induced

subgraph of the neighbors of u, denoted by Neighbor1
GðuÞ ¼

GðNðuÞÞ where NðuÞ ¼ fvjðu; vÞ 2 Eg; and where G(N(u))

is defined with the vertices N(u) and the edges ENðuÞ ¼
fðu; vÞjðu; vÞ 2 E and u 2 NðuÞ and v 2 NðuÞg.

A graph isomorphism between two graphs is a mapping

that transforms one graph into the other by reindexing the

vertices. When there exists a graph isomorphism between

two graphs, then we say that the graphs are graph iso-

morphic. The definition of k-anonymity for graphs based

on isomorphic 1-neighborhoods is as follows.

Definition 13 (Zhou and Pei 2008) Let G = (V, E) be a

graph. The graph G0 ¼ ðV 0;E0Þ is a k-anonymization of G if

V � V 0;E � E0 and for every vertex in V there are at least

(k - 1) other vertices v1; . . .; vk�1 2 V such that in G0

their neighborhoods Neighbor1
G0 ðuÞ; Neighbor1

G0 ðv1Þ; . . .;

Neighbor1
G0 ðvk�1Þ are isomorphic.

In (Zhou and Pei 2008) there is also an algorithm to

accomplish k-anonymity according to Definition 13.

3.4 (k, l)-Anonymous graphs with respect to subsets

of neighborhoods

Yet another version of k-anonymity for graphs has been

proposed. In this definition, apart from the parameter k, an

additional parameter l is used. The parameter k plays the

same role as in k-anonymity. The definition, proposed by

Feder et al. (2008), is given below.

Definition 14 (Feder et al. 2008) A graph G = (V, E) is

(k, l)-anonymous if for each vertex v 2 V there exists a set

of vertices U � V not containing v such that jUj � k and

for each u 2 U the two vertices u and v share at least l

neighbors.
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3.5 A criticism of (k, l)-anonymity

With the following example we show that for any pair (k, l)

with k B l it is possible to find a graph that is (k, l)-

anonymous, but in which reidentification is possible for a

large proportion of the vertices using only two of their

neighbor vertices.

Example 15 Let k, l, and m be three arbitrary integer

numbers such that k� l� 1; and m [ 2. Define a graph G

with vertices V ¼ fv0; . . .; vk�1; u0; . . .; um�1g and let the

edges E be defined as the union of the following sets of

edges:

1. (vi, vj) for all vi; vj 2 fv0; . . .; vk�1g
2. ðui; uðiþ1Þðmod mÞÞ for i in f0; . . .;m� 1g
3. for all ui 2 fu0; . . .; um�1g; include (ui, v) for all v 2 Wi

where Wi is a subset of fv0; . . .; vk�1g of cardinality l.

Then, this graph satisfies (k, l)-anonymity. However, it is

easy to see that any vertex vi can be reidentified by the pair

of vertices uði�1Þðmod mÞ; uðiþ1Þðmod mÞ:

The k vertices fv0; . . .; vk�1g in Example 15, which we

denote by V1, form a clique, that is, a subgraph which is

complete. The m vertices fu0; . . .; um�1g; which we denote

by V2, are only connected with two other vertices in V2 and

l vertices in the clique V1. The graph has m ? k vertices

and k(k - 1)/2 ? m ? ml edges.

Observe that the parameter m can be as large as desired.

Therefore, we can make the proportion of vertices that can

be reidentified by only two neighbors close to 1. Also note

that the selection of k and l is arbitrary. The only

requirement is that k� l: In case of k \ l, it is easy to see

that an (l, l)-anonymous graph constructed as in the

example above will satisfy (k, l)-anonymity.

Example 16 Figure 1 illustrates the construction of a

(k = 8, l = 3)-anonymous graph with m = 12 vertices in

the border following the construction of Example 15.

4 A definition of k-anonymity for graphs

In this section we will present the definition of k-anonymity

which we consider to be the appropriate for graphs.

Let (V, E) be a graph and let v be a vertex in V. Define

the neighbors of v as the set of vertices of distance one to

v, that is, the set of vertices

NðvÞ :¼ fu 2 V : ðu; vÞ 2 Eg:

We give the following definition of k-anonymous graph.

Definition 17 Let G = (V, E) be a graph. We say that G

is k-anonymous if for any vertex v1 in V, there are at least k

distinct vertices fvigk
i¼1 in V, such that N(vi) = N(v1) for

all i 2 ½1; k�:

This definition of k-anonymity is appropiate for a data

owner that has determined the quasi-identifier of the graph to

be the sets of neighbors of the vertices. A graph that is

k-anonymous following this definition has an adjacency

matrix in which every row vector appears at least k times. The

adjacency matrix is a lossless representation of the graph, in

the sense that it completely determines the graph. Therefore,

it can be deduced that a graph that is k-anonymous following

Definition 17 is k-anonymous with respect to any other graph

property, since these properties are implicitly present in the

matrix. In such a graph, there is a partition of the set of

vertices, such that the vertices in the same part share exactly

the same neighbors. Observe that they do not only share

neighbor set, but that they also share non-neighbor set.

4.1 Characterizing the k-anonymous graphs

In this section we study the characterization of k-anony-

mous graphs. We present two propositions that establish

conditions for these types of graphs. First, we consider

regular k-anonymous graphs and then non-regular ones.

4.1.1 Regular k-anonymous graphs

Let G = (V, E) be a regular graph of degree d that is

k-anonymous. The subsets of vertices that share their

neighbors form a partition of the vertex set of the graph,

Fig. 1 Example of a graph satisfying (k = 8, l = 3)-anonymity but

where information about two neighbors of any of the m = 12 nodes in

the border of the graph reidentifies it
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V ¼ V1 [ � � � [ Vn

such that for i = j we have N(v) = N(u) for all v; u 2 Vi

and N(v) = N(w) for all v 2 Vi and w 2 Vj: However, note

that in general it is not true that NðvÞ \ NðwÞ ¼ ; for v 2
Vi and w 2 Vj when i = j.

Choose a vertex v1 2 V and let V1 ¼ fv1; . . .; vng be the

other vertices in V such that N:= N(v1) = N(vi) for all i 2
½2; n�: Because G is k-anonymous, n is larger than k. Let

fujgd
j¼1 be the d vertices in N. For any j 2 ½1; d�; we then

have that vi belongs to N(uj) for all i 2 ½1; k� and N(uj) has

cardinality d so that k� d:

Fix uj0 for some j0 2 ½1; d�: Then there are vertices

fwsgk
s¼2 in V such that Nðuj0Þ ¼ NðwsÞ for all s 2 ½2; k�: In

particular, vi belongs to N(ws) for all i 2 ½1; k� and all s 2
½2; k�; so that ws 2 NðviÞ and therefore ws 2 fujgd

j¼1 ¼ N

for all s 2 ½2; k�: This implies that any equivalence class Vi

of vertices sharing neighbors that contains one of the ver-

tices uj, is contained in the set of vertices N ¼ fujgd
j¼1:

Therefore, there is a partition of N into one or several

equivalence classes. The classes of this partition is a subset

of the classes of the partition of the whole vertex set.

If in addition we assume that all the equivalence classes

of the partition of the vertex set have the same cardinality

|Vi| = k, then we can deduce that k divides d. In this case, k

of course also divides the order |V| of the graph.

Observe that in general the equivalence classes do not

need to have the same cardinality. The only requirement is

that the cardinalities should all exceed k and that the car-

dinalities of the equivalence classes in a neighbor set N

sum up to d. One can, for example, construct a regular

graph of degree 7 that is 3-anonymous, by splitting

the neighbor sets into equivalence classes of cardinality

3 and 4.

We collect the results in this section in the following

Proposition 18.

Proposition 18 Let G = (V, E) be a d-regular, k-anon-

ymous graph according to Definition 17. Then the follow-

ing conditions are satisfied.

• k B d;

• There is a partition of V ¼ V1 [ � � � [ Vn such that

for i = j we have N(v) = N(u) for all v; u 2 Vi and

NðvÞ 6¼ NðwÞ for all v 2 Vi and w 2 Vj: However, in

general NðvÞ \ NðwÞ 6¼ ; for v 2 Vi and w 2 Vj;

• Fix a vertex v 2 V : Then there is a partition of N(v) into

one or several equivalence classes. The classes of this

partition form a subset of the classes of the partition of

the whole vertex set;

• If all the equivalence classes Vi have the same

cardinality |Vi| = k, then k divides d and |V|.

4.1.2 Non-regular k-anonymous graphs

In non-regular k-anonymous graphs, the vertex set of the

graph will also form a partition of classes of vertices that

share neighbors. By definition, the cardinality of these

classes will be at least k.

Many of the arguments we have made for regular

k-anonymous graphs are true also for non-regular k-anon-

ymous graphs. Let N be the neighbor set of one class Vi of

vertices. Then Vi are neighbors to the vertices in N. In a

connected graph all vertices have neighbors, and therefore

the minimum degree of a connected k-anonymous graph

must be larger than k.

We also see that, by the same argument as in the regular

case, fixed a vertex u 2 N; the partition Vj to which it belongs

must contain only vertices in N. Therefore, also in this case

the neighbor sets of the graph are partitioned into equiva-

lence classes of vertices that share the same neighbors.

As commented previously, when k is large compared to

the order of the graph |V|, then there are only a few graphs

of that order that are k-anonymous. This implies that if we

protect a graph of small order so that it gets k-anonymous

for a large k, then the information loss is important.

However, if k is small and the order of the graph is large,

then much information is still kept.

The following Proposition 19 collects the results pre-

sented in this section and is a generalization of Proposition

18.

Proposition 19 Let G = (V, E) be a k-anonymous graph

according to Definition 17. Then the following conditions

are satisfied.

• The minimum degree of G is larger than k;

• There is a partition of V ¼ V1 [ � � � [ Vn such that for

i = j we have N(v) = N(u) for all v; u 2 Vi and

N(v) = N(w) for all v 2 Vi and w 2 Vj: However, in

general NðvÞ \ NðwÞ 6¼ ; for v 2 Vi and w 2 Vj;

• Fix a vertex v 2 V : Then there is a partition of N(v) into

one or several equivalence classes. The classes of this

partition form a subset of the classes of the partition of

the whole vertex set.

5 A definition of (k, l)-anonymity for graphs

as a relaxation of k-anonymity for graphs

The definition we just presented has the problem that it is

sometimes rather restrictive, in particular for small data

sets. Observe that if k is large in relation to the order |V| of

the graph, then there is only a small number of non-iso-

morphic graphs that will satisfy the criterion of k-ano-

Reidentification and k-anonymity: a model for disclosure risk in graphs 1665

123



nymity. Under these circumstances, the usefulness of the

anonymized graph is therefore limited. This fact justifies

the following relaxation of the definition of k-anonymity

for graphs. Following the idea in Feder et al. (2008), we

introduce a second parameter l, and consider that the graph

is (k, l)-anonymous if it is k-anonymous with respect to any

subset of cardinality at most l of the neighbor sets of the

vertices of the graph. The phrase ‘‘a subset of cardinality at

most l of the neighbor sets of vertices’’ has two distinct

interpretations, resulting in two distinct definitions of (k, l)-

anonymity for graphs. Which of the two definitions should

be used depends on the context.

If the graph has no multiple edges (a pair of vertices can

be connected by at most one edge), then the row vector in

the adjacency matrix that represents the neighbor set N(v)

of a vertex v is a vector in the space {0, 1}n, where |V| = n

is the number of vertices in the graph. If the graph has

multiple edges, then the space is ðN [ f0gÞn: Interpret a

subset of cardinality at most l of the neighbor set of v to be

the entries of the vector N(v) which are indexed by a subset

of the indices of N(v) of cardinality at most l. In this way

we characterize the vertex v by subsets of both its neigh-

bors and its non-neighbors and we give the following

definition of (k, l)-anonymity for graphs.

Definition 20 [(k, l)-anonymity for graphs (I)]. Let

G = (V, E) be a graph. We say that G is (k, l)-anonymous if

for any vertex v1 2 V and for all subset of indices I � ½1; jV j�
of cardinality jIj � l there are at least k distinct vertices

fvigk
i¼1 such that N(vi) and N(v1) coincide over I for i 2 ½1; k�:

In a graph that satisfies Definition 20, an adversary who

fixes a vertex v for reidentification and who has access to

the induced subgraph on a subset of vertices of the graph of

at most cardinality l as auxiliary information, will only be

able to reidentify v with probability at most 1/k.

In contrast to Definition 20, we could interpret a subset

of cardinality at most l of the neighbor set of v to be a

subset of the neighbors of v. In this way the non-neighbors

are not taken into account. Using this interpretation we

give the following formal definition of (k, l)-anonymity.

Definition 21 [(k, l)-anonymity for graphs (II)]. Let

G = (V, E) be a graph. We say that G is (k, l)-anonymous

if for any vertex v1 2 V and for all subset S � Nðv1Þ of

cardinality jSj � l there are at least k distinct vertices

fvigk
i¼1 such that S � NðviÞ for i 2 ½1; k�:

In a graph that satisfies Definition 21, an adversary who

fixes a vertex v for reidentification and who has access to

the induced subgraph of a subset of vertices of the graph

that contains at most l of the neighbors of v as auxiliary

information, will only be able to reidentify v with proba-

bility at most 1/k.

Observe that the fact that Definition 20 and Definition

21 are relaxations of Definition 17, implies that a graph that

satisfies (k, l)-anonymity is not in general k-anonymous,

and that one could even find examples of (k, l)-anonymous

graphs in which every vertex is uniquely identified by some

property, say, by their degree.

This observation means that in a situation where the data

owner considers that there is an elevated risk that the

adversary could have access to some auxiliary information

besides a subgraph containing at most l neighbors of any

vertex, further protection is recommended. For example, in

the case when the additional auxiliary information consists

of the degrees of the vertices of the graph, the data owner

could consider a graph protection method which combines

(k, l)-anonymization and k-anonymization with respect to

the degree. The latter method can be found in Liu and Terzi

(2008).

However, whenever the auxiliary information about the

graph that is available to the adversary is restricted to

• the induced subgraph of the original graph on at most l

vertices in the case of Definition 20, or

• the induced subgraph of the original graph on a subset

of the original vertices that contains at most l neighbors

of any of the original vertices, in the case of Definition

21,

then the information that he has about the degrees of the

vertices is equally restricted, so that the data protection in a

(k, l)-anonymous graph is just as high as it claims to be.

It is obvious from the definition that k must be smaller

than the order |V| of the graph. If we assume that the graph

contains no loops, then the set of k vertices that share

neighbors and the set of l neighbors that they share must be

disjoint, so that l cannot be larger than |V| - k. These

bounds are attained, since the complete graph (V, E) on

n:= |V| vertices, is (k, n - k)-anonymous for all k B n.

Consider a graph that is (k, l)-anonymous according to

Definition 21. Let d be the minimum degree of the graph. If

d is smaller than l, so that there is a vertex v with a smaller

number of neighbors than l, then v can share at most d

neighbors with other vertices, so that the graph can be at

most (k, d)-anonymous. Therefore, for (k, l)-anonymity

according to Definition 21 it should always be assumed that

l B d.

Observe that if a vertex share a set of l neighbors with k

other vertices, then it also shares any subset of these l

neighbors with the same k vertices. Therefore, if a graph is

(k, l)-anonymous according to Definition 21, then it is also

ðk; l0Þ-anonymous according to Definition 21 for all l0 � l:

Also, if a vertex share a set of l neighbors with k other

vertices, then it also shares the same set of l neighbors

with any subset of the k vertices. Therefore, if a graph is
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(k, l)-anonymous according to Definition 21, then it is

also ðk0; lÞ-anonymous according to Definition 21 for all

k0 � k:

We collect these results in the following Proposition 22.

Proposition 22 Let G = (V, E) be a (k, l)-anonymous

graph, following Definition 21. Then the following condi-

tions are satisfied.

• If G has no loops, then k þ l� jVj;
• l is smaller or equal to the minimum degree of the

graph;

• G is ðk; l0Þ-anonymous for all l0 � l;

• G is ðk0; lÞ-anonymous for all k0 � k:

6 Algorithms for the k-anonymization of graphs

In this section we will present three different algorithms.

The first is an algorithm for k-anonymization of databases.

The second algorithm determines the degree of (k, l)-ano-

nymity of a given graph, that is, given a k it determines the

largest l for which the graph is (k, l)-anonymous. The third

algorithm increases the degree of (k, l)-anonymity of a

graph. More precisely, if the algorithm is given a graph that

is (k, l)-anonymous, then it returns a similar graph that is

ðk; l0Þ-anonymous, with l0[ l:

6.1 A k-anonymization algorithm

As commented in Sect. 4, it is easy to see that in a graph

that is k-anonymous according to Definition 17 there

exists a partition of the vertex set in classes of cardinality

at least k, so that the vertices in a class of the partition

all share the same neighbors. This partition is easy to

find. The row vectors (or, equivalently, the column vec-

tors) of the adjacency matrix of the graph represent the

neighbor set of their corresponding vertex, so that the

vertices in the same class of a k-anonymous graph will

have equal row vectors (and column vectors). Since

every class contains at least k vertices, the adjacency

matrix of a k-anonymous graph is a table that satisfies k-

anonymity.

Now suppose that we have a graph with an adjacency

matrix A that does not satisfy k-anonymity and that we

want to transform A in order to obtain another table A0 that

is similar to A, satisfies k-anonymity and is the adjacency

matrix of a graph. That is, suppose that we want to define a

method for k-anonymization of graphs. In this section we

give an algorithm (Algorithm 1) that describes such a

method.

The algorithm is based on a clustering algorithm for

graphs. We require that the clustering algorithm returns a

partition of the vertex set V of the graph and that each

cluster or class of vertices contains at least k vertices. In Hay

et al. (2008b), the authors use simulated annealing in order

to find a partition of the vertices that satisfy k-anonymity

and minimizes information loss, via a maximum likelihood

approach. Heuristic methods are nice, because they work.

However, other methods may offer more theoretical control

over the properties of the output of the algorithm.

In order to obtain good clustering results the choice of

the distance to use is crucial. Not only classical distances

are used for clustering, but also weaker topology concepts,

like similarities (Bloch 1999; Lowen and Peeters 1998) and

proximity relations (Klir and Yuan 1995). The paper

(Stokes and Torra 2011) describes some available algo-

rithms for clustering of graphs, and discusses how to define

similarities between vertices. In particular, two similarities

for clustering of the neighbor sets of the vertices of a graph

are compared; the Manhattan similarity, based on the

Manhattan distance, and the so-called 2-path similarity.

The Manhattan similarity measures how many equal

entries the two vertices have in the adjacency matrix.

Formally, we have the following definition.

Definition 23 Given two vectors in the adjacency matrix

of G; u; v 2 f0; 1gjVj; we denote by siml1ðu; vÞ the Man-

hattan or l1 similarity between u and v, so that
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siml1ðu; vÞ ¼ jVj �
Xn

i¼1

ju½i� � v½i�j:

The 2-path similarity measures the number of paths of

length 2 between the two vertices. This can be calculated

by taking the square of the adjacency matrix, and we define

the 2-path similarity in this manner.

Definition 24 Given two vectors in the adjacency matrix

of G; u; v 2 f0; 1gjV j; we denote by sim2�pathðu; vÞ the 2-

path similarity between u and v, so that

sim2�pathðu; vÞ ¼
Xn

i¼1

u½i�v½i�:

It is interesting to note how two vertices that share many

neighbors have many paths of length two between them, or,

expressed in another way, they have many quadrangles that

passes through them. As explained in Stokes and Torra

(2011), the Manhattan similarity measures the similarity

between vertices with respect to both neighbors and non-

neighbors, while the 2-path similarity only measures the

similarity between vertices with respect to their neighbors,

so that a common non-neighbor does not change the

similarity between two vertices. The differences between

these two similarities should be compared with the

differences between the two definitions of (k, l)-

anonymity in Definition 20 and Definition 21. Algorithm

2 and Algorithm 3 illustrates the connection between the

similarities and the definitions of (k, l)-anonymity.

A clustered graph can be published as a generalized

graph as described in Hay et al. (2008a). When the graph is

k-anonymous, it is possible to publish a generalization of

the graph that satisfies k-anonymity, without any infor-

mation loss at all. This is indeed the idea behind k-ano-

nymity for graphs.

However, when the graph is not k-anonymous, a general-

ization of the graph that satisfies k-anonymity is never loss-

less. We want a method to transform any graph into a

protected graph that satisfies k-anonymity according to Def-

inition 17. We also want the protected graph to be similar to

the original graph, so that the information loss is kept small.

Observe that Algorithm 1 disconnects the vertices inside

each cluster. This is necessary in order for these vertices to

have the same neighbors. Indeed, two connected vertices

cannot have the same neighborhood.

6.2 Algorithms for the calculation of the degree of (k,

l)-anonymity of a graph, given k

If we calculate the Manhattan similarity between all the

vertices in the graph, then we can determine the highest

l such that the graph is (k, l)-anonymous according to

Definition 20, for k fixed. This l defines neighborhoods

or balls around each vertex v; set of vertices {u} that

satisfy siml1ðv; uÞ� l; with at least k vertices in each

neighborhood. When k = 1, then the largest l that gives

us this family of neighborhoods is trivially equal to the

order of the graph l = |V|. When k [ 1, then l might be

smaller, somewhere between 0 and the order of the

graph. The cardinality of the set of neighborhoods is |V|

and it forms a fuzzy clustering of the neighbor sets of

the vertices of the graph. The centroids of these clusters

are the points Z=ð2Þð ÞjV j that represent the neighbor sets,

and since every cluster has cardinality k, it is obvious

that whenever k [ 1 then the clusters overlap.

If we instead use the 2-path similarity, then we can

determine the largest l so that the graph is (k, l)-anonymous

according to Definition 21. For k = 1, the largest l is equal

to the minimum degree of the graph, and if k [ 1, then the

largest possible l is somewhere between 0 and the mini-

mum degree.

In this way we obtain two different measures on the

degree of anonymity of the original graph; the largest

parameters so that the graph satisfies the definitions of the

two versions of (k, l)-anonymity. Which of the two mea-

sures is the most useful, depends on the context, or more

precisely, it depends on whether the non-neighbors are

useful for reidentification or not.

Hence, we present here an algorithm (Algorithm 2) that,

given a graph G = (V, E) and a positive integer k, calcu-

lates the largest l such that G is (k, l)-anonymous according

to Definition 20. The algorithm shows the relation between

the Manhattan or l1 similarity (Stokes and Torra 2011) and

the (k, l)-anonymity according to Definition 20, described

before.

Next we present an algorithm (Algorithm 3) that, given

a graph G = (V, E) and a positive integer k, calculates the

largest l such that G is (k, l)-anonymous according to

Definition 21. The algorithm shows the relation between

the 2-path similarity (Stokes and Torra 2011) and the

(k, l)-anonymity according to Definition 21, as described

before.
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6.3 An algorithm to increase the degree of (k, l)-

anonymity of a graph

Finally, we present an algorithm (Algorithm 4) that, given

a graph G that is (k, l)-anonymous with respect to the

similarity sim, returns either a graph G0 that is based on G

but that is ðk; l0Þ-anonymous with l0 ¼ lþ 1 or the empty

graph without vertices.

The algorithm deletes vertices v that have a set of

similar vertices ]fu 2 V : simðu; vÞ� l0g which is too

small, that is, smaller than k. Since the deletion of a vertex

affects the neighbor sets of the other vertices v so that

]fu 2 V : simðu; vÞ� l0g may decrease, causing the dele-

tion of more vertices in the next execution of the loop,

there is a risk that the algorithm deletes all vertices of the

graph. In order to avoid this phenomenon, we recommend,

for some v 2 V with ]fu 2 V : simðu; vÞ� l0g\k; the

addition of new vertices to V to augment ]fu 2 V :
simðu; vÞ� l0g: Such a new vertex ~v must be connected to

the already existing vertices in V in a way so that the set

]fu 2 V : simðu; ~vÞ� l0g� k; and so that we do not intro-

duce new problematic vertices. An easy solution to this

problem is to let the new vertices ~v be copies of the

problematic vertex v. However, the use of this solution

would cause the algorithm to loose its status as anonymi-

zation method, since the records in the resulting table

would not correspond to distinct individuals, so that it fails

to be a database according to our definition. As a conse-

quence, the risk of reidentification for the vertices

protected in this way will be higher than for the vertices in

a graph that is protected using a real method of ðk; l0Þ-
anonymization method.

7 Conclusion

In this article we have provided a formal framework for

reidentification in general. We have defined n-confusion as

a concept for modeling the anonymity of a database table

and we have proved that n-confusion is a generalization of

k-anonymity. Then after a short survey on the different

available definitions of k-anonymity for graphs we pro-

vided a new definition for k-anonymity, which we consider

to be the correct definition. It has been explained how this

definition can be used in combination with n-confusion for

the anonymization of data from, for example, social

networks.

We have provided a description of the k-anonymous

graphs, both for the regular and the non-regular case.

However, under some conditions our definition of k-ano-

nymity is quite strict, so that it is only satisfied by a small

number of graphs. In order to avoid this problem, we have

introduced the more flexible definition of (k, l)-anonymity.

Our definition of (k, l)-anonymity for graph is meant to

replace the definition in Feder et al. (2008), which we have

proved to have severe weaknesses. We have given two

variants of the definition of (k, l)-anonymity, which may

serve under different conditions.

We have also provided a set of algorithms; one algo-

rithm that given a graph G and a natural number k returns a

graph G0 based on G that is k-anonymous, two algorithms

that given a graph G and a natural number k calculates the

largest l such that G is (k, l)-anonymous according to our

two different definitions of (k, l)-anonymity, and finally,

one algorithm that given a graph G that satisfies (k, l)-

anonymity returns a graph G0 similar to G that satisfies

(k,l ? 1)-anonymity.
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