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Abstract Activity recognition based on mobile device is

an important aspect in developing human-centric pervasive

applications like gaming, industrial maintenance and health

monitoring. However, the data distribution of accelerom-

eter is heavily affected by varying device locations and

orientations, which will degrade the performance of rec-

ognition model. To solve this problem, we propose a fast,

robust and device displacement free activity recognition

model in this paper, which integrates principal component

analysis (PCA) and extreme learning machine (ELM) to

realize location-adaptive activity recognition. On the one

hand, PCA is employed to reduce the dimensionality of

feature space and extract robust features for recognition.

On the other hand, in the online phase ELM is applied to

classify the activity and adapt the recognition model to new

device locations based on high confident recognition

results in real time. Experimental results show that, with

robust features and fast adaptation capability, the proposed

model can adapt the classifier to new device locations

quickly and obtain good recognition performance.

Keywords Extreme learning machine �
Activity recognition � Principal component analysis �
Machine learning

1 Introduction

Automatically recognizing motion activities, such as

standing still, walking, running, etc, allows many applica-

tions in areas such as healthcare, elderly care and energy

expenditure estimation. Because of its inherent property,

accelerometers are most often employed in human activity

recognition to measure the movement characters of human

body. With the development of micro-electrical mechani-

cal systems (MEMS), the accelerometers are miniaturized

so that they can be embedded into small mobile devices.

Compared with traditional wearable activity recognition

(Roggen et al. 2011) which fixes accelerometers on spe-

cific locations of human body, activity recognition based

on mobile device faces a new problem of varying device

locations and orientations because the users can put the

device at different places as they prefer, such as hand,

pocket, bag, etc. When the device is deployed at varying

locations but with the same orientation, the embedded

accelerometer may exert different forces because the

movement patterns of different body parts are distinct, even

when the user is doing the same activity. When the device

is deployed with varying orientations but at the same

location, the accelerometer will exert the same force.

However, the sensor readings of the three axes will be

different because the decomposed force along the
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coordinates of the device are related with the angles

between the synthesized force and the three axes.

In this paper, a fast, robust and device displacement free

activity recognition model is proposed to deal with the

problem of varying device locations and orientations. First,

the readings along three axes are synthesized and the

magnitude of synthesized acceleration is used to extract

features. This can eliminate the orientation difference of

the mobile device, at the cost of losing direction informa-

tion. Second, based on a lot of features, principal compo-

nent analysis (PCA) is used to eliminate noise feature,

extract robust features for recognition. Third, extreme

learning machine (ELM) is used to adapt the recognition

model to new locations in the online phase. The high

confident recognition results will be selected and added

into the training dataset. Then, the recognition model will

be retrained through taking the advantage of fast learning

speed of ELM. Experimental results show the validity and

high performance of the proposed model.

The rest of this paper is organized as follows. In Sect. 2,

some related work will be illustrated. Section 3 introduces

the proposed model. Experiments and results will be pre-

sented in Sect. 4. Finally, we conclude this paper in

Sect. 5.

2 Related work

As to varying device orientations, Reddy et al. (2008)

propose to recognize transportation modes using the fea-

tures extracted from the series of acceleration magnitude,

which is the value of acceleration synthesization of three

axes. Mizell (2003) shows that the average of the accel-

erometer signal over a reasonable time period can produce

a good estimation of the gravity-related component, which

in turn can be used to estimate the vertical and horizontal

component of dynamic acceleration. Yang (2009) uses

these two methods to recognize the user’s activities

including sitting, standing, walking, running, driving and

bicycling. Experimental results show that acceleration

decomposition-based method performs a little better than

acceleration synthesization-based method. However, Wang

et al. (2010) show that the acceleration synthesization-

based method outperforms the acceleration decomposition-

based method for recognizing six typical transportation

modes, including biking, busing, driving, stay, taking

subway and walking. In addition, they demonstrate that the

gravity estimation error will degrade the performance of

acceleration decomposition-based method.

As to varying device locations, Kunze et al. (2005)

propose a location recognition method which firstly iden-

tifies time periods where the user is walking and then

leverages the specific characters of walking motion to

determine the location of the body-worn sensor, including

wrist, head, trouser’s pocket and breast pocket. However,

for mobile device-based activity recognition, this method

may not be feasible because it requires well-defined fixed

positions. Kunze and Lukowicz (2008) demonstrate that

acceleration caused by rotational motion is location sen-

sitive and combining gyroscope with accelerometer is

helpful to reduce the sensitivity.

To address the varying location and orientation issues

simultaneously, Sun et al. (2010) attempt to extract fea-

tures that are independent from or insensitive to orientation

change. They build a support vector machine (SVM)

classifier for all physical activities in all pocket positions.

However, they assume that most of the people put their

mobile phones in one of their six pockets around the waist,

which simplifies this problem to a predefined scenario and

may not be feasible in the real daily life.

As to the recognition model adaption, Lai et al. (2010)

uses the body posture analysis flowchart to judge which

bodily behavior is occurring. In order to adapt the detection

algorithm to individual habits, the authors apply subtractive

clustering method (SCM) to calculate the center position of

the habitual inclination angles for each pose, which is used

as the threshold for pose judgement. Zhao et al. (2011)

propose a transfer learning-based algorithm which inte-

grates a decision tree and the k-means clustering for per-

sonalized activity recognition model adaptation. However,

above papers only take the model adaption across different

users into consideration. To our knowledge, there is no

existing work on the recognition model adaptation across

different locations.

ELM is an efficient and practical learning mechanism

for the single-hidden-layer feed-forward neural networks.

The recent studies reveal that ELM can be successfully

applied to fuzzy integral determination (Wang et al. 2011),

fuzzy rule learning (Jun et al. 2011), image recognition

(Chacko et al. 2011), and other real-world applications

(Huang et al. 2011). The study on generalization perfor-

mance of learning system has caused wide public concern

over the recent years. One novel idea (Wang and Dong

2009; Wang et al. 2011) is to improve the generalization

ability by maximizing the uncertainty inherent in the

learning system. Such illumination is indeed helpful and

useful to the discussion of ELM’s generalization. An ELM-

based activity recognition algorithm is presented in the

current manuscript. The latest explorations also provide

some new human-centric pervasive applications with

machine learning technologies (Xiao et al. 2011; Zhang

et al. 2011). In this paper, based on the characteristics of

ELM, we built a fast and robust model to classify the daily

activity.
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3 The ELM-based device displacement free activity

recognition model

The proposed model contains two steps:

Step 1 Offline classification model construction and

online activity recognition, as shown in Fig. 1. For offline

classification model construction, firstly the readings of

three axes are synthesized into magnitude series to get rid

of orientation dependence. Statistic and frequency–domain

features are extracted from magnitude series of synthesized

acceleration. Then, PCA is used to reduce the dimension of

feature space and reserve useful and robust features. With

the characters of fast learning speed and high generaliza-

tion capability, ELM is used to build the classification

model. For online activity recognition, the unlabeled test-

ing sample is generated with the same method as that used

in the offline phase. Then the sample is classified by the

ELM classifier and the classification result can be obtained.

Step 2 Activity recognition model retraining and

updating, as illustrated in Fig. 2. Based on the classification

results, the confidence that a sample is correctly classified

is estimated. The samples whose confidences are greater

than a threshold, g, are selected to build up new training

dataset, together with the training samples in Step 1. Then,

the ELM classification model will be retrained and upda-

ted. As the new training samples may be collected from

new device location, the updated model would adapt to

unknown locations gradually.

3.1 Acceleration synthesization

Accelerometer detects and transforms changes in capaci-

tance into an analog output voltage, which is proportional

to acceleration. For triaxial accelerometer, the output

voltages can be mapped into acceleration along three axes,

ax, ay, az. As ax, ay, az are the orthogonal decompositions

of real acceleration, the magnitude of synthesized accel-

eration can be expressed as:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
x þ a2

y þ a2
z

q

ð1Þ

a is the magnitude of real acceleration, but has no direc-

tional information. Therefore, the acceleration magnitude-

based activity recognition model is orientation independent.

3.2 Acceleration feature extraction and normalization

Based on the acceleration magnitude series, 17 statistic

features (Figo et al. 2010) are extracted from a sliding

window of 256 samples with 50% overlapping between

consecutive windows. These features are mean, standard

deviation, energy, mean-crossing rate, maximum value,

minimum value, first quartile, second quartile, third quar-

tile, four amplitude statistic features and four shape statistic

features of the power spectral density (PSD) (Wang 2004).

In addition, based on FFT transformation of the accelera-

tion magnitude series, all frequency components from 1 to

128 Hz are extracted and added into the feature vector,

totally 145 features.

PSD is defined as the Fourier transform of the auto-

correlation of the time series signal and describes the

energy distribution of a signal in the frequency domain.

The amplitude statistics is defined as:

Amplitude: lamp ¼
1

N

X

N

i¼1

CðiÞ ð2Þ

Std: ramp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

½CðiÞ � lamp�2
v

u

u

t ð3Þ

Skewness: camp ¼
1

N

X

N

i¼1

CðiÞ � lamp

ramp

� �3

ð4ÞFig. 1 The overview of ELM-based activity recognition. The dotted
line represents the offline classification model construction and the

solid line represents the online activity recognition

Fig. 2 Process of activity recognition model retraining and updating
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Kurtosis: bamp ¼
1

N

X

N

i¼1

CðiÞ � lamp

ramp

� �4

�3 ð5Þ

where C(i) is the PSD magnitude for the ith frequency bin,

and N is the number of the frequency bins. Similarly, the

shape statistics is defined as:

Mean: lshape ¼
1

S

X

N

i¼1

iCðiÞ ð6Þ

Std: rshape ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

S

X

N

i¼1

ði� lshapeÞ2CðiÞ

v

u

u

t ð7Þ

Skewness: cshape ¼
1

S

X

N

i¼1

i� lshape

rshape

� �3

CðiÞ ð8Þ

Kurtosis: bshape ¼
1

S

X

N

i¼1

i� lshape

rshape

� �4

CðiÞ � 3 ð9Þ

where S ¼
PN

i¼1 CðiÞ:
To eliminate the scaling effects among different fea-

tures, all the features are normalized using the z-score

normalization algorithm (Han and Kamber 2000).

3.3 PCA-based dimension reduction

Suppose the normalized feature matrix X is of dimension

M 9 N, where M is the number of samples, N is the

number of exacted features. The PCA transformation can

be represented as YM�K ¼ XM�N � BN�K ; where K \ N.

B ¼ ½b1; b2; . . .; bk� is a set of basis vectors which are lin-

early independent and orthogonal, and can be calculated as

follows (Wang 2004):

Step 1 Calculate the covariance matrix of the original

feature matrix as

S ¼ 1

M
ðX � lÞTðX � lÞ ð10Þ

where l is the mean vector of the feature set. Because the

normalized feature vectors have zero mean, the calculation

of the covariance matrix can be simplified as

S ¼ 1

M
XT X ð11Þ

Step 2 Calculate the eigenvalues and the corresponding

eigenvectors of the covariance matrix S.

Step 3 Suppose the eigenvectors are sorted in terms of

their eigenvalues and those corresponding to the largest K

eigenvalues are chosen to construct the transformation

matrix R ¼ ½b1; b2; . . .; bk� of corresponding eigenvalues

k1� k2� � � � � kK : The choice of K can be determined as
PK

i¼1 ki
PM

i¼1 ki

� 1� g ð12Þ

where g denotes the loss of energy.

In this paper, PCA is used (1) to denoise the samples; (2)

to reduce the dimensionality of the samples and (3) to

extract location-insensitive features for later model con-

struction or online recognition.

4 ELM-based recognition model construction

and location adaption

4.1 ELM-based classifier

ELM is a recent neural network algorithm, which is known

to achieve good performance in complex problems as well

as reduce the computation time compared with other

machine learning algorithms (Huang et al. 2004a, b, 2006,

2011). The ELM algorithm does not train the input weights

or the biases of neurons, but it acquires the output weights

by using the norm least-squares solution and Moore–

Penrose inverse of a general linear system (Feng et al.

2009; Huang and Chen 2007, 2008; Huang et al. 2010). By

finding the node giving the maximum output value, we

decide the final result.

Figure 3 shows the network structure of ELM with a

single hidden layer used for our experiments. We used 50

hidden neurons and the sigmoid activation function.

The learning phase for the ELM with a single hidden

layer can be summarized as Fig. 4.

In the testing phase, for a testing sample x, the outputs

can be calculated as follows:

TY1�m ¼ ½gðw1 � xþ bÞ; . . .; gðw ~N � xþ bÞ�1� ~N � b ~N�m

ð13Þ

TY ¼ ½a1; a2; . . .; am�;m is the number of output nodes,

which equals the number of classes in classification

problem. Then, the ELM selects the maximum value of TY

and assigns its corresponding index, j, as the class label of

the test sample. We can calculate the sample’s confidence to

the assigned class by the following steps:

Fig. 3 The network structure of ELM
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TYi ¼ TYi �minðTYiÞ ð14Þ

confidence ¼ maxðTYiÞ
P

TYi
; i ¼ 1; 2; . . .;m ð15Þ

4.1.1 Recognition model adaptation to new locations

On the online phase, the user may place the mobile device

to new locations. In order to adapt to new locations, the

recognition model is retrained based on high confident

recognition results by taking advantage of the fast learning

speed of ELM. The model adaptation process contains

following three steps:

1. During recognition, the test samples whose classifica-

tion confidence larger than threshold g will be reserved

and added into the training dataset.

2. When the number of new training samples exceeds the

predefined threshold, ELM is used to retrain the

recognition model based on whole training dataset.

3. Replacing the old recognition model with the new

model.

5 Experimental evaluations

5.1 Data collection

This paper aims to propose a common method for location-

adaptive activity recognition, based on triaxial accelerom-

eter embedded in any mobile devices. The device used in

this paper is a white box made by our hardware engineer.

A XSens MTx sensor,1 which contains a triaxial acceler-

ometer, a triaxial gyroscope and a compass, is embedded in

the box. This device is only used for data collection. All data

is transmitted to a PC and all the data preprocessing and

analysis are done on the PC. The sampling rate of acceler-

ometer is set to 100 Hz. Four participants with varying age

and gender are recruited to perform five daily activities,

including staying still, walking, running, going upstairs and

going downstairs. During data collection, the sensor box can

be placed at the subject’s hands (left and right), chest

pockets (left and right) and trousers pockets (left and right),

as shown in Fig. 5. For each location, all participants will do

each activity for 8–10 min. To ensure the quality of col-

lecting samples, every two participants are organized into

one group. When one is performing the activities, the other

is recording the corresponding information, such as activity

type, start time, terminal time and so on. Table 1 shows the

number of samples obtained for each activity.

5.2 Experimental results

5.2.1 Classifier performance comparison

The ELM algorithm is compared with two popular classi-

fiers, SVM and nearest neighbor (NN), to evaluate its

performance. Based on the dataset obtained in Sect. 5.1,

10-fold cross-validation test is done for each classifier. The

number of ELM’s hidden neutron nodes is set to 50 and the

activation function is ‘sigmoid’. The training time (s),

testing time (s), training accuracy and testing accuracy are

listed in Table 2.

As can be seen from Table 2, ELM obtains the highest

accuracy among them, which is about 5 and 15% higher

than that of SVM and NN, respectively. In addition, the

training time and testing time of ELM are much less than

that of SVM and NN. For 10-fold cross-validation test of

8,473 samples, the total training time of ELM is 14.98 s,

while SVM consumes 197 s. This indicates that ELM has a

much faster training speed than SVM. The total testing

time of ELM is 0.91 s, which is obviously less than that of

SVM and NN.

5.2.2 Cross-location recognition without dimension

reduction and model adaptation

In order to evaluate the performance degradation of rec-

ognition model when the device location is changed, an

experiment of cross-location recognition is done. For each

location, a classifier is learned and is tested on all the

locations.

Table 3 shows the confusion matrix of cross-location

recognition using ELM. The first column of Table 3 is

training location and the first row is testing location. From

Table 3 we can see that the ELM performs well at the same

location but performs poor at the others. The maximum

reduction is about 30% when the model learned from chest

Fig. 4 The ELM algorithm

1 ‘‘XSens Technologies B.V.’’, http://www.xsens.com.
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pocket is applied to hand. The minimum is about 6% when

the model learned from hand is applied to chest pocket.

In Table 4, the confusion matrix of cross-location rec-

ognition using SVM is listed. Compared with Table 3, we

can see that ELM and SVM obtain approximate accuracies

at known locations, but the accuracies of SVM at new

locations decrease a lot and much lower than that of ELM.

As can be seen from Table 5, NN always gets 100%

accuracy at same locations because it is an instance-based

lazy learning algorithm and the training dataset and testing

dataset are same. Compared with Table 3, we can see that

NN also performs worser than ELM at new locations.

5.2.3 Dimension reduction by PCA

In Sect. 3.2, we have extracted 145 features. Of these

features, some are useful and some may be noise. In order

to eliminate the noise features and extract robust ones,

PCA is used in our experiments. Figure 6 shows the cor-

relation between the preserved energy and the number of

principal components in the transform space. From Fig. 6

we can see that, if the loss of energy is set as 0.05, 30

principal components are enough. Thus, for simplification,

the number of principal components is set as 30 in the

following experiments.

Seen from the confusion matrix of cross-location rec-

ognition using ELM illustrated in Tables 3 and 6, we can

easily find that all the recognition accuracies of cross

locations are almost increased about 2–8%. This proves

that PCA indeed eliminates some noise features and the

extracted features are more robust than the original ones.

Table 7 shows that the accuracies of applying one

location’s model to other locations using SVM increase

about 14–25%. But the accuracies at the same location

decrease about 3–12%. However, in Tables 6 and 7, we can

Fig. 5 Location information: a in the right trousers pocket; b in the right hand; c in the right chest pocket; d in the left trousers pocket; e in the

left hand; f in the left chest pocket

Table 1 Activity sample information

Activity name Label Number of sample

Staying still 1 1,751

Downstairs 2 1,579

Walking 3 1,846

Running 4 1,644

Upstairs 5 1,653

Total samples 8,473

Table 2 Performance of three classifiers

ELM SVM NN

Train time 14.98 197.00 \

Test time 0.91 16.60 29.10

Accuracy (%) 79.68 75.01 64.74

Table 3 Confusion matrix of cross-location recognition by ELM

Trousers

pockets (%)

Chest

pockets (%)

Hand (%)

Trousers pockets 81.01 68.66 62.96

Chest pockets 64.39 88.13 58.57

Hand 50.24 68.62 74.97
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see that ELM outperforms SVM not only at known loca-

tions, but also at new locations. The similar situation can be

found in Tables 5 and 8, where NN is used as classifier.

Above experimental results demonstrate that ELM per-

forms best and has strongest generalization capability

among these three classification algorithm.

From Table 3 versus Table 6, and Table 4 versus

Table 7 we can see that, after dimension reduction by PCA,

the recognition accuracy on most unknown locations are

increased, which proves that the extracted features by PCA

can suit different device deployment locations better.

However, this improvement is not obvious in Tables 5 and

8, which cause some confusion. The possible reason maybe

that, compared with ELM and SVM, NN has the worst

generalization capability and thus confuses the samples of

different locations. The recognition accuracy of NN at the

same location is meaningless because one sample is always

the nearest neighbor of itself.

In the experiments from Sect. 5.2.1 to 5.2.3, we can see

that compared with SVM and NN, ELM has the fastest

training and testing speed, the strongest generalization

capability. Therefore, we will use ELM as our classifier in

the following experiments.

5.2.4 Cross-location model adaptation

In this section, the experiments aim to test the ELM

model’s adaptability to new locations. Three locations,

hand, chest pocket and trousers pocket, are presented as A,

B and C. The datasets of these locations are represented as

DataA, DataB and DataC, respectively. Each dataset is

randomly divided into two parts, which are represented as

DataA1 and DataA2, DataB1 and DataB2, and DataC1 and

DataC2.

Without loss of generality, we first assume that A and B

are known locations and C is a new one. TrainAB, which

equals DataA1

S

DataB1; is used to train an ELM model

named as initial model. DataC1 is used to adapt the initial

model to a new one. TestAB, which equals DataA2

S

DataB2;

is used to test the two model’s classification capability on

the known locations. DataC2 is used to test the two model’s

classification capability on the new location. For the initial

model and each test sample in DataC1, if the classification

Table 4 Confusion matrix of cross-location recognition by SVM

Trousers

pockets (%)

Chest

pockets (%)

Hand

(%)

Trousers pockets 87.39 41.41 37.19

Chest pockets 32.02 89.01 48.75

Hand 36.70 49.26 87.81

Table 5 Confusion matrix of cross-location recognition by NN

Trousers

pockets (%)

Chest

pockets (%)

Hand

(%)

Trousers pockets 100 57.14 41.61

Chest pockets 59.88 100 61.10

Hand 53.76 66.11 100

Fig. 6 The effect of PCA

Table 6 Confusion matrix of cross-location recognition after

dimension reduction by ELM

Trousers

pockets (%)

Chest

pockets (%)

Hand

(%)

Trousers pockets 82.90 71.59 69.12

Chest pockets 65.51 90.25 63.67

Hand 58.60 66.93 79.73

Table 7 Confusion matrix of cross-location recognition after

dimension reduction by SVM

Trousers

pockets (%)

Chest

pockets (%)

Hand

(%)

Trousers pockets 75.46 64.81 58.39

Chest pockets 57.48 85.97 62.37

Hand 52.47 66.64 79.10

Table 8 Confusion matrix of cross-location recognition after

dimension reduction by NN

Trousers

pockets (%)

Chest

pockets (%)

Hand

(%)

Trousers pockets 100 48.83 42.54

Chest pockets 44.52 100 57.64

Hand 51.02 59.82 100
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confidence, g, is larger than 0.5, it will be added into a new

dataset, HConfC1. Then, using all samples in TrainAB and

HConfC1, a new recognition model can be retrained.

The performances of the initial model and the new

model on the known locations are shown in Table 9. We

can see that after model adaptation, the new model almost

has the same classification capability as the initial model.

The performances of the initial model and the new model

on the new location are shown in Table 10. We can see that

after adaptation accuracy is improved about 6%.

When B and C are assumed as known locations and A is

as the new location, experiment results are shown in

Tables 11, 12. After adaptation, the accuracy is improved

about 7%.

When A and C are assumed as known locations and B

is as the new location, experiment results are shown

in Tables 13, 14. After adaptation, the performance is

improved more than 12%.

6 Conclusions and future work

In this paper, we research on the physical activity recog-

nition on an accelerometer-embedded mobile device. In

contrast to the previous work of assuming that the phone is

placed in a fixed position, this paper intends to recognize

the physical activities in the daily life when the device

locations and orientations are varying.

We propose a fast and robust activity recognition model

to deal with the problem of varying device locations and

orientations. ELM, a fast learning classification method, is

used to retrain the recognition model online and adapt the

model to new locations. Experimental results demonstrate

that model adaptation improves the recognition accuracy

obviously without any knowledge of new locations.

In the future, we will employ 30 persons to collect data

of more daily activities and consider about more locations

where the device is placed. To build a robust model, the

participants should have different physical conditions such

as gender, age, height, et al. We will collect the realistic

data as the participants go about their normal activities.

With the number of activities increased, the model will be

more and more complex. Then we will test the perfor-

mance of linear PCA and nonlinear PCA, such as kernel

PCA. If nonlinear PCA outperforms linear PCA, we will

select it as our dimensionality reduction method.
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Test data TestAC TestAC

Accuracy (%) 80.53 79.08

A and C are the known locations and B is the new location

Table 14 Recognition results on the new location before and after

adaptation

Before adaptation After adaptation

Train data TrainAC TrainAC ? HConfB1

Test data DataB2 DataB2

Accuracy (%) 59.08 71.82

A and C are the known locations and B is the new location
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