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Abstract Group decision making is a process in which

experts rank and choose the most desirable alternatives

based on some accepted criteria. The aim of this paper was

to introduce a method to solve group decision making

problems with Atanassov’s intuitionistic fuzzy sets. First,

the weight of each criterion is calculated using intuition-

istic fuzzy entropy. Then, the total criteria weight vector is

calculated by aggregating the calculated weights. Using the

obtained weight vector, the alternatives are ranked based

on the association coefficient of the performance of alter-

natives related to each criterion and the positive ideal in-

tuitionistic fuzzy set value and the negative ideal

intuitionistic fuzzy set value. Finally, to show the appli-

cation of the proposed method, it is implemented in soft-

ware vendor selection.
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1 Introduction

Fuzzy logic and fuzzy sets theory (FSs) proposed by Zadeh

(1965) has represented a means for handling vagueness and

impreciseness in the real-life situations. Atanassov (1986,

1989, 1994) introduced a generalization of Zadeh’s fuzzy

set called Atanassov’s intuitionistic fuzzy set (IFS). Each

IFS is characterized by a membership function and non-

membership function. Atanassov’s IFS are useful to deal

with uncertainty and vagueness. Today, Atanassov’s IFS

has become one of the most applicable subjects in many

different scientific fields, including medical diagnosis

(Khatibi and Montazer 2009; De et al. 2001), clustering

(Xu et al. 2008; Chaira 2010), pattern recognition (Boran

2009; Hung and Yang 2008; Vlachos and Sergiadis 2007;

Zhang and Fu 2006; Hung and Yang 2004b; Liang and Shi

2003; Dengfeng and Chuntian 2002; Tizhoosh 2008), and

IFS topology (Mursaleen et al. 2010; Yılmaz 2010;

Mursaleen and Mohiuddine 2009; Samanta and Mondal

2002). Gau and Buehrer (1993) introduced the vague set,

but Bustince and Burillo (1996) showed that it is an

equivalence of Atanassov’s IFS. Many relations and

operators related to Atanassov’s IFS have been studied by

researchers, such as distance measure (Grzegorzewski

2004; Szmidt and Kacprzyk 2000; Wang and Xin 2005),

similarity measure (Li 2004; Li et al. 2005, 2007; Hung and

Yang 2004a), and IFS entropy (Zhang et al. 2009; Burillo

and Bustince 1996; Ye 2010a, b). Xu and Yager (2006a)

developed some geometric aggregation based on Atanas-

sov’s IFS, such as the intuitionistic fuzzy weighted geo-

metric (IFWG) operator, the intuitionistic fuzzy ordered

weighted geometric (IFOWG) operator, and the intuition-

istic fuzzy hybrid geometric (IFHG) operator. Xu (2007),

moreover, developed the intuitionistic fuzzy ordered

weighted averaging (IFOWA) operator and the intuition-

istic fuzzy hybrid aggregation (IFHA) operator.

There has been much investigation on group decision

making (GDM) with Atanassov’s IFS by researchers.

Atanassov et al. (2005) used IFS to solve a multi-criteria,

multi-person, and multi-measurement GDM problem. Li

et al. (2009) developed a fractional programming model

based on TOPSIS for solving multi-attribute group decision-

making problems using Atanassov’s IFS. There is some
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research which is done on aggregation operators of decision-

making process. As an illustration, Wei (2010b) proposed

two new aggregation operators: induced intuitionistic fuzzy

ordered weighted geometric (I-IFOWG) operator and

induced interval-valued intuitionistic fuzzy ordered weigh-

ted geometric (I-IVIFOWG) operator, and developed them

to solve the MAGDM problems, in which both the attribute

weights and the expert weights take the form of real numbers.

Liu and Wang (2007) presented a new method for solving

multi-criteria decision-making problem in an intuitionistic

fuzzy environment to measure the degrees to which alter-

natives satisfy and do not satisfy the decision-makers

requirement. Boran et al. (2009) combined TOPSIS method

with Atanassov’s IFS to select appropriate supplier in a

GDM procedure. Xu and Yager (2008) presented two new

aggregation operators: dynamic intuitionistic fuzzy weigh-

ted averaging (DIFWA) operator and uncertain dynamic

intuitionistic fuzzy weighted averaging (UDIFWA) operator

and introduced some methods, including the basic unit-

interval monotonic (BUM) function-based method, normal

distribution-based method, exponential distribution-based

method, and average age method, to determine the weight

vectors associated with these operators. They also investi-

gated the dynamic multi-attribute decision-making problems

with Atanassov’s intuitionistic fuzzy information. Wei

(2010a) introduced an optimization model based on the basic

ideal of traditional gray relational analysis (GRA) method,

by which the attribute weights can be determined. They

investigated the multiple-attribute decision-making prob-

lems with intuitionistic fuzzy information. In this model, the

information about attribute weights is incompletely known,

and the attribute values take the form of Atanassov’s intui-

tionistic fuzzy numbers. Xu (2010) also developed a method

based on distance measure for GDM with interval-valued

intuitionistic fuzzy matrices. Wu and Zhang (2011) present

the concept of the intuitionistic fuzzy weighted entropy,

which is a natural extension of the entropy for Atanassov’s

IFSs. They calculated the criteria weights according to the

minimum entropy and use it to solve the multi-criteria

decision-making. They also based on Atanassov’s IFS score

function and accuracy function ranked the alternatives. Ye

(2010a, b) proposed a method for multi-criteria decision-

making based on entropy weight. He utilized IFS entropy

measure to compute the criterion weights and ranked the

alternative with respect to weighted correlation coefficients.

Considering the growing ambiguity and complexity of

today’s decision-making process, the existence of the

suitable decision-making method which handles imprecise

and complicated situations will be more and more essen-

tial. MCDM is one of the widely used decision-making

methodologies, which is applied in various areas. Due to

the majority of decision makers (DMs) in the real world,

they usually tend to give their preferences for each

alternative based on a number of predetermined criteria in

an uncertain situation. Thus, they are not completely con-

fident about their preferences, and consequently, their

attitudes are blended with some amount of uncertainty

(hesitation) degree. This situation can be completely dealt

with in the best way utilizing the Atanassov’s IFS concept.

Moreover, Atanassov’s IFS allows DMs to assign the

membership and non-membership degree to each alterna-

tive, and it also enables them to overcome the existing

uncertainty. In the decision-making process, sometimes,

the information about criteria weight is completely

unknown or incompletely known because of time pressure,

lack of knowledge or data, and the expert’s limited

expertise about the problem domain. In addition, there has

been carried out a little investigation on GDM with com-

pletely unknown criteria weights. The entropy of a fuzzy

set is a measure of the fuzziness of a fuzzy set. Although

this is called entropy due to the concept’s intrinsic simi-

larity to Shannon’s entropy, the two functions measure

fundamentally different types of uncertainty (Szmidt and

Kacprzyk 2001). In this paper, an entropy-based method to

determine the criterion weights for each decision-making

matrix is utilized and a model to aggregate the calculated

weights is proposed to calculate the final entropy weights.

In statistics and engineering, association (correlation) is

often used. By association analysis, the joint relationship of

two variables can be examined with an interdependence

measure of two variables (Chaudhuri and Bhattacharya

2001). In real-life situations, we face some situations where

instead of measured values of two alternatives, the rank of

two alternatives is based on different qualitative criteria. In

this case, association measure is utilized to correlate two

alternatives. Such situations arise when we have qualitative

criteria rather than quantitative ones. Therefore, using

association to rank the alternatives can be a suitable choice.

Using the entropy and the association coefficient, the

weight of criteria for decision-making process is calculated

considering the relation among the criteria and incomplete

information related to each criterion. In this paper, we

combined the entropy as it is a good method for calculating

the weights of each criterion according to its information

and the association coefficient since it is a good idea for

considering the relation among criteria. Thus, a strong

method will be created for signifying the weights of cri-

teria in a decision-making process for encountering the

incomplete information and complicated relation among

the criteria.

Here, a GDM model with respect to the weighted

association coefficient degree combined intuitionistic fuzzy

environment is developed to choose the best alternative.

We present an evaluating process according to the weigh-

ted association coefficient degree to rank the alternatives

by comparing them with PIIFS and NIIFS.
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As presented above, the contributions of this paper are (1)

the research underlines the gap in the GDM for involving

uncertainty and precise information; moreover, it takes into

account the DM’s hesitancy. (2) A new method has been

developed to find the completely unknown criterion weights

using the IFS entropy measure. First, we find the entropy

weights for each decision matrix; afterwards, the obtained

weights are aggregated to reach the final criterion weights.

(3) To compare the alternatives, an evaluation formula is

proposed using the weighted intuitionistic fuzzy association

coefficient between an alternative and the positive ideal

alternative and negative ideal alternative. The most desirable

alternatives can be selected or ranked according to the

weighted intuitionistic fuzzy association coefficient.

This study attempts to present a high accuracy level

method that will be more compatible with the real world

and also to be able to give optimal results in comparison

with other proposed methods.

The rest of this paper is organized as follows: in Sect. 2,

some basic concepts, operators, relations, and their prop-

erties related to Atanassov’s IFS are explored. Section 3

deals with the concept of IFS entropy. Section 4 develops a

distance-based GDM method using entropy under intui-

tionistic fuzzy information, and Sect. 5 applies the method

on a case study. Finally, the conclusion is given in Sect. 6.

2 Atanassov’s intuitionistic fuzzy sets

Let us start with a short definition of simple fuzzy set (FS)

introduced by Zadeh (1965). Fuzzy sets are an extension

shape of crisp sets. Fuzzy sets are represented as a means

for handling vagueness and impreciseness in real-life sit-

uations. If X ¼ fx1; x2; . . .; xng is a universe of discourse,

then Zadeh’s fuzzy set is showed as follows:

F ¼ x; lFðXÞh ijx 2 Xf g ð1Þ

where lFðXÞ is a fundamental component of each FS and

called membership degree and also the non-membership

degree equals 1� lFðXÞ where

lF : X ! ½0; 1�; lF 2 ½0; 1� ð2Þ

In the real world, our attitudes or preferences usually come

with uncertainty (hesitation) degree and this situation could

not be defined by simple FS. To deal with this situation,

Atanassov 1989, 1994 and Atanassov et al. 2005 introduced a

generalization of Zadeh’s fuzzy set called Atanassov’s IFS.

Let X ¼ fx1; x2; . . .; xng denote a universe of discourse; then

an Atanassov’s IFS A is defined as follows:

A ¼ x; lAðxÞ; vAðxÞh ijx 2 Xf g ð3Þ

such that lAðxÞ and vAðxÞ, respectively, are membership

and non-membership degree where

lAðxÞ : X ! ½0; 1� ð4Þ
vAðxÞ : X ! ½0; 1� ð5Þ

With this condition

0� lAðxÞ þ vAðxÞ� 1; 8x 2 X ð6Þ

But besides lAðxÞ and vAðxÞ for each Atanassov’s IFS

Adefined on X ¼ fx1; x2; . . .; xng, Atanassov presented

another function called hesitancy (uncertainty) degree where

pAðxÞ ¼ 1� lAðxÞ � vAðxÞ ð7Þ

Evidently, each fuzzy set F can be showed as the following

Atanassov’s IFS:

F ¼ x; lFðxÞ; 1� lFðxÞh ijx 2 Xf g ð8Þ

It is obvious that for each fuzzy set F in X, there is

pFðxÞ ¼ 1� lFðxÞ � ½1� lFðxÞ� ¼ 0 ð9Þ

Definition 1 Let A and B be two Atanassov’s IFSs that

are defined on X ¼ fx1; x2; . . .; xng; then basic operations

on Atanassov’s IFSs are defined as follows (Atanassov

1986):

A [ B ¼ x;max lAðxÞ; lBðxÞð Þ;min vAðxÞ; vBðxÞð Þð Þjx 2 Xf g
ð10Þ

A \ B ¼ x;min lAðxÞ; lBðxÞð Þ;max vAðxÞ; vBðxÞð Þð Þjx 2 Xf g
ð11Þ

AþB¼ x;lAðxÞþlBðxÞ�lAðxÞ:lBðxÞ;vAðxÞ:vBðxÞð Þjx2Xf g
ð12Þ

A:B¼ x;lAðxÞ:lBðxÞ;vAðxÞþ vBðxÞ� vAðxÞ:vBðxÞð Þjx2 Xf g
ð13Þ

cA ¼ x; 1� 1� lAðxÞð Þc; vAðxÞð Þcð Þjx 2 Xf g; c� 0

ð14Þ

Ac ¼ x; vAðxÞð Þc; 1� 1� vAðxÞð Þcð Þjx 2 Xf g; c� 0

ð15Þ

In addition, for the two Atanassov’s IFS A and B, there

exist the following properties:

A � B If 8x 2 X lAðxÞ� lBðxÞ and vAðxÞ� vBðxÞ
ð16Þ

A ¼ B If 8x 2 X lAðxÞ ¼ lBðxÞ and

vAðxÞ ¼ vBðxÞ
ð17Þ

Definition 2 If e ¼ ðle; ve; peÞ, then e is called an

Atanassov’s intuitionistic fuzzy number (IFN), where

le 2 ½0; 1�; ve 2 ½0; 1�; le þ ve� 1; pe ¼ 1� le � ve

ð18Þ

for each IFN e ¼ ðle; ve; peÞ if le gets larger and ve gets

smaller, then the IFN e gets greater. We can say that eþ ¼
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ð1; 0; 0Þ and e� ¼ ð0; 1; 0Þ are the largest and the smallest

IFNs, respectively.

Definition 3 Let eij ¼ lij; vij

� �
and ekm ¼ lkm; vkmð Þ be

two IFNs, then basic mathematic operations on them are

defined as follows (Xu 2007):

eij þ ekm ¼ lij þ lkm � lij:lkm; vij:vkm

� �
ð19Þ

eij: ekm ¼ lij:lkm; vij þ vkm � vij:vkm

� �
ð20Þ

aeij ¼ 1� ð1� lijÞa; va
ij

� �
; a� 0 ð21Þ

eij

� �a¼ la
ij; 1� 1� vij

� �a� �
; a� 0 ð22Þ

Definition 4 Let ei ¼ li; við Þ i ¼ 1; 2; . . .; nð Þ be a

collection of IFNs and w ¼ w1;w2; . . .;wnð ÞT be the

weight vector of eiði ¼ 1; 2; . . .; nÞ; then the IFWG

operator is defined as follows (XU and Yager 2006b):

IFWGw e1; e2; e3; . . .; enð Þ ¼
Yn

i¼1

ewi
i

¼
Yn

i¼1

lwi
i ; 1�

Yn

i¼1

1� við Þwi

 !

ð23Þ

where wi� � 0;
Pn

i¼1 wi ¼ 1; i ¼ 1; 2; . . .; nð Þ:

Definition 5 Let c be a mapping c : /ðXÞð Þ2! ½0; 1�; the

called cðA;BÞ is the association coefficient of the two IFSs

A and B which satisfies the following properties:

1. 0� cðA;BÞ� 1;
2. cðA;BÞ ¼ 1 if and only if A ¼ B;

3. cðA;BÞ ¼ cðB;AÞ:

Many various methods and measures have been pro-

posed to calculate the association coefficient of IFSs. Xu

et al. (2008) proposed the association coefficient of A and B

as follows:

And in such case where the weights of elements are taken

into account, the above formula is transformed as follows:

where x ¼ x1;x2; . . .;xnð Þ is the weight vector of

xi i ¼ 1; 2; . . .; nð Þ, and
Pn

i¼1 xi ¼ 1; xi� 0:

3 Entropy on Atanassov’s IFS

Atanassov’s IFS is a useful idea for encountering the

uncertainty during the decision-making process. To explain

more about this idea, suppose ~I ¼ ðl; v; pÞ be an IFN,

where l denotes the membership degree, m denotes the non-

membership, and p is the hesitancy degree which denotes

the uncertainty degree of a decision maker’ attitude or the

environment uncertainty.

In the fuzzy decision-making process, each decision

maker gives the membership degree l. Suppose l ¼ 0:2

then v ¼ 1� l ¼ 0:8. If the DM does not confide in his

preference, we could take his uncertainty degree as a

decision-making input. In a classic fuzzy situation, if the

giving attitude be wrong, the process of providing DM’s

preferences should be repeated or at least a sensitivity

analysis will be required as l is changed.

In a real-world situation, the DM is usually not confident

about his/her or her attitude; or the environment condition is

such that the DM’s attitude is not enough for creating confi-

dence in the decision-making process. Therefore, the survey

should be repeated as before with the change of preference.

To tackle this plight in this paper, we present two

solutions based on IFS as follows:

1. Taking p from experts (DMs): here after taking l from

DM, request him to provide the uncertainty degree to

giving l. In this case, v 6¼ 1� l thus, v ¼ 1� ðlþ pÞ
should be replaced.

2. Defining p by evaluation team: If an uncertain

environment causes to change the experts’ attitude, it

is better to calculate the hesitation degree by evalu-

ation team. Therefore, the non-membership degree is

calculated by v ¼ 1� ðlþ pÞ; and it should be

replaced instead of v ¼ 1� l.

cðA;BÞ ¼
Pn

i¼1 lA xið Þ:lB xið Þ þ vA xið Þ:vB xið Þ þ pA xið Þ:pB xið Þð Þ
max

Pn
i¼1 l2

A xið Þ þ v2
A xið Þ þ p2

A xið Þ
� �

;
Pn

i¼1 l2
B xið Þ þ v2

B xið Þ þ p2
B xið Þð Þ

� � ð24Þ

cðA;BÞ ¼
Pn

i¼1 xi lA xið Þ:lB xið Þ þ vA xið Þ:vB xið Þ þ pA xið Þ:pB xið Þð Þ
max

Pn
i¼1 xi l2

A xið Þ þ v2
A xið Þ þ p2

A xið Þ
� �

;
Pn

i¼1 xi l2
B xið Þ þ v2

B xið Þ þ p2
B xið Þð Þ

� � ð25Þ
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Based on the description above, the proposed method

extracts the non-membership degree l from DM’s idea in a

real-world decision-making process. If the DM is not

confident about his/her or her attitude, we should signify

the hesitancy degree by p.

Owing to this fact that the proposed method can handle

the hesitation of DM or the uncertain environment, the

results will not be changed with change of DM’s attitude in

the defined uncertainty interval.

For example, assume l ¼ 0:2! v ¼ 0:8. If the DM

doubts about his preference or we guess from his/her or her

ability and experiences p ¼ 0:5, we have ~I ¼ ð0:2; 0:3; 0:5Þ.
Thus, the IFS number considers any change in l and m from

0 to 50% cumulatively. Hence, our calculation is not neces-

sary to be repeated with any 0–50% change in l or m.

If we consider the classic fuzzy number for each change

of l from 0 to 50%, the decision-making process should be

repeated. It means that the IFSs achieve the robust results.

Entropy measure of fuzzy sets is an important topic in

fuzzy set theory. Entropy of fuzzy sets describes the

fuzziness degree of a fuzzy set (Zeng and Li 2006). Many

methods have been proposed by researchers for calculating

fuzzy set and IFS entropy. Burillo and Bustince (1996)

studied, in a general way, the concept of entropy and dis-

tance for Atanassov’s IFS, and gave an axiom definition of

fuzzy entropy to measure the degree of intuitionism of an

Atanassov’s IFS. Szmidt and Kacprzyk (2001) proposed a

non-probabilistic geometric entropy measure for Atanas-

sov’s IFS. Hung and Yang (2006) proposed their axiom

definition of entropy of IVIFS and Atanassov’s IFS by

exploiting the concept of probability. Ye (2010a, b) intro-

duced two measures for calculating intuitionistic fuzzy

entropy as follows:

Definition 6 Let A be an Atanassov’s IFS in a universe of

discourse X ¼ fx1; x2; . . .; xng. Then the two entropy

measures of Atanassov’s IFS A are defined as follows

(Fig. 1):

E1ðAÞ ¼ sin
p	 1þ lAðxÞ � vAðxÞ½ �

4

�

þ sin
p	 1� lAðxÞ þ vAðxÞ½ �

4
� 1

�
	 1

ffiffiffi
2
p
� 1

ð26Þ

E1ðAÞ ¼ cos
p	 1þ lAðxÞ � vAðxÞ½ �

4

�

þ cos
p	 1� lAðxÞ þ vAðxÞ½ �

4
� 1

�
	 1

ffiffiffi
2
p
� 1

ð27Þ

For E1ðAÞ and E1ðAÞ there are the following properties:

(P1) E1ðAÞ ¼ E2ðAÞ ¼ 0 (minimum), if A is a crisp set;

(P2) E1ðAÞ ¼ E2ðAÞ ¼ 1 (maximum), if lAðxÞ ¼ vAðxÞ
for any x 2 X

Decision makers criteriaAlternatives

Constructing decision matrix 
based on IFNs

Calculating the weight of 
each criteria using entropy 

measure

Aggregating the decision 
matrix and constructing the 

total decision matrix

Calculating the association 
coefficient between 

alternatives and PIIFS and 
NIIFS

Calculating the association 
degree for each alternative

Ranking the 
alternatives

Fig. 1 Proposed GDM model based on IFNs and entropy
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(P3) E1ðAÞ�E1ðAÞ and E2ðAÞ�E2ðAÞ if A less fuzzy

than B;

(P4) E1ðAÞ ¼ E1 Acð Þ and E2ðAÞ ¼ E2 Acð Þ:

4 A proposed method for Group decision making

model based on IFNs

Group decision making process is included of a number of

experts as decision makers that give their preferences to

choose an alternative. Decision makers are not always

certain about their given preferences and have some degree

of uncertainty. Therefore, IFN is a suitable option to deal

with these situations. Now e
ðiÞ
jk ¼ lðiÞjk ; v

ðiÞ
jk ; p

ðiÞ
jk

� �
denoted a

given preference by ith decision maker, i ¼ 1; 2; . . .; nð Þ
based on kth criteria k ¼ 1; 2; . . .; pð Þ; for jth alternative

j ¼ 1; 2; . . .;mð Þ; where lðiÞjk þ v
ðiÞ
jk � 1 and lðiÞjk ; v

ðiÞ
jk

� �



0; 1½ � the GDM based on IFN is presented in Table 1.

We develop a new method for GDM by using entropy

weights-based distance of IFNs. Entropy measure of

Atanassov’s IFS is used for calculating the weight of cri-

teria based on the decision maker’s preferences. The

positive ideal intuitionistic fuzzy set (PIIFS) and the neg-

ative ideal intuitionistic fuzzy set (NIIFS) are used to

compare the alternatives. The proposed method consists of

the following steps:

Step 1 Let A ¼ A1;A2; . . .;Amf g be a set of candidate

alternatives, D ¼ D1;D2; . . .;Dnf g be a set of decision

makers (whose weight vector is ei ¼ ðe1; e2; . . .; enÞ;Pn
i¼1 ei ¼ 1), and C ¼ C1;C2; . . .;Cp

	 

be a set of criteria

(with respect to the weight vector wk ¼ w1;w2; . . .;wp

� �

where
Pp

k¼1 wk ¼ 1). The decision makers Diði ¼ 1; 2;

. . .; nÞ give their preferences e
ðiÞ
jk ¼ lðiÞjk ; v

ðiÞ
jk ; p

ðiÞ
jk

� �
based

on IFNs for each alternative Aj and discreet criterion Ck.

The decision matrix XðiÞ ¼ e
ðiÞ
jk

� �

m	p
is constructed for ith

decision maker Di (Table 2).

Step 2 Calculate the weight of each criterion for each

decision matrix. The weight w
ðiÞ
k of the criterion Ck ðk ¼

1; 2; . . .; pÞ and decision maker Di ði ¼ 1; 2; . . .; nÞ is cal-

culated according to the following entropy weights model

Ye (2010a, b):

dðiÞk ¼
1� E

ðiÞ
k

p�
Pp

k¼1 E
ðiÞ
k

ð28Þ

where dðiÞk 2 0; 1½ �;
Pp

k¼1 dðiÞk ¼ 1 and based on Eq. (26)

E
ðiÞ
k is calculated by:

E
ðiÞ
jk ¼

1

m

Xm

j¼1

sin
p	 1þ li

jkðxÞ � vi
jkðxÞ

h i

4

8
<

:

8
<

:

þ sin
p	 1� li

jkðxÞ þ vi
jkðxÞ

h i

4
� 1

9
=

;
	 1

ffiffiffi
2
p
� 1

9
=

;
ð29Þ

or

E
ðiÞ
jk ¼

1

m

Xm

j¼1

cos
p	 1þ li

jkðxÞ � vi
kðxÞ

h i

4

8
<

:

8
<

:

þ cos
p	 1� li

jkðxÞ þ vi
jkðxÞ

h i

4
� 1

9
=

;
	 1

ffiffiffi
2
p
� 1

9
=

;
ð30Þ

and 0�E
ðiÞ
jk � 1; ði ¼ 1; 2; . . .; nÞðj ¼ 1; 2; . . .;mÞ; ðk ¼

1; 2; . . .; pÞ:

Step 3 Calculate the aggregated weight vector for discrete

criteria to reach collective weight for each criterion �xk ¼
ð�x1; �x2; . . .; �xpÞ; using the following operator:

�xk ¼
Xn

i¼1

eid
ðiÞ
k ; k ¼ 1; 2; . . .; pð Þ ð31Þ

Step 4 Utilize IFWGe to aggregate all given preferences

for each alternative based on each criterion and then

construct the total collective decision matrix Q ¼ qjk

� �
m	p

as Table 3:

Table 1 Atanassov’s

intuitionistic fuzzy number

in GDM model

C1 C2 … Ck … Cp

A1 e1
11; . . .; en

11

	 

e1

12; . . .; en
12

	 

… e1

1k; . . .; en
1k

	 

… e1

1p; . . .; en
1p

n o

A2 e1
21; . . .; en

21

	 

e1

22; . . .; en
22

	 

… e1

2k; . . .; en
2k

	 

… e1

2p; . . .; en
2p

n o

..

. ..
. ..

. … ..
. … ..

.

Aj e1
j1; . . .; en

j1

n o
e1

j2; . . .; en
j2

n o
… e1

jk; . . .; ei
jk

n o
… e1

jp; . . .; en
jp

n o

..

. ..
. ..

. … ..
. … ..

.

Am e1
m1; . . .; en

m1

	 

e1

m2; . . .; en
m2

	 

… e1

mk; . . .; en
mk

	 

… e1

mp; . . .; en
mp

n o
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IFWGe e1; e2; e3; . . .; enð Þ ¼
Yn

i¼1

eei
i

¼
Yn

i¼1

lei
i ; 1�

Yn

i¼1

1� við Þei

 !

ð32Þ

where

ei � 0;
Xn

i¼1

ei ¼ 1ði ¼ 1; 2; . . .; nÞ:

where

qjk ¼ ljk; vjk

� �
¼ IFWGwk

. . .; e1; . . .f g; . . . . . .; enf gf g
k ¼ 1; 2; . . .; p; j ¼ 1; 2; . . .;m:

For ease of calculation, let Fk
j ¼ q1

j ; q
2
j ; . . .; qk

j

� �
be a set of

collective preferences for alternative Aj.

Step 5 Define the PIIFS: lþ ¼ ðlþ1 ; lþ2 ; . . .; lþp Þ where lþk ¼
ð1; 0; 0Þ and the NIIFS: l� ¼ ðl�1 ; l�2 ; . . .; l�p Þ, where l�k ¼
ð0; 1; 0Þ k ¼ 1; 2; . . .; pð Þ, and also the total preference set

Fjðj ¼ 1; 2; . . .;mÞ:

Step 6 Calculate the association amount between each

total preference set Fj and the PIIFS lþ and NIIFS l�by

using the Eq. (25) as follows:

c Fj; l
þ� �
¼

Pm
k¼1 xk ljk:1þ vjk:0þ pjk:0

� �

max
Pm

k¼1 xk l2
jk þ v2

jk þ p2
jk

� �
;
Pn

i¼1 xk 1þ 0þ 0ð Þ
� �

¼
Pm

k¼1 xk:ljk

max
Pm

k¼1 xk l2
jk þ v2

jk þ p2
jk

� �
;
Pn

i¼1 xk

� � ð33Þ

c Fj; l
�� �
¼

Pm
k¼1 xk ljk:0þ vjk:1þ pjk:0

� �

max
Pm

k¼1 xk l2
jk þ v2

jk þ p2
jk

� �
;
Pm

k¼1 xk 0þ 1þ 0ð Þ
� �

¼
Pm

k¼1 xk:vjk

max
Pm

k¼1 xk l2
jk þ v2

jk þ p2
jk

� �
;
Pn

i¼1 xk

� � ð34Þ

where xk k ¼ 1; 2; . . .; pð Þ is the calculated weight from

Step 5 for each criterion.

Step 7 Calculate the association degree Cj for each

alternative as follows:

Cj ¼
cðFj; l

�Þ
cðFj; lþÞ þ cðFj; l�Þ

; j ¼ 1; 2; . . .;m ð35Þ

Since

cðFj; l
þÞþ cðFj; l

�Þ ¼
Pm

k¼1 xk:ljk

max
Pm

k¼1 xk l2
jkþ v2

jkþp2
jk

� �
;1

� �

þ
Pn

i¼1 xk:vjk

max
Pm

k¼1 xk l2
jkþ v2

jkþp2
jk

� �
;1

� �

¼
Pm

k¼1 xk ljkþ vjk

� �

max
Pm

k¼1 xk l2
jkþ v2

jkþp2
jk

� �
;1

� �

ð36Þ

Then, Eq. (35) can be written as

Cj ¼
Pm

k¼1 xk:vjkPm
k¼1 xk ljk þ vjk

� � ; ðj ¼ 1; 2; . . .;mÞ ð37Þ

Step 8 Rank the alternatives Aj based on the calculated

amount of association degree Cj, where the greater value is

the better alternative.

Step 9 End.

5 Software vendor selection

In this section, we will consider a decision-making problem

to rank and choose software producing company as an

alternative which is used to produce mobile phone software

for a mobile phone factory. To increase customer attraction

and competitive advantage, this factory has to improve its

products. To this end, the production managers of this factory

decide to add a software package to their mobile phones. This

company has a board in the production unit including three

active members who decide the choice of software producing

company. Therefore, they decide to buy this software

package from software producing company. A large number

of companies have candidates, and after prequalification,

five producers have been shortlisted. In addition, the mobile

phone factory prefers its required software to be produced

based on the software quality model (ISO/IEC9126-1)

Table 3 Total collective matrix Q

C1 C2 … Cp

A1 q11 ¼ l11; v11ð Þ q12 ¼ l12; v12ð Þ … q1p ¼ l1p; v1p

� �

A2 q21 ¼ l21; v21ð Þ q22 ¼ l22; v22ð Þ … q2p ¼ l2p; v2p

� �

..

. ..
. ..

. … ..
.

Am qm1 ¼ lm1; vm1ð Þ qm2 ¼ lm2; vm2ð Þ … qmp ¼ lmp; vmp

� �

Table 2 Intuitionistic fuzzy preferences matrix (decision matrix) XðiÞ

for Di

C1 C2 … Cp

A1 ei
11 ¼ li

11; v
i
11

� �
ei

12 ¼ li
12; v

i
12

� �
… ei

1p ¼ li
1p; v

i
1p

� �

A2 ei
21 ¼ li

21; v
i
21

� �
ei

22 ¼ li
22; v

i
22

� �
… ei

2p ¼ li
2p; v

i
2p

� �

..

. ..
. ..

. … ..
.

Am ei
m1 ¼ li

m1; v
i
m1

� �
ei

m2 ¼ li
m2; v

i
m2

� �
… ei

mp ¼ li
mp; v

i
mp

� �
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(Fig. 2). Based on ISO/IEC9126-1:2001 standard, the six

main criteria for software are defined as follows:

1. Functionality (C1): the capability of the software

product to provide functions which meet the stated

or implied requirements when the software is in use

under specified conditions.

2. Reliability (C2): the capability of the software product

to maintain a specified level of performance when used

under specified conditions.

3. Usability (C3): the capability of the software product to

be understood, learned, and used, and to be attractive

to the user under specified conditions.

4. Efficiency (C4): the capability of the software product

to provide appropriate performance, relative to the

amount of resources used, under stated conditions.

5. Maintainability (C5): the capability of the software

product to be modified. Modifications may include

corrections, improvements, or adaptation of the soft-

ware to changes in environment, in requirements, and

in functional specifications.

6. Portability (C6): the capability of the software product

to be transferred from one environment to another.

Based on the abovementioned information, there are

three product managers as decision makers, D ¼ D1;f
D2;D3g; and because of the difference among decision

maker’s experience, education, etc., each decision maker

has different weights for decision-making process. There-

fore, e ¼ ð0:3; 0:4; 0:3Þ: And there are five software pro-

ducer companies as alternatives A ¼ A1;A2; . . .;A5f g: Now

we use our proposed method step by step to rank and

choose the alternatives as follows:

Step 1 After defining the alternatives and criteria, each

decision maker gives his preferences for each alternative

based on the discrete criteria under intuitionistic fuzzy

information. Then we construct the three decision matrices

XðiÞ (Tables 4, 5, 6) as follows:

For example e1
11 ¼ ð0:7; 0:2Þ the element of the first row

and column (Table 4), 0.7 denotes the degree that D1

prefers alternative A1 based on criterion C1, and 0.2

denotes the degree that D1 does not prefer alternative A1

based on criterion C1.

Step 2 Based on Tables 4, 5 and 6, we first calculate the

entropy amount for each criterion using Eq. (29), and then

Suitability (C11)

Accuracy (C12)

Interoperability(C13)

Security(C14)

Functionality 
Compliance (C15) 

Maturity (C2)

Recoverability (C22)

Fault Tolerance 
(C23)

Reliability 
Compliance (C24)

Understandability
(C31)

Learnability (C32)

Operability (C33)

Attractiveness (C34)

Usability Compliance 
(C35)

Time Behavior (C41)

Resource Behavior 
(C42)

Efficiency 
Compliance (C43)

Installability(C61)

Co-existence (C62)

Replacability (C63)

Portability 
Compliance (C64)

Analyzability (C51)

Changeability (C52)

Stability  (C53)

Testability (C54)

Maintainability 
Compliance (C55)

Functionality (C1) Reliability (C2) Usability (C3) Efficiency (C4)
Maintainability 

(C5)
Portability (C6)

Software Vendor Selection 

Criteria

Fig. 2 Software quality model

Table 4 Intuitionistic fuzzy

preferences matrix Xð1Þ
C1 C2 C3 C4 C5 C6

A1 (0.7, 0.2) (0.4, 0.4) (0.6, 0.3) (0.5, 0.3) (0.3, 0.5) (0.8, 0.2)

A2 (0.7, 0.1) (0.4, 0.3) (0.2, 0.5) (0.5, 0.4) (0.5, 0.3) (0.7, 0.2)

A3 (0.8, 0.1) (0.5, 0.4) (0.3, 0.1) (0.4, 0.2) (0.5, 0.2) (0.4, 0.3)

A4 (0.3, 0.2) (0.8, 0.1) (0.2, 0.4) (0.4, 0.2) (0.9, 0.1) (0.5, 0.3)

A5 (0.7, 0.2) (0.7, 0.2) (0.3, 0.6) (0.6, 0.3) (0.3, 0.4) (0.5, 0.2)
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calculate the weight of each criterion by (28) for each table

as follows:

For Xð1Þ we have

E
ð1Þ
1 ¼ 0:7189; E

ð1Þ
2 ¼ 0:8432; E

ð1Þ
3 ¼ 0:9266;

E
ð1Þ
4 ¼ 0:9538; E

ð1Þ
5 ¼ 0:8318; E

1ð Þ
6 ¼ 0:8442

dð1Þ1 ¼ 0:3189; dð1Þ2 ¼ 0:1779; dð1Þ3 ¼ 0:0833;

dð1Þ4 ¼ 0:0524; dð1Þ5 ¼ 0:1908; dð1Þ6 ¼ 0:1767

d 1ð Þ ¼ ð0:3189; 0:1779; 0:0833; 0:0524; 0:1908; 0:1767ÞT;

For Xð2Þ we have

E
ð2Þ
1 ¼ 0:9581; E

ð2Þ
2 ¼ 0:8386; E

ð2Þ
3 ¼ 0:8521;

E
ð2Þ
4 ¼ 0:8771; E

ð2Þ
5 ¼ 0:7658; E

2ð Þ
6 ¼ 0:7873

dð2Þ1 ¼ 0:0455; dð2Þ2 ¼ 0:1752; dð2Þ3 ¼ 0:1606;

dð2Þ4 ¼ 0:1324; dð2Þ5 ¼ 0:2543; dð2Þ6 ¼ 0:2309

d 2ð Þ ¼ 0:0455; 0:1752; 0:1606; 0:1324; 0:2543; 0:2309ð ÞT;

For Xð3Þwe have

E
ð3Þ
1 ¼ 0:8111; E

ð3Þ
2 ¼ 0:7930; E

ð3Þ
3 ¼ 0:9685;

E
ð3Þ
4 ¼ 0:9518; E

ð3Þ
5 ¼ 0:7375; E

ð3Þ
6 ¼ 0:9309

dð3Þ1 ¼ 0:2340; dð3Þ2 ¼ 0:2564; dð3Þ3 ¼ 0:0390;

dð3Þ4 ¼ 0:0597; dð3Þ5 ¼ 0:3252; d 3ð Þ
6 ¼ 0:0856

d 3ð Þ ¼ ð0:2340; 0:2564; 0:0390; 0:0597; 0:3252; 0:0856ÞT;

where
X6

k¼1
d 1ð Þ

k ¼
X6

k¼1
d 2ð Þ

k ¼
X6

k¼1
d 3ð Þ

k ¼ 1; k ¼ 1; 2; . . .; 6ð Þ:

Step 3 Utilizing Eq. (31) we aggregate all the entropy

weight vectors dðiÞi ¼ ð1; 2; 3Þ into a collective one:

�x ¼ 0:3d 1ð Þ þ 0:4d 2ð Þ þ 0:3d 3ð Þ

¼ 0:1841; 0:2004; 0:1009; 0:0871; 0:2565; 0:1711ð ÞT

Step 4 Aggregate all the intuitionistic fuzzy decision

matrices XðiÞ into a total collective decision matrix Q ¼
qjk

� �
5	6

(see Table 7):

Step 5 Define the PIIFSlþ; NIIFSl�, and the total pref-

erence set Fj j ¼ 1; 2; 3; 4; 5ð Þ

lþ ¼ 1;0;0ð Þ; 1;0;0ð Þ; 1;0;0ð Þ; 1;0;0ð Þ; 1;0;0ð Þ; 1;0;0ð Þð ÞT

l� ¼ 0;1;0ð Þ; 0;1;0ð Þ; 0;1;0ð Þ; 0;1;0ð Þ; 0;1;0ð Þ; 0;1;0ð Þð ÞT

F1¼ðð0:53;0:31;0:16Þ;ð0:37;0:28;0:35Þ;ð0:35;0:26;0:39Þ
ð0:57;0:29;0:14Þ;ð0:30;0:52;0:18Þ;ð0:73;0:16;0:11ÞÞT

Table 5 Intuitionistic fuzzy

preferences matrix Xð2Þ
C1 C2 C3 C4 C5 C6

A1 (0.4, 0.5) (0.2, 0.3) (0.6, 0.2) (0.7, 0.2) (0.7, 0.1) (0.8, 0.1)

A2 (0.6, 0.3) (0.4, 0.2) (0.3, 0.1) (0.5, 0.4) (0.6, 0.3) (0.7, 0.1)

A3 (0.5, 0.4) (0.7, 0.1) (0.4, 0.3) (0.7, 0.2) (0.5, 0.3) (0.5, 0.1)

A4 (0.5, 0.5) (0.5, 0.4) (0.6, 0.1) (0.4, 0.2) (0.4, 0.5) (0.3, 0.4)

A5 (0.3, 0.6) (0.7, 0.1) (0.6, 0.1) (0.5, 0.3) (0.8, 0.2) (0.4, 0.5)

Table 6 Intuitionistic fuzzy

preferences matrix Xð3Þ
C1 C2 C3 C4 C5 C6

A1 (0.6, 0.1) (0.8, 0.1) (0.1, 0.3) (0.6, 0.3) (0.1, 0.8) (0.6, 0.2)

A2 (0.3, 0.1) (0.2, 0.5) (0.5, 0.4) (0.1, 0.2) (0.2, 0.7) (0.4, 0.2)

A3 (0.6, 0.1) (0.2, 0.7) (0.3, 0.6) (0.3, 0.3) (0.6, 0.2) (0.4, 0.2)

A4 (0.1, 0.7) (0.2, 0.6) (0.8, 0.2) (0.3, 0.5) (0.4, 0.3) (0.2, 0.2)

A5 (0.3, 0.2) (0.3, 0.2) (0.5, 0.4) (0.6, 0.3) (0.7, 0.1) (0.6, 0.3)

Table 7 Total collective

matrix Q
C1 C2 C3 C4 C5 C6

A1 (0.53, 0.31) (0.37, 0.28) (0.35, 0.26) (0.57, 0.29) (0.30, 0.52) (0.73, 0.16)

A2 (0.51, 0.19) (0.32, 0.32) (0.31, 0.33) (0.25, 0.36) (0.41, 0.46) (0.59, 0.16)

A3 (0.61, 0.23) (0.43, 0.43) (0.34, 0.36) (0.41, 0.26) (0.53, 0.24) (0.44, 0.19)

A4 (0.26, 0.51) (0.44, 0.40) (0.47, 0.23) (0.33, 0.35) (0.51, 0.34) (0.31, 0.31)

A5 (0.39, 0.39) (0.56, 0.16) (0.46, 0.38) (0.53, 0.32) (0.57, 0.24) (0.48, 0.36)
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F2¼ðð0:51;0:19;0:20Þ;ð0:32;0:32;0:36Þ;ð0:31;0:33;0:36Þ;
0:25;0:36;0:39Þ;ð0:41;0:46;0:13Þ;ð0:59;0:16;0:25ÞÞð T

F3¼ðð0:61;0:23;0:11Þ;ð0:43;0:43;0:16Þ;ð0:34;0:36;0:30Þ;
ð0:41;0:26;0:33Þ;ð0:53;0:24;0:23Þ;ð0:44;0:19;0:36ÞÞT

F4¼ðð0:26;0:51;0:23Þ;ð0:44;0:40;0:16Þ;ð0:47;0:23;0:20Þ;
ð0:33;0:35;0:32Þ;ð0:51;0:34;0:15Þ;ð0:31;0:31;0:38ÞÞT

F5¼ðð0:39;0:39;0:22Þ;ð0:56;0:16;0:28Þ;ð0:46;0:38;0:16Þ;
ð0:53;0:32;0:15Þ;ð0:57;0:24;0:19Þ;ð0:48;0:36;0:16ÞÞT

�x ¼ 0:1841; 0:2004; 0:1009; 0:0871; 0:2565; 0:1711ð ÞT

Step 6 Then based on aggregated weight vector �x, we

calculate the association degree of each alternative, using

Eq. (35):

c1 ¼ 0:4163; c2 ¼ 0:4267; c3 ¼ 0:3710

c4 ¼ 0:4829; c5 ¼ 0:3684

Step 7 Based on the calculated amount of association

degree, rank the alternatives Ajðj ¼ 1; 2; 3; 4; 5Þ which the

greatest one is the best choice:

A4 � A2 � A1 � A3 � A5

Therefore, A4 is the best company to produce the required

software for mobile phone factory.

Now, we make an experimental comparison among the

Attanasov’s intuitionistic fuzzy algorithm, fuzzy data, and

crisp data to show the efficiency of our proposed algorithm.

In what follows, the proposed method based on fuzzy sets

is represented, and in the next section, the proposed

algorithm is applied with crisp data to show the efficiency

of the proposed decision-making method with Atanassov’s

IFS.

5.1 Proposed algorithm based on fuzzy sets

In this section, we apply the proposed decision-making

algorithm to handle the case study with fuzzy data.

Step 1 In this step, experts give their preferences (l) for

each alternative regarding discrete criteria based on fuzzy

set approach. The results are shown in Tables 8, 9 and 10,

which are obtained from our data-gathering step illustrated

in Tables 4, 5 and 6.

The element at first raw and first column l11 ¼ 0:7ð Þ
shows that the first expert believes about 70% for satisfying

the C1 by alternative A1. In this procedure, the hesitancy

degree is not important since we think our experts are sure

about their fuzzy decisions.

Step 2 Aggregate the fuzzy decision matrix to reach the

collective decision matrix (see Table 11).

Step 3 Utilize the fuzzy entropy measures to calculate the

entropy and the weights of each criterion for each decision

matrix. The results are shown in Table 12, where
P6

k¼1 d 1ð Þ
k ¼

P6
k¼1 d 2ð Þ

k ¼
P6

k¼1 d 3ð Þ
k ¼ 1; k ¼ ð1; 2; . . .; 6Þ:

Step 4 Utilizing Eq. (31), we aggregate all the entropy

weight vectors d ið Þi ¼ ð1; 2; 3Þ into a collective one:

�x ¼ 0:3d 1ð Þ þ 0:4d 2ð Þ þ 0:3d 3ð Þ

¼ 0:3054; 0:1749; 0:1453; 0:4393; 0:1605; 0:1194ð ÞT

Table 10 Fuzzy decision matrix X(3)

C1 C2 C3 C4 C5 C6

A1 0.6 0.8 0.1 0.6 0.1 0.6

A2 0.3 0.2 0.5 0.1 0.2 0.4

A3 0.6 0.2 0.3 0.3 0.6 0.4

A4 0.1 0.2 0.8 0.3 0.4 0.2

A5 0.3 0.3 0.5 0.6 0.7 0.6

Table 11 Total collective decision matrix

C1 C2 C3 C4 C5 C6

A1 0.55 0.40 0.33 0.60 0.28 0.73

A2 0.50 0.32 0.31 0.29 0.39 0.58

A3 0.62 0.4 0.33 0.44 0.53 0.43

A4 0.25 0.43 0.46 0.36 0.52 0.31

A5 0.40 0.53 0.45 0.56 0.55 0.49

Table 8 Fuzzy decision matrix X(1)

C1 C2 C3 C4 C5 C6

A1 0.7 0.4 0.6 0.5 0.3 0.8

A2 0.7 0.4 0.2 0.5 0.5 0.7

A3 0.8 0.5 0.3 0.4 0.5 0.4

A4 0.3 0.8 0.2 0.4 0.9 0.5

A5 0.7 0.7 0.3 0.6 0.3 0.5

Table 9 Fuzzy decision matrix X(2)

C1 C2 C3 C4 C5 C6

A1 0.4 0.2 0.6 0.7 0.7 0.8

A2 0.6 0.4 0.3 0.5 0.6 0.7

A3 0.5 0.7 0.4 0.7 0.5 0.5

A4 0.5 0.5 0.6 0.4 0.4 0.3

A5 0.3 0.7 0.6 0.5 0.8 0.4
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Step 5 Calculate the score of alternatives using the fuzzy

association measures and the aggregated criterion weights.

In Table 13, the score of each alternative is calculated.

Step 6 Rank the alternatives in which the greatest one is

the best one.

A4 � A2 � A3 � A5 � A1

According to provided preference, the decision makers

have hesitancy degree p, means the membership degree

could change between interval l; lþ p½ �: Therefore, to

show the effect of hesitancy degree on the decision-making

results, we run the algorithm with regard to this fact that

the expert opinion is changed from lð Þ to lþ pð Þ in

Tables 8, 9 and 10.

The decision preferences and the decision matrices for

each decision maker are presented in Tables 14, 15 and 16.

Based on Tables 14, 15 and 16, the entropy amount for

each criterion and the weight of each criterion for each

decision-making are shown in Table 17, where
P6

k¼1 d 1ð Þ
k ¼

P6
k¼1 d 2ð Þ

k ¼
P6

k¼1 d 3ð Þ
k ¼ 1; k ¼ 1; 2; . . .; 6ð Þ:

The collective entropy weight vectors is

�x ¼ 0:3dð1Þ þ 0:4dð2Þ þ 0:3dð3Þ

¼ ð0:1841; 0:1710; 0:1649; 0:1195; 0:1637; 0:1970ÞT:

The total collective decision matrix Q ¼ qjk

� �
5	6

is shown

in Table 18. The association degree of each alternative is

showed in Table 19. The final ranking is

A4 � A1 � A5 � A2 � A3:

Table 12 Amount of entropy and weight of each criterion for each

decision matrix

C1 C2 C3 C4 C5 C6

X(1)

E1 0.8143 0.9020 0.8271 0.9769 0.8418 0.8957

d1 0.2502 0.1320 0.2330 0.0311 0.2132 0.1405

X(2)

E2 0.5894 0.8707 0.9582 0.9143 0.9020 0.8707

d2 0.4589 0.1445 0.0467 0.0958 0.1095 0.1445

X(3)

E3 0.8545 0.7587 0.8234 0.8545 0.8360 0.9396

d3 0.1559 0.2585 0.1892 0.1559 0.1757 0.0647

Table 17 Amount of entropy and weights of each criterion

C1 C2 C3 C4 C5 C6

E1 0.5159 0.7450 0.8194 0.7759 0.7534 0.7099

d1 0.2881 0.1517 0.1075 0.1334 0.1467 0.1726

E2 0.9498 0.6230 0.5010 0.7759 0.7283 0.6004

d2 0.0276 0.2070 0.2739 0.1230 0.1492 0.2196

E3 0.5010 0.7534 0.8670 0.8253 0.6539 0.6689

d3 0.2888 0.7534 0.8670 0.8253 0.6539 0.6689

Table 14 Fuzzy decision matrix Xð1Þ

C1 C2 C3 C4 C5 C6

A1 0.8 0.6 0.7 0.7 0.5 0.8

A2 0.9 0.7 0.5 0.6 0.7 0.8

A3 0.9 0.6 0.9 0.8 0.8 0.7

A4 0.8 0.9 0.6 0.8 0.9 0.7

A5 0.8 0.8 0.4 0.7 0.6 0.8

Table 15 Fuzzy decision matrix Xð2Þ

C1 C2 C3 C4 C5 C6

A1 0.5 0.7 0.8 0.7 0.9 0.9

A2 0.7 0.8 0.9 0.6 0.7 0.9

A3 0.6 0.9 0.7 0.8 0.7 0.9

A4 0.5 0.6 0.9 0.8 0.5 0.6

A5 0.4 0.9 0.9 0.7 0.8 0.5

Table 16 Fuzzy decision matrix Xð3Þ

C1 C2 C3 C4 C5 C6

A1 0.9 0.9 0.7 0.7 0.2 0.8

A2 0.9 0.5 0.6 0.8 0.3 0.8

A3 0.9 0.3 0.4 0.7 0.8 0.8

A4 0.3 0.4 0.8 0.5 0.7 0.8

A5 0.8 0.8 0.6 0.7 0.9 0.7

Table 13 The score of each

alternative
Alternative Score

A1 0.6632

A2 0.8318

A3 0.7061

A4 0.8478

A5 0.6718

Table 18 The total collective matrix

C1 C2 C3 C4 C5 C6

A1 0.71 0.72 0.73 0.70 0.44 0.83

A2 0.83 0.65 0.65 0.66 0.52 0.83

A3 0.79 0.54 0.63 0.76 0.77 0.80

A4 0.49 0.60 0.76 0.68 0.68 0.69

A5 0.64 0.83 0.60 0.70 0.76 0.65
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Obviously, the result of our proposed method is different

if we use fuzzy sets as the only input to our decision-

making method. The experts have some hesitancy degree

as p; in which they are not sure about the proposed l as the

performance of each alternative related to each criterion.

Thus, if we use different values of l in the range of

l; lþ p½ �; different results for final ranking of alternatives

will be achieved. This is not effective in a decision-making

method as the experts who cannot choose the right l as

their opinion according to their hesitancy degree with the

range of l; lþ p½ � for each alternative related to each

criterion, the result of full ranking will be changed by

changing the expert opinion in the range of l; lþ p½ �. In

this situation, we need to a decision-making method which

supports the hesitancy degree of the experts.

5.2 Proposed algorithm based on crisp data

In this section, we apply the proposed algorithm to handle

the case study with crisp (decisive) data.

Step 1 Construct the decision matrix for each decision

maker based on crisp data. To provide the decisive data, we

convert fuzzy data from Tables 8, 9 and 10 as follows:

If lF\0:5 ) lD ¼ 0 and; if lF � 0:5) lD ¼ 1:

The results are represented in Tables 20, 21 and 22.

The value 1 in the first row and first column in Table 22

denotes which decision maker completely confident that

alternative A1 satisfies criteria C1. The value ‘0’ in the first

row and second column means the decision makers are

completely confident that the alternative A1 does not satisfy

the criterion C2.

Step 2 Given that the decision preferences are based on

the crisp data, we cannot utilize the entropy weights; thus,

we ask the decision maker to rate the criteria from 1 to 5.

Then we calculate the relative importance computed by

score/sum of the scores in Table 23.

Step 3 Aggregate all the decision matrices XðiÞ into a

total collective decision matrix using weighted average

operator (Table 24).

Step 4 Calculate the score of each alternative based on

the criterion weights. See Table 25.

Table 23 The criterion weights

Criterion Score Relative importance

Functionality (C1) 3 0.126

Reliability (C2) 4 0.166

Usability (C3) 5 0.208

Product price (C4) 4 0.166

Maintainability (C5) 3 0.126

Portability (C6) 5 0.208

Table 20 Preferences matrix Xð1Þ based on crisp data

C1 C2 C3 C4 C5 C6

A1 1 0 1 1 0 1

A2 1 0 0 1 1 1

A3 1 1 0 0 1 0

A4 0 1 0 0 1 1

A5 1 1 0 1 0 1

Table 21 Preferences matrix Xð2Þ based on crisp data

C1 C2 C3 C4 C5 C6

A1 0 0 1 1 1 1

A2 1 0 0 1 0 1

A3 1 1 0 1 1 1

A4 1 1 1 0 0 0

A5 0 1 1 1 1 0

Table 22 Preferences matrix Xð3Þ based on crisp data

C1 C2 C3 C4 C5 C6

A1 1 1 0 1 0 1

A2 0 0 1 0 0 0

A3 1 0 0 0 1 0

A4 0 0 1 0 0 0

A5 0 0 1 1 1 1

Table 19 The association

degree of each alternatives
Alternative Score

A1 0.3068

A2 0.3016

A3 0.2841

A4 0.3536

A5 0.3054

Table 24 Collective decision matrix

C1 C2 C3 C4 C5 C6

A1 0.66 0.33 0.66 1 0.33 1

A2 0.66 0 0.33 0.66 0.33 0.66

A3 1 0.66 0 0.33 1 0.33

A4 0.33 0.66 0.66 0 0.33 0.33

A5 0.33 0.66 0.66 1 0.66 0.66
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Step 5 Rank the alternative based on the higher score.

A1 � A5 � A2 � A4 � A3

Now, we rank the alternatives based on crisp data by

converting the data of Tables 14, 15 and 16 as follows, to

signify the effectiveness of the proposed Atanassov’s IFS-

based decision-making method:

If lF þ pð Þ� 0:5) lD ¼ 0 and; if lF þ pð Þ� 0:5
) lD ¼ 1:

The results are represented in Tables 26, 27 and 28. The

aggregated decision matrix, total collective decision

matrix, using weighted average operator based on the

calculated criterion weights is calculated as illustrated in

Table 23 (Table 29). The score of each alternative is shown

based on the criterion weights in Table 30. The ranking

result of the alternatives based on the higher score is

A3 [ A1 [ A4 [ A2 ¼ A5:

The results of proposed algorithm based on three different

type data (IFS, simple fuzzy and decisive data) are pre-

sented in Fig. 3).

6 Conclusion

In real world, decision makers’ attitudes are blended

with some amount of uncertainty (hesitation) degree due

to the lack of enough knowledge and information about

alternatives. This situation can be completely dealt with

in the best way using the intuitionistic fuzzy concept. In

this paper, we proposed a method to solve GDM prob-

lems where the weight of criteria is completely unknown

and the given preferences is based on Atanassov’s IFS.

For dealing with unknown information of criteria, we use

entropy measure to find the weight of each criterion

based on each decision matrix. To reach the total crite-

rion weight vector, we aggregate all calculated criterion

entropy weights. We use the association coefficient

measure to compare alternatives with the PIIFS and

NIIFS and calculate the association degree for each

alternative to rank and choose the best one(s). To show

the effectiveness of our method, we used it to solve a

GDM problem in an illustrative with six criteria, five

suppliers, and three decision makers. Thus, it is more

Table 25 The score of each

alternative
Alternative Score

A1 0.6908

A2 0.4402

A3 0.3716

A4 0.3986

A5 0.6749

Table 26 Preferences matrix X(1) based on crisp data

C1 C2 C3 C4 C5 C6

A1 1 1 1 1 1 1

A2 1 1 1 1 1 1

A3 1 1 1 1 1 1

A4 1 1 1 1 1 1

A5 1 1 1 1 1 1

Table 27 Preferences matrix X(1) based on crisp data

C1 C2 C3 C4 C5 C6

A1 1 1 1 1 0 1

A2 1 1 1 1 1 1

A3 1 1 1 1 1 1

A4 1 1 1 1 1 1

A5 0 1 1 1 1 1

Table 28 Preferences matrix X(1) based on crisp data

C1 C2 C3 C4 C5 C6

A1 1 1 1 1 0 1

A2 1 1 0 1 0 1

A3 1 0 1 1 1 1

A4 0 0 1 1 1 1

A5 1 1 0 1 1 1

Table 29 Total decision matrix

C1 C2 C3 C4 C5 C6

A1 1 1 1 1 0.33 1

A2 1 1 0.66 1 0.66 1

A3 1 0.66 1 1 1 1

A4 0.66 0.66 1 1 1 1

A5 0.66 1 0.66 1 1 1

Table 30 The score of each

alternative
Alternative Score

A1 0.9156

A2 0.8864

A3 0.9436

A4 0.9007

A5 0.8864
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convenient to use it in a complicated and practical case

with large amount of data.
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