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Abstract In this paper, we give a generalization of the

Chebyshev type inequalities for Sugeno integral with

respect to non-additive measures. The main results of this

paper generalize most of the inequalities for Sugeno inte-

gral obtained by many researchers. Also, some conclusions

are drawn and some problems for further investigations are

given.
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1 Introduction

The theory of nonadditive measures and integrals was

introduced by Sugeno (1974) as a tool for modeling non-

deterministic problems. Sugeno integral is a useful tool in

several theoretical and applied statistics (see Fig. 1). In

decision theory, the Sugeno integral is a median, which is

indeed a qualitative counterpart to the averaging operation

underlying expected utility. The use of the Sugeno integral

can be envisaged from two points of view: decision

under uncertainty and multi-criteria decision-making

(Dubois et al. 1998). Sugeno integral is analogous to

Lebesgue integral which has been studied by many authors,

including Pap (1995), Ralescu and Adams (1980), and

Wang and Klir (1992), among others. Román-Flores et al.

(2007, 2008a, b) started the studies of inequalities for

Sugeno integral, and then followed by the authors (Agahi

and Yaghoobi 2010; Agahi et al. 2010; Mesiar and

Ouyang 2009; Ouyang and Fang 2008; Ouyang et al.

2008, 2010).

Problem Under what conditions does the inequality

ðSÞ
Z
ðf HgÞa dl

� �k

� ðSÞ
Z

f b dl

� �t

H ðSÞ
Z

gc dl

� �s

ð1:1Þ

or its reverse hold for an arbitrary fuzzy measure-based

type fuzzy integral l and a binary operation H: ½0;1Þ2 !
½0;1Þ?

In this contribution, we address this question. This is a

generalization of the Chebyshev inequalities that appear in

the papers (Flores-Franulič and Román-Flores 2007;

Ouyang et al. 2008; Mesiar and Ouyang 2009). Mesiar and

Ouyang (2009) considered Chebyshev type inequality (1.1)

for a ¼ k ¼ b ¼ t ¼ c ¼ s ¼ 1:

In general, any integral inequality can be a very strong

tool for applications. In particular, when we think an

integral operator as a predictive tool then an integral

inequality can be very important in measuring and

dimensioning such processes.

The paper is organized as follows. In the next section,

we briefly recall some preliminaries and summarization of
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some previous known results. In Sect. 3, we will focus on a

generalization of Chebyshev type inequalities for Sugeno

integrals. Finally, some conclusions are given.

2 Preliminaries

In this section, we recall some basic definitions and pre-

vious results which will be used in the sequel.

As usual we denote by R the set of real numbers. Let X

be a non-empty set, F be a r-algebra of subsets of X: Let N

denote the set of all positive integers and Rþ denote

½0;þ1�: Throughout this paper, we fix the measurable

space ðX;FÞ; and all considered subsets are supposed to

belong to F :

Definition 2.1 (Ralescu and Adams 1980) A set function

l : F ! Rþ is called a fuzzy measure if the following

properties are satisfied:

(FM1) lð;Þ ¼ 0;

(FM2) A � B implies lðAÞ� lðBÞ;
(FM3) A1 � A2 � � � � implies lð

S1
n¼1 AnÞ ¼ limn!1

lðAnÞ; and

(FM4) A1 � A2 � � � � and lðA1Þ\þ1 imply lð
T1

n¼1

AnÞ ¼ limn!1 lðAnÞ:

When l is a fuzzy measure, the triple ðX;F ; lÞ then is

called a fuzzy measure space.

Let ðX;F ; lÞ be a fuzzy measure space, by FþðXÞ we

denote the set of all nonnegative measurable functions

f : X �! ½0;1Þ with respect to F : In what follows, all

considered functions belong to FþðXÞ: Let f be a non-

negative real-valued function defined on X; we will denote

the set fx 2 Xjf ðxÞ� ag by Fa for a� 0: Clearly, Fa is

nonincreasing with respect to a; i.e., a� b implies FakFb:

Definition 2.2 (Pap 1995; Sugeno 1974; Wang and Klir

1992) Let ðX;F ; lÞ be a fuzzy measure space and A 2 F ;
the Sugeno integral of f on A; with respect to the fuzzy

measure l; is defined as

ðSÞ
Z

A

f dl ¼
_
a� 0

ða ^ lðA \ FaÞÞ:

When A ¼ X; then

ðSÞ
Z

X

f dl ¼ ðSÞ
Z

f dl ¼
_
a� 0

ða ^ lðFaÞÞ:

It is well known that Sugeno integral is a type of nonlinear

integral (Mesiar and Mesiarová 2008), i.e., for general

case,

ðSÞ
Z
ðaf þ bgÞ dl ¼ a ðSÞ

Z
f dl

� �
þ b ðSÞ

Z
g dl

� �

does not hold. Some basic properties of Sugeno integral are

summarized in Pap (1995), Wang and Klir (1992), we cite

some of them in the next theorem.

Theorem 2.3 (Pap 1995; Wang and Klir 1992) Let

ðX;F ;lÞ be a fuzzy measure space, then

(i) lðA \ FaÞ� a ¼) ðSÞ
R

A f dl� a;

(ii) lðA \ FaÞ� a ¼) ðSÞ
R

A f dl� a;

(iii) ðSÞ
R

A f dl\a() there exists c\a such that

lðA \ FcÞ\a;

(iv) ðSÞ
R

A f dl [ a() there exists c [ a such that

lðA \ FcÞ[ a;

(v) If lðAÞ\1; then lðA \ FaÞ� a() ðSÞ
R

A f dl� a;

(vi) If f � g; then ðSÞ
R

f dl�ðSÞ
R

g dl:

Fig. 1 Framework of Data

Mining with Non-Additive

Measures
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Ouyang and Fang (2008) proved the following result

which generalized the corresponding one in Román-Flores

et al. (2007).

Lemma 2.4 Let m be the Lebesgue measure on R and let

f : ½0;1Þ ! ½0;1Þ be a nonincreasing function. If

ðSÞ
R a

0
f dm ¼ p; then

f ðp�Þ� ðSÞ
Za

0

f dm ¼ p

for all a� 0; where f ðp�Þ ¼ limx!p� f ðxÞ:

Moreover, if p\a and f is continuous at p; then

f ðp�Þ ¼ f ðpÞ ¼ p:

Notice that if m is the Lebesgue measure and f is non-

increasing, then f ðp�Þ� p implies ðSÞ
R a

0
f dm� p for any

a� p: In fact, the monotonicity of f and the fact f ðp�Þ� p

imply that ½0; pÞ � Fp: Thus, mð½0; a� \ FpÞ�mð½0; a� \
½0; pÞÞ ¼ mð½0; pÞÞ ¼ p: Now, by Theorem 2.3(i), we have

ðSÞ
R a

0
f dm� p:

Based on Lemma 2.4, Ouyang et al. (2008) proved some

Chebyshev type inequalities and their united form (Mesiar

and Ouyang 2009). Notice that when proving these Theo-

rems, the following lemma, which is derived from the

transformation theorem for Sugeno integrals (see Wang

and Klir 1992), plays a fundamental role.

Lemma 2.5 Let ðSÞ
R

A f dl ¼ p: Then 8 r� p; ðSÞ
R

A

f dl ¼ ðSÞ
R r

0
lðA \ FaÞ dm; where m is the Lebesgue

measure.

Recall that two functions f ; g: X ! R are said to be

comonotone if for all ðx; yÞ 2 X2; ðf ðxÞ � f ðyÞÞðgðxÞ �
gðyÞÞ� 0: Clearly, if f and g are comonotone, then for all

non-negative real numbers p; q either Fp � Gq or Gq � Fp:

Indeed, if this assertion does not hold, then there are x 2
FpnGq and y 2 GqnFp: That is,

f ðxÞ� p; gðxÞ\q and f ðyÞ\p; gðyÞ� q;

and hence ðf ðxÞ � f ðyÞÞðgðxÞ � gðyÞÞ\0; contradicts with

the comonotonicity of f and g: Notice that comonotone

functions can be defined on any abstract space.

In Flores-Franulič and Román-Flores (2007), a fuzzy

Chebyshev inequality for a special case was obtained

which has been generalized by Ouyang et al. (2008). Fur-

thermore, Chebyshev type inequalities for fuzzy integral

were proposed in a rather general form by Mesiar and

Ouyang (2009). In fact, they proved the following result:

Theorem 2.6 Let f ; g 2 FþðXÞ and l be an arbitrary

fuzzy measure such that both ðSÞ
R

A f dl and ðSÞ
R

A g dl

are finite. And let H: ½0;1Þ2 ! ½0;1Þ be continuous and

nondecreasing in both arguments and bounded from above

by minimum. If f ; g are comonotone, then the inequality

ðSÞ
Z

A

f Hg dl� ðSÞ
Z

A

f dl

0
@

1
AH ðSÞ

Z

A

g dl

0
@

1
A ð2:1Þ

holds.

It is known that

ðSÞ
Z

A

f Hg dl� ðSÞ
Z

A

f dl

0
@

1
AH ðSÞ

Z

A

g dl

0
@

1
A ð2:2Þ

where f ; g are comonotone functions whenever H� max

(for a similar result, see Ouyang and Mesiar 2009a), it is of

great interest to determine the operator H such that

ðSÞ
Z

A

f Hg dl ¼ ðSÞ
Z

A

f dl

0
@

1
AH ðSÞ

Z

A

g dl

0
@

1
A ð2:3Þ

holds for any comonotone functions f ; g; and for any fuzzy

measure l and any measurable set A: Ouyang et al. (2009)

and Ouyang and Mesiar (2009b) proved that there are only

18 operators such that (2.3) holds, including the four well-

known operators: minimum, maximum, first projection

(PF), if xHy ¼ x for each pair ðx; yÞ) and last projection

(PL), if xHy ¼ y for each pair ðx; yÞ).
Recently, Agahi and Yaghoobi (2010) proved a Min-

kowski type inequality for monotone functions and arbi-

trary fuzzy measure-based Sugeno integrals.

Theorem 2.7 Let l be an arbitrary fuzzy measure on

½0; a� and f ; g:½0; a� ! ½0;1� be two real-valued measur-

able functions such that Sð Þ
R a

0
f þ gð Þs dl� 1: If f ; g are

both non-decreasing (non-increasing) functions, then the

inequality

Sð Þ
Za

0

f þ gð Þs dl

0
@

1
A

1
s

� Sð Þ
Za

0

f s dl

0
@

1
A

1
s

þ Sð Þ
Za

0

gs dl

0
@

1
A

1
s

ð2:4Þ

holds for all 1� s\1:

3 Main results

The main results of this paper are as follows

Theorem 3.1 Let f ; g 2 FþðXÞ and l be an arbitrary

fuzzy measure such that ðSÞ
R

A f b dl� 1 and ðSÞ
R

A gc

dl� 1: Let H: ½0;1Þ2 ! ½0;1Þ be continuous and non-
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decreasing in both arguments and bounded from above by

minimum. If f ; g are comonotone, then the inequality

ðSÞ
Z

A

ðf HgÞa dl

0
@

1
A

k

� ðSÞ
Z

A

f b dl

0
@

1
A

t

H ðSÞ
Z

A

gc dl

0
@

1
A

s

ð3:1Þ

holds for all a; b; c; k; t; s 2 0;1ð Þ; 0\ak� 1; 1� b
t\1; 1� cs\1; k� s; t:

Proof Let a; b; c; k; t; s 2 0;1ð Þ; ðSÞ
R

f b dl
� �t¼ p� 1

and ðSÞ
R

gc dl
� �s¼ q� 1: Theorem 2.3 ðvÞ implies that

ðSÞ
Z

A

f b dl ¼ p
1
t ¼) l A \ f b� p

1
t

n o� �

� p
1
t ¼) l A \ F

p
1
bt

� �
� p

1
t; ð3:2Þ

ðSÞ
Z

A

gc dl ¼ q
1
s ¼) l A \ gc� q

1
s

n o� �

� q
1
s ¼) l A \ G

q
1
cs

� �
� q

1
s; ð3:3Þ

where Fa ¼ xjf xð Þ� af g and Ga ¼ xjg xð Þ� af g: Since

0 \ ak� 1; 1� bt\1; 1� cs\1; k� s; t and H :

½0;1Þ2 ! ½0;1Þ is continuous and nondecreasing in

both arguments and bounded from above by minimum,

then we have

ðp 1
btHq

1
csÞa�ðpHqÞa�ðpHqÞ

1
k;

l A \ H
p

1
btHq

1
cs

� �
� l A \ F

p
1
bt
\ G

q
1
cs

� �

¼min l A \ F
p

1
bt

� �
; l A \ G

q
1
cs

� �� �

� p
1
t ^ q

1
s � p

1
k ^ q

1
k;

where Ha ¼ xjf xð ÞHg xð Þ� af g: Hence

ðSÞ
Z

A

ðf HgÞa dl

0
@

1
A

k

� ðp 1
btHq

1
csÞa^lðA\fxj ðf HgÞa xð Þ

�

�ðp 1
btHq

1
csÞagÞÞk

¼ ðp 1
btHq

1
csÞa^l A\H

ðp
1
btHq

1
csÞ

� �� �k

� ðpHqÞ
1
k^ p

1
k^q

1
k

� �� �k

¼pHq:

This completes the proof. h

The following example shows that the conditions of

ðSÞ
R

A f b dl� 1 and ðSÞ
R

A gc dl� 1 in Theorem 3.1 are

inevitable.

Example 3.2 Let A ¼ ½0; 4�; f ðxÞ ¼ gðxÞ ¼
ffiffiffi
x
p
; b ¼ c ¼

1
3
; t ¼ s ¼ 3; a ¼ 1

2
; k ¼ 2 and m be the Lebesgue measure.

A straightforward calculus shows that

(i) Sð Þ
Z4

0

f
1
3ðxÞ dm

¼ Sð Þ
Z4

0

g
1
3ðxÞ dm ¼

_
a2½0;1:2599�

a ^ m
ffiffiffi
x
p� �1

3� a
n o� �h i

¼
_

a2½0;1:2599�
a ^ 4� a6

� �	 

¼ 1:18805;

(ii) ðSÞ
Z4

0

f ^ gð Þ
1
2ðxÞ dm

¼ ðSÞ
Z4

0

f
1
2ðxÞ dm ¼

_
a2½0;1:4142�

a ^ m
ffiffiffi
x
p� �1

2� a
n o� �h i

¼
_

a2½0;1:4142�
a ^ 4� a4

� �	 

¼ 1:28378:

Therefore,

1:6481 ¼ ðSÞ
Z4

0

f ^ gð Þ
1
2ðxÞ dm

0
@

1
A

2

¼ ðSÞ
Z4

0

f
1
2ðxÞ dm

0
@

1
A

2

\ ðSÞ
Z4

0

f
1
3 dm

0
@

1
A

3

^ ðSÞ
Z4

0

g
1
3 dm

0
@

1
A

3

¼ ðSÞ
Z4

0

f
1
3 dm

0
@

1
A

3

¼ 1:6769;

which violates Theorem 3.1.

Remark 3.3 We can use an example in Mesiar and

Ouyang (2009) to show the necessity of the comonotonicity

of f ; g; and so we omit it here.

The following example shows that the condition of

H� min in Theorem 3.1 cannot be omitted.

Example 3.4 Let X 2 ½0; 1�; f ðxÞ ¼ g xð Þ ¼ 1 and H ¼ þ:
Then

ðSÞ
Z
ðf þ gÞ dm ¼ 1 and

ðSÞ
Z

f dm

� �
¼ ðSÞ

Z
g dm

� �
¼ 1;

where m denotes the Lebesgue measure on R: But

ðSÞ
Z
ðf þ gÞ dm ¼ 1\ðSÞ

Z
f dmþ ðSÞ

Z
f dm ¼ 2;

which violates Theorem 3.1.
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The following example shows that the conditions of

0\ak� 1; 1� bt\1; 1� cs\1 and k� s; t in Theorem

3.1 are inevitable.

Example 3.5 Let X 2 ½0; 1�; b ¼ c ¼ 1
2
; t ¼ a ¼ k ¼ 1;

s ¼ 2 and m be the Lebesgue measure. Let f ; g be two real

valued functions defined as f ðxÞ ¼ x and gðxÞ 	 1 for all

x 2 ½0; 1� and H be the standard product. A straightfor-

ward calculus shows that

(i) Sð Þ
Z1

0

ðf HgÞa dm

0
@

1
A

k

¼ Sð Þ
Z1

0

f ðxÞ dm

¼
_

a2½0;1�
a ^ m x� af gð Þ½ �

¼
_

a2½0;1�
a ^ 1� að Þ½ � ¼ 0:5;

(ii) ðSÞ
Z1

0

f b dm

0
@

1
A

t

¼ ðSÞ
Z1

0

f
1
2ðxÞ dm

¼
_

a2½0;1�
a ^ m

ffiffiffi
x
p
� a

� �� �	 


¼
_

a2½0;1�
a ^ 1� a2

� �	 

¼ 0:61803;

(iii) ðSÞ
Z1

0

gc dm

0
@

1
A

s

¼ ðSÞ
Z1

0

g
1
2ðxÞ dm

0
@

1
A

2

¼ ðSÞ
Z1

0

dm ¼ 1:

Therefore,

ðSÞ
Z1

0

ðf HgÞa dl

0
@

1
A

k

¼ 0:5\ ðSÞ
Z1

0

f b dl

0
@

1
A

t

H ðSÞ
Z1

0

gc dl

0
@

1
A

s

¼ 0:61803
 1 ¼ 0:61803;

which violates Theorem 3.1.

We get an inequality related to the Minkowski type

whenever a ¼ b ¼ c ¼ s and k ¼ t ¼ s ¼ 1
s :

Corollary 3.6 (Ouyang et al. 2010) Let f ; g 2 FþðXÞ
and l be an arbitrary fuzzy measure such that

ðSÞ
R

A f s dl� 1 and ðSÞ
R

A gs dl� 1: And let H: ½0;1Þ2 !
½0;1Þ be continuous and nondecreasing in both arguments

and bounded from above by minimum. If f ; g are co-

monotone, then the inequality

ðSÞ
Z

A

ðf HgÞs dl

0
@

1
A

1
s

� ðSÞ
Z

A

f s dl

0
@

1
A

1
s

H ðSÞ
Z

A

gs dl

0
@

1
A

1
s

ð3:4Þ

holds for all 0\s\1:

Also, we get an inequality related to the Hölder type

whenever a ¼ k ¼ 1; b ¼ p; c ¼ q; t ¼ 1
p ; s ¼ 1

q :

Corollary 3.7 Let f ; g 2 FþðXÞ and l be an arbitrary

fuzzy measure such that ðSÞ
R

A f p dl� 1 and

ðSÞ
R

A gq dl� 1: And let H: ½0;1Þ2 ! ½0;1Þ be continu-

ous and nondecreasing in both arguments and bounded

from above by minimum. If f ; g are comonotone, then the

inequality

ðSÞ
Z

A

ðf HgÞ dl� ðSÞ
Z

A

f p dl

0
@

1
A

1
p

H ðSÞ
Z

A

gq dl

0
@

1
A

1
q

ð3:5Þ

holds for all p; q 2 ð0; 1�:

Let a ¼ b ¼ c ¼ k ¼ t ¼ s ¼ 1; then we get the

Chebyshev inequality.

Corollary 3.8 (Mesiar and Ouyang 2009; Ouyang and

Mesiar 2009a) Let f ; g 2 FþðXÞ and l be an arbitrary

fuzzy measure such that ðSÞ
R

A f dl� 1 and ðSÞ
R

A g dl� 1:

And let H: ½0;1Þ2 ! ½0;1Þ be continuous and nonde-

creasing in both arguments and bounded from above by

minimum. If f ; g are comonotone, then the inequality

ðSÞ
Z

A

ðf HgÞ dl� ðSÞ
Z

A

f dl

0
@

1
AH ðSÞ

Z

A

g dl

0
@

1
A ð3:6Þ

holds.

Let g xð Þ 	 1; b ¼ c ¼ s ¼ t ¼ 1; a ¼ 1
k and H be the

standard product, then we have the following result.

Corollary 3.9 (Román-Flores et al. 2008a, b) If

f : 0; 1½ � ! ½0;1Þ is a measurable function, then the

inequality

ðSÞ
Z1

0

f a dl� ðSÞ
Z1

0

f dl

0
@

1
A

a

ð3:7Þ

holds for all 1� a\1:

Let g xð Þ 	 1; a ¼ c ¼ s ¼ k ¼ 1; b ¼ 1
t and H be the

standard product, then we have the following result.

Corollary 3.10 If f : 0; 1½ � ! ½0;1Þ is a measurable

function, then the inequality
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ðSÞ
Z1

0

f dl

0
@

1
A

b

� ðSÞ
Z1

0

f b dl

0
@

1
A ð3:8Þ

holds for all 0\b� 1:

Lemmas 2.4 and 2.5 help us to reach the following

result.

Theorem 3.11 Let f ; g 2 FþðXÞ and l be an arbitrary

fuzzy measure such that ðSÞ
R

Aðf HgÞa dl� 1: Let

H: ½0;1Þ2 ! ½0;1Þ be continuous and nondecreasing in

both arguments and bounded from below by maximum. If

f ; g are comonotone, then the inequality

ðSÞ
Z

A

ðf HgÞa dl

0
@

1
A

k

� ðSÞ
Z

A

f b dl

0
@

1
A

t

H ðSÞ
Z

A

gc dl

0
@

1
A

s

ð3:9Þ

holds for all a; b; c; k; t; s 2 0;1ð Þ; 1� ak \1; 0\b
t� 1; 0\cs� 1; k� s; t:

Proof Let a; b; c; k; t; s 2 0;1ð Þ and Sð Þ
R

Aðf HgÞa dl ¼
r� 1: Theorem 2.3 ðvÞ implies that:

Sð Þ
Z

A

ðf HgÞa dl ¼ r ¼) lðA \ fxj f Hgð Þ xð Þ� r
1
agÞ� r:

ð3:10Þ

Denote AðaÞ ¼ lðA \ fxjf b xð Þ� agÞ;BðaÞ ¼ lðA \ fxjgc

xð Þ� agÞ and CðaÞ ¼ lðA \ fxj f Hgð Þa xð Þ� agÞ: By

Lemma 2.5, we have Sð Þ
R

Aðf HgÞa dl ¼ ðSÞ
R 1

0
CðaÞ dm;

therefore, it is sufficient to prove

Sð Þ
Z1

0

CðaÞ dm

0
@

1
A

k

� Sð Þ
Z1

0

AðaÞ dm

0
@

1
A

t

H Sð Þ
Z1

0

BðaÞ dm

0
@

1
A

s

:

Let p ¼ ðSÞ
R 1

0
AðaÞ dm and q ¼ ðSÞ

R 1

0
BðaÞ dm: Without

loss of generality, let p; q\1: Since AðaÞ and BðaÞ are non-

increasing with respect to a and m is a Lebesgue measure,

by Lemma 2.4 (moreover part), we have the following

equalities:

Aðp�Þ ¼ p;Bðq�Þ ¼ q: ð3:11Þ

Now, on the contrary suppose

rk [ pt
Hqs: ð3:12Þ

Since 1� ak\1; 0\bt� 1; 0\cs� 1; k� s; t; then (3.12)

implies that

r
1
a [ p

1
bHq

1
c; ð3:13Þ

r [ pt
Hqsð Þ

1
k� pk

Hqk
� �1

k: ð3:14Þ

For each e [ 0; by the monotonicity of H and using (3.13)

we have

l A \ xj f Hgð Þ xð Þ� r
1
a

n o� �

� l A \ xj f Hgð Þ xð Þ[ p
1
bHq

1
c

n o� �

� l A \ xjf xð Þ� p
1
b

n o
[ xjg xð Þ� q

1
c

n o� �� �

� l A \ xjf b xð Þ� p� e
� �

[ xjgc xð Þ� q� ef g
� �� �

:

ð3:15Þ

Letting e! 0; by the continuity of H and (3.11) we have

r� lim
e!0

l A \ xjf b xð Þ� p� e
� �

[ xjgc xð Þ� q� ef g
� �� �

¼ lim
e!0

maxðAðp� eÞ;Bðq� eÞÞð Þ

¼ maxðp; qÞ� pk
Hqk

� �1
k;

which is a contradiction to (3.14). Hence rk� pt
Hqs and

the proof is completed. h

Remark 3.12 We can use the same examples in Agahi

et al. (2010) to show the necessities of H� max and the

comonotonicity of f ; g; and so we omit them here.

The following example shows that the conditions of

1� ak\1; 0\bt� 1; 0\cs� 1 and k� s; t in Theorem

3.11 are inevitable.

Example 3.13 Let X 2 ½0; 1�; b ¼ c ¼ 2; t ¼ a ¼ k ¼ 1;

s ¼ 1
2

and m be the Lebesgue measure. Let f ; g be two real

valued functions defined as f ðxÞ ¼ gðxÞ ¼ 1
2

for

all x 2 ½0; 1� and H ¼ þ: A straightforward calculus shows

that

ðiÞ Sð Þ
Z1

0

ðf HgÞa dm

0
@

1
A

k

¼ Sð Þ
Z1

0

ðf þ gÞ dm ¼ Sð Þ
Z1

0

dm

¼ 1;

ðiiÞ ðSÞ
Z1

0

f b dm

0
@

1
A

t

¼ ðSÞ
Z1

0

f 2ðxÞ dm ¼ 1

4
;

ðiiiÞ ðSÞ
Z1

0

gc dm

0
@

1
A

s

¼ ðSÞ
Z1

0

g2ðxÞ dm

0
@

1
A

1
2

¼ 1

2
:
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Therefore,

ðSÞ
Z1

0

ðf HgÞa dl

0
@

1
A

k

¼ 1 [ ðSÞ
Z1

0

f b dl

0
@

1
A

t

H ðSÞ
Z1

0

gc dl

0
@

1
A

s

¼ 1

4
þ 1

2
¼ 3

4
;

which violates Theorem 3.11.

Let a ¼ b ¼ c ¼ s and k ¼ t ¼ s ¼ 1
s ; then we get the

Minkowski inequality.

Corollary 3.14 (Agahi et al. 2010) Let f ; g 2 FþðXÞ
and l be an arbitrary fuzzy measure such that

ðSÞ
R

A f Hgð Þs dl� 1: Let H: ½0;1Þ2 ! ½0;1Þ be contin-

uous and nondecreasing in both arguments and bounded

from below by maximum. If f ; g are comonotone, then the

inequality

ðSÞ
Z

A

ðf HgÞs dl

0
@

1
A

1
s

� ðSÞ
Z

A

f s dl

0
@

1
A

1
s

H ðSÞ
Z

A

gs dl

0
@

1
A

1
s

ð3:16Þ

holds for all 0\s\1:

Remark 3.15 Note that for any subnorm M; we have

M x; yð Þ� min x; yð Þ; so Ineq. (3.16) does not work when H

is a subnorm. However, Ineq. (3.16) works whenever H is a

t-conorm.

Let a ¼ k ¼ 1; b ¼ p; c ¼ q; t ¼ 1
p ; s ¼ 1

q ; then we get

the Hölder inequality:

Corollary 3.16 Let f ; g 2 FþðXÞ and l be an arbitrary

fuzzy measure such that ðSÞ
R

A f Hgð Þ dl� 1: Let

H: ½0;1Þ2 ! ½0;1Þ be continuous and nondecreasing in

both arguments and bounded from below by maximum. If

f ; g are comonotone, then the inequality

ðSÞ
Z

A

ðf HgÞ dl� ðSÞ
Z

A

f p dl

0
@

1
A

1
p

H ðSÞ
Z

A

gq dl

0
@

1
A

1
q

ð3:17Þ

holds for all p; q 2 ½1;1Þ:

Remark 3.17 Let H be continuous and nondecreasing. If

Hj½0;1�2 is a triangular subnorm (Klement et al. 2000), then

Ineq. (3.17) works for any comonotone functions f ; g with

ðSÞ
R

A f dl� 1 and ðSÞ
R

A g dl� 1:

Let a ¼ b ¼ c ¼ k ¼ t ¼ s ¼ 1; then we get the fol-

lowing result.

Corollary 3.18 (Ouyang and Mesiar 2009a) Let f ; g 2
FþðXÞ and l be an arbitrary fuzzy measure such that

ðSÞ
R

A f Hgð Þ dl� 1: Let H: ½0;1Þ2 ! ½0;1Þ be continu-

ous and nondecreasing in both arguments and bounded

from below by maximum. If f ; g are comonotone, then the

inequality

ðSÞ
Z

A

ðf HgÞ dl� ðSÞ
Z

A

f dl

0
@

1
AH ðSÞ

Z

A

g dl

0
@

1
A

holds.

4 Conclusions and problems for further investigation

In this paper, we have investigated a generalization of

Chebyshev type inequalities for Sugeno integrals. More

precisely, sufficient conditions under which the inequality

ðSÞ
Z
ðf HgÞa dl

� �k

� ðSÞ
Z

f b dl

� �t

H ðSÞ
Z

gc dl

� �s

ð4:1Þ

or its reverse hold for an arbitrary fuzzy measure-based

type fuzzy integral l and a binary operation H: ½0;1Þ2 !
½0;1Þ are given.

Open Problem 1 Are there any operators such that the

inequalities (4.1) and/or its reverse become equalities?

Open Problem 2 Under what conditions, does the

inequality (4) or its reverse hold for seminormed fuzzy

integrals or semiconormed fuzzy integrals (Suárez Garcı́a

and Gil Álvarez 1986)?

We will address the problem 2 in the near future.
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