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Abstract Tournament selection is one of the most com-

monly used parent selection schemes in genetic program-

ming (GP). While it has a number of advantages over other

selection schemes, it still has some issues that need to be

thoroughly investigated. Two of the issues are associated

with the sampling process from the population into the

tournament. The first one is the so-called ‘‘multi-sampled’’

issue, where some individuals in the population are picked

up (sampled) many times to form a tournament. The sec-

ond one is the ‘‘not-sampled’’ issue, meaning that some

individuals are never picked up when forming tournaments.

In order to develop a more effective selection scheme for

GP, it is necessary to understand the actual impacts of these

issues in standard tournament selection. This paper inves-

tigates the behaviour of different sampling replacement

strategies through mathematical modelling, simulations

and empirical experiments. The results show that different

sampling replacement strategies have little impact on

selection pressure and cannot effectively tune the selection

pressure in dynamic evolution. In order to conduct effec-

tive parent selection in GP, research focuses should be on

developing automatic and dynamic selection pressure tun-

ing methods instead of alternative sampling replacement

strategies. Although GP is used in the empirical experi-

ments, the findings revealed in this paper are expected to be

applicable to other evolutionary algorithms.

Keywords Tournament selection � Selection pressure �
Genetic programming

1 Introduction

Genetic programming (GP) (Koza 1992), one of the

metaheuristic search methods in evolutionary algorithms

(EAs) (Eiben and Smith 2003), is based on the Darwinian

natural selection theory. Its special characteristics make it

an attractive learning or search algorithm for many real-

world problems, including signal filters (Andreae et al.

2008; Brameier et al. 2001), circuit designing (de Sa and

Mesquita 2008; Koza et al. 1999; Popp et al. 1998), image

recognition (Agnelli et al. 2002; Akyol et al. 2007; Vanyi

2005), symbolic regression (Castillo et al. 2006; Schmidt

and Lipson 2007; Smits et al. 2005), financial prediction

(Lee 2006; Li and Tsang 2000; Zhang et al. 2004), and

classification (Espejo et al. 2010; Hong and Cho 2004;

Zhang et al. 2003, 2006).

Selection is an important aspect in EAs. Although

‘‘survival of the fittest’’ has driven EAs since the 1950s and

many selection methods have been developed, how to

effectively select parents still remains an important open

issue.

Commonly used parent selection schemes in EAs

include fitness proportionate selection (Holland 1975),

ranking selection (Grefenstette and Baker 1989), and

tournament selection (Brindle 1981). To determine which

parent selection scheme is suitable for a particular para-

digm, three factors need to be considered. The first factor is
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whether the selection pressure1 of a selection scheme can

be changed easily since it directly affects the convergence

of learning. The second is whether a selection scheme

supports parallel architectures since a parallel architecture

is very useful for speeding up learning paradigms that are

computationally intensive. The third factor is whether the

time complexity of a selection scheme is low since the

running cost of the selection scheme can be amplified by

the number of individuals involved.

Tournament selection randomly draws/samples k indi-

viduals with or without replacement from the current

population of size N into a tournament of size k and selects

the one with the best fitness from the tournament. In gen-

eral, selection pressure in tournament selection can be

easily changed by using different tournament sizes; the

larger the tournament size, the higher the selection pres-

sure. Drawing individuals with replacement into a tourna-

ment makes the population remain unchanged, which in

turn allows tournament selection to easily support parallel

architectures. Selecting the winner involves simply finding

the best out of k individuals; thus the time complexity of a

single tournament is O(k). Furthermore, in general, since

the standard breeding process in GP produces one offspring

by applying mutation to one parent and produces two

offspring by applying crossover to two parents, the total

number of tournaments needed to generate the entire next

generation is N. Therefore, the time complexity of tour-

nament selection is O(kN).

GP is recognised as a computationally intensive method,

often requiring a parallel architecture to improve its effi-

ciency. Furthermore, it is not uncommon to have millions

of individuals in a population when solving complex

problems (Koza et al. 2003); thus, sorting a whole popu-

lation is time consuming. The support of parallel archi-

tecture and the linear time complexity have made

tournament selection very popular in GP and the sampling-

with-replacement tournament selection has become the

standard tournament selection (STS) scheme in GP. The

literature includes many studies on the STS (Back 1994;

Blickle and Thiele 1995, 1997; Branke et al. 1996; Goldberg

and Deb 1991; Miller and Goldberg 1995, 1996; Motoki

2002; Poli and Langdon 2006).

Although STS is very popular in GP, it still has some

open questions. For instance, because individuals are

sampled with replacement, it is possible to have the same

individual sampled multiple times in a tournament (the

multi-sampled issue). It is also possible to have some

individuals not sampled at all when using small tournament

sizes (the not-sampled issue). These two issues may lower

the probability of some good individuals being sampled or

selected. Additionally, they may aggravate premature

convergence and loss of population diversity (Lima et al.

2007; Sokolov and Whitley 2005), which might in turn

affect the system performance of EAs (Gustafson 2004).

However, such views have not been thoroughly investi-

gated. In addition, although it seems that the selection

pressure can be easily changed using different tournament

sizes to influence the convergence of the genetic search

process, two problems exist during population conver-

gence: (1) when groups of programs have the same or

similar fitness values, the selection pressure between

groups increases regardless of the given tournament size,

resulting in ‘‘better’’ groups dominating the next popula-

tion and possibly causing premature convergence; and (2)

when most programs have the same fitness value, the

selection behaviour effectively becomes random.2 There-

fore, tournament size itself is not always adequate for

controlling selection pressure. Furthermore, the evolution-

ary learning process itself is very dynamic, requiring

adapting selection pressure during an EA run (de Jong

2007). For instance, from our experimental studies we

realised that at some stages, it requires a fast convergence

rate (i.e., high parent selection pressure) to find a solution

quickly; at other stages, it requires a slow convergence rate

(i.e., low parent selection pressure) to avoid being confined

to a local optimum. However, STS does not fulfill the

adaptation requirements. There exists a strong demand to

clarify the open issues of STS in order to conduct an

effective selection process in GP. To do that, a thorough

investigation of tournament selection is necessary.

This paper aims to clarify whether the two sampling

behaviour-related issues are critical in STS and to deter-

mine whether further research should focus on developing

alternative sampling strategies in order to conduct effective

selection processes in GP.

Section 2 gives a review of selection pressure mea-

surements. Section 3 presents the necessary assumptions

and definitions. Section 4 shows the selection behaviour in

STS, providing a baseline for investigating the multi-

sampled and not-sampled issues. Sections 5 and 6 analyse

the impacts of the multi-sampled and the not-sampled

issues via modelling and simulations, respectively. Section

7 discusses the evolutionary dynamics of the tournament

selection schemes. Section 8 investigates the two issues via

experiments and Sect. 9 concludes this paper.

2 Selection pressure measurements

A critical issue in designing a selection technique is

selection pressure, which has been widely studied in EAs
1 It is the degree to which the better individuals are favoured (Miller

and Goldberg 1995). 2 Other selection schemes may also suffer this problem.
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(Affenzeller et al. 2005; Blickle and Thiele 1995; Goldberg

and Deb 1991; Miller and Goldberg 1995; Motoki 2002;

Winkler et al. 2008). Many definitions of selection pressure

can be found in the literature. For instance, it is defined as

(1) the intensity with which an environment tends to

eliminate an organism and thus its genes, or gives it an

adaptive advantage; (2) the impact of effective reproduc-

tion due to environmental impact on the phenotype; and (3)

the intensity of selection acting on a population of organ-

isms or cells in culture. These definitions originate from

different perspectives but they share the same aspect,

which can be summarised as the degree to which the better

individuals are favoured (Miller and Goldberg 1995).

Selection pressure gives individuals of higher quality a

higher probability of being used to create the next gener-

ation, so that EAs can focus on promising regions in the

search space (Blickle and Thiele 1995).

Selection pressure controls the selection of individual

programs from the current population to produce a new

population of programs in the next generation. It is impor-

tant in a genetic search process because it directly affects

the population convergence rate. The higher the selection

pressure, the faster the convergence. A fast convergence

decreases learning time, but often results in a GP learning

process being confined in a local optimum or ‘‘premature

convergence’’ (Ciesielski and Mawhinney 2002; Koza

1992). A low convergence rate generally not only decreases

the chance of premature convergence but also increases the

learning time, and may not be able to find an optimal or

acceptable solution in a predefined limited time.

In tournament selection, the mating pool consists of

tournament winners. The average fitness in the mating pool

is usually higher than that in the population. The fitness

difference between the mating pool and the population

reflects the selection pressure, which is expected to

improve the fitness of each subsequent generation (Miller

and Goldberg 1995).

In biology, the effectiveness of selection pressure can be

measured in terms of differential survival and reproduction

and consequently in change in the frequency of alleles in a

population. In EAs, there are several measurements for

selection pressure in different contexts, including takeover

time, selection intensity, loss of diversity, reproduction

rate, and selection probability distribution.

Takeover time is defined as the number of generations

required to completely fill a population with just copies of

the best individual in the initial generation when available

operators are limited to only selection and copy operators

(Goldberg and Deb 1991). For a given fixed-sized popu-

lation, the longer the takeover time, the lower the selection

pressure. (Goldberg and Deb 1991) estimated the takeover

time for STS as

1

ln k
ln N þ lnðln NÞð Þ ð1Þ

where N is the population size and k is the tournament size.

The approximation improves when N !1:
Selection intensity was first introduced in the context of

population genetics to obtain a normalised and dimen-

sionless measure (Bulmer 1980), and, later was adopted

and applied to GAs (Muhlenbein and Schlierkamp-Voosen

1993). Blickle and Thiele (1995, 1997) measured it using

the expected change of the average fitness of the popula-

tion. As the measurement is dependent on the fitness dis-

tribution in the initial generation, they assumed the fitness

distribution followed the normalised Gaussian distribution

and introduced an integral equation for modelling selection

intensity in STS.

For their model, analytical evaluation can be done only

for small tournament sizes and numerical integration is

needed for large tournament sizes. The model is not valid

in the case of discrete fitness distributions. In addition to

these limitations, the assumption that the fitness distribu-

tion followed the normalised Gaussian distribution is not

valid in general (Popovici and de Jong 2003). Furthermore,

the model is of limited use because tournament selection

ignores the actual fitness values and uses the relative

rankings instead.

Loss of diversity is defined as the proportion of indi-

viduals in a population that are not selected during a parent

selection phase by Blickle and Thiele (1995, 1997). For

STS, they estimate it to be

k�
1

k�1 � k�
k

k�1 ð2Þ

However, Motoki (2002) pointed out that Blickle and

Thiele’s estimation of the loss of diversity in tournament

selection does not follow their definition, and indeed their

estimation is of loss of fitness diversity. Motoki

recalculated the loss of program diversity in a wholly

diverse population, i.e., every individual has a distinct

fitness value, on the assumption that the worst individual is

ranked 1st, as

1

N

XN

j¼1

1� PðWjÞ
� �N ð3Þ

where PðWjÞ ¼ jk�ðj�1Þk
Nk is the probability that an individual

of rank j is selected in a tournament.

Reproduction rate is defined as the ratio of the number

of individuals with a certain fitness f after and before

selection (Blickle and Thiele 1995, 1997). A reasonable

selection method should favour good individuals by giving

them a high ratio and penalise bad individuals by giving a

low ratio. Branke et al. (1996) introduced a similar mea-

sure which is the expected number of selections of an
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individual. It is calculated by multiplying the total number

of tournaments N conducted in a parent selection phase by

the selection probability of the individual in a single

tournament PðWjÞ :

N � PðWjÞ ð4Þ

This measure is termed selection frequency in this paper

hereafter as reproduction has another meaning in GP.

Selection probability distribution of a population at a

generation is defined as consisting of the probabilities of

each individual in the population being selected at least once

in a parent selection phase (Xie et al. 2007). Although

tournaments indeed can be implemented in a parallel man-

ner, in Xie et al. (2007) they are assumed to be conducted

sequentially so that the number of tournaments conducted

reflects the progress of generating the next generation. As a

result, the selection probability distribution can be illustrated

in a three-dimensional graph, where the x-axis shows every

individual in the population ranked by fitness (the worst

individual is ranked 1st), the y-axis shows the number of

tournaments conducted in the selection phase (from 1 to N),

and the z-axis is the selection probability which shows how

likely a given individual marked on x-axis can be selected at

least once after a given number of tournaments marked on

y-axis. Therefore, the measure provides a full picture of the

selection behaviour over the population during the whole

parent selection phase. Figure 1 shows the selection proba-

bility distribution measure for STS of tournament size 4 on a

wholly diverse population of size 40.

3 Assumptions and definitions

To model and simulate selection behaviours in tournament

selection, we make a number of assumptions and defini-

tions in this section.

A population can be partitioned into bags consisting of

programs with equal fitness. These ‘‘fitness bags’’ may

have different sizes. As each fitness bag is associated with a

distinct fitness rank, we can characterise a population by

the number of distinct fitness ranks and the size of each

corresponding fitness bag, which we term fitness rank

distribution (FRD). If S is the population, then we used the

notation N to be the size of the population, Sj to be the bag

of programs with the fitness rank j and jSjj to be the size of

the bag, and jSj to be the number of distinct fitness bags.

We denoted tournament size by k and ranked the program

with the worst fitness 1st. We followed the standard

breeding process so that the total number of tournaments is

N at the end of generating all individuals in the next

generation.

In order to make the results of the selection behaviour

analysis easily understandable, we assumed that tourna-

ments were conducted sequentially. We chose only the loss

of program diversity, the selection frequency, and the

selection probability distribution measures for the selection

behaviour analysis and ignored the takeover time and the

selection intensity due to their limitations.

We used three populations with different FRDs, namely

uniform, reversed quadratic, and quadratic, in our simu-

lations. The three FRDs are designed to mimic the three

stages of evolution but by no means to model all the real

situations happening in a true run of evolution. The uni-

form FRD represents the initialisation stage, where each

fitness bag has a roughly equal number of programs. A

typical case of the uniform FRD can be found in a wholly

diverse population. The reversed quadratic FRD represents

the early evolving stage, where commonly very few indi-

viduals have good fitness values. The quadratic FRD rep-

resents the later stage of evolution, where a large number

of individuals have converged to better fitness values.

Since the impact of population size on selection

behaviour is unclear, we tested several different commonly

used population sizes, ranging from small to large. This

paper illustrates only the representative results of the uni-

form FRD with a population of size 40, and the quadratic

and the reversed quadratic FRDs with populations of size

2000. Note that although the populations with different

FRDs are of different sizes, the number of distinct fitness

ranks is designed to be the same value (i.e. 40) for easy

visualisation and comparison purposes (see Fig. 2). We

also studied and visualised other different numbers of

distinct fitness ranks (100, 500 and 1000) and obtained

similar results (these results are not shown in the paper).

Furthermore, for the selection frequency and the selec-

tion probability distribution measures, we chose three dif-

ferent tournament sizes (2, 4, and 7) commonly used in the

literature, to illustrate how tournament size affects the

selection behaviour.Fig. 1 An example of the selection probability distribution measure
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4 Selection behaviour in standard tournament selection

In order to make a valid comparison when investigating the

multi-sampled and not-sampled issues, it is essential to

show the selection behaviour in STS using the same set of

measurements and simulation methods.

From Xie et al. (2007), the probability of an event that

any program p is sampled at least once in y 2 f1; . . .;Ng
tournaments is

1� N � 1

N

� �N
 !y

Nk

ð5Þ

According to Eq. 5, we calculate the probability trends of a

single program being sampled at least once using six dif-

ferent tournament sizes (1, 2, 4, 7, 20, and 40) in three

populations of sizes 40, 400, and 2000 (shown in Fig. 3).

The figure shows that the larger the tournament size, the

higher the sampling probability. Furthermore, for a given

tournament size, the trends of sampling probabilities of a

program in the selection phase (along the increments of the

number of tournaments) are very similar in different-sized

populations.

From Xie et al. (2007), the probability of an event Wj

that a program p 2 Sj is selected from a tournament is

PðWjÞ ¼

Pj

i¼1
jSij

N

� �k

�
Pj�1

i¼1
jSij

N

� �k

jSjj
ð6Þ

We then calculate the total loss of program diversity

using Eq. 3 in which PðWjÞ is replaced by Eq. 6. We also

split the total loss of program diversity into two parts. One

part is from the fraction of the population that is not

sampled at all during the selection phase. We calculate it

also using Eq. 3 by replacing 1� PðWjÞ with N�1
N

� �k
;

which is the probability that an individual has not been

sampled in a tournament of size k. The other part is from

the fraction of population that is sampled but never

selected. We calculate it by taking the difference between

the total loss of program diversity and the contribution

from not-sampled individuals.

Figure 4 shows the three loss of program diversity

measures, namely the total loss of program diversity and

the contributions from not-sampled3 and not-selected4

individuals for STS on the three populations with different

FRDs. Overall there were no noticeable differences

between the three loss of program diversity measures on

the three different populations with different FRDs.

For each of the three populations with different FRDs,

we also calculate the expected selection frequency of a

program in the selection phase based on Eq. 4 using the

probability model of a program being selected in a tour-

nament (Eq. 6). Figure 5 shows the selection frequency in

STS on the three populations with different FRDs. Instead

of plotting the expected selection frequency for every

individual, we plot it only for an individual in each of the

40 unique fitness ranks so that plots in different-sized

populations have the same scale and it is easy to identify

what fitness ranks may be lost. From the figure, not sur-

prisingly, overall STS favours better-ranked individuals for

all tournament sizes, and the selection pressure is biased

towards better individuals as the tournament size increases.

Furthermore, skewed FRDs (reversed quadratic and qua-

dratic) aggravate selection bias quite significantly.

Fig. 2 Three populations with different fitness rank distributions

3 It refers to individual programs that have never participated into

any tournament in a parent selection phase.
4 It refers to individual programs that have participated into

tournaments but have never won any tournament, and accordingly

have not been selected for mating.
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tournament size: 2 tournament size: 4 tournament size: 7

Fig. 5 Selection frequency in STS on three populations with different FRDs
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Fig. 3 Trends of the probability that a program is sampled at least once in STS in the parent selection phase (note that the scales on the x-axes

differ)

Fig. 4 Loss of program diversity in STS on three populations with different FRDs. Note that the tournament size is discrete but the plots show

curves to aid interpretation
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From Xie et al. (2007), the probability that a program p

of rank j is selected at least once in y 2 f1; . . .;Ng tour-

naments is

1� 1� PðWjÞ
� �y ð7Þ

where PðWjÞ is the probability of a program being selected

from a tournament (see Eq. 6).

We finally calculate the selection probability distribu-

tion based on Eq. 7. Figure 6 illustrates the selection

probability distribution using the three different tourna-

ment sizes (2, 4, and 7) on the three populations with

different FRDs. Again, we plot it for each of the 40 unique

individual ranks. Clearly, different tournament sizes have a

different impact on the selection pressure. The larger the

tournament size, the more the selection pressure favours

individuals of better ranks. For the same tournament size,

the same population size but different FRDs (i.e. the sec-

ond and the third rows in Fig. 6) result in different selec-

tion probability distributions.

From additional visualisations on other-sized popula-

tions with the three FRDs, we observed that similar FRDs

but different population sizes result in similar selection

Fig. 6 Selection probability distribution in STS with tournament size 2, 4, and 7 on three populations with different FRDs
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probability distributions, indicating that population size

does not significantly influence the selection pressure. Note

that in general the genetic material differs between popu-

lations of different sizes, and the impact of genetic material

in different-sized populations on GP performance varies

significantly. However, understanding that impact is

another research topic and is beyond the scope of this

paper.

5 Analysis of the multi-sampled issue via simulations

As mentioned earlier, the impact of the multi-sampled

issue was unclear. This section shows that the multi-sam-

pled issue is not a serious problem. This is done by ana-

lysing the no-replacement tournament selection scheme

(NRTS), which removes the multi-sampled issue. It then

compares NRTS to STS, showing there is no significant

difference between them from the perspective of the

metrics used.

5.1 No-replacement tournament selection

NRTS samples individuals into a tournament but does not

return the sampled individuals back to the population

immediately; thus, no individual can be sampled multiple

times into the same tournament. After the winner is

determined, it then returns all individuals of the tournament

to the population. According to Goldberg and Deb (1991),

NRTS was introduced at the same time as STS. However,

NRTS is less commonly used in EAs.

5.2 Modelling no-replacement tournament selection

The only factor making NRTS different from the standard

one is that any individual in a population will be sampled at

most once in a single tournament and will have k chances

to be drawn out of the population N. Therefore, if D is the

event that an arbitrary program p is drawn or sampled in a

tournament of size k, the probability of D is

PðDÞ ¼ k

N
ð8Þ

If Iy is the event that p is drawn or sampled at least once

in y 2 f1; . . .;Ng tournaments, the probability of Iy is

PðIyÞ ¼ 1� ð1� PðDÞÞy ¼ 1� 1� k

N

� �y

¼ 1� N � k

N

� �N y
N

ð9Þ

Lemma 1 For a particular program p 2 Sj; if Ej;y is the

event that p is selected at least once in y 2 f1; . . .;Ng
tournaments, the probability of Ej;y is:

PðEj;yÞ

¼ 1� 1� 1

jSjj

Pj
i¼1 jSij

k

 !

N

k

� � �

Pj�1
i¼1 jSij

k

 !

N

k

� �

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

y

ð10Þ

Proof The probability that all the programs sampled for a

tournament have a fitness rank between 1 and j (i.e. are

from S1; . . .; Sj) is given by
Pj

i¼1 jSij
k

� �

N
k

� �

If Tj is the event that the best-ranked program in a

tournament is from Sj; the probability of Tj is

PðTjÞ ¼

Pj
i¼1 jSij

k

� �

N
k

� � �

Pj�1
i¼1 jSij

k

� �

N
k

� � : ð11Þ

Let Wj be the event that the program p 2 Sj is selected in a

tournament. As each element of Sj has equal probability of

being selected in a tournament, the probability of Wj is

PðWjÞ ¼
PðTjÞ
jSjj

: ð12Þ

Therefore, the probability that p is selected at least once in

y tournaments is

PðEj;yÞ ¼ 1� ð1� PðWjÞÞy: ð13Þ

Substituting for PðWjÞ we obtain Eq. 10. h

For the special simple situation that all individuals have

distinct fitness values, jSjj becomes 1. Substituting this into

Eqs. 11 and 12, we obtain the following equation, which is

identical to the model presented in Branke et al. (1996).

PðWjÞ ¼

j
k

� �
� j� 1

k

� �

N
k

� � ð14Þ

5.3 Selection behaviour analysis

The loss of program diversity, the selection frequency, and

the selection probability distribution for NRTS are calcu-

lated by substituting Eq. 12 into Eqs. 3, 4 and 7, and illus-

trated in Figs. 7, 8, and 9, respectively. Comparison results

of these figures and Figs. 4, 5 and 6 show that the selection

behaviour in NRTS is almost identical to that in STS.
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With a closer inspection of the total loss of program

diversity measure, we observed that when large tournament

sizes (such as k [ 13) are used, a higher total program lost

occurs in NRTS on the small-sized population ðN ¼ 40Þ;
whereas no noticeable difference exists on the other sized

populations. A possible explanation is that in NRTS,

according to Eq. 9, the probability that a program has never

been sampled in y ¼ N tournaments for large N=k is

N � k

N

� �N

¼
N
k � 1

N
k

� �N
kk

� e�k: ð15Þ

This equation is approximately the same as that (derived

from Eq. 5) in STS. However, for the smaller sized pop-

ulation when larger tournament sizes are used, this

approximation is not valid. Therefore, the no-replacement

strategy does not help the loss of program diversity,

especially when the size of a population is large.

Similar observations can be obtained by comparing the

other two selection pressure measures. The results show

that if common tournament sizes (such as k ¼ 4 or 7) and

population sizes (such as N [ 100) are used, no significant

difference in selection behaviour has been observed

between STS and NRTS. The next subsection examines the

sampling behaviour to explore the underlying reasons.

Note that overall there were no noticeable differences

between the three loss of program diversity measures on

the three different populations with different FRDs. The

loss of program diversity measure depends almost entirely

on the tournament size, and is almost independent of the

FRD, whilst the other two measures can reflect the changes

in FRDs. The loss of program diversity measure cannot

Fig. 7 Loss of program diversity in NRTS on three populations with different FRDs. Note that tournament size is discrete but the plots show

curves to aid interpretation

tournament size: 2 tournament size: 4 tournament size: 7

Fig. 8 Selection frequency in NRTS on three populations with different FRDs
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capture the effect of different FRDs, implying that it is not

an adequate measure of selection pressure.

5.4 Sampling behaviour analysis

Figure 10 demonstrates the sampling behaviour in NRTS

via the probability trends of a program being sampled using

six tournament sizes in three populations as the number of

tournaments increases up to the corresponding population

size. By comparing Figs. 10 and 3, apart from the case of

population size 40 and tournament size 40, which produces

the 100% sampling probability in NRTS, there are no

noticeable differences between corresponding trends in

the standard and no-replacement tournament selection

schemes. The results are not surprising since both Eqs. 5

and 9 can be approximated by 1� e�k y
N for large N.

5.5 Confidence analysis

To further investigate the similarity or difference between

the sampling behaviour in STS and NRTS, we ask the

following question: for a given population of size N, if we

Fig. 9 Selection probability distribution in NRTS with tournament size 2, 4, and 7 on three populations with different FRDs
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keep sampling individuals with replacement, then what is

the largest number of sampling events at a certain level of

confidence that there will be no duplicates amongst the

sampled individuals? Answering this question requires an

analysis of the relationship between confidence level,

population size, and tournament size. Equation 16 models

the relationship between the three factors, where Nk is the

total number of different sampling results when sampling k

individuals with replacement, N!
ðN�kÞ! is the number of

sampling events such that no duplicate is in the k sampled

individuals, and ð1� aÞ is the confidence coefficient5

N!

NkðN � kÞ! � 1� a: ð16Þ

Figure 11 illustrates the relationship between population

size N, tournament size k, and the confidence level. For

instance, sampling 7 individuals with replacement will not

sample duplicates with 99% confidence when the

population size is about 2000, and with 95% confidence

when the population size is about 400, but with only 90%

confidence when the population size is about 200. We also

calculated that when the population size is 40, the

confidence level is only about 57% for k ¼ 7: These

results explained why we have observed differences only

between STS and NRTS on the very small-sized population

using relatively large tournament sizes.

The results show that for tournament size 4 or less, we

would not expect to see any duplicates except for very small

populations. Even for tournament size 7, we would expect

only to see a small number of duplicates for populations

\200 with 90% confidence. For most common and reason-

able settings of tournament sizes and population sizes, the

multi-sampled event seldom occurs in STS. In addition, since

duplicated individuals do not necessarily influence the result

of a tournament when the duplicates have worse fitness

values than other sampled individuals, the probability of

significant difference between STS and NRTS will be even

smaller. Therefore, eliminating the multi-sampled issue in

STS is unlikely to change the selection performance signif-

icantly. As a result, the multi-sampled issue is generally not

crucial to the selection behaviour in STS.

Given the difficulty of implementing sampling-without-

replacement in a parallel architecture, most researchers

have abandoned sampling-without-replacement, and used

the simpler sampling-with-replacement scheme, hoping

that the multi-sampled issue is not important. The results of

our analysis justified this choice.

6 Analysis of the not-sampled issue via simulations

The not-sampled issue makes some individuals unable to

participate into any tournament, aggravating the loss of

program diversity. However, it is not clear how seriously it
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Fig. 10 Trends of the probability that a program is sampled at least once in NRTS in the selection phase (note that the scales on the x-axes

differ)

Fig. 11 Confidence level, population size, and tournament size. Note

that tournament size is discrete but the plot shows curves to aid

interpretation

5 a is significance level, and 100ð1� aÞ% is the confidence level.
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affects GP search. This section shows that the not-sampled

issue is insignificant.

An obvious way to tackle the not-sampled issue is to

increase the tournament size, since larger tournament sizes

provide a higher probability of an individual being sam-

pled. However, increasing tournament size will increase

the tournament competition level, and the loss of diversity

contributed by not-selected individuals will increase,

resulting in even worse total loss of diversity.

The not-sampled issue will only be completely solved if

every individual in a population is guaranteed to be sam-

pled at least once during the selection phase. However, the

sampling-with-replacement method in STS cannot guar-

antee this no matter how other aspects of selection are

changed. Therefore, a sampling-without-replacement

strategy must be used for this purpose. One option is to use

NRTS. Unfortunately, it still cannot completely solve the

not-sampled issue unless we configure the tournament size

to be the same as the population size. Obviously, applying

NRTS with such a configuration is not useful as it is

effectively equivalent to always selecting the best of a

population.

To investigate whether the not-sampled issue seriously

affects the selection performance in STS, we will first

develop an approach that satisfies the following require-

ments: (1) minimises the number of not-sampled individ-

uals, (2) preserves the same tournament competition level

as in STS, and (3) preserves selection pressure across the

population at a level comparable to STS. We then compare

the approach with STS.

6.1 Solutions to the not-sampled issue

A simple sampling-without-replacement strategy that

solves the not-sampled issue is to only return the losers to

the population at the end of each tournament. We termed

this strategy as loser-replacement. By using this strategy,

the size of the population gradually decreases along the

way to form the next generation. (At the end, the popula-

tion will be smaller than the tournament size but these

tournaments can be run at a reduced size.) The loser-

replacement tournament selection will not have any

selection pressure across the population. It will be very

similar to a random sequential selection where every

individual in the population can be randomly selected as

a parent to mate but just once. The only difference

between the outcomes of the loser-replacement tournament

selection and the random sequential selection is the mating

order. Although the loser-replacement strategy can

ensure zero loss of diversity, it cannot preserve any

selection pressure across population. Therefore, it is not

very useful.

To satisfy all the essential requirements, we propose

another sampling-without-replacement strategy. After

choosing a winner, all sampled individuals are kept in a

temporary pool instead of being immediately returned back

to the population. For this strategy, if the tournament size is

greater than one, after a number of tournaments, the pop-

ulation will be empty. At that point, the population is

refilled from the temporary pool to start a new round of

tournaments. More precisely, for a population S and tour-

naments of size k, the algorithm is

1: Initialise an empty temporary pool T

2: while need to generate more offspring do

3: if sizeðSÞ\k; then

4: Refill: move all individuals from T to S

5: end if

6: Sample k individuals without replacement from the

population S

7: Select the winner from the tournament

8: Move the k sampled individuals into T

9: end while

We term a tournament selection using this strategy as

round-replacement tournament selection (RRTS). The next

subsections analyse this strategy to investigate the impact

of the not-sampled issue.

6.2 Modelling round-replacement tournament selection

Assume N is a multiple of k; then after N=k tournaments,

the population becomes empty. The round-replacement

algorithm needs to refill the population to start another

round of tournaments. There will be k rounds in total in

order to form an entire next generation (recall that this is

because the standard breeding process is assumed, see Sect.

3). It is obvious that any program will be sampled exactly k

times during the selection phase; thus, there is no need to

model the sampling probability. The selection probability

is given in Lemma 2.

Lemma 2 For a particular program p 2 Sj; if Wj is the

event that p wins or is selected in a tournament of size

k, the probability of Wj is:

PðWjÞ ¼

Pk
n¼1

1
n

jSjj � 1

n� 1

� � Pj�1
i¼1 jSij

k � n

� �

N
k

� � ð17Þ

Proof The characteristic of RRTS is that it guarantees p

will be sampled once in just one of the N=k tournaments in

a round. According to this, the effect of a full round of

tournaments is to partition S into N=k disjoint subsets. The

program p is a member of precisely one of these N=k

subsets. Therefore, the probability of it being selected in
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one tournament in a given round is exactly the same as in

any other tournament in the same round. Further, the

probability of it being selected in one round is exactly the

same as in any other rounds since all k rounds of

tournaments are independent. Therefore, we only need to

model the selection probability of p in one tournament of

one round. p could be selected if it is sampled in the

tournament and no better-ranked programs are sampled in

the same tournament; its selection probability will depend

on the number of other programs having the same rank that

are sampled in the same tournament.

Let Ej be the event that p 2 Sj is selected in a round of

tournaments. The total number of ways of constructing a

tournament containing the program p; n� 1 other programs

in the same Sj; and k � n programs in S1; S2; . . .; Sj�1 is6:

Xk

n¼1

jSjj � 1

n� 1

� � Pj�1
i¼1 jSij

k � n

� �
ð18Þ

As each of the n programs from jSjj has an equal

probability to be chosen as the winner, and there are

N � 1

k � 1

� �
ways of constructing a tournament containing

p, the probability of Ej is

PðEjÞ ¼

Pk
n¼1

1
n

jSjj � 1

n� 1

� � Pj�1
i¼1 jSij

k � n

� �

N � 1

k � 1

� � ð19Þ

Since there are N=k tournaments in a round and the

program p has an equal probability to be selected in any

one of the N/k tournaments, the probability of Wj is

PðWjÞ ¼
PðEjÞ
N=k

; ð20Þ

thus, we obtain Eq. 17.

Let Tj,c be the event that p is selected at least once by the

end of cth round. As the selection behaviour in any two

rounds are independent and identical, the probability of Tj;c

is

PðTj;cÞ ¼ 1� ðPðEjÞÞc: ð21Þ

This equation together with Eq. 17 will be used to calculate

the selection probability distribution measure for RRTS.

6.3 Selection behaviour analysis

The loss of program diversity, the selection frequency, and

the selection probability distribution for RRTS are illus-

trated in Figs. 12, 13, and 14, respectively.

In Fig. 12, there is only one trend in each chart. This

is because individuals are guaranteed to be sampled

(precisely sampled once in a round and k times in total),

there is no trend of not-sampled individuals. As a result,

the total loss of diversity measure and the contribution

from not-selected individuals are identical, making the

two trends overlapped. Therefore, RRTS minimises the

loss of program diversity contributed by not-sampled

individuals while maintaining the same tournament

competition level as that in STS. Again, there are no

noticeable differences between the loss of program

diversity measures on different sized populations with

different FRDs.

In addition, comparing Figs. 12 with 4, we can find that

the total loss of program diversity with RRTS is signifi-

cantly smaller than with the standard one for small tour-

nament sizes (k \ 4) in all populations, but slightly larger

Fig. 12 Loss of program diversity in RRTS on three populations with different FRDs. Note that tournament size is discrete but the plots show

curves to aid interpretation

6 Assuming a
b

� �
¼ 0 if b [ a.
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for large tournament sizes (k [ 13) in the small-sized

population (N = 40).

From Fig. 13, the trends of the selection frequency

across each population are still very similar to the corre-

sponding ones in STS (Fig. 5). When a large tournament

size (such as k = 7) is used, a slightly higher selection

frequency is observable in RRTS on the small-sized pop-

ulation (N = 40), whereas no noticeable difference exists

on the other sized populations. Surprisingly, we find that

Fig. 13 seems to be identical to Fig. 8 in NRTS. In fact,

Eqs. 12 and 17 are mathematically equivalent. The proof

can be found in Appendix.

While the selection frequency is the same in NRTS and

RRTS, the selection probability distribution measure

reveals the differences. Figure 14 shows that RRTS has

some different behaviour from STS (Fig. 6) and also from

NRTS (Fig. 9), especially when the tournament size is 2.

The differences are related to the top-ranked individuals,

whose selection probabilities reach 100% very quickly in

the first round.

From the simulation results, although every program can

be sampled in RRTS, not all of these ‘‘extra’’ sampled

programs can win tournaments. In addition, the number of

extra programs which won the tournaments do not neces-

sarily contribute to evolution. Therefore, the overall con-

tribution to the GP performance from these extra sampled

programs may be limited, and we will further investigate

this via empirical experiments in Sect. 8.

Recall that the selection frequencies are identical

between NRTS and RRTS, but the corresponding selection

probability distributions are different. This shows that

selection frequency is not always adequate for distin-

guishing selection behaviour in different selection

schemes.

7 Discussion of awareness of evolution dynamics

As mentioned in Sect. 1, the evolutionary learning process

is dynamic and requires different parent selection pressure

at different learning stages. STS is not aware of the

dynamic requirements. This section discusses whether the

no-replacement and the round-replacement tournament

selections are aware of the evolution dynamics and are able

to tune parent selection pressure dynamically based on the

simulation results of the selection frequency measure (see

Figs. 8 and 13) and the selection probability distribution

measure (see Figs. 9 and 14).

Overall, for the uniform FRD, NRTS, and RRTS favour

better-ranked individuals for all tournament sizes as

expected. For the reversed quadratic and the quadratic

FRDs, the selection bias is even more significant.

In particular, for the reversed quadratic FRD, there are

more individuals of worse-ranked fitness that received

selection preference. The GP search will still wander

around without paying sufficient attention to the small

number of outstanding individuals. Ideally, a good selec-

tion schema should focus on the small number of good

individuals to speed up evolution.

For the quadratic FRD, the selection frequencies are

strongly biased towards individuals with better ranks. The

population diversity will be quickly lost, the convergence

may speed up, and the GP search may be confined in local

optima. Ideally, a good selection scheme should slow down

the convergence.

Unfortunately, neither NRTS nor RRTS can change

parent selection pressure to meet the expectations. They are

the same as STS, being unable to know the dynamic

requests, and thus fail to tune parent selection pressure

dynamically.

tournament size: 2 tournament size: 4 tournament size: 7

Fig. 13 Selection frequency in RRTS on three populations with different FRDs
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8 Analyses via experiments

To further verify the findings in the mathematical model-

ling analysis, this section analyses and compares the effect

of STS, NRTS, and RRTS via experiments.

8.1 Data sets

We chose three typical problems of varying difficulty in

different domains commonly used in GP in the experi-

ments: an Even-n-Parity problem (EvePar), a Symbolic

Regression problem (SymReg), and a Binary Classification

problem (BinCla).

8.1.1 EvePar

An even-n-parity problem has an input of a string of n

Boolean values. It outputs true if there are an even number

of true’s, and otherwise false. The most characteristic

aspect of this problem is the requirement to use all inputs in

an optimal solution and a random solution could lead to a

score of 50% accuracy (Gustafson 2004). Furthermore,

Fig. 14 Selection probability distribution in RRTS with tournament size 2, 4, and 7 on three different FRDs
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optimal solutions could be dense in the search space as an

optimal solution generally does not require a specific order

of the n inputs presented. EvePar considers the case of

n = 6. Therefore, there are 26 combinations of unique 6-bit

length strings as fitness cases.

8.1.2 SymReg

SymReg is shown in Eq. 22 and visualised in Fig. 15. We

generated 100 fitness cases by choosing 100 values for x

from ½�5; 5� with equal steps.

f ðxÞ ¼ expð1� xÞ � sinð2pxÞ þ 50sinðxÞ ð22Þ

8.1.3 BinCla

BinCla involves determining whether examples represent a

malignant or a benign breast cancer. The dataset is the

Wisconsin Diagnostic Breast Cancer dataset chosen from

the UCI Machine Learning repository (Newman et al.

1998). BinCla consists of 569 data examples, where 357 are

benign and 212 are malignant. It has 10 numeric measures

(see Table 1) computed from a digitised image of a fine

needle aspirate of a breast mass and are designed to describe

characteristics of the cell nuclei present in the image. The

mean, standard error, and ‘‘worst’’ of these measures are

computed, resulting in 30 features (Newman et al. 1998).

The whole original data set is split randomly and equally

into a training data set, a validation data set, and a test data

set with class labellings being evenly distributed across the

three data sets for each individual GP run.

8.2 Terminal sets, function sets, and fitness functions

The terminal set for EvePar consists of six Boolean variables.

The terminal set for SymReg and BinCla includes a single

variable x and 30 terminals, respectively. Real-valued con-

stants in the range ½�5:0; 5:0� are also included in the ter-

minal sets for SymReg and BinCla. The function sets and the

fitness functions of the three problems are shown in Table 2.

8.3 Genetic parameters and configuration

The genetic parameters are the same for all three problems.

The ramped half-and-half method is used to create new

programs and the maximum depth of creation is four. To

prevent code bloat, the maximum size of a program is set to

50 nodes based on some initial experimental results. The

standard subtree crossover and mutation operators are used

(Koza 1992). The crossover rate, the mutation rate, and the

copy rate are 85, 10, and 5%, respectively. The best pro-

gram in the current generation is explicitly copied into the

next generation, ensuring that the population does not lose

its previous best solution. A run is terminated when the

number of generations reaches the pre-defined maximum

of 101 (including the initial generation), or the problem has

been solved (there is a program with a fitness of zero on the

training data set), or the error rate on the validation set

starts increasing (for BinCla). Three tournament sizes 2, 4,

and 7 are used. Consequently, the population size is set to

504 in order to have zero remainder at the end of a round of

tournaments in RRTS.

We ran experiments comparing three GP systems using

STS, NRTS, and RRTS, respectively, for each of the three

problems. In each experiment, we repeated the whole evo-

lutionary process 500 times independently. In each of the 500

runs, an initial population is generated randomly and is

provided to all GP systems in order to reduce the perfor-

mance variance caused by different initial populations.
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−100
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x

f(
x)

Fig. 15 The symbolic regression problem

Table 1 Ten features in the dataset of BinCla

a Radius f Compactness

b Texture g Concavity

c Perimeter h Concave points

d Area i Symmetry

e Smoothness j Fractal

dimension

Table 2 Function sets and fitness functions

Unary Binary Ternary Fitness

function

EvePar and, or, not if Misses

SymReg Abs, sin, exp ?, -, *, / RMS error

BinCla Abs, sin, sqrt ?, -, *, / if Classification

error rate
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8.4 Experimental results and analysis

Table 3 compares the performances of the three GP sys-

tems. The measure for EvePar is the failure rate, measuring

the fraction of runs that were not able to return the ideal

solution. The best value is zero per cent, meaning that

every run is successful. The measures for SymReg and

BinCla are the averages of the RMS error and the classi-

fication error rate on test data over 500 runs, respectively;

thus, the smaller the value, the better the performance.

Note that the standard deviation is shown after the ±sign.

The results demonstrate that the GP system using NRTS

has the almost identical performance as the GP system using

STS. The results confirm that for most common and rea-

sonable tournament sizes and population sizes, the multi-

sampled issue seldom occurs and is not critical in GP.

However, the results show that the GP system using

RRTS has some advantages over the GP system using STS.

In order to provide statistically sound comparison results,

we calculated the confidence intervals at the 95% level

(two-sided) for the differences in failure rates, in RMS

errors, and in error rates for EvePar, SymReg, and BinCla,

respectively (see Table 4). For EvePar, we used the formula

P̂1 � P̂2 � Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂1ð1� P̂1Þ=500þ P̂2ð1� P̂2Þ=500

q
ð23Þ

where P̂1 is the failure rate using RRTS, P̂2 is the failure

rate using STS, and Z is 1.96 for 95% confidence (Box

et al. 2005). For SymReg and BinCla, we first calculated

the difference of the measures between a pair of runs using

the same initial population for each of the 500 pairs of runs

and then used the formula

�x� Z
sffiffiffiffiffiffiffiffi
500
p ð24Þ

to calculate the confidence interval, where �x is the average

difference over 500 values and s is the standard deviation

(Box et al. 2005). If zero is not included in the confidence

interval, then the difference is statistically significant (Box

et al. 2005).

From the table, for tournament size 2 and for SymReg

and BinCla problems, the improvement of RRTS is sta-

tistically significant. However, practically the differences

are small (see Table 3). For tournament sizes 4 and 7, there

are no statistically significant differences between RRTS

and STS as only 1.8 and 0.09% of the population are not-

sampled, respectively, in STS (Poli and Langdon 2006).

We also compared the best performance of RRTS with

the best performance of STS for SymReg and BinCla for

different tournament sizes; the differences were not sta-

tistically significant either. The results confirm that these

extra sampled programs have limited contribution to the

overall search performance.

Sokolov and Whitley’s (2005) findings suggested that

performance could be improved by addressing the not-

sampled issue in a genetic algorithm using a tournament

size of 2. Our experiments confirmed this in GP for some

data sets and showed that the improvement was statistically

significant, though not large. However, Sokolov and

Whitley considered only tournament size 2. Our experi-

ments included larger tournament sizes and showed that

there was no statistically significant improvement for the

larger tournament sizes in GP. Furthermore, the perfor-

mance of larger tournament sizes with STS was as good as

or better than the performance of tournament size 2 with

RRTS. Therefore, there is little advantage in addressing the

not-sampled issue in practice.

The results show that although the not-sampled issue

can be solved, overall the different selection behaviour

provided by RRTS alone appears to be unable to signifi-

cantly improve a GP system for the given tasks for com-

mon settings. The not-sampled issue does not seriously

affect the selection performance in STS.

9 Conclusions

This paper clarified the impacts of the multi-sampled and the

not-sampled issues in STS. It used the loss of program

diversity, the selection frequency, and the selection proba-

bility distribution on three populations with different FRDs to

simulate parent selection behaviours in the no-replacement

and the round-replacement tournament selections, which are

Table 3 Performance comparison between STS, NRTS, and RRTS

Tournament selection EvePar SymReg BinCla

Scheme Size Failure (%) RMS error Test error (%)

STS 2 100 48.2 ± 5.2 9.2 ± 2.9

4 80.6 37.6 ± 8.3 8.7 ± 2.7

7 82.4 40.9 ± 11.3 8.7 ± 2.7

NRTS 2 100 48.3 ± 5.2 9.2 ± 2.9

4 80.6 37.6 ± 8.4 8.7 ± 2.7

7 82.5 41.1 ± 11.2 8.7 ± 2.6

RRTS 2 99.6 47.4 ± 5.3 8.4 ± 2.7

4 79.4 38.3 ± 8.0 8.6 ± 2.6

7 77.6 40.6 ± 11.4 8.8 ± 2.7

Table 4 Confidence intervals for differences in performance

between RRTS and STS at 95% level

Tournament size EvePar SymReg BinCla

2 (-0.95, 0.15) (21.48, 20.24) (21.05, 20.43)

4 (-6.16, 3.76) (-0.22, 1.57) (-0.32, 0.24)

7 (-9.75, 0.15) (-1.47, 0.85) (-0.25, 0.32)
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the solutions to the multi-sampled and the not-sampled issues,

respectively. Furthermore, it provided experimental analyses

of the no-replacement and the round-replacement tournament

selections in three problem domains with different difficulties.

The simulations and experimental analyses provided insight

into the parent selection in tournament selection and the out-

comes are as follows:

The multi-sampled issue seldom occurs in STS when

common and realistic tournament sizes and population sizes

are used. Therefore, although the sampling-without-repla-

cement strategy in no-replacement tournament selection can

solve the multi-sampled issue, there is no significantly

different selection behaviour between the no-replacement

and the STS schemes. The simulation and experimental

results justify the common use of the simple sampling-with-

replacement scheme.

The not-sampled issue mainly occurs when small tour-

nament sizes are used in STS. Our round-replacement

tournament selection using an alternative sampling-with-

out-replacement strategy can solve the issue without

altering other aspects in STS. The different selection

behaviour in the round-replacement tournament selection

compared with the standard one leads to better results only

when tournament size 2 is used for some problems (those

that need low parent selection pressure in order to find

acceptable solutions). However, there is no significant

performance improvement for relatively large and common

tournament sizes such as 4 and 7. The performance using

these tournament sizes with STS was similar to that using a

tournament size of 2 with the round-replacement tourna-

ment selection. Solving the not-sampled issue does not

appear to significantly improve a GP system: the not-

sampled issue in STS is not critical.

Overall, different sampling replacement strategies have

little impact on the parent selection pressure. Eliminating

the multi-sampled issue and the not-sampled issues does

not significantly change the selection behaviour over STS

and cannot tune the selection pressure in dynamic evolu-

tion. In order to conduct effective parent selection in GP,

further research should be emphasised on tuning parent

selection pressure dynamically along evolution instead of

developing alternative sampling replacement strategies.

Although this study is conducted in GP, the results are

expected to be applicable to other EAs as we did not put

any constraints on the representations of the individuals in

the population. However, further investigation needs to be

carried out.

Appendix: Proof of Eqs. 12 and 17 being equivalent

Equation 17 can be simplified to:
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Pk
n¼1

1
n

ðjSjj�1Þ!
ðn�1Þ!ðjSjj�1�nþ1Þ!

Pj�1
i¼1 jSij

k � n

 !

N

k

� �

¼

Pk
n¼1

ðjSjj�1Þ!
n!ðjSjj�nÞ!

Pj�1
i¼1 jSij

k � n

 !

N

k

� �

¼

Pk
n¼1

1
jSjj

jSjj!
n!ðjSjj�nÞ!

Pj�1
i¼1 jSij

k � n

 !

N

k

� �

¼

Pk
n¼1

jSjj
n

� � Pj�1
i¼1 jSij

k � n

 !

N

k

� �
jSjj

After applying the relation
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(Abramowitz and Stegun 1965), we can further

simply the equation to

¼
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which is the same as Eq. 12.
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