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Abstract This paper proposes a framework named multi-

objective ant colony optimization based on decomposition

(MoACO/D) to solve bi-objective traveling salesman

problems (bTSPs). In the framework, a bTSP is first

decomposed into a number of scalar optimization sub-

problems using Tchebycheff approach. To suit for

decomposition, an ant colony is divided into many sub-

colonies in an overlapped manner, each of which is for one

subproblem. Then each subcolony independently optimizes

its corresponding subproblem using single-objective ant

colony optimization algorithm and all subcolonies simul-

taneously work. During the iteration, each subproblem

maintains an aggregated pheromone trail and an aggregated

heuristic matrix. Each subcolony uses the information to

solve its corresponding subproblem. After an iteration, a

pheromone trail share procedure is evoked to realize the

information share of those subproblems solved by common

ants. Three MoACO algorithms designed by, respectively,

combining MoACO/D with AS, MMAS and ACS are

presented. Extensive experiments conducted on ten bTSPs

with various complexities manifest that MoACO/D is both

efficient and effective for solving bTSPs and the ACS

version of MoACO/D outperforms three well-known Mo-

ACO algorithms on large bTSPs according to several

performance measures and median attainment surfaces.

Keywords Decomposition � Multi-objective �
Ant colony optimization � Bi-objective traveling

salesman problems

1 Introduction

In real-world applications, there are lots of multi-objective

combinatorial optimization problems, where several con-

flicting objectives have to be optimized simultaneously and

the goal is to find a set of solutions with good trade-offs

among different objectives, usually called Pareto solutions

(Miettinen 1999). Inspired by the foraging behavior of real

ants, Dorigo proposed a novel metaheuristic algorithm, ant

colony optimization (ACO), to solve classical traveling

salesman problems (TSPs) (Dorigo et al. 1996; Dorigo and

Stützle 2004). Subsequently various versions of ACO were

designed, such as ant colony system (ACS) (Dorigo and

Gambardella 1997), Max–Min ant system (MMAS) (Stüt-

zle and Hoos 2000) and rank-based ant system (ASrank)

(Bullnheimer et al. 1999). As an excellent technique for

solving single-objective combinatorial optimization prob-

lems, ACO is also suitable for multi-objective combina-

torial optimization problems, as it is a colony-based

optimization approach which can obtain a certain number

of Pareto solutions in a single run (Garcı́a-Martı́nez et al.

2007; Angus and Woodward 2009).

In the past two decades, various versions of multi-

objective ACO (MoACO) were presented (Mariano and

Morales 1999; Iredi et al. 2001; T’kindt et al. 2002; Barán

and Schaerer 2003; Doerner et al. 2006; López-Ibáñez and

Stützle 2010a; Cardoso et al. 2011). In Garcı́a-Martı́nez

et al. (2007), a taxonomy of MoACO was discussed in

terms of the number of pheromone trails and heuristic

matrices. Also a comparative analysis was made using
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experiments carried out on bi-objective traveling salesman

problems (bTSPs) and some guidelines on how to devise

MoACO algorithm were given. Angus and Woodward

(2009) summarized existing MoACO algorithms and pro-

vided a classification method, which is an extension of the

ACO framework in Gambardella et al. (1999). In what

follows, we group various MoACO algorithms into two

main classes. In the first class, several objectives were dealt

with in a lexicographic ordering manner, such as in MOAQ

(Mariano and Morales 1999) and SACO (T’kindt et al.

2002). This class requires the prior knowledge of problems,

which could hardly be obtained in real-world applications.

The second class of MoACO simultaneously handles sev-

eral objectives by the use of multiple pheromone trails

(Iredi et al. 2001), multiple heuristic matrices (Barán and

Schaerer 2003) or a problem-specific pheromone update

scheme (Doerner et al. 2006). When designing multi-

objective algorithms, two dilemmas are encountered, i.e.,

(1) a good balance among conflicting objectives is difficult

to maintain in the process of iteration, which results in an

uneven Pareto front; and (2) it is difficult to approach the

Pareto optimal front. These predicaments can be narrowed

to the problem of how to appropriately configure the

algorithm. Recently, López-Ibáñez and Stützle (2010a)

proposed a software framework, which allowed to instan-

tiate the most prominent MoACO algorithms, and the

authors also applied automatic algorithm configuration

techniques to MoACO algorithm.

It is well known that a Pareto solution to a multi-

objective optimization problem (MOP) could be an optimal

solution of a scalar optimization problem whose objective

is an aggregation of all objectives in the MOP (Miettinen

1999). To obtain a set of Pareto solutions, a MOP can be

decomposed into a number of scalar optimization sub-

problems and thus single-objective problem solvers can be

used without many modifications. In Zhang and Li (2007)

and Peng et al. (2009), the idea was introduced into a

multi-objective genetic algorithm and better results than

NSGA-II (Deb et al. 2002) and MOGLS (Ishibuchi and

Murata 1998; Jaszkiewicz 2002) were obtained by testing

multi-objective 0–1 knapsack problems, multi-objective

continuous optimization problems and/or bTSPs. To the

best of our knowledge, no investigation focuses on using

the decomposition idea to enhance the MoACO

performance.

In this paper, a framework named multi-objective ant

colony optimization based on decomposition (MoACO/D)

is proposed to solve bTSPs. To use the decomposition idea

to specify MoACO, a bTSP is first decomposed into a

number of scalar optimization subproblems, each of which

maintains an aggregated pheromone trail and an aggregated

heuristic matrix. In order to adapt the decomposition, an

ant colony is divided into subcolonies in an overlapped

way, each of which is for one subproblem. During the

iteration, each subcolony uses the aggregated pheromone

trail and the aggregated heuristic matrix to solve its cor-

responding subproblem. After an iteration, a pheromone

trail share procedure is evoked to realize the information

share of those subproblems solved by common ants. It is

worth noting that each subcolony independently optimizes

its corresponding subproblem using single-objective ACO

algorithm and all subcolonies simultaneously work in a

single iteration. Based on the framework, three MoACO

algorithms designed by, respectively, combining MoACO/

D with AS, MMAS and ACS are presented. In the exper-

iments, two important parameters in every MoACO/D

variation are discussed in an empirical way. A large

number of experiments are conducted on ten bTSPs with

various complexities and experimental results show that

MoACO/D is efficient and effective for solving bTSPs and

the ACS version of MoACO/D obtains the best perfor-

mance in eight out of ten bTSPs in terms of several mea-

sures and median attainment surfaces.

2 Problem statement

As an extension of a traditional TSP, a bTSP is to seek for

paths simultaneously satisfying two conflicting objectives.

As usual, a bTSP can be modeled as an undirectedly

weighted graph G(L, A), where L is a set of vertices and

A is a set of undirected arcs linking each pair of vertices.

Thus a solution p to a bTSP is a permutation of L vertices.

A bTSP can be formulated as

min f1ðpÞ ¼
PL�1

i¼1 c1
pðiÞpðiþ1Þ þ c1

pðLÞpð1Þ
min f2ðpÞ ¼

PL�1
i¼1 c2

pðiÞpðiþ1Þ þ c2
pðLÞpð1Þ;

(

ð1Þ

where f1(p) and f2(p) are two objective functions;

cp (i)p (j)
m is the cost value of the arc (i, j) connecting the

vertices i and j in the mth objective, m ¼ 1; 2; i; j 2
f1; 2; . . .; Lg and i = j. The cost could be related to dis-

tance, time, money or energy.

In the theory of computational complexity, a bTSP

belongs to the class of NP-complete problem. Lots of

engineering problems, such as multi-objective network

structure design problems, multi-objective machine

scheduling problems and multi-objective vehicle routing

problems, can be formulated as bTSPs. Consequently, a

bTSP is frequently employed as a benchmark problem to

evaluate the performance of multi-objective optimization

algorithms (Garcı́a-Martı́nez et al. 2007; Peng et al. 2009;

López-Ibáñez and Stützle 2010b; Jaszkiewicz and Zie-

lniewicz 2009).
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3 MoACO/D

This section starts from the decomposition approach and then

turns to the detailed description of MoACO/D framework.

Finally, the characteristics of MoACO/D and a contrast with

existing approaches are presented. For the convenience of

discussion, a bTSP is taken as an example in this section.

3.1 Decomposition

This section discusses the decomposition method, the

Tchebycheff approach, which will be used in MoACO/D to

convert a bTSP into a number of scalar optimization sub-

problems. The Tchebycheff approach can be described as

follows (Miettinen 1999): Let fk1; k2; . . .; kNg and z� ¼
ðz�1; z�2Þ denote a set of uniform spread weighted vectors and

a reference point, respectively, where z�i ¼ minffiðpÞjp 2
Xg; i ¼ 1; 2; then a bTSP can be decomposed into N scalar

optimization subproblems and MoACO/D minimizes all

these N subproblems simultaneously in a single run. The

objective function of the kth subproblem is depicted as

min gkðpjkk; z�Þ ¼ max
1�m� 2

fkk
mjfmðpÞ � z�mjg; ð2Þ

where kk ¼ ðkk
1; k

k
2Þ is the weight vector of the kth sub-

problem, k ¼ 1; 2; . . .;N; p is a feasible solution of a bTSP.

If p� is a Pareto solution of a bTSP, there exists a weight

vector k such that p� is the optimal solution of (2). On the

other hand, given a weight vector k; the optimal solution of

(2) is a Pareto solution of the bTSP. Thus with a set of

evenly spread weight vectors and a good solver for (2), we

can obtain Pareto solutions having good approximations

and distributions.

3.2 MoACO/D

Given N evenly spread weight vectors, MoACO/D first

decomposes a bTSP into N scalar optimization subprob-

lems, and an ant colony with N ants is divided into N

subcolonies according to the distance between vectors.

Meanwhile, each subproblem maintains an aggregated

pheromone trail and an aggregated heuristic matrix, which

are initialized before the process of iteration and never

aggregated again during the run. MoACO/D also uses an

external unbounded archive to store non-dominated solu-

tions. During the iteration, each subcolony independently

and simultaneously optimizes its subproblem using corre-

sponding pheromone trail and heuristic matrix. After an

iteration, a pheromone trail share procedure is evoked to

implement the information share of those subproblems

solved by common ants, and solutions stored in the archive

are updated. The pseudocode for MoACO/D is shown in

Fig. 1, where each step is described as follows:

(1) This step consists of three processes: the decompo-

sition of a bTSP, the division of an ant colony and the

initialization of aggregated pheromone trails and

aggregated heuristic matrices. Their detailed descrip-

tions are as follows:

(a) Decompose bTSP This process uses the weight

vectors to transform an original bTSP into a

number of scalar subproblems problems and N

aggregated distance matrices are generated, one

for every subproblem. MoACO/D tackles the

bTSP by solving these subproblems during the

run. Given N evenly spread weight vectors

fk1; k2; . . .; kNg; kk ¼ ðkk
1; k

k
2Þ; satisfying k1

k,

k2
k C 0 and kk

1 þ kk
2 ¼ 1; k ¼ 1; . . .;N; a bTSP

is converted into N scalar optimization subprob-

lems using Tchebycheff approach. The objective

function of each subproblem is formulated in

(2). However, as usual, the process of finding the

exact reference point z� in (2) is very time

consuming; hence, we use z for substitution at

the initial step, i.e., z ¼ ½f1ðpÞ; f2ðpÞ�; t ¼ 1;

where [f1(p), f2(p)] is the objective vector pro-

duced by a random solution p. Then along with

the algorithm running, z will be updated.

(b) Divide ant colony To adapt the decomposition, a

colony with N ants is divided into N subcolonies

in an overlapped manner, which is similar to the

proposal of Iredi et al. (2001). To be specific, the

kth subcolony for the kth subproblem is denoted

as SðkÞ; SðkÞ ¼ fi1; i2; . . .; iTg and 1 \ T \ N,

where i1; i2; . . .; iT are the indexes of the closest

T weight vectors to kk: Here, the Euclidean

Fig. 1 The pseudocode for MoACO/D
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distance is used to measure the closeness between

any two weight vectors; thus, the closest weight

vector to kk is itself, i.e., i1 = k. Then apply

AðhÞ;AðhÞ ¼ [
k¼1;2;...;N

fkjh 2 SðkÞg; to represent

a set of the indexes of the subproblems solved by

the hth ant. The allocation leads to that ants

belong to multiple subcolonies at the same time.

Hence, each ant will solve at least one subproblem

and construct more than one solution per itera-

tion, that is, jAðhÞj � 1: Besides, a relationship

among subproblems is built by the use of

A(h), which will help to implement information

share among subproblems during the run, as

stated in the next step.

To clearly illustrate the division procedure, Fig. 2

shows an example with ten ants and five weight

vectors in the neighborhood of each weight

vector, i.e., N = 10 and T = 5. Therefore, in

every iteration 50 solutions are constructed. In

this figure, the ten ants are labeled as

1, 2, …, 10, denoted by heavy points, and the

ten straight lines represent ten subproblems. The

distances between each pair of adjacent ants are

2, 2, 3, 1, 1, 2, 2, 1, 3, respectively. A straight

line under several ants implies the subproblems

solved by these ants. In this division, Sð1Þ ¼
Sð2Þ ¼ Sð3Þ ¼ f1;2;3;4;5g;Sð4Þ ¼ Sð5Þ ¼ f3;4;
5;6;7g;Sð6Þ¼ f4;5;6;7;8g;Sð7Þ¼ f5;6;7;8;9g;
Sð8Þ¼Sð9Þ¼Sð10Þ¼f6;7;8;9;10g;Að1Þ¼Að2Þ
¼ f1;2;3g;Að3Þ ¼ f1;2;3;4;5g;Að4Þ ¼ f1;2;3;
4;5;6g;Að5Þ ¼ f1;2;3;4;5;6;7g;Að6Þ ¼ Að7Þ ¼
f4;5;6;7;8;9;10g;Að8Þ ¼ f6;7;8;9;10g;Að9Þ ¼
f7;8;9;10g;Að10Þ ¼ f8;9;10g:

(c) Initialize pheromone trails and heuristic matri-

ces In MoACO/D, each subproblem maintains

an aggregated pheromone trail and an aggre-

gated heuristic matrix, which are initialized

using weight vector k before iteration and will

never be aggregated again during the run. For

the kth subproblem, the pheromone trail Tk ¼
½sk

ij�L�L is initialized as

sk
ij ¼ sk

0; ð3Þ

where s0
k is the initial pheromone trail whose

value depends on the single-objective ACO

optimizer used in MoACO/D. The heuristic

matrix Ik ¼ ½gk
ij�L�L is calculated by weighted

cost values as

gk
ij ¼ 1

X2

m¼1

kk
mcm

ij ;

,

ð4Þ

where cij
m is the cost value connecting the verti-

ces i and j for the mth objective.

(2) Five processes are involved in this step: tour

construction, pheromone trails update, reference point

update, pheromone trail share and external archive

update. Each process is further described as follows:

(a) Construct tours For every subcolony, each ant

employs an ACO optimizer to construct a tour

for corresponding subproblem using aggregated

pheromone trail and heuristic matrix.

(b) Update pheromone trails After all ants have

constructed their tours for corresponding sub-

problems, the pheromone trails are updated.

This step depends on the ACO optimizer used in

MoACO/D.

(c) Update reference point After all ants in S(k)

finish their construction of tours, each compo-

nent zm in reference point z is updated with the

minimum of the objective value in ffmðphÞjh 2
SðkÞg; m ¼ 1; 2; that is

zm ¼ min
h2SðkÞ

ffmðphÞg: ð5Þ

Through update, the reference point z will

approach the point z�: Therefore, according to

the idea of Tchebycheff decomposition, the

solution of (2) will more likely be a Pareto

solution of (1).

(d) Share pheromone trails Pheromone trail share is

realized by the use of best ant bk and the indexes

set A(bk). First, the best ant bk in S(k) is the one

that has a tour with the minimal fitness, i.e.,

bk ¼ arg min
h2SðkÞ

fgkðphjkk; zÞg: ð6Þ

Then the tour pbk traveled by the ant bk is applied

to update the pheromone trails Tp1 ;Tp2 ; . . .;

TpjAðbk Þj of all the subproblems p1; p2; . . .; pjAðbkÞj
ðpr 2 AðbkÞ; r ¼ 1; 2; . . .; jAðbkÞjÞ solved by the

ant bk. To be specific, for the subproblem pr; pr 2
AðbkÞ; the pheromone levels spr

ij of all the arcs (i, j)

belonging to the tour pbk is updated by

Fig. 2 An example for the division of an ant colony
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spr

ij ¼ spr

ij þ Dspr ; ð7Þ

where Dspr is the pheromone quantity deposited

on the tour pbk for the subproblem pr and is

calculated by

Dspr ¼ 1
X2

m¼1

kpr
m fmðpbkÞ:

,

ð8Þ

The solution pbk is used to update the pheromone

trails of more than one colony per iteration, i.e.,

the pheromone trails Tpr of the subproblem

pr; pr 2 AðbkÞ; r ¼ 1; 2; . . .; jAðbkÞj: The aim is

to implement information share among sub-

problems solved by common ants, which will

guide the search directions of the ants for other

subproblems in the subsequent iterations.

(e) Update archive An external unbounded archive

is used to collect Pareto solutions found during

the run. To be specific, for the hth objective

vector FðphÞ; h 2 SðkÞ; all the objective vectors

dominated by F(ph) are removed from the

archive, and if no objective vector in the archive

dominates F(ph), F(ph) is added into the archive.

When the algorithm stops, we obtain the final

approximate Pareto solutions in the archive.

MoACO/D introduces the division strategy of an ant

colony to specify the decomposition approach of a bTSP

and uses a single-objective ACO optimizer to solve each

subproblem. Thus, we can obtain a good Pareto front with a

good approximation and an even distribution.

3.3 Characteristics

MoACO/D possesses some characteristics, i.e., (1) weights

are assigned to subproblems rather than ants; (2) an ant

belongs to multiple subcolonies at the same time and hence

constructs more than one solution per iteration; and (3) the

same solution pbk is further used for updating the phero-

mone trails of more than one subproblems to implement

information share among subproblems. In the light of the

taxonomy proposed by López-Ibáñez and Stützle (2010),

MoACO/D belongs to the category that uses one phero-

mone trail and one heuristic matrix per colony, weighted

sum aggregation and many weight vectors.

The first distinction between MoACO/D and the existing

approaches is the way that handles multiple objectives

during the run. In MoACO/D, the original MOP is trans-

formed into a number of scalar optimization problems,

whereas most existing approaches use a lexicographic

ordering or cooperative search manner and the non-domi-

nated sorting to handle the multiple objectives.

The other distinction is the pheromone trail update,

including two aspects: which solution is utilized to update

the pheromone trails and which pheromone trails are

updated. Except for the general pheromone trails update as

in single-objective ACO algorithms, MoACO/D employs a

pheromone trail share procedure, which is also an phero-

mone trail update procedure. In MoACO/D, for each sub-

problem the optimal solution searched by an ant is used to

update the pheromone trails of all the subproblems solved

by the ant, which implements the information share among

the subproblems, and hence guides the search direction in

subsequent iterations, whereas in Iredi et al. (2001), two

methods called update by origin and update by region are

used. The former relates to that an ant only updates the

pheromone trails in its own colony, and the latter is that

after splitting the non-dominated front found so far into

many parts with equal size, the ants found solutions in the

ith part only update the pheromone trail of subcolony i. In

López-Ibáñez et al. (2004), another pheromone update

strategy is introduced. The non-dominated solutions are first

distributed among colonies and then only the best solutions

with respect to each objective are allowed to deposit pher-

omone in the respective pheromone trail of each colony.

4 MoACO/D variants

In this section, we present three MoACO algorithms by

respectively combining MoACO/D with ant systems (AS)

(Dorigo et al. 1996), Max–Min ant system (MMAS)

(Stützle and Hoos 2000) and ant colony system (ACS)

(Dorigo and Gambardella 1997). The three procedures in

MoACO/D, pheromone trail initialization, tour construc-

tion and pheromone update, are specified. For simplicity,

we name the three algorithms as MoACO/D-AS, MoACO/

D-MMAS and MoACO/D-ACS, respectively.

4.1 MoACO/D-AS

AS is the first ACO algorithm developed by Dorigo et al.

(1996). In AS, a good choice is to set the initial pheromone

trails to N/C, where N is the number of ants and C is the

length of a feasible tour. To make AS suitable for MoACO/

D, for the kth subproblem the initial pheromone trail s0
k in

(3) is assigned as

sk
0 ¼ T

X2

m¼1

kk
mfmðpÞ;

,

ð9Þ

where p is a feasible tour of bTSP. Then for kth

subproblem, each ant h; h 2 SðkÞ; chooses a random

vertex as its starting point, and it passes through the rest

L - 1 vertices to form a whole tour. At each pace, the ant
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chooses the next unvisited vertex j when it stays at the

vertex i following the probability

pðjÞ ¼
½sk

ij�
a½gk

ij�
b

P
l2XðjÞ½s

k
il
�a½gk

il
�b ; if j 2 XðiÞ

0; otherwise;

8
<

:
ð10Þ

where a and b are two parameters which determine the

relative influence of the pheromone trail and the heuristic

information, and XðiÞ is the set of vertices that the ant h has

not visited yet. After all the ants have constructed their

tours, the pheromone trail associated with every edge is

evaporated by reducing all pheromones by a constant scale

as

sk
ij ¼ ð1� qÞsk

ij; ð11Þ

where q 2 ð0; 1� is the evaporation rate. Subsequently, all

ants in S(k) deposit pheromone on the arcs they have

crossed in their tour as

sk
ij ¼ sk

ij þ
X

h2SðkÞ
Dsh

ij; ð12Þ

where Dsh
ij is the amount of pheromone that the ant h

deposits on the arc (i, j), calculated as

Dsh
ij ¼

1=
P2

m¼1 kk
mfmðphÞ; if arc ði; jÞ 2 ph

0; otherwise.

�

ð13Þ

4.2 MoACO/D-MMAS

As compared with AS, MMAS introduces several modifi-

cations: pheromone trail limits, pheromone initialization

and pheromone update. In MMAS, the recommended

pheromone trail limits are smin ¼ smaxð1�
ffiffiffiffiffiffiffiffiffi
0:05L
p

Þ=
ððL=2� 1Þ

ffiffiffiffiffiffiffiffiffi
0:05L
p

Þ and smax ¼ 1=qC; where C is the length

of the optimal tour. The initial pheromone trail s0 is set to

the upper pheromone trail smax. In MoACO/D-MMAS, we

modify these characteristics to suit for bTSPs. For the kth

subproblem, the upper pheromone trail smax
k is initialized as

sk
max ¼ 1=q

X2

m¼1

kk
mfmðpÞ; ð14Þ

and once a new best tour is found, which is measured by

the corresponding scalar objective function of kth

subproblem, the value of smax
k is updated. After all ants

in S(k) finish their tour construction, pheromone trails are

updated by applying evaporation as in (3), followed by the

deposit of new pheromone as

sk
ij ¼ ð1� qÞsk

ij þ qDsbk ; 8ði; jÞ 2 pbk ; ð15Þ

where Dsbk ¼ 1=
P2

m¼1 kk
mfmðpbkÞ and bk is the best ant

determined by (6).

4.3 MoACO/D-ACS

ACS is another successor of AS and it introduces three

major modifications, including modifying the transition

rule, introducing local pheromone update and global

pheromone update. In ACS, a recommended value for

initializing the pheromone trails is set to 1/LC, where C is

the length of a feasible tour. To adapt this initialization to

bTSP, for the kth subproblem, we initialize s0
k in (3) as

sk
0 ¼ 1=L

X2

m¼1

kk
mfmðpÞ; ð16Þ

where p is a feasible tour of bTSP. It is worth noting that s0
k

will be reinitialized after all ants in S(k) have constructed

their tours as done in MACS (Barán and Schaerer 2003).

Then for kth subproblem, every ant in S(k) chooses a

random vertex as its starting point and chooses the next

unvisited vertex j when it stays at the vertex i using a

pseudorandom proportional transition rule as

j ¼ arg maxl2XðiÞf½sk
il�

a½gk
il�

bg; if q� q0

î; otherwise,

�

ð17Þ

where q is a random number ranged in [0, 1]; q0 is a

constant between 0 and 1; î is a random variable selected

by the probability in (10). Once an ant crosses the arc

(i, j) the local pheromone update is performed using the

formula

sk
ij ¼ ð1� nÞsk

ij þ nsk
0; ð18Þ

where n is a preset constant varying in [0, 1]. After all ants

have constructed their tours, the best ant is allowed to add

pheromone in the tour pbk : In MoACO/D-ACS, this update

procedure is implemented by (15). Additionally, the initial

pheromone trail s0
k is reinitialized by applying the weighted

average objective function values, i.e.,

sk
0 ¼ 1

X2

m¼1

kk
mf̂

k

m;

,

ð19Þ

where f̂
k

m is the average of the mth objective value

f ðphÞ; h 2 SðkÞ;m ¼ 1; 2; that is,

f̂
k

m ¼
X

h2SðkÞ
fmðphÞ=T : ð20Þ

5 Experimental results and analysis

In this section, we start from the construction of bTSP

instances using benchmark TSPs and then turn to make

appropriate configurations for three MoACO/D variants in

an empirical way. Subsequently, extensive experiments are
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conducted on bTSPs. Experimental results compared with

three existing MoACO approaches verify the efficiency and

effectiveness of the presented MoACO/D framework.

5.1 bTSP instances

In this section, 8 bTSPs, called KroAB50, KroCD50,

KroAB100, KroAD100, KroBC100, KroCD100, Kro-

AB150 and KroAB200, having 50, 50, 100, 100, 100, 100,

150 and 200 cities, respectively, are constructed using pairs

of benchmark TSPs and the same way as in Garcı́a-

Martı́nez et al. (2007). The benchmark TSPs, labeled

KroA100, KroB100, KroC100, KroD100, kroA150,

kroB150, KroA200 and KroB200, are available on the

website http://www.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95/tsp/. To be specific, KroAB100,

KroAD100, KroBC100, KroCD100, KroAB150 and Kro-

AB200 are constructed using KroA100 and KroB100,

KroA100 and KroD100, KroB100 and KroC100, KroC100

and KroD100, KroA150 and KroB150, KroA200 and

KroB200, respectively. KroAB50 and KroCD50 are con-

structed using the first 50 cities of KroA100 and KroB100,

and the first 50 cities of KroC100 and KroD100, respec-

tively. All the benchmark TSPs used are completely

independent; hence, the objectives of these bTSP instances

are also independent and non-correlated. Furthermore, in

order to show the scalability of the algorithm (how does the

growth of the number of cities deteriorate the algorithm

performance?), two extra instances with 300 cities, Eucil-

dAB300 and EucildCD300 downloaded from the website

http://eden.dei.uc.pt/paquete/tsp/, are employed to con-

struct the test bed. Due to difficulties and complexities of

these bTSP instances, they are challenging enough to

evaluate various multi-objective optimization algorithms

(Garcı́a-Martı́nez et al. 2007; Jaszkiewicz and Zielniewicz

2009; López-Ibáñez and Stützle 2010b).

5.2 Parameter setting

In MoACO/D, except for general parameters in ACO,

another two important parameters are involved, the number

N of subproblems or subcolonies or ants in colony and the

number T of ants in each subcolony. To obtain appropriate

configurations of three MoACO/D variants for further

experiments, we use KroAB50 as an example to investigate

the effects of these parameters on the performance of

MoACO/D-AS, MoACO/D-MMAS and MoACO/D-ACS

in an empirical way. In our experiments, the values 5, 10,

15, 20, 25, 30 for N and the values 2, 5, 10 for T are

considered. Because of the condition 2 \ T \ N must be

satisfied, there are 15 combinations of N and T. The other

parameters are set to the recommended values in single-

objective ACO algorithms (Dorigo and Stützle 2004):

a = 1, b = 2 for all MoACO/D variants, q = 0.5, 0.02 and

0.1 for MoACO/D-AS, MoACO/D-MMAS and MoACO/

D-ACS, respectively, q0 = 0.9 and n = 0.1 for MoACO/

D-ACS. The weighted vectors are generated using a sta-

tistical method, that is, kk ¼ ðkk; 1� kkÞ; k ¼ 1; 2; . . .;

N and kk is a random variable following a uniform distri-

bution in the range of (0, 1). The maximal number 2e4 of

function evaluations (FEs) is used as the termination con-

dition of all tests and each case is performed for 15 runs

independently. All the algorithms in this contribution are

implemented on the platform MATLAB 7.6a and all the

tests are conducted on PC with 2.4 GHz CPU, 2 GB RAM

and Windows XP OS.

Since the quantitative performance evaluation of a

multi-objective optimizer is also an MOP (Zitzler et al.

2003), no single metric is able to reflect the performance of

a multi-objective algorithm at every aspect. In this paper,

several metrics are used: cardinality jPj of the approxi-

mation set P; S metric, R1R metric, R3R metric and

� indicator (including I�ðP0;PÞ and I�ðP;P0Þ) (see

Appendix). The S metric allows us to measure the diversity

of approximation P and the proximity of P to the reference

set P0: The R1R and R3R metrics measure the quality of P
based on the reference set P0: The other two indicators,

I�ðP0;PÞ and I�ðP;P0Þ measure the extent of superiority of

reference set P0 over P: According to the definitions of

these metrics, the best values of Sð� 1Þ;R1Rð� 0:5Þ;
R3Rð� 0Þ; I�ðP0;PÞð� 1Þ and I�ðP;P0Þð� 1Þ are 1, 0.5,

0, 1 and 1, respectively.

In the experiments, for every MoACO/D variant, the

reference set P0 is generated by the union of all solutions

obtained from all runs and all cases except for the domi-

nated ones. Tables 1, 2 and 3 provide the mean results of

the metrics when T and N cover all combinations for

MoACO/D-AS, MoACO/D-MMAS and MoACO/D-ACS,

respectively. According to Tables 1 and 3, T and N could

be assigned as 5 and 30 for both MoACO/D-AS and

MoACO/D-ACS because they get the best results in 4 out

of 6 metrics. Moreover, when T is fixed and as the number

of N increases, the values of S and jPj increase. Also R3R

and I�ðP;P0Þ obtain better results when N is a larger value.

Table 2 manifests that T = 2 and N = 20 is an appropriate

configuration for MoACO/D-MMAS since it obtains better

overall results compared with other combinations. In the

next section, these configurations are utilized to make

comparisons with other three MoACO algorithms.

5.3 Comparisons with three MoACO approaches

The survey paper Garcı́a-Martı́nez et al. (2007) made a

convincingly comparative analysis of eight MoACO algo-

rithms reported in literature and two well-known
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evolutionay multi-objective optimization algorithms,

NSGA-II (Deb et al. 2002) and SPEA2 (Zitzler et al.

2001), by using six bTSPs. The experimental results show

that the three algorithms, MACS (Barán and Schaerer

2003), BIANT (Iredi et al. 2001; Garcı́a-Martı́nez et al.

2007) and UNBI (Iredi et al. 2001; Garcı́a-Martı́nez et al.

2007), outperform the other seven approaches. Therefore,

we consider the three algorithms, MACS, BIANT and

UNBI, as benchmark algorithms in the following experi-

ments. To show the main characteristics of the three

algorithms, we give a very brief review of them as follows:

• MACS (Barán and Schaerer 2003) is a variation of

MACS-VRPTW (Gambardella et al. 1999) proposed by

Gambardella et al. Contrary to its predecessor, MACS

uses a single pheromone trail and several heuristic

matrices. During the local pheromone update, the

amount of pheromone deposited on the tour is not

fixed, but will be reinitialized at the end of each

iteration using the average values of Pareto solutions.

The global pheromone update is performed using every

solution of the current approximation set after an

iteration.

Table 1 Mean values for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ) on KroAB50 of MoACO/D-AS with various T and N

Combinations jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ

T = 2, N = 5 32.8000 0.8605 0.9895 -0.5869 0.9937 1.4805

T = 2, N = 10 37.0000 0.8860 0.9965 -0.4204 0.9901 1.3344

T = 2, N = 15 35.7333 0.9034 0.9982 -0.3366 0.9942 1.2809

T = 2, N = 20 37.6000 0.9118 0.9982 -0.2703 0.9887 1.2174

T = 2, N = 25 38.0000 0.9077 0.9982 -0.2840 0.9911 1.2251

T = 2, N = 30 36.9333 0.9150 0.9982 -0.2537 0.9873 1.2061

T = 5, N = 10 34.8667 0.8856 0.9965 -0.4391 0.9911 1.3704

T = 5, N = 15 36.0667 0.8973 0.9965 -0.3870 0.9907 1.3528

T = 5, N = 20 39.1333 0.9148 0.9965 -0.2663 0.9926 1.2481

T = 5, N = 25 38.2000 0.9078 0.9965 -0.2940 0.9952 1.2707

T = 5, N = 30 43.0667 0.9212 0.9982 20.2299 0.9946 1.2045

T = 10, N = 15 42.7333 0.9200 1.0000 -0.2599 0.9856 1.2383

T = 10, N = 20 36.5333 0.9042 1.0000 -0.3407 0.9872 1.3211

T = 10, N = 25 39.8000 0.9102 1.0000 -0.2915 0.9886 1.2564

T = 10, N = 30 37.8000 0.9106 1.0000 -0.2749 0.9875 1.2425

Table 2 Mean values for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ) on KroAB50 of MoACO/D-MMAS with various T and N

Combinations jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ

T = 2, N = 5 40.6667 0.9001 1.0000 -0.3825 0.9976 1.3925

T = 2, N = 10 43.6667 0.9286 0.9860 -0.2305 0.9996 1.2806

T = 2, N = 15 46.5333 0.9395 0.9982 -0.1699 0.9963 1.2008

T = 2, N = 20 50.0000 0.9475 0.9912 20.1397 0.9972 1.1587

T = 2, N = 25 46.0000 0.9452 0.9982 -0.1429 0.9983 1.1750

T = 2, N = 30 49.9333 0.9493 0.9912 -0.1308 0.9995 1.1435

T = 5, N = 10 40.7333 0.9075 1.0000 -0.3108 0.9762 1.3041

T = 5, N = 15 46.4000 0.9153 1.0000 -0.2660 0.9832 1.2654

T = 5, N = 20 43.1333 0.9144 1.0000 -0.2646 0.9769 1.2422

T = 5, N = 25 49.9333 0.9225 1.0000 -0.2228 0.9750 1.2036

T = 5, N = 30 46.8667 0.9214 1.0000 -0.2266 0.9776 1.1978

T = 10, N = 15 44.1333 0.8954 1.0000 -0.3393 0.9563 1.2584

T = 10, N = 20 42.2667 0.8904 1.0000 -0.3755 0.9602 1.2953

T = 10, N = 25 46.4000 0.9000 1.0000 -0.3209 0.9598 1.2429

T = 10, N = 30 48.4667 0.9079 1.0000 -0.2738 0.9621 1.1985
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• BIANT (Iredi et al. 2001; Garcı́a-Martı́nez et al. 2007)

is characterized by multiple pheromone trails and

heuristic matrices aggregated by weighted product. As

it was originally designed for a bi-criteria vehicle

routing problem, Garcı́a-Martı́nez et al. modified it to

suit for bTSP, i.e., each ant which generated non-

dominated solutions at the current iteration is used to

update pheromone trail, and the amount of pheromone

deposited on the trip is the inverse of the cost of its

solution according to the objective function.

• UNBI (Iredi et al. 2001; Garcı́a-Martı́nez et al. 2007) is

a modified version of BIANT, which divides an ant

colony into Nc subcolonies and each objective in a

subcolony has a pheromone trail. When pheromone

trails are updated, each ant only contributes to those

pheromone trails associated with the subcolony that it

belongs to.

To compare the performance of these six algorithms, ten

bTSPs with various cites discussed in Sect. 5.1 are con-

sidered. To make a fair comparison, we tuned the number

N of ants of MACS, BIANT and UNBI and the number Nc

of colony of UNBI in the same way as done in previous

discussion of MoACO/D variants. Then we chose the best

configurations for them to carry out experiments. All

parameter values for the algorithms are presented in

Table 4. We independently execute each algorithm on each

bTSP instance for 15 runs; thus for every bTSP, 15

approximation sets can be obtained for each algorithm.

The presentation of all approximation sets of each

algorithm in a single graph is usually confusing and mis-

leading. It is difficult to separate out individual approxi-

mation sets and to clearly understand the distribution of the

location and extent of the different approximation sets over

multiple runs (Knowles 2005). Since an attainment surface

can emphasize the distribution and indicate the quality of

the individual point, and the visualization of attainment

surface allows us to characterize and/or summarize the

behavior of a single algorithm in many runs in a graphical

manner, we use the attainment surface to visualize the

outcomes of the experimental results.

Attainment surface, originally proposed in Fonseca and

Fleming (1996), relates to a boundary which separates the

objective space into two parts: the objective vectors that

are attained by the outcomes returned by an optimizer and

Table 3 Mean values for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ) on KroAB50 of MoACO/D-ACS with various T and N

Combinations jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ

T = 2, N = 5 38.7333 0.8782 1.0000 -0.5099 0.9926 1.4548

T = 2, N = 10 48.7333 0.9189 0.9982 -0.2631 0.9929 1.2804

T = 2, N = 15 57.2667 0.9347 1.0000 -0.1833 0.9930 1.2246

T = 2, N = 20 58.4000 0.9430 0.9982 -0.1501 0.9952 1.1734

T = 2, N = 25 57.2667 0.9469 1.0000 -0.1494 0.9946 1.1522

T = 2, N = 30 62.9333 0.9526 1.0000 -0.1283 0.9927 1.1296

T = 5, N = 10 51.8667 0.9206 0.9982 -0.2656 0.9972 1.2884

T = 5, N = 15 56.4667 0.9355 0.9982 -0.1892 0.9972 1.2347

T = 5, N = 20 61.6000 0.9413 0.9930 -0.1540 0.9988 1.2157

T = 5, N = 25 64.6667 0.9496 0.9930 -0.1192 0.9980 1.1731

T = 5, N = 30 66.8667 0.9559 0.9930 20.1022 0.9985 1.1617

T = 10, N = 15 49.4667 0.9182 0.9947 -0.2413 0.9976 1.2814

T = 10, N = 20 55.5333 0.9344 0.9965 -0.1876 0.9965 1.2283

T = 10, N = 25 56.5333 0.9410 1.0000 -0.1524 0.9964 1.2044

T = 10, N = 30 60.1333 0.9431 1.0000 -0.1331 0.9976 1.1872

Table 4 Parameter values considered

Parameters Values

Number of runs 15

Number of FEs 2e4 (B200 cities) and 3e4 (C300cities)

N 20 for MoACO/D-MMAS and MACS

30 for MoACO/D-AS and MoACO/D-ACS

50 for UNBI

60 for BIANT

q 0.1 for MACS, BIANT and UNBI

(Garcı́a-Martı́nez et al. 2007)

0.5 for MoACO/D-AS

0.02 for MoACO/D-MMAS

0.1 for MoACO/D-ACS

T 2 for MoACO/D-MMAS

5 for MoACO/D-AS and for MoACO/D-ACS

n 0.1 for MACS and MoACO/D-ACS

Nc 5 for UNBI

a 1

b 2

q0 0.9 for MACS and MoACO/D-ACS
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those that are not. The notion of attainment surface is

formalized in the concept of %-attainment surface, which

is the line separating the objective space attained by % of

the runs of an algorithm (López-Ibáñez et al. 2010). In this

contribution, the median attainment surface, which delimits

the region attained by 50% of the runs, is considered to

present the average behavior of MoACO/D as well as three

benchmark algorithms. We use the software programmed

by Knowles (2005), which can be downloaded from the

website http://dbkgroup.org/knowles/plot_attainments/, to

implement the function, and the resolution 100 is consid-

ered in the paper.

The experimental results obtained by the six algorithms

are shown in Fig. 3, where each curve provides an esti-

mation of the median attainment surface obtained from 15

approximation sets for a specific algorithm and a bTSP and

it implies the location, dispersion, and even skewness of

the distribution of solutions in each region of the trade-off

surface. From the median attainment surfaces in every plot,

three MoACO/D variants would appear to produce good

results more often than MACS, BIANT and UNBI on large

bTSPs. Specifically, three MoACO/D variants obtain sim-

ilar median attainment surfaces on all cases and obtain

better median attainment surfaces in the center region of

the trade-off surface compared with MACS, BIANT and

UNBI, while they obtain slightly worse median attainment

surfaces in the upper-left and lower-right regions of the

trade-off surface than MACS and UNBI. BIANT and

UNBI perform similarly. Whereas, along with the increase

of the number of cities, the results obtained by BIANT and

UNBI are deteriorated severely in the central regions of the

trade-off surface, especially in the case of EuclidAB300

and EuclidCD300. As for MACS, the median attainment

surfaces are not as good as other algorithms in the center

region of the trade-off surface on all bTSPs. However,

MACS possesses best spreads and its performance does not

degenerate so badly as that of BIANT and UNBI when

large-scale bTSPs are considered. According to the plots,

MoACO/D variants seem to best approximate to real

Pareto front in most regions and MACS seems to generate

approximation sets with best spreads. Moreover, we can

infer from the plots that MoACO/D-ACS perform best in

the three MoACO/D variants.

To quantitatively compare the performance of six

algorithms, six metrics used in the section of parameter

setting and the average computation time are considered.

For each bTSP the reference set P0 is generated by the

union of all solutions obtained from 6 algorithm and 15

runs, except for the dominated ones. Tables 5, 6, 7, 8, 9,

10, 11, 12, 13 and 14 summarize the statistics of these

metrics on ten bTSPs. Through analyzing the statistical

results, we can draw some conclusions:

• Except for KroAB50 and KroCD50, the numbers of

non-dominated solutions obtained by MoACO/D-

MMAS and MoACO/D-ACS are larger than other

approaches, especially much larger than MACS. In the

cases of KroAB50 and KroCD50, UNBI gets more non-

dominated solutions than other algorithms and BIANT

gets more solutions than UNBI on KroAB150, Kro-

AB200, EuclidAB300 and EuclidCD300. As the cardi-

nality of the approximation set could not reflect the

quality of solutions, we cannot say that MoACO/D

variants outperform others at this moment, and vice

versa.

• Except for KroAB50 and KroCD50, MoACO/D-ACS

obtains the best mean S values which affirms the

approximation set obtained by MoACO/D-ACS has

best diversity and best approximates to the pseudo

Pareto set on large bTSPs. MoACO/D-MMAS is the

second best approach on KroAB150, KroAB200,

EuclidAB300 and EuclidCD300 while MoACO/D-AS

performs better than MACS, BIANT and UNBI on

EuclidAB300 and Euclid-CD300. Moreover, according

to S values UNBI is the best approach on KroAB50 and

KroCD50 and MACS is the worst one on all bTSPs.

• For all bTSPs, MoACO/D-ACS obtains the best mean

values for metrics R1R and R3R, that is, the values of

R1R and R3R best approach to 0.5 and 0, respectively,

among the six algorithms. The results indicate that

MoACO/D-ACS has the largest probability to produce

the approximation set well approximating to the pseudo

Pareto set among six algorithms. In addition, according

to the statistical values, MoACO/D-AS and MoACO/D-

MMAS outperforms MACS, BIANT and UNBI on

KroAB150, KroAB200, EuclidAB300 and Euclid-

CD300 and the performance of MACS is poorer than

other algorithms referring to R1R and R3R metrics.

• For all bTSPs, MoACO/D-ACS obtains the best mean

values in terms of I�ðP0;PÞ and obtains slight worse

values than BIANT or UNBI with respect to I�ðP;P0Þ;
which implies that the extent of superiority of reference

set P0 over sets generated by MoACO/D-ACS is less

than other algorithms to some extent. As for MoACO/

D-AS and MoACO/D-MMAS, medium values are

obtained. We can also learn from the results that

MACS gets the worst values, which implies that

reference set P0 dominates the sets returned by MACS

to a large extent.

• Referring to average computation time, three MoACO/

D variants cost much less time than other algorithms,

especially on larger bTSPs, which reflects the efficiency

of MoACO/D framework. The reason is that calculating

the probability of next vertex to be visited is much

simpler in MoACO/D because it only uses one
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Table 5 Statistical values (mean and standard deviation) for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on KroAB50

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 43.2667 0.9055 1.0000 -0.3782 0.9581 1.2121 47.8649

SD 12.2909 0.0293 0 0.1064 0.0284 0.0502 –

BIANT Mean 49.5333 0.9429 1.0000 -0.1632 0.9925 1.1697 54.5607

SD 5.8903 0.0054 0 0.0208 0.0059 0.0190 –

UNBI Mean 77.4000 0.9645 0.9947 -0.1385 0.9992 1.1318 93.5855

SD 14.6716 0.0061 0.0109 0.0324 0.0017 0.0345 –

MoACO/D-AS Mean 40.4667 0.9231 0.9965 -0.2537 0.9946 1.2509 48.4737

SD 5.8416 0.0110 0.0093 0.0824 0.0082 0.0907 –

MoACO/D-MMAS Mean 47.5333 0.9203 1.0000 -0.2782 0.9749 1.2564 49.7298

SD 5.8293 0.0151 0 0.0815 0.0123 0.0930 –

MoACO/D-ACS Mean 66.8000 0.9585 0.9754 20.1040 0.9999 1.1700 45.9503

SD 6.9096 0.0129 0.0233 0.0426 0.0004 0.0689 –

Table 6 Statistical values (mean and standard deviation) for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on KroCD50

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 29.4000 0.8617 1.0000 -0.4780 0.9325 1.3160 48.1959

SD 11.4754 0.0263 0 0.0864 0.0250 0.0535 –

BIANT Mean 59.6667 0.9423 0.9965 -0.1488 0.9950 1.2034 53.9702

SD 6.1489 0.0065 0.0136 0.0250 0.0068 0.0321 –

UNBI Mean 80.0667 0.9545 0.9965 -0.1610 0.9978 1.1558 89.5520

SD 8.2848 0.0081 0.0093 0.0243 0.0048 0.0419 –

MoACO/D-AS Mean 44.2667 0.9160 0.9965 -0.2735 0.9962 1.3340 48.9076

SD 5.8367 0.0109 0.0136 0.0685 0.0086 0.0824 –

MoACO/D-MMAS Mean 54.7333 0.9140 1.0000 -0.2896 0.9791 1.3426 47.0746

SD 8.6228 0.0251 0 0.1477 0.0075 0.1693 –

MoACO/D-ACS Mean 71.2667 0.9489 0.9719 20.1248 1.0000 1.2279 47.1364

SD 7.0048 0.0147 0.0337 0.0621 0 0.0886 –

Table 7 Statistical values (mean and standard deviation) for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on KroAB100

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 20.4000 0.8603 1.0000 -0.6051 0.9035 1.4215 91.7660

SD 1.8048 0.0070 0 0.0267 0.0253 0.0335 –

BIANT Mean 55.4000 0.9255 1.0000 -0.2922 0.9771 1.2535 124.8941

SD 6.5334 0.0062 0 0.0186 0.0160 0.0238 –

UNBI Mean 65.2667 0.9433 0.9965 -0.2922 0.9949 1.3015 181.3638

SD 11.3921 0.0079 0.0093 0.0339 0.0074 0.0669 –

MoACO/D-AS Mean 51.9333 0.9244 0.9895 -0.2655 0.9906 1.3772 78.6134

SD 7.2945 0.0083 0.0278 0.0480 0.0097 0.0965 –

MoACO/D-MMAS Mean 68.2667 0.9297 1.0000 -0.2508 0.9797 1.3807 77.1714

SD 9.7356 0.0144 0 0.0810 0.0106 0.1908 –

MoACO/D-ACS Mean 72.2000 0.9541 0.9807 20.1146 0.9999 1.3006 75.7100

SD 7.3698 0.0072 0.0337 0.0206 0.0004 0.0654 –
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Table 8 Statistical values (mean and standard deviation) for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on KroAD100

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 20.6667 0.8454 1.0000 -0.5806 0.9197 1.4183 116.5159

SD 1.9149 0.0075 0 0.0228 0.0376 0.0195 –

BIANT Mean 55.2667 0.9236 0.9982 -0.2462 0.9767 1.2972 122.0378

SD 8.3961 0.0044 0.0068 0.0168 0.0172 0.0310 –

UNBI Mean 66.2000 0.9425 0.9965 -0.2333 0.9915 1.2458 181.7274

SD 9.1042 0.0117 0.0093 0.0439 0.0113 0.0682 –

MoACO/D-AS Mean 52.2667 0.9071 1.0000 -0.3120 0.9868 1.4991 89.8358

SD 6.4749 0.0131 0 0.0670 0.0078 0.1170 –

MoACO/D-MMAS Mean 70.4000 0.9278 1.0000 -0.2238 0.9786 1.3681 77.6268

SD 10.8746 0.0083 0 0.0348 0.0126 0.0964 –

MoACO/D-ACS Mean 74.8667 0.9508 0.9719 20.1084 1.0000 1.3143 76.7397

SD 7.5296 0.0106 0.0351 0.0472 0 0.1012 –

Table 10 Statistical values (mean and standard deviation) for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on KroCD100

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 21.2000 0.8410 1.0000 -0.6118 0.9128 1.4398 91.7760

SD 3.0048 0.0086 0 0.0297 0.0265 0.0284 –

BIANT Mean 56.2000 0.9243 0.9982 -0.2554 0.9791 1.2998 121.8478

SD 3.5295 0.0040 0.0068 0.0161 0.0156 0.0311 –

UNBI Mean 68.2667 0.9435 0.9982 -0.2485 0.9955 1.2707 181.4508

SD 10.1803 0.0089 0.0068 0.0422 0.0070 0.0765 –

MoACO/D-AS Mean 47.1333 0.9085 1.0000 -0.3202 0.9825 1.4907 89.4001

SD 6.7704 0.0169 0 0.1106 0.0151 0.1901 –

MoACO/D-MMAS Mean 66.0667 0.9233 1.0000 -0.2473 0.9762 1.3894 76.8204

SD 11.4235 0.0162 0 0.0784 0.0114 0.1460 –

MoACO/D-ACS Mean 73.9333 0.9505 0.9702 20.1206 1.0000 1.3334 76.4027

SD 12.0147 0.0150 0.0312 0.0590 0 0.1332 –

Table 9 Statistical values (mean and standard deviation) for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on KroBC100

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 20.6000 0.8327 1.0000 -0.6252 0.8983 1.4806 90.8578

SD 2.2297 0.0067 0 0.0271 0.0175 0.0371 –

BIANT Mean 59.7333 0.9134 1.0000 -0.3041 0.9768 1.3192 122.4397

SD 7.2454 0.0042 0 0.0191 0.0163 0.0220 –

UNBI Mean 65.9333 0.9285 0.9982 -0.3084 0.9979 1.3294 182.2919

SD 8.2416 0.0132 0.0068 0.0446 0.0055 0.0804 –

MoACO/D-AS Mean 48.0000 0.9076 0.9982 -0.3112 0.9844 1.5510 79.0867

SD 5.9761 0.0117 0.0068 0.0678 0.0132 0.1482 –

MoACO/D-MMAS Mean 67.5333 0.9168 1.0000 -0.2811 0.9782 1.4913 77.9049

SD 11.4447 0.0175 0 0.0995 0.0086 0.2197 –

MoACO/D-ACS Mean 70.7333 0.9457 0.9702 20.1387 0.9997 1.4032 76.3431

SD 9.6026 0.0145 0.0420 0.0604 0.0010 0.1613 –
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Table 13 Statistical values (mean and standard deviation) for the metrics(jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on EuclidAB300

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 23.8000 0.8388 1.0000 -0.7024 0.9094 1.6128 816.7802

SD 2.0771 0.0067 0 0.0272 0.0311 0.0393 –

BIANT Mean 107.1333 0.8983 1.0000 -0.4643 0.9618 1.3996 1,421.4256

SD 10.1550 0.0020 0 0.0115 0.0169 0.0134 –

UNBI Mean 84.8667 0.8902 1.0000 -0.5389 0.9963 1.6442 1,705.0013

SD 15.6062 0.0208 0 0.0960 0.0043 0.2078 –

MoACO/D-AS Mean 65.0667 0.9063 1.0000 -0.3533 0.9571 1.7839 440.0125

SD 8.8759 0.0119 0 0.0699 0.0094 0.2167 –

MoACO/D-MMAS Mean 115.9333 0.9406 1.0000 -0.2034 0.9876 1.5748 393.9141

SD 16.4641 0.0150 0 0.0701 0.0180 0.2143 –

MoACO/D-ACS Mean 108.7333 0.9563 0.9667 20.1164 0.9997 1.5078 382.5195

SD 11.1897 0.0138 0.0592 0.0553 0.0012 0.1637 –

Table 11 Statistical values (mean and standard deviation) for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on KroAB150

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 22.9333 0.8481 1.0000 -0.6769 0.9067 1.5225 164.4978

SD 2.3745 0.0051 0 0.0181 0.0246 0.0354 –

BIANT Mean 69.8667 0.9090 0.9982 -0.3923 0.9527 1.3144 238.5683

SD 7.9000 0.0033 0.0068 0.0096 0.0233 0.0129 –

UNBI Mean 66.4667 0.9197 0.9982 -0.4103 0.9952 1.4163 336.1009

SD 10.8947 0.0096 0.0068 0.0378 0.0067 0.0935 –

MoACO/D-AS Mean 53.2000 0.9111 1.0000 -0.3328 0.9739 1.5749 121.9835

SD 10.1644 0.0170 0 0.1060 0.0132 0.2244 –

MoACO/D-MMAS Mean 80.9333 0.9437 0.9965 -0.1887 0.9819 1.3583 128.0342

SD 9.0116 0.0091 0.0136 0.0359 0.0122 0.1165 –

MoACO/D-ACS Mean 76.2000 0.9505 0.9702 20.1257 1.0000 1.4273 99.5643

SD 10.6918 0.0154 0.0196 0.0668 0 0.1460 –

Table 12 Statistical values (mean and standard deviation) for the metrics(jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on KroAB200

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 22.2667 0.8608 1.0000 -0.7049 0.9176 1.5225 257.4959

SD 1.7915 0.0046 0 0.0224 0.0244 0.0301 –

BIANT Mean 79.9333 0.9122 1.0000 -0.4430 0.9555 1.3348 392.8706

SD 6.8083 0.0034 0 0.0156 0.0217 0.0102 –

UNBI Mean 76.0667 0.9221 1.0000 -0.4576 0.9889 1.4467 542.7912

SD 7.8328 0.0129 0 0.0647 0.0122 0.1485 –

MoACO/D-AS Mean 57.5333 0.9213 1.0000 -0.3165 0.9671 1.5422 146.7924

SD 8.9272 0.0111 0 0.0575 0.0108 0.1501 –

MoACO/D-MMAS Mean 94.6667 0.9427 0.9965 -0.2270 0.9866 1.4959 137.5741

SD 9.5892 0.0162 0.0136 0.0804 0.0138 0.2039 –

MoACO/D-ACS Mean 88.7333 0.9578 0.9667 20.1230 1.0000 1.4289 138.9646

SD 12.5155 0.0127 0.0289 0.0579 0 0.1604 –
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pheromone trail and one heuristic matrix, whereas in

MACS, BIANT and UNBI multiple pheromone trails

and multiple heuristic matrices are used, which results

in a higher computation time. However, MoACO/D

simultaneously maintains many pheromone trails and

heuristic matrices; hence more memory is required.

To make a comparison for any pair of algorithms, C

metric (see Appendix) is employed. The metric evaluates

the performance of two algorithms by mapping from the

ordered pair sets into a number in the interval [0, 1]. The

box plots based on the C metric are shown in Fig. 4, where

each rectangle contains ten box plots representing the dis-

tribution of the C values for a certain ordered pair of

algorithms. From left to right, ten box plots relate to Kro-

AB50, KroCD50, KroAB100, KroAD100, KroBC100,

KroCD100, KroAB150, KroAB200, EuclidAB300 and

EucidCD300, respectively. In each rectangle, the bottom,

middle and top dash lines refer to scales 0, 0.5 and 1,

respectively. Each rectangle, representing algorithms P1

and P2 associated with the corresponding row and column,

gives the fraction of P2 dominated by P1; that is CðP1;P2Þ:
The box plots clearly show that for all bTSPs MoACO/

D-ACS dominates more than half of the outcomes returned

Fig. 4 Box plots based on the C metric

Table 14 Statistical values (mean and standard deviation) for the metrics (jPj; S;R1R;R3R; I�ðP0;PÞ; I�ðP;P0Þ;Time) on EuclidCD300

Algorithm Statistics jPj S R1R R3R I�ðP0;PÞ I�ðP;P0Þ Time (s)

MACS Mean 23.8000 0.8401 1.0000 -0.7013 0.9243 1.5722 816.2084

SD 1.0823 0.0066 0 0.0290 0.0303 0.0306 –

BIANT Mean 102.3333 0.8981 1.0000 -0.4685 0.9639 1.3900 1,344.0256

SD 6.7153 0.0021 0 0.0137 0.0177 0.0143 –

UNBI Mean 83.5333 0.8936 1.0000 -0.5230 0.9844 1.5493 1,696.8253

SD 17.0833 0.0167 0 0.0714 0.0146 0.1524 –

MoACO/D-AS Mean 69.4667 0.9108 1.0000 -0.3435 0.9566 1.6600 443.3698

SD 10.8750 0.0195 0 0.1230 0.0117 0.2926 –

MoACO/D-MMAS Mean 121.0667 0.9448 1.0000 -0.1817 0.9886 1.4682 397.8784

SD 15.4433 0.0139 0 0.0586 0.0087 0.1940 –

MoACO/D-ACS Mean 104.1333 0.9500 0.9667 20.1470 1.0000 1.5618 365.2076

SD 14.3221 0.0157 0.0289 0.0718 0 0.2179 –
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by MACS, BIANT and UNBI, while MACS has the worst

performance among six algorithms with respect to C met-

ric. The plots also illustrate that MoACO/D-AS and Mo-

ACO/D-MMAS perform better than BIANT on average

over eight out of ten bTSPs, and MoACO/D-AS and Mo-

ACO/D-MMAS are superior to UNBI on large bTSPs.

Moreover, the plots indicate that MoACO/D-ACS performs

best among the three MoACO/D variants, followed by

MoACO/D-MMAS.

Through extensive experiments and thorough analysis

using many performance metrics as well as visualization of

the median attainment surfaces, we can easily draw con-

clusions that MoACO/D framework is efficient and effective

for bTSPs, especially on large cases, and the approach

combining MoACO/D framework with ACS performs best

against two other MoACO/D variants and three benchmark

algorithms. The advantage of MoACO/D comes from the

unique way that handles the MOP, i.e., MoACO/D trans-

forms an original MOP into many scalar optimization sub-

problems using Tchebycheff approach and all subproblems

are treated equally using single-objective ACO algorithm.

Moreover, the pheromone trail share is designed to imple-

ment information share among subproblems, which also

contributes to the performance of MoACO/D variants.

6 Conclusions

ACO is one of the most powerful population-based search

approaches in solving a TSP, a well-known NP-hard

combinatorial optimization problem. In the community of

multiple objective optimization, how to obtain a Pareto

front with good approximation and even distribution is

always an ongoing issue. This paper proposes a framework,

MoACO/D, for solving bTSPs based on Tchebycheff

decomposition. In MoACO/D, a bTSP is decomposed into

a number of scalar optimization subproblems and an ant

colony is divided into a certain number of subcolonies with

overlapping parts to suit for the decomposition. Three

MoACO algorithms designed by, respectively, combining

MoACO/D with AS, MMAS and ACS are presented.

Extensive experiments performed on ten bTSPs with dif-

ferent complexities show that the MoACO/D framework is

efficient and effective for solving bTSPs. Among the three

MoACO/D variants, MoACO/D-ACS obtains better per-

formance than three well-known MoACO algorithms and

the other two variants are competitive to the benchmark

MoACO algorithms on larger bTSPs in terms of several

performance measures and median attainment surface. Our

further work will focus on improving MoACO/D frame-

work performance by introducing an appropriate local

search technique and applying it to other multi-objective

combinatorial problems.
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Appendix: Performance metrics

S metric

S metric, also named the hypervolume ratio (Zitzler and

Thiele 1998), relates to the ratio of the hypervolume of an

approximation set P and an optimum Pareto set or pseudo-

optimum Pareto set P0; depicted in equation

S¼D ¼ HVðPÞ
HVðP0Þ

; ð21Þ

where HVðPÞ and HVðP0Þ are the hypervolumes of set P
and P0; respectively, where the hypervolume relates to the

area of coverage of a set and an anti-idea point with respect

to the objective for a two-objective MOP, defined as

HVðPÞ¼D ¼ f[
i
volijqi 2 Pg; ð22Þ

where qi is a non-dominated vector in P; voli is the volume

between the anti-idea solution and vector qi. For a mini-

mization MOP, it’s assumed that the anti-idea point is the

maximum value for each objective.

The S metric can be used as the basis of a dominance

compliant comparison and possess the advantage of mea-

suring both diversity and proximity. S value less than one

indicates the approximation set P is not as good as P0 and

if S value equals to 1, then P ¼ P0: Therefore, the larger

the value S is, the better the P approximation set is.

R1R and R3R metrics

The R1R metric (Hansen 1998) calculates the probability

that an reference set P0 is better than an approximation set

P over a set of utility functions U, defined as

R1RðP;U; pÞ ¼
Z

u2U

CðP0;P; uÞpðuÞ du; ð23Þ

where u 2 U is a utility function mapping each set to an

utility measure; p(u) is the probability density of the utility

function u, and
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CðP0;P; uÞ ¼
1 : if uðP0Þ\uðPÞ

1=2 : if uðP0Þ ¼ uðPÞ
0 : if uðP0Þ[ uðPÞ

8
<

:
ð24Þ

with uðPÞ ¼ min
q2PfuðqÞg:

The R3R metric (Hansen and Jaszkiewicz 1998) mea-

sures the probability of superiority of an reference set P0

over approximation set P; formulated as

R3RðP;U; pÞ ¼
Z

u2U

uðP0Þ � uðPÞ
uðP0Þ

pðuÞdu; ð25Þ

where U and p(u) are defined as in R1R metric.

According to the metrics, the more the value R1R is near

to 1
2

or the smaller the value R3R is, the better the

approximation set P is. Additionally, both R1R metric and

R3R metric require a set of utility functions U which must

be defined. In this contribution, the Tchebycheff utility

function set (Hansen and Jaszkiewicz 1998) is used, that is,

ukðq; rÞ ¼ max
j¼1;2;...;m

fkjðqj � rjÞgjk ¼ ðk1; k2; . . .; kmÞ
�

\ki 2
1

k
;
2

k
; . . .;

k � 1

k

� �

\
Xm

i¼1

ki ¼ 1

)

: ð26Þ

Therefore, the original integration in (23) and (25) can be

superseded by

R1ðP1;P2;U; pÞ ¼
X

uk;r2U

CðP1;P2; uk;rÞpðuk;rÞ ð27Þ

R3ðP1;P2;U; pÞ ¼
X

uk;r2U

uk;rðP1Þ � uk;rðP2Þ
uk;rðP1Þ

pðuk;rÞ ð28Þ

� indicator

For a minimization problem with m positive objectives, an

objective vector a ¼ ða1; a2; . . .; amÞ is said to � dominate

another objective vector b ¼ ðb1; b2; . . .; bmÞ; written as

a<�b; if and only if

81� i�m : ai� � � bi ð29Þ

for a given �[ 0: Given two approximation sets,

P1 and P2; � indicator measures (Zitzler et al. 2003) the

smallest amount � such that any solution q2 2 P2 is �

dominated by at least one solution q1 2 P1; i.e.,

I�ðP1;P2Þ ¼ minf�j8b 2 P29a 2 P1 : a�bg: ð30Þ

When I�ðP1;P2Þ\1; all solutions in P2 are dominated by

a solution in P1: If I�ðP1;P2Þ ¼ 1 and I�ðP2;P1Þ ¼
1;P1 and P2 represent the same approximation set. If

I�ðP1;P2Þ[ 1 and I�ðP2;P1Þ[ 1;P1 and P2 are incom-

parable. When the optimum Pareto set or pseudo-optimum

Pareto set is considered, i.e., I�ðP0;PÞ and I�ðP;P0Þ;

I�ðP0;PÞ� 1 and I�ðP;P0Þ� 1; and the more the value is

near to 1, the better the set P is.

C metric

C metric (Zitzler and Thiele 1999) aims to evaluate the

performance of two multi-objective algorithms by com-

paring the approximation Pareto sets. Let P1;P2 be two

approximation Pareto sets obtained by two algorithms, the

function C defines a mapping from the ordered pair

ðP1;P2Þ to the interval [0, 1], i.e.,

CðP1;P2Þ ¼
jfb 2 P2j9a 2 P1 : a<bgj

jP2j
: ð31Þ

where a<b implies that the solution a dominates the

solution b: The value CðP1;P2Þ ¼ 1 means that all

objective vectors in P2 are dominated by at least one

objective vector in P1: On the contrary, CðP1;P2Þ ¼ 0

represents the case that no point in P2 is dominated by any

point in P1: Note that both directions have to be consid-

ered, since CðP1;P2Þ is not equal to 1� CðP2;P1Þ:
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Stützle T, Hoos H (2000) MAX–MIN ant system. Future Gener

Comput Syst 16(8):889–914
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