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Abstract The C4.5 decision tree (DT) can be applied in

various fields and discovers knowledge for human under-

standing. However, different problems typically require

different parameter settings. Rule of thumb or trial-and-

error methods are generally utilized to determine parameter

settings. However, these methods may result in poor

parameter settings and unsatisfactory results. On the other

hand, although a dataset can contain numerous features, not

all features are beneficial for classification in C4.5 algo-

rithm. Therefore, a novel scatter search-based approach

(SS ? DT) is proposed to acquire optimal parameter set-

tings and to select the beneficial subset of features that

result in better classification results. To evaluate the effi-

ciency of the proposed SS ? DT approach, datasets in the

UCI (University of California, Irvine) Machine Learning

Repository are utilized to assess the performance of the

proposed approach. Experimental results demonstrate that

the parameter settings for the C4.5 algorithm obtained by

the SS ? DT approach are better than those obtained by

other approaches. When feature selection is considered,

classification accuracy rates on most datasets are increased.

Therefore, the proposed approach can be utilized to iden-

tify effectively the best parameter settings for C4.5 algo-

rithm and useful features.

Keywords C4.5 � Decision tree � Scatter search �
Optimization � Feature selection

1 Introduction

Machine learning algorithms such as decision tree (DT),

back-propagation network (BPN), and support vector

machine (SVM) are very popular and can be applied to

various areas. However, most of the machine learning

algorithms will suffer parameter setting and feature-selec-

tion problems (Han and Kamber 2006). Before applying

these methods to solve the problems, the parameter values

must be set in advance to avoid constructing an over-fitting

or under-fitting model. There are no clear rules for the

‘‘best’’ parameter settings and feature selection. In general,

it is a trial-and-error process and may affect the classifi-

cation accuracy of the model. A number of automated

techniques have been proposed that search for ‘‘good’’

parameters and selected features. These techniques typi-

cally use a hill-climbing approach that starts with an initial

value or feature subset; however, these techniques can

quickly get a result, and it may easily fall into a sub-

optimal situation.

DT can be used easily in numerous domains as it does not

impose restrictions (e.g., variables should be independent or

variables should follow a normal distribution) that are

imposed by other techniques such as discriminant analysis

and regression (Berry and Linoff 2001). Moreover, a DT has

the following benefits: (1) a DT is a simple method for pre-

senting knowledge, (2) it can handle nominal and categorical

data and perform well and the DT has relatively faster

learning speed than other classification methods (Han and

Kamber 2006), (3) a DT provides information about rele-

vance of features for prediction purposes. As a feature moves

close the tree root, its relevance for predicting decisions for a

class of data increases (Freitas 1998).

There are various DT algorithms such as iterative

dichotomiser 3 (ID3) (Quinlan 1986), classification and
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regression tree (CART) (Quinlan 1987), supervised learn-

ing in quest (SLIQ) (Han and Kamber 2006), scalable

parallelizable induction of decision tree (SPRINT) (Sun

et al. 2007), and C4.5 algorithm (Sun et al. 2007). Four

criteria-predictive accuracy, speed, robustness, and inter-

pretability are used to analyze the model created by a DT.

The C4.5 algorithm, which satisfies these criteria, is the

most popular DT algorithm (Han and Kamber 2006).

However, before applying the C4.5 algorithm to solve

problems, parameters such as minimum case and pruning

confidence level must be set in advance. Parameter settings

for C4.5 algorithm must be determined carefully to avoid

over- or under-fitting. The minimum case controls the tree

whether it grows or not in the construct tree phase, and the

pruning conference level influences whether the node of

the tree will be deleted or not in the pruning phase. For

example, if the minimum case is set to a small value, the

tree may be very large and may have too many branches,

and some may reflect anomalies due to noise or outliers.

That is, the classification accuracy rate will be very good in

the training data, but have poor classification accuracy rate

in the testing (unseen) data. This situation is called the

over-fitting problem. On the other hand, if the minimum

case is set to be a large value, then the tree may be very

small and the classification accuracy rate of the training

data may be worse. Furthermore, the classification accu-

racy rate of testing data may be much larger than that of the

training data.

Selecting the right set of features for classification is a

difficult problem when designing a good classifier. Typi-

cally, one does not know a priori which features are rele-

vant for a particular classification task. One common

approach is to collect as many features as possible prior to

the learning and data-modeling phase. However, in most

pattern classification problems, given a large set of

potential features, identifying a small subset to classify

data object is generally necessary. Data without feature

selection might be redundant or noisy, and decrease clas-

sification efficiency. The primary benefits of feature

selection are as follows: (1) computational cost and storage

requirements are reduced; (2) degradation of classification

efficiency due to the irrelevant or redundant features used

in the training samples is overcome; (3) training and pre-

diction time are reduced, and (4) data understanding and

visualization are facilitated (Abe and Kudo 2005). In fea-

ture selection, whether each feature is useful must be

determined; the task of finding an optimal subset of fea-

tures is inherently combinatory. Therefore, feature selec-

tion becomes an optimization problem. An optimal

approach is then needed to examine all possible subsets.

This study presents a novel scatter search-based approach

that provides the best parameter settings for C4.5 algo-

rithm, and identifies the beneficial subset of features for

different problems such that the classification accuracy rate

of C4.5 algorithm is maximized.

The remainder of this paper is organized as follows.

Section 2 reviews previous studies of DTs, feature selec-

tion, and scatter search. Section 3 describes the proposed

SS ? DT approach for determining optimal parameter

settings for C4.5 algorithm, and identifies the most bene-

ficial feature subset. Section 4 presents experimental

results. Conclusions and future research directions are

given in Sect. 5.

2 Literature review

2.1 Decision tree

Most DTs employ a top–down strategy that recursively

partitions a dataset into small subdivisions. These proce-

dures form the basis of a set of tests applied to each tree

branch. The tree-like structure is composed of a root node

(formed from all data), a set of internal nodes (splits), and a

set of terminal nodes (leaves). Each interior node corre-

sponds to a variable; an arc to a child represents a possible

value for that variable. A leaf represents the predicted

value of a target variable given the values of variables

represented by the path from the root node.

The DT constructing process has two principal phases:

the growth phase and pruning phase (Kim and Koehler

1995). During the growth phase, for a set of samples in

partition S, a test feature X is selected for further parti-

tioning the set into S1, S2,…, SL, which are added to the

decision tree as children of node S. Additionally, the node

for S is labeled with test X, and partitions S1, S2,…, SL are

then recursively partitioned.

The interactive dichotomimizer 3 (ID3) algorithms

(Quinlan 1986, 1987) and their successor C4.5 algorithm

(Quinlan 1993) are the primary focus of research in the field of

DT learning. During the growth phase, the central choice by

the ID3 algorithm is selection, during which features are tested

at each node in the most useful way for classifying examples.

The C4.5 algorithm uses an information entropy evaluation

function as selection criteria (Quinlan 1993). The entropy

evaluation function is calculated as follows.

Step 1: Calculate Info(S) to identify the class in the

training set S.

Info(SÞ ¼ �
Xk

i¼1

f½freqðCi; SÞ=jSj�log2½freqðCi; SÞ=jSj�g;

ð1Þ

where jSj is the number of cases in the training set, Ci is

a class, i = 1,2,…,k, k is the number of classes, and

freq(Ci, S) is the number of cases in Ci.
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Step 2: Calculate the expected information value,

InfoxðSÞ; for feature X to partition S.

InfoxðSÞ ¼ �
XL

i¼1

½ðjSij=jSjÞInfoðSiÞ�; ð2Þ

where L is the number of outputs for feature X, Si is a

subset of S corresponding to the ith output, and jSj is the

number of cases in subset Si.

Step 3: Calculate the information gained after parti-

tioning according to feature X.

GainðXÞ ¼ InfoðSÞ � InfoxðSÞ ð3Þ

Step 4: Calculate the partition information value,

SplitInfoðXÞ; acquired for S partitioned into L subsets.

SplitInfoðXÞ ¼ �
XL

i¼1

jSij
jSj log2

jSij
jSj

� �
ð4Þ

Step 5: Calculate the gain ratio of Gain(X) over

SplitInfo(X).

GainRatioðXÞ ¼ GainðXÞ=SplitInfoðXÞ ð5Þ

The GainRatio(X) compensates for the weak point of

Gain(X), which is the quantity of information provided by

X in the training set. Thus, the feature with the highest

GainRatio(X) is adopted as a decision tree root. The gain

ratio criterion is robust and results in small trees (Quinlan

1993). In order to avoid the over-fitting, splits can be

stopped if a certain specified threshold (e.g., the minimum

number of cases for a split search) is met (Osei-Bryson

2007). This is the so-called minimum case.

The aim of the pruning phase is to generalize the DT

generated during the growth phase by generating a sub-tree

that avoids over-fitting the training data. The actions in the

pruning phase are often called post-pruning. The approach

taken in C4.5 is called the confidence level, which uses the

estimated error to determine whether the tree built in

growth phase requires pruning or not at certain nodes. The

probability of error cannot be determined exactly; however,

there exists a probability distribution that is generally

summarized as a pair of confidence limits. For a given

confidence level, the upper limit of this probability can be

determined from the confidence limits for the binomial

distribution. Then, C4.5 simply equates the estimated error

rate at a leaf with this upper limit, based on the argument

that the tree has been constructed to minimize observed

error rate (Quinlan 1993).

For constructing the DT model, the most difficult task is

to obtain a good balance between accuracy and simplicity.

Unfortunately, the minimum cases (M) for the leaf and

pruning confidence level (CF) are varied for different

problems. Generally, the M is preferred to be a high value

when data is noisy; on the other hand, the CF should be a

lower value when the test error rate of pruned tree exceeds

the estimated error rate. Determining these two parameters

is an optimization problem (Quinlan 1993).

John (1994) observed that determining how to set

parameters is an important issue associated with C4.5

algorithms. This study investigates several cross-valida-

tion-based approaches (C4.5*, CVC4.5, and small CVC) to

identify the best parameter values for the C4.5 algorithm.

Moreover, Kohavi and John (1995) developed a best-first

search algorithm to determine the parameter values of

C4.5 algorithm using the minimum estimated error. Many

studies extended the DT. Carvalho and Freitas (2002) uti-

lized a genetic algorithm to discover small-disjunct rules

and compared the results obtained by three versions of the

C4.5 algorithm alone, and in eight public domain datasets.

Gray and Fan (2008) proposed a genetic algorithm

approach to construct DTs called randomly generated

evolved tree (TARGET) that performs a better search of

the tree model space than the greedy search algorithm.

Aitkenhead (2008) created an evolutionary approach to

increase DT flexibility using co-evolving competition

between the tree and training dataset. Orsenigo and

Vercellis (2004) developed an algorithm for creating a DT

in which multivariate splitting rules were based on a new

concept of discrete support vector machines (LDSDTTS).

These studies focused on tree construction and rule gen-

eration. However, they did not consider parameter settings

and feature selection simultaneously.

2.2 Feature selection

The DT requires a dataset for model construction. A

dataset can have many features; however, not all features

are useful for classification. When a dataset has consider-

able noise and complex dimensionality, a DT may have

limitations associated with learning the classification pat-

terns. Although the C4.5 algorithm has a feature-selection

strategy that encompasses its learning performance, this

strategy is not optimal. Correlated and irrelevant features

may reduce the performance of the induced classifier

(Perner and Apte 2004).

Feature selection can be defined as selecting the smallest

subset of an original set of features that are necessary and

sufficient for describing a target concept. The approaches

for feature selection can be categorized into two models: a

filter model and a wrapper model (Liu and Motoda 1998).

Filter models utilize statistical approaches, such as factor

analysis (FA), independent component analysis (ICA),

principal component analysis (PCA), and discriminant

analysis (DA), to investigate indirect performance mea-

sures, primarily based upon distance and information

measures in feature selection. Sun et al. (2007) developed a

PCA method on the C4.5 algorithm. The PCA is utilized to
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reduce the number of features and C4.5 algorithm is trained

to generate a DT model for diagnosis of rotating machin-

ery. Last et al. (2001) presented an information-theoretical

algorithm for feature selection to enhance C4.5 algorithm;

this algorithm finds a set of features by removing irrelevant

and redundant features. Perner and Apte (2004) created

C4.5 algorithm and a contextual merit (CM) algorithm to

select features. They showed that accuracy of the C4.5

classifier can be improved with an appropriate feature pre-

selection phase for the learning algorithm. Although this

model is fast, the resulting feature subset may not be

optimum (Liu and Motoda 1998).

In the wrapper approach, feature subset selection is per-

formed by an induction algorithm as a black box. The feature

subset selection algorithm conducts a search for a good

subset using the induction algorithm as part of the evaluation

function. Some studies have proposed that when the objective

is to minimize classifier classification error rate, and mea-

surement cost for all features is equal, then the classification

accuracy rate of the classifier is most appealing. That is, a

classifier should be constructed with the goal of achieving the

highest classification accuracy rate possible, and selecting the

features used by the classifier as optimal features. This model

is the so-called wrapper model, which uses selection methods

to choose feature subsets and then evaluates the selection

result after the classification algorithm calculates the accu-

racy rate. When the relevant features can be selected or noise

removed, the classification accuracy rate of the classifier can

be improved.

Smith and Bull (2005) utilized genetic programing to pre-

process data then applied the C4.5 algorithm to ten well-

known datasets from the UCI (University of California,

Irvine) repository. López et al. (2006) developed three scatter

search-based algorithms, the sequential scatter search with a

greedy combination (SSS-GC), sequential scatter search with

a reduced greedy combination (SSS-RGC), and parallel

scatter search (PSS), to solve the feature-selection problem

using three algorithms, the instance-based algorithm, Naive

Bayes algorithm, and C4.5 algorithm. However, these algo-

rithms do not consider parameter settings for the C4.5 algo-

rithm. Thus, the optimal solution may be excluded. Few

studies have considered parameter settings and feature

selection simultaneously for the C4.5 algorithm. As irrelevant

and redundant features exist in classification problems, when

parameter settings and feature selection are not considered

simultaneously, the optimal model may be excluded. Su and

Shiue (2003) proposed the GA/DT approach to determine the

optimization parameter values and a feature subset for pro-

duction control systems. The GA/DT approach was only

adopted for a specific problem; thus, further comparisons

cannot be made.

In order to illustrate the feature-selection problem in the

DT algorithm, an example shown in Table 1 was used.

This example has 32 instances, and 5 variables, a1, a2, a3,

a4 and a5, can be used to classify its class. There are three

classes, labeled 1, 2, and 3.

If default parameter setting in C4.5 (M = 2 and

CF = 25%) is used and all of five variables (feature

selection is not applied) are fed to C4.5, the C4.5 algorithm

will use four variables (a1, a2, a4 and a5) to build the

classification model. The classification accuracy rate is

87.5% (28/32) and the tree structure is shown in Fig. 1a. If

a certain feature selection method is performed, only three

variables, a1, a3 and a5, are necessary to construct the

classification model. The classification accuracy rate is

90.63% (29/32), and the tree structure is shown in Fig. 1b.

Figure 1 points out that the C4.5 algorithm may easily fall

into a local optimal (lower classification accuracy rate) due to

the greedy search that is used. If feature selection is not used

before constructing the DT model, the root node is a1. The

left nodes are a4 and a2 and the right node is a5. If feature

selection is used before constructing the DT model, only

three variables are needed to construct the C4.5 model with a

higher classification accuracy rate. The most important var-

iable (root node) is the same, but the second important var-

iable changes to a3 in the left node. Moreover, the feature

selection can use fewer variables to construct the classifica-

tion model, which has higher classification accuracy and may

have simplified tree structure.

2.3 Scatter search

Introduced by Glover (1977), the scatter search (SS) is a

population-based approach that starts with a collection of

Table 1 Data values of example

No. a1 a2 a3 a4 a5 Class

label

No. a1 a2 a3 a4 a5 Class

label

1 80 88 63 0 1 3 17 80 88 63 1 1 3

2 63 53 64 1 0 1 18 63 53 34 1 1 2

3 72 58 62 0 0 2 19 80 38 34 1 1 3

4 61 70 64 1 0 1 20 61 70 64 0 1 1

5 76 78 64 0 0 1 21 76 35 64 0 1 2

6 78 47 70 0 0 2 22 80 47 70 0 1 3

7 67 62 65 0 0 1 23 67 62 62 0 1 2

8 71 70 64 1 0 1 24 71 70 64 1 0 1

9 82 75 65 0 1 3 25 82 75 65 0 0 1

10 80 57 61 0 1 3 26 66 57 61 0 1 2

11 52 75 75 1 1 1 27 52 75 75 1 1 1

12 63 32 66 1 0 1 28 63 72 66 0 0 2

13 63 30 56 0 0 2 29 63 30 66 1 0 1

14 78 41 70 0 0 2 30 78 41 70 0 1 2

15 80 53 64 1 1 3 31 63 53 64 1 0 1

16 80 72 73 0 1 1 32 80 72 63 0 0 1
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reference solutions obtained by applying preliminary

heuristic processes. In 1998, Glover published the SS

template (Glover 1998) which presents an algorithmic

description of the SS method and is considered a mile-

stone in SS literature; many different applications were

subsequently developed that have shown potential for

solving various complicated optimization problems

(Martı́ 2006). The scatter search is a powerful meta-

heuristic approach and has been applied to many various

applications successfully. A sample list of these appli-

cations can be found in Laguna and Martı́ (2003). To the

best of our knowledge, some studies applied the scatter

search to machine learning algorithm. For examples, Su

et al. (2005) proposes a hybrid procedure combining

neural networks and scatter searches to optimize the

continuous parameter design of back-propagation neural

network. López et al. (2006) developed three scatter

search-based algorithms, to solve the feature-selection

problem. Rasha et al. (2006) proposed a scatter search-

based automatic clustering problem to discover cluster

number and cluster centers without prior knowledge of a

possible number of class, and without any initial partition.

However, they did not apply SS to parameter determi-

nation and feature selection simultaneously.

Briefly, unlike genetic algorithms, an SS operates on a

small set of solutions and makes only limited use of ran-

domization as a proxy for diversification when searching

for a globally optimal solution. Based on formulations

initially proposed for combining decision rules and con-

straints, an SS uses strategies to combine solutions and

create a balance between quality and diversification in the

reference set.

Generally, the principal components in an SS can be

described as follows.

(1) A diversification generation method generates a

population of solutions that satisfy a critical level of

diversity.

(2) An improvement method transforms a trial solution

into an enhanced feasible trial solution.

(3) A reference set update method builds and maintains

a reference set that is a collection of high-quality

solutions and diverse solutions. The reference set is

the basis for creating new combined solutions.

(4) A subset generation method is applied to the reference

set and produces a subset of solutions as a basis for

creating combined solutions.

(5) A solution combination method transforms a given

subset of solutions produced by the subset generation

method into one or more combined new solutions.

Since each of these methods in italics can be imple-

mented in a variety of ways and with different degrees of

complexity, the SS procedure is very adaptable to different

problems. Only four of the five components are strictly

required in an SS. The improvement method, the only

exception, is applied to generate high-quality solutions

when they are not provided by other components.

3 The proposed approach

This study presents a novel SS-based approach that pro-

vides the best parameter settings for the C4.5 algorithm and

finds the beneficial subset of features for different prob-

lems, such that the classification accuracy rate of the C4.5

algorithm is maximized. The way in which to apply scatter

search to parameter determination and feature selection of

DTs, solution representation and objective function calcu-

lation, and the procedure of the SS ? DT is discussed as

follows.

3.1 Solution representation and objective

function value

This study adopted an SS-based approach, called the

SS ? DT, for parameter determination and feature selec-

tion in the C4.5 algorithm. For the C4.5 algorithm without

feature selection two parameter values, M and CF, were

necessary. For the C4.5 algorithm with feature selection, if

Fig. 1 Tree structure of the DT example (M = 2 and CF = 25%). a Without feature selection. b With feature selection
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n features were needed to determine which features were

selected, then additional n indicative variables had to be

identified. The values of n variables range from 0 to 1. If a

variable value is B0.5, then its corresponding feature was

not chosen. Conversely, if a variable value [0.5, then its

corresponding feature was chosen. For example, if the

dataset had four features and the C4.5 algorithm requires

two parameters, there were six variables used as shown in

Fig. 2. This solution can be decoded as follows. The M is 5,

the CF is 32%, and the selected features are 1, 2, and 4. The

range of M and CF in the solution representation was 0–1,

and the real value of M and CF was scaled to a specific

range related to the input dataset.

Although four criteria exist, (predictive accuracy, speed,

robustness, and interpretability) for evaluating the model

created by the DT, the classification accuracy rate was

employed most. Therefore, the classification accuracy rate

was adopted as the objective function in this study.

3.2 Applying SS for C4.5 DT

The proposed SS ? DT approach follows the steps of SS

template (Laguna and Martı́ 2003) and is described as

follows.

(1) Diversification generation method: Population P with

Psize solutions was generated randomly. Because all

values ranged from 0 to 1 in the solution presentation,

each value was uniformly generated from 0 to 1.

(2) Improvement method: The improvement method was

optional in the SS template, and therefore, was not

applied in this study.

(3) Reference set update method: The reference set,

RefSet, collects both high-quality solutions and

diverse solutions that are used to generate new

solutions by applying the Combination method. The

size of the reference set was b ¼ b1 þ b2 ¼ jRefSetj;
where b1 was the number of high-quality solutions

and b2 was the number of diverse solutions. Con-

struction of the initial reference set starts with

selecting b1 best solutions (solutions with the highest

classification rates) from P. These solutions were

added to RefSet and deleted from P. For each solution

in the P-RefSet, the minimum Euclidean distance to

the solutions in RefSet was calculated. The solution

with the maximum of the minimum distances was

selected. This solution was then added to RefSet and

deleted from P, and the minimum distances were

updated accordingly. This process was repeated b2

times, where b2 ¼ b� b1: Thus, the resulting refer-

ence set had b1 high-quality solutions and b2 diverse

solutions.

(4) Subset generation method: The size of subsets was set

to 2; that is, only subsets consisting of all pair-wise

combinations of solutions in RefSet were considered.

Therefore, at maximum, bðb� 1Þ=2 subsets exist.

(5) Solution combination method: The method employed

consisted of finding linear combinations of reference

solutions. Each combination of two reference solu-

tions, denoted as Y 0 and Y 00; were employed to create

three trial solutions. These three trial solutions were

(1) Y ¼ Y 0 � d; (2) Y ¼ Y 0 þ d, and (3) Y ¼ Y 00 þ d;

where d ¼ uðY 00 � Y 0Þ=2 and u was a random number

with values of 0–1.

3.3 Demonstration of SS ? DT procedure

For demonstration purpose, the dataset in Sect. 2.2 was

used and the parameter values for SS ? DT were set as

follows: Psize = 8, b = 4, b1 = 2, b2 = 2, M ranges from 2

to 5, and CF ranges from 1 to 30%.

3.3.1 Diversification generation method

Because all variables were ranged from 0 to 1 in the

solution, Psize solutions could be generated by setting each

variable uniformly generated from 0 to 1, and the results

are shown in Table 2.

In this table, solution 1 represents that M = 3

(0.295 9 (5 - 2) ? 2, round up to integer), CF = 28%

(0.921 9 (30–1%) ? 1%, round up to integer), the features

1, 2, 3, and 5 (x3 [ 0.5, x4 [ 0.5, x5 [ 0.5, x7 [ 0.5) were

used for creating a DT model. Meanwhile, solution 2

represents that M = 3 (0.258 9 (5–2) ? 2), CF = 8%

(0.233 9 (30–1%) ? 1%), the features 1, 3, and 4

(x3 [ 0.5, x5 [ 0.5 and x6 [ 0.5) were used for creating a

DT model. Other solutions could be described in the same

way. After the DT model was created, the classification

Fig. 2 Solution representation of SS ? DT

Table 2 Diverse solutions

Solution x1

(M)

x2

(CF)

x3

(F1)

x4

(F2)

x5

(F3)

x6

(F4)

x7

(F5)

obj(X)

(%)

X1 0.295 0.921 0.751 0.783 0.534 0.234 0.840 84.4

X2 0.258 0.233 0.522 0.294 0.689 0.893 0.007 78.1

X3 0.948 0.923 0.603 0.837 0.346 0.926 0.387 81.2

X4 0.512 0.594 0.248 0.459 0.475 0.678 0.887 56.2

X5 0.419 0.005 0.906 0.094 0.125 0.800 0.487 78.1

X6 0.051 0.070 0.464 0.710 0.846 0.518 0.004 62.5

X7 0.967 0.846 0.417 0.366 0.292 0.607 0.016 56.2

X8 0.035 0.527 0.856 0.687 0.416 0.424 0.859 87.5

68 S.-W. Lin, S.-C. Chen

123



accuracy rate for each solution could be calculated and is

shown in the last column of Table 2.

3.3.2 Reference set update method

Table 3 shows the best b1 solutions in P, which were

immediately added to the RefSet. The first column in this

table shows the solution number in P, followed by the

variable values and the objective function value. Therefore,

solutions X8 and solution X1 in P had the highest objective

function value and became the first solution and the second

solution in RefSet, respectively.

We then calculated the minimum distance dminðXÞ
between each solution X in P-RefSet and the solution Y

currently in RefSet. That is, dminðXÞ ¼ Min
Y2RefSet

fdðX; YÞg;
where dðX; YÞ is the Euclidean distance between X and Y.

Mathematically, dðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

ðXi � YiÞ2
s

:

For example, the minimum distance between solution

(i.e., X2) in Table 2 and the RefSet solution in Table 3 (i.e.,

X8 and X1) was calculated as follows:

dminðX2Þ ¼ MinfdðX2;X8Þ; dðX2;X1Þg
¼ Minð1:193; 1:289Þ ¼ 1:193:

The maximum dminvalue for the solution in P-RefSet

corresponds to Solution X7 in P ðdminðX7Þ ¼ 1:300Þ: We

added this solution to RefSet, deleted it from P, and

updated the dminvalues. The new maximum dminvalue of

0.1.135 corresponded to solutions X6 in P, the diverse

solutions added to RefSet are shown in Table 4.

3.3.3 Subset generation method

This method consisted of a generated subset of reference

solutions to be subjected to the combination method. Due

to the size of subset being set to 2 in this study, there was a

maximum of b� ðb� 1Þ=2 ¼ 4� ð4� 1Þ=2 ¼ 6 subsets.

3.3.4 Combination method

Suppose solutions X1 and X8 were selected for the use in

the combination method. Three trial solutions were (1)

Y ¼ Y 0 � d, (2) Y ¼ Y 0 þ d, and (3) Y ¼ Y 00 þ d, where

d ¼ uðY 00 � Y 0Þ=2 and u was a random number with values

of 0–1. It should be noted that if the value of a variable was

lower than 0, the value was set to 0; if the value of a

variable was large than 1, the value was set to 1.

Suppose u was 0.543 Y 00 ¼ X1 and Y 0 ¼ X8, three trial

solutions were then obtained and are shown in Table 5. The

best solution in Table 4 is X9 with the objective function

value of 90.6%.

Using the subsets that are generated from the subset

generation method, more combinations were obtained from

the subset generation method and could be used to create

additional trial solutions. The search continued in a loop

that consisted of applying the combination method fol-

lowed by the reference update method. This loop termi-

nated when termination conditions were met.

3.4 System architecture of SS ? DT

The SS-based approach for parameter determination and

feature selection of a DT was constructed following the

steps and detailed explanation as follows.

(1) Input dataset and data pre-processing: After the

dataset was input, the k-fold approach developed by

Salzberg was applied with k = 10 (Salzberg 1997).

Thus, the dataset was segmented into 10 portions,

with each portion of the data sharing the same

proportion of each class of data. Nine data portions

were applied in the training process, whereas the

remaining portion was utilized in the test process.

Since the number of data in each class was not a

multiple of 10, the dataset could not be partitioned

equitably. However, the ratio of the number of data in

the training set to the number of data in the testing set

was maintained as closely as possible to 9:1.

(2) Feature subset selection and determination of param-

eter values: Each solution generated by the SS was

the selected subset of features and parameter values.

The selected features, parameter values, and training

Table 3 High-quality solution in RefSet

Solution x1

(M)

x2

(CF)

x3

(F1)

x4

(F2)

x5

(F3)

x6

(F4)

x7

(F5)

obj(X)

(%)

X8 0.035 0.527 0.856 0.687 0.416 0.424 0.859 87.5

X1 0.295 0.921 0.751 0.783 0.534 0.234 0.840 84.4

Table 4 Diverse solutions in RefSet

Solution x1

(M)

x2

(CF)

x3

(F1)

x4

(F2)

x5

(F3)

x6

(F4)

x7

(F5)

obj(X)

(%)

X7 0.967 0.846 0.417 0.366 0.292 0.607 0.016 56.2

X6 0.051 0.070 0.464 0.710 0.846 0.518 0.004 62.5

Table 5 New trial solution generated form the combination of

solution X1 and X8

Solution x1

(M)

x2

(CF)

x3

(F1)

x4

(F2)

x5

(F3)

x6

(F4)

x7

(F5)

obj(X)

(%)

X9 0.000 0.420 0.885 0.810 0.303 0.476 0.864 80.4

X10 0.106 0.634 0.804 0.461 0.529 0.372 0.854 87.5

X11 0.366 1.000 0.722 0.111 0.947 0.182 0.835 90.6
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dataset were then used for building the DT classifier

model. Each DT classifier model was created by calling

the C4.5 algorithm provided by Quinlan (1993).

(3) Objective function value calculation: After the clas-

sification model was constructed, the objective func-

tion value can be calculated. The higher the

classification accuracy rate, the better is the objective

function value.

(4) Termination criteria: When termination criteria were

satisfied, the process ended; otherwise, the next

iteration was run. The termination criterions utilized

in this study were the maximal solutions evaluated,

Smax, and the allowable number of successive non-

improving solutions evaluated, Nnon-improving. That is,

the number of solutions evaluated exceeds Smax or the

best objective function value obtained was not

improved in Nnon-improving successive solutions and

the SS procedure was terminated.

(5) The SS process: In this step, the system generated

other solutions using SS as described in Sect. 3.2.

4 Experimental results

The proposed SS ? DT approach was implemented using

C language and a Windows XP operating system on a

personal computer with a Pentium IV 3.0 GHz CPU and

512 MB of RAM. To verify the effectiveness of the pro-

posed SS ? DT approach, 23 datasets from the UCI

Machine Learning Repository (Hettich et al. 1998) were

implemented. These dataset included several high dimen-

sional datasets (Anneal, Breast cancer new, Ionosphere

structure, and Sonar), several large datasets (Adult, Seg-

mentation, and Wave), and one high dimensional and large

dataset (Connect). Table 6 shows the number of features,

instances, and classes for these datasets. As the C4.5

algorithm can handle missing values, the missing value was

replaced by a ‘‘?’’ and the instance with missing values was

reserved during the experiments. The range of M is 2–20,

whereas the range of CF is 0.01–0.35 (1–35%).

After running a few datasets with several combinations

of parameter settings under the situation in which feature

selection was not considered; that is, only M and CF values

in the C4.5 algorithm were necessary to be searched, the

parameter values for Psize, b1, b2, Nnon-improving and Smax for

a SS were 30, 5, 5, 300, and 1,500, respectively. If the

number of solutions evaluated exceeded 1,500, the pro-

posed approach was terminated. If the best solution

obtained was not improved in 300 successive solutions, the

proposed approach was also terminated.

Because tenfold cross-validation was utilized, the min-

imum cases, M, confidence level, CF, and classification

accuracy rate were obtained by executing the proposed

SS ? DT approach once for each fold. As the proposed

SS ? DT approach was non-deterministic, the solutions

obtained may not be equal for the same data. Thus, the

proposed SS ? DT approach was executed three times for

each fold in the dataset to calculate average classification

accuracy rate. That is, the SS ? DT approach executed 30

(10 9 3) times for each dataset. The classification results

obtained were then compared with those obtained by the

C4.5*, CVC 4.5, Small CVC 4.5 (John 1994), and the C4.5

algorithm (using default value) (Table 7). Classification

accuracy rates were cited from their original studies.

Notably, only the classification accuracy rate for Monk2

(66.95% in SS ? DT, 67.1% in the C4.5*, and 67.1% in

the small CVC 4.5) obtained by SS ? DT was not the best

among the other approaches. However, other classification

accuracy rates obtained by the proposed SS ? DT

approach were the best.

For feature selection, because the solution space was

increased by n indicative variables, Smax was increased to

3,000 and the other parameters for SS ? DT remained

unchanged. The classification results obtained were com-

pared with those obtained by the Sequential Scatter Search

with Greedy Combination (C4.5 ? SSS-GC) (López et al.

Table 6 Datasets from the UCI repository

Dataset Number

of features

Number

of instances

Number

of Classes

Adult 14 45,222 2

Anneal 38 798 5

Australian (credit scoring) 15 690 2

Breast cancer (new) 30 569 2

Breast cancer (original) 9 699 2

Bupa liver 6 345 2

Car evaluation 6 1,728 4

Connect 42 67,557 3

CRX 15 690 2

Glass 9 214 6

Heart disease 13 303 2

Hepatitis 19 155 2

House 13 506 2

Ionosphere structure 34 351 2

Monk2 7 601 2

New thyroid 5 215 3

Pima Indians diabetes 8 768 2

Segmentation 19 2,310 7

Sonar 60 208 2

Vehicle 18 846 4

Voting 16 348 2

Wave 21 5,000 3

Wine 13 178 3
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2006), Genetic algorithm (C4.5 ? GA), and genetic pro-

graming (C4.5 ? GAP) (Smith and Bull 2005) (Table 8).

Classification accuracy rates on these three methods

were from their original studies. Based on the classification

accuracy rates obtained, the proposed SS ? DT approach

was the best for all datasets.

Furthermore, the classification results obtained by

SS ? DT with feature selection were compared with those

obtained by other DT-based methods, including Hybrid

C4.5/GA (Carvalho and Freitas 2002), TARGET (Gray and

Fan 2008), co-evolutionary DT (Aitkenhead 2008), and

LDSDTTS (Orsenigo and Vercellis 2004) (Table 9). Their

classification accuracy rates were also obtained from their

original studies. Only classification accuracy rates for

Connect (73.30% in SS ? DT and 75.93% in Hybrid C4.5/

GA) and Hepatitis (83.42% in SS ? DT and 84.97% in

Hybrid C4.5/GA) obtained by the SS ? DT were not the

best among the other approaches. The other classification

accuracy rates obtained by the proposed SS ? DT

approach were best, demonstrating that the proposed

SS ? DT approach performs well in various problems. To

sum up, only 3 out of 23 of the classification accuracy rates

obtained by the proposed approach for dataset were worse

than those of other approaches.

Finally, to determine whether a significant difference

existed between the proposed SS ? DT approach with

feature selection and that without feature selection, the

classification results obtained by the proposed SS ? DT

approach with and without feature selection were com-

pared (Table 10). Although classification accuracy rate for

Monk2 was reduced, the classification accuracy rates for all

other datasets were increased. For datasets where the

classification accuracy rate increased, only one dataset

(Anneal) was not significantly different; all other datasets

have values of P \ 0.05, meaning that significant differ-

ence existed.

Table 10 shows that all the average computations in

the acceptable range, and in some datasets the computa-

tion cost between without/with feature selection, were

quite small (breast-cancer new, breast-cancer original,

bupa liver, car evaluation, CRX, monk2, new thyroid,

pima Indians diabetes, sonar, voting, and wine). The

Nnon-improving stop criterion worked well, it balanced the

SS ? DT algorithm between the model computation cost

Table 7 Comparison between various approaches without feature selection (%)

Dataset SS ? DT C4.5a CVC 4.5 Small CVC 4.5 C4.5

Australian (credit scoring) 90.98 ± 4.17a 85.0 81.29 ± 0.04 81.5 81.0

Breast cancer (new) 97.50 ± 1.82a 95.7 94.34 ± 1.10 94.4 94.4

Monk2 66.95 ± 1.70 67.1a 65.20 ± 1.04 67.1a 65.0

Pima Indians diabetes 77.78 ± 4.01a 74.6 72.74 ± 1.23 72.3 68.4

Plus or minus denotes the standard deviation
a The higher classification accuracy rate among approaches

Table 8 Comparison of other approaches with feature selection (%)

Dataset SS ? DT C4.5 ? SSS–GC C4.5 ? GA C4.5 ? GAP

Anneal 95.14 ± 1.96a 91.45 ± 2.19 92.43 ± 2.03 N/A

Australian 92.65 ± 3.15a 83.94 ± 2.17 83.51 ± 1.26 N/A

Breast cancer (new) 98.63 ± 1.10a N/A N/A 95.71

Breast cancer (original) 98.77 ± 1.11a N/A N/A 95.56

Bupa liver 77.31 ± 3.10a N/A N/A 66.55

Glass 84.66 ± 3.90a N/A N/A 71.84

Ionosphere 98.10 ± 2.39a 87.07 ± 3.81 88.43 ± 2.19 90.69

New thyroid 99.44 ± 1.67a N/A N/A 96.49

Pima Indians diabetes 80.27 ± 3.66a N/A N/A 73.64

Sonar 96.37 ± 3.97a N/A N/A 75.89

Vehicle 82.67 ± 2.63a N/A N/A 72.11

Wine 100.00 ± 0.00a N/A N/A 96.10

Plus or minus denotes the standard deviation

N/A approach did not use this dataset for test
a The higher classification accuracy rate among approaches
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Table 9 Comparison between

the SS ? DT approach with

feature selection and other

approaches (%)

N/A approach did not use this

dataset for test
a The higher classification

accuracy rate among approaches

Dataset SS ? DT Hybrid C4.5/GA

(S = 10)

TARGET Co-evolutionary DT LDSDTTS

Adult 83.95a 79.83 N/A N/A N/A

Breast cancer (new) 98.63a N/A N/A N/A 97.8

Breast cancer (original) 98.77a N/A 95.5 N/A N/A

Bupa liver 77.31a N/A N/A N/A 75.3

Car evaluation 90.64a N/A N/A 89.20 N/A

Connect 75.30 75.93a N/A N/A N/A

CRX 90.21a 86.12 N/A N/A N/A

Glass 84.66a N/A N/A 82.40 N/A

Heart disease 89.18a N/A N/A N/A 85.2

Hepatitis 83.42 84.97a N/A N/A N/A

House 97.56a N/A N/A N/A 96.5

Ionosphere 98.10a N/A N/A N/A 94.6

New thyroid 99.44a N/A 93.6 N/A N/A

Pima Indians diabetes 80.27a N/A 77.0 N/A 80.2a

Segmentation 97.55a 93.62 N/A N/A N/A

Voting 97.31a 92.30 N/A N/A N/A

Wave 85.22a 79.60 N/A N/A N/A

Table 10 Experimental results of SS ? DT with/without feature selection on datasets

Dataset With feature selection Without feature selection P-value

Accuracy rate (%) No. selected features Avg. time (s) Accuracy rate (%) Avg. time (s)

Adult 83.95 ± 3.24 9.80 ± 0.92 3,199.41 83.75 ± 3.24 3,694.34 0.001079

Anneal 95.14 ± 1.96 20.63 ± 1.75 395.57 95.12 ± 1.90 196.01 0.944067

Australian (credit scoring) 92.65 ± 3.15 7.83 ± 1.37 262.33 90.98 ± 4.17 160.80 \0.000001

Breast cancer (new) 98.63 ± 1.10 5.57 ± 1.33 9.33 97.50 ± 1.82 6.98 \0.000001

Breast cancer (original) 98.77 ± 1.11 13.37 ± 1.92 35.10 97.18 ± 1.97 34.53 \0.000001

Bupa liver 77.31 ± 3.10 4.60 ± 0.77 8.17 72.86 ± 5.57 8.26 \0.000001

Car evaluation 90.64 ± 1.86 5.30 ± 0.47 8.51 90.30 ± 1.74 6.62 0.020409

Connect 75.30 ± 5.56 26.03 ± 2.80 5,458.56 74.03 ± 5.61 2,701.84 \0.000001

CRX 90.21 ± 2.91 7.57 ± 1.00 12.86 88.94 ± 3.30 10.77 0.000145

Glass 84.66 ± 3.90 5.20 ± 1.54 15.72 78.77 ± 4.05 11.77 \0.000001

Heart disease 89.18 ± 2.71 8.00 ± 1.14 10.03 83.06 ± 5.94 7.24 0.000003

Hepatitis 83.42 ± 3.69 10.67 ± 3.65 10.39 79.72 ± 7.51 6.30 0.007067

House 97.56 ± 2.07 8.77 ± 1.10 61.36 96.64 ± 2.01 45.24 0.001194

Ionosphere structure 98.10 ± 2.39 15.77 ± 2.13 28.75 94.64 ± 2.88 23.63 \0.000001

Monk2 66.39 ± 1.32 1.67 ± 1.73 4.76 66.95 ± 1.70 4.94 –

New thyroid 99.44 ± 1.67 3.17 ± 0.38 6.00 95.98 ± 2.64 5.05 \0.000001

Pima Indians diabetes 80.27 ± 3.66 6.07 ± 1.03 17.47 77.78 ± 4.01 16.93 0.000043

Segmentation 97.55 ± 0.70 9.33 ± 1.67 143.93 96.48 ± 1.21 130.92 0.000003

Sonar 96.37 ± 3.97 28.77 ± 3.38 42.37 86.83 ± 3.49 42.24 \0.000001

Vehicle 82.67 ± 2.63 11.10 ± 2.07 54.30 78.88 ± 3.19 45.44 0.000010

Voting 97.31 ± 2.67 6.47 ± 1.96 6.83 96.83 ± 2.71 4.93 0.022623

Wave 85.22 ± 5.09 12.63 ± 1.40 1,526.42 84.04 ± 5.25 1,518.99 0.000282

Wine 100.00 ± 0.00 6.20 ± 1.24 7.82 95.90 ± 6.47 5.45 0.001918

Confidence level a = 0.05

Plus or minus denotes the standard deviation

- The classification accuracy rate is reduced with feature selection
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and the classification accuracy rate. The proposed approach

can cope with high dimensional datasets (Anneal, Breast

cancer new, Ionosphere structure, and Sonar), large data-

sets (Adult, Segmentation, and Wave), and high dimen-

sional and large dataset (Connect). The result showed the

proposed approach performed well and the feature selec-

tion could enhance the classification accuracy rate and

remove irrelevant or redundant features.

In order to verify the problem of the over-fitting, and

under-fitting, both the classification accuracy rates on the

training data and the testing data of SS ? DT are shown in

Table 11. Because there was no large difference between

the training data and testing data, the use of the proposed

approach seems not to have suffered the problem of over-

fitting and under-fitting. Moreover, in Table 11 we provide

the average tree size (average number of nodes) of each

dataset. It can be noted that even feature selections did not

have significant improvement of classification accuracy

rates in several datasets; the SS ? DT can remove some

irrelevant features and produce smaller tree structure for

these datasets.

Table 11 shows that the proposed approach can provide

high-quality classification accuracy rate of the training data

and the testing data, and the feature selection could help the

C4.5 algorithm reduce or keep the same tree size while

classification accuracy rate is increased or keeps the similar

result.

This study applied scatter search for C4.5 algorithm to

determine the parameter and beneficial feature subset

simultaneously for different problems to obtain higher

classification accuracy rate. The experimental results

showed that the scatter search is indeed beneficial for C4.5

to determine the parameter values and feature selection.

Therefore, the scatter search has the potential to be applied

to other machine learning algorithms in future research.

5 Conclusion and future research

Machine learning algorithms such as DT, BPN, and SVM

are very popular and can be applied to various areas.

However, most machine learning algorithms will suffer the

parameter setting and feature selection problems. This

study applied the SS-based approach to search for the best

parameter settings for the C4.5 algorithm. This study used

high dimensional datasets (Anneal, Breast cancer new,

Table 11 Validation of the proposed scatter-based meta-heuristics for the training and testing result (%)

Dataset With feature selection Without feature selection

Training accuracy Testing accuracy Tree size Training accuracy Testing accuracy Tree size

Adult 84.22 83.95 335.30 84.40 83.75 379.90

Anneal 95.37 95.14 65.20 95.66 95.12 75.60

Australian (credit scoring) 92.72 92.65 21.90 91.74 90.98 24.00

Breast cancer (new) 98.63 98.63 8.20 97.71 97.50 9.60

Breast cancer (original) 98.87 98.77 14.80 98.07 97.18 13.60

Bupa liver 78.83 77.31 11.80 76.65 72.86 14.60

Car evaluation 95.58 90.64 137.90 95.31 90.30 145.80

Connect 79.47 75.30 2,032.90 82.51 74.03 2,559.70

CRX 91.35 90.21 17.60 89.21 88.94 22.00

Glass 88.11 84.66 29.00 86.54 78.77 29.80

Heart disease 91.23 89.18 16.20 86.74 83.06 16.20

Hepatitis 83.44 83.42 14.70 80.38 79.72 16.10

House 98.52 97.56 69.20 98.31 96.64 72.40

Ionosphere structure 98.49 98.10 11.00 94.98 94.64 11.00

Monk2 68.00 66.39 7.60 72.14 66.95 23.00

New thyroid 99.50 99.44 7.40 98.14 95.98 7.20

Pima Indians diabetes 81.96 80.27 11.20 80.51 77.78 18.80

Segmentation 98.05 97.55 57.20 97.18 96.48 81.60

Sonar 96.41 96.37 21.00 94.28 86.83 20.90

Vehicle 84.26 82.67 55.60 84.15 78.88 63.40

Voting 97.80 97.31 7.90 96.87 96.83 8.50

Wave 94.82 85.22 311.00 94.60 84.04 332.80

Wine 99.38 100.00 8.80 98.54 95.90 8.40
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Ionosphere structure, and Sonar), large datasets (Adult,

Segmentation, and Wave), and high dimensional and large

dataset (Connect), the proposed approach performed well.

On the other hand, Table 10 shows that computation costs

in the acceptable time means the proposed approach could

solve high dimensional, large, and high dimensional and

large dataset problems, and did not require large compu-

tation costs. Compared with previous studies, the proposed

SS ? DT approach shows good performance by obtaining

higher classification accuracy rates. With feature selection,

the proposed SS ? DT approach effectively deletes some

moderating or non-affecting features while maintaining the

same or superior classification accuracy rate. Furthermore,

the effects of the remaining features on classification can

be examined in the future. The main contributions of the

proposed approach include:

(1) The trial-and-error method traditionally used for C4.5

algorithm in determining the parameter is time-

consuming and cannot guarantee the better result.

The proposed approach can be used for automatic

parameter determination for C4.5 algorithm.

(2) The feature selection could help the C4.5 algorithm

reduce or keep the same tree size while classification

accuracy rate is increased, or keep the similar result

compared with the method.

(3) The experimental result showed that the scatter search

is indeed beneficial for C4.5 to determine the

parameter values and feature selection. Therefore,

the scatter search has the potential to be applied to

other machine learning algorithms.

More studies can be done in the future. First, as the

proposed SS-based meta-heuristic is versatile; exploring

the potential application of this approach to other data-

mining techniques, (such as BPN, SVM, probabilistic

graphical models, and probabilistic graphical models)

could improve the classification result. Second, the pro-

posed SS ? DT approach can be applied to other real-

world problems to determine whether it can effectively

solve such problems. Finally, ensemble architecture can be

used. The original concept of ensemble is based on a

committee machine. The purpose of a committee machine

is to integrate options of many experts rather than only one

expert to obtain a good classification result. Therefore, a

multi-decision tree model can be utilized in ensemble

architecture to enhance further classification accuracy rate;

this is currently being investigated by the authors of this

study.
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